Operating Instructions (translation of the original instructions)

Zero-speed monitor


## Zero-speed monitor

- Application up to SIL 3 according to EN 61508, EN 62061 or PL e / Category 4 according to EN ISO 13849-1
- Manual or automatic reset
- Eight safe inputs and four safe semiconductor outputs
- 2 kHz cutoff frequency
- Adjustable standstill frequency $0.1 \mathrm{~Hz} \ldots . .9 .9 \mathrm{~Hz}(0.1 \mathrm{~Hz}$ steps) and $0.5 \mathrm{~Hz} \ldots 99 \mathrm{~Hz}(1 \mathrm{~Hz}$ steps)
- Sensors: - Proximity switches with PNP-output (plus switching)
- Incremental encoder with HTL-output


## Device versions

| SNS 4074K-A | $0.1-9.9 \mathrm{~Hz}$ | R1.188.3620.0 | SNS 4084K-A | $0.1-9.9 \mathrm{~Hz}$ | R1.188.3660.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SNS 4074K-C | $0.1-9.9 \mathrm{~Hz}$ | R1.188.3630.0 | SNS 4084K-C | $0.1-9.9 \mathrm{~Hz}$ | R1.188.3670.0 |
| SNS 4074K-A | $0.5-99 \mathrm{~Hz}$ | R1.188.3640.0 | SNS 4084K-A | $0.5-99 \mathrm{~Hz}$ | R1.188.3480.0 |
| SNS 4074K-C | $0.5-99 \mathrm{~Hz}$ | R1.188.3650.0 | SNS 4084K-C | $0.5-99 \mathrm{~Hz}$ | R1.188.3490.0 | ...-A: with screw terminals, pluggable; ...-C: with spring-loaded terminals, pluggable

## Further Documentation

For the planning, commissioning and operation of the device, please observe the information in the documentation "Manual SNS 4084K/4074K Standstill Monitor" (Doc. No.: BA000506).

## SAFETY REGULATIONS

- The installation, commissioning, modification and retrofitting must only be performed by a qualified electrician.
- Disconnect the device / the system from the power supply before starting work. In the case of installation and system errors, mains voltage can be present on the control circuit in the case of non-galvanically isolated devices.
- Observe the electrotechnical and professional trade association safety regulations for the installation of the equipment.
- Opening the case or other manipulation voids any warranty.


## ATTENTION

- In the case of improper use or any use other than for the intended purpose, the device must no longer be used and any warranty claim is void. Invalidating causes can be:
- strong mechanical loading of the device such as, e.g. in the case of falling or voltages, currents, temperatures, humidity outside the specification.
- Always check all safety functions in accordance with the applicable regulations during initial commissioning of your machine / system and observe the specified inspection cycles for safety devices.
- Take the following safety precautions before starting installation / assembly or dismantling:

1. Disconnect the device / the system from the power supply before starting work.
2. Secure the machine / system against being switched on again.
3. Confirm that no voltage is present.
4. Ground the phases and short to ground briefly.
5. Cover and shield neighbouring live parts.

- Limited contact protection!

Protection class according to EN 60529.

- Case / terminals: IP 40 / IP 20.
- Finger-proof according to EN 50274.


## Proper Use

The units must only be used as components of safety devices on machines intended to protect persons, material and machines.

Only use the unit in accordance with its intended purpose. Also, pay particular attention to the information in the technical data.

The frequencies present at the inputs $11,12,13$ and 14 must not exceed 2 kHz (cutoff frequency).

| NOTE |
| :--- |
| - The SIL according to EN 61508 / EN 62061 or PL / Category |
| according to EN ISO 13849-1 depending on the external |
| wiring, the choice of control devices and their location on |
| the machine. |
| - In applications with a low demand of the safety function, a |
| proof-test once a year has to be implemented (The supply |
| voltage of the device has to be switched off and on again |
| and the safety function of the device has to be activated to |
| verify the safety function). |
| - The device must be protected with a fuse 4 A Operating |
| Class gG or a circuit breaker 4 A Tripping Characteristics B |
| or C. |

Installation (see also "Assembly")

## NOTE

- The devices must be installed in a switch cabinet with a protection class of at least IP 54.
- The installation is made on a mounting rail according to EN 50022-35.
- The mounting rail must be connected to protective earth (PE).
- The external power supply must comply with the regulations for low voltages with safe separation (SELV, PELV according to IEC 60536) and EN 50178 (Electrical equipment for use in power installations).
- External loads must be equipped with a suitable protection circuit for the load (e.g. RC elements, varistors, suppressors) in order to reduce electromagnetic interference and to increase the service life of the output switching elements.


## Functional Description

In the SNS 4084K/4074K there are four operating mode groups A, B, C, D available for safe speed monitoring tasks (see manual):

- Zero-speed monitoring (A, B)
- Diverse zero-speed monitoring (C, D) with PLC-signal

Connections and indicators (see also the section "Terminal Diagram")

| Terminal | Function | LED | Meaning, if LED lights |
| :--- | :--- | :--- | :--- |
| A1 | Operating voltage connection $\mathrm{U}_{\mathrm{B}}$ | PWR | $\mathrm{U}_{\mathrm{B}}$ is present |
| A 2 | Operating voltage connection Ground |  |  |
| $\mathrm{X} 1, \mathrm{X} 2$ | Semiconductor signal outputs for indicating and <br> evaluating operating and error statuses |  | High signal is present |
| S1 | Input for function selection (operating mode) | S 1 | High signal is present |
| S 2 | Input for function selection (operating mode) | S 2 | I1 - I4 |
| I1 - I4 <br> I2 - I4 | Inputs for sensor transmitter or <br> Input for function selection (operating mode) | I5 | High signal is present |
| I5 | Input for RESET function | I6 | High signal is present |
| I6 | Input for enable/start delay | $\mathrm{Q} 1 / \mathrm{Q} 2$ | High signal is present |
| Q 1 / Q2 | Outputs (semiconductors), safety related | Q / Q4 | High signal is present |
| $\mathrm{Q} 3 / \mathrm{Q} 4$ | Inverted outputs (semiconductors), safety related | ERR | Error (see manual BA000506) |
|  |  |  |  |

Settings of the standstill monitor (diagram)


## Information on the outputs

The outputs Q1/Q2 can be used up to SIL 3.
The outputs $\mathrm{Q} 3 / \mathrm{Q} 4$ can be used for controlling magnetically operated interlocks up to SIL 1.

SNS 4084K


X1, X2 are not safe semiconductor outputs.
X1 signals error states.
X2 signals the logic state of $A$ and the RESET request by 15.

## Setting of the speed to be monitored

The standstill frequency is set using the two rotary switches " $x$ " and " $y$ ".

| Device Variants | Rotary switch | Freq. [Hz] |
| :---: | :---: | :---: |
| $0.1-9.9 \mathrm{~Hz}$ | $00 / 01-99$ | $0.1 / 0.1-9.9$ |
| $0.5-99 \mathrm{~Hz}$ | $00 / 01-99$ | $0,5 / 01-99$ |

"ENTER" button: Activation of the function block and control circuit functions

- Set the required operating mode, speed (at the rotary switches) and the control circuit function (using external wiring at S1, S2, 15).
- Then apply the operating voltage with the ENTER button pressed; the ERR indicator flashes (max. 3 s)
- Release the ENTER button while the ERR indicator is flashing (an error is detected if the ENTER button is pressed for longer than 3 s ).

The selected operating mode, speed and RESET function are then saved and active.

## RESET / BYPASS function I5/I6 (SNS 4074K)

The automatic(high)/manual (low) Reset function is defined during the activation of the POU, see ENTER button. automatic RESET: A High signal at I5 (open) transmits the comparator signal to the outputs.
manual RESET:A High pulse at I5 transmits the enable of the comparator to the outputs.
The transfer of the Reset signals can be influenced using the Bypass function (ODER) at the input I6 of the SNS 4074 K , If the input 16 is wired (HIGH), the outputs Q 1 and Q 2 are permanently HIGH and Q3 and Q4 permanently LOW. The generation of the bypass signal has to fulfill the same safety requirements as the operating mode and the designated safety function.

## RESET / Start-up bridging I5/I6 (SNS 4084K)

The automatic(high)/manual (low) Reset function is defined during the activation of the POU, see ENTER button.
automatic RESET: A High signal at I5 (open) transmits the comparator signal to the outputs. This transfer can be disabled with I6 (I6 = LOW)
manual RESET: A High pulse at I5 transmits the enable of the comparator to the outputs. A High pulse at 16 revokes this enable.

## Behaviour of the device in the case of an error

The detection of random or systematic system errors in the system or its control results in deactivation. In doing so, all safety-oriented output circuits are switched off and the ERR LED of the module lights or flashes. Error codes are also output via the signal output X 1 and the LEDs of the inputs.

Three error categories are distinguished:

- ERR lights: system error, all outputs are deactivated.
- ERR flashes: serious error, all outputs are deactivated
- ERR off: no errors or minor process errors

Detailed information can be found in the manual.
The deactivation can be revoked if necessary by the user by elimination of an error (e.g. in the control) and by switching off the operating voltage and then switching it on again.

## Setting the operating mode

|  |  | Input Assignment |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating mode | Sensor | S1 | S2 | 11 | 12 | 13 | 14 |
| $\begin{aligned} & \text { A-1 } \\ & \text { A- } \end{aligned}$ | - Incremental encoder with HTL output | low | low | Sensor 1 | Sensor 2 | Sensor 1 inverted | Sensor 2 inverted |
| B-1 | - Incremental encoder with HTL output <br> - Sensor with PNP output | low | high | Sensor 1 | Sensor 1 inverted | low | low |
| B-2 ${ }^{11}$ | - Sensor with PNP output |  |  | Sensor 1 | Sensor 2 | low | high |
| B-3 | - Incremental encoder with HTL output <br> - Sensor with PNP output |  |  | Sensor 1 | low | high | low |
| C-1 | - Incremental encoder with HTL output <br> - Sensor with PNP output | high | low | Sensor 1 | PLC signal | Sensor 1 inverted | low |
| C-1 | - Incremental encoder with HTL output <br> - Sensor with PNP output |  |  | Sensor 1 | static HIGH signal | Sensor 1 inverted | high |
| D-1 | - Incremental encoder with HTL output <br> - Sensor with PNP output | high | high | Sensor 1 | PLC signal | low | low |
| D-1 | - Incremental encoder with HTL output <br> - Sensor with PNP output |  |  | Sensor 1 | static HIGH signal | low | high |

${ }^{1)}$ In operating mode B-2, the specified safety level can only be adhered to if the sensor lines are individually sheathed and laid so that they are protected.
Technical Data

| Power circuit (A1, A2) |  | min | typical | max |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Operating voltage $\mathrm{U}_{\mathrm{B}}, \mathrm{DC}$ |  | 19,2 V DC | 24 V DC | 30 V DC |
| Rated voltage $\mathrm{U}_{\mathrm{N}}$ |  | - | 24 V DC | - |
| Residual ripple Uss |  | - | - | 3.0 V |
| Rated power DC |  | - | 2.5 W | 3.0 W |
| Peak current $\mathrm{I}_{\mathrm{p}}$ |  | - | - | 25 A |
| Ready time $\mathrm{t}_{\text {on }}$ (after applying $\mathrm{U}_{\mathrm{B}}$ ) |  | $5 \mathrm{sec} .+1 / \mathrm{f}_{\text {ST }}$ |  |  |
| Fuse Class gG or circuit breaker |  | 4 A (gG) |  |  |
| Input circuit (12, 13, 14, 15, 16, S1, S2) |  |  |  |  |
| Input voltage | $\mathrm{U}_{\mathrm{e}}$ (HIGH | 13.0 V | - | 30 V |
|  | $\mathrm{U}_{\mathrm{e}}$ (LOW) | -0.5 V | - | 5.0 V |
| Input current | $\mathrm{I}_{\mathrm{e}}$ (HIGH) | 2.4 mA | 3.0 mA | 3.8 mA |
|  | $\mathrm{I}_{\mathrm{e}}$ (LOW) | -2.5 mA | - | 2.1 mA |
| Input capacitance, $\mathrm{C}_{\text {IN }}$ |  |  | 10 nF |  |
| Input resistance $\mathrm{R}_{\text {IN }}$ |  |  | $7200 \Omega$ |  |
| Duty cycle $\mathrm{t}_{\mathrm{E}}$ |  | 52 ms | - | 70 ms |
| Break time $\mathrm{t}_{\text {A }}$ |  | 52 ms | - | 70 ms |
| Interruption time of $\mathrm{U}_{\mathrm{e}}$ (test pulses) |  | - | - | 4.0 ms |
| Input circuit (11, 12, I3, 14) |  |  |  |  |
| Input voltage | $\mathrm{U}_{\mathrm{e}}$ (High) | 13.0 V | - | 30 V |
|  | $\mathrm{U}_{\text {e }}$ (LOW) | -0.5 V | - | 5 V |
| Input current | $\mathrm{I}_{\mathrm{e}}$ (HIGH) | 2.4 mA |  | 3.8 mA |
|  | $\mathrm{I}_{\mathrm{e}}$ (LOW) | -2.5 mA |  | 2.1 mA |
| Input capacitance, $\mathrm{C}_{\text {IN }}$ |  |  | 10 nF |  |
| Input resistance $\mathrm{R}_{\text {IN }}$ |  |  | $7200 \Omega$ |  |
| Cutoff frequency |  |  |  | 2 kHz |
| Frequency change |  |  |  | $21 \mathrm{kHz} / \mathrm{s}$ |
| Measurement accuracy of the frequency measurement |  | $\begin{gathered} 1 \% \\ (<1 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 6 \% \\ (<50 \mathrm{~Hz}) \end{gathered}$ | $\begin{gathered} 12 \% \\ (\leq 99 H z) \end{gathered}$ |
| Pulse duration LOW level (for $\mathrm{f}<100 \mathrm{~Hz}$ ) |  | $>600 \mu \mathrm{~s}$ |  |  |
| Pulse duration High level (for $\mathrm{f}<100 \mathrm{~Hz}$ ) |  | $>600 \mu \mathrm{~s}$ |  |  |


| LOW level (for $100 \mathrm{~Hz}<\mathrm{f}<2 \mathrm{kHz}$ ) | $>200 \mu \mathrm{~s}$ |  |  |
| :---: | :---: | :---: | :---: |
| High level (for $100 \mathrm{~Hz}<\mathrm{f}<2 \mathrm{kHz}$ ) | $>200 \mu \mathrm{~s}$ |  |  |
| Output circuit (X1, X2) |  |  |  |
| Output voltage | 18,4 V | - | 30.0 V |
| Output current | - | - | 150 mA |
| Load capacitance $\mathrm{C}_{\mathrm{L}}$ | - | - | 1000 nF |
| Line resistance $R_{\mathrm{L}}$, effective during discharge of $\mathrm{C}_{\mathrm{L}}$ |  |  | $100 \Omega$ |
| Line length (single, $\varnothing 1.5 \mathrm{~mm}^{2}$ ) | - | - | 100 m |
| Short-circuit behaviour | strictly short-circuit protected |  |  |
| Output circuit (Q1, Q2, Q3, Q4) |  |  |  |
| Output voltage | 18,4 V | - | 30 V |
| Output current $\mathrm{I}_{\mathrm{an}}, \mathrm{T}_{\mathrm{u}} \leq 45^{\circ} \mathrm{C}$ (resistive / inductive) <br> Output current $\mathrm{I}_{\mathrm{an},} \mathrm{T}_{\mathrm{U}} \leq 55^{\circ} \mathrm{C}$ | - | 1.6 | $\begin{gathered} 2.0 \mathrm{~A} / 1,0 \mathrm{~A} \\ 1,6 \mathrm{~A} \end{gathered}$ |
| Sum current $\Sigma \mathrm{l}_{\mathrm{an}}, \mathrm{T}_{\mathrm{U}} \leq 45^{\circ} \mathrm{C}$ <br> Sum current $\Sigma \mathrm{l}_{\mathrm{on},}, \mathrm{T}_{\mathrm{U}} \leq 55^{\circ} \mathrm{C}$ | - | - | $\begin{aligned} & 4.0 \mathrm{~A} \\ & 3.2 \mathrm{~A} \\ & \hline \end{aligned}$ |
| Test pulse width $\mathrm{t}_{\mathrm{T}, \mathrm{HL}}$ |  | 400 \% | $650 \mu \mathrm{~s}$ |
| Test pulse period duration $\mathrm{T}_{\text {Pl, HL }}$ |  | 192 ms |  |
| Load capacitance $\mathrm{C}_{\mathrm{L}}$ |  |  | 500 nF |
| Inductive cutoff energy E ( $\mathrm{E}=0.5$ * $\mathrm{L}^{*} \mathrm{I}^{2}$ ) |  |  | 370 mJ |
| Line length (single, $\varnothing 1.5 \mathrm{~mm}^{2}$ ) |  |  | 100 m |
| Short-circuit behaviour | strictly short-circuit protected |  |  |
| Response time ( $\mathrm{t}_{\text {AN }}$ ) for overspeed |  |  |  |
| for standstill frequency ( $\mathrm{s}_{\text {st }}$ ) $0.1 \mathrm{HZ}-99 \mathrm{HZ}$ |  |  |  |
| for duty cycle 1:1 (3:2) | $1 / \mathrm{f}_{\mathrm{st}}$ |  | $1,8(1,6) / f_{\text {st }}$ |
| plus the internal processing time | 8 ms |  | 12 ms |
| Error detection time |  |  |  |
| Short circuit to GND, UB |  |  |  |
| - Incremental encoder HTL | 52 ms |  | 116 ms |
| - Sensors with PNP output (duty cycle 3:2, Mode B-2) | 52 ms |  | 3/f |
| Short circuit to $\mathrm{U}_{\mathrm{B}}$ (internal input) |  |  | 576 ms |
| Short circuit to $\mathrm{U}_{\mathrm{B}}$ (output) |  |  | 576 ms |
| Error in the power supply |  |  | 576 ms |


| General Data |  |  |  |
| :---: | :---: | :---: | :---: |
| Electrical isolation | Power circuit - input circuit | no |  |
|  | Power circuit - output circuit | no |  |
|  | Input circuit - output circuit | no |  |
| Weight |  | 0.16 kg |  |
| Climatic conditions |  |  |  |
| Climatic conditions according to |  | EN 61131-2 |  |
| Ambient operating temperature $\mathrm{T}_{\mathrm{B}}$ |  | $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ |  |
| Storage temperature |  | $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |
| Relative humidity |  | 10\% to 95\%, no moisture condensation |  |
| Air pressure in operation |  | 860 hPa to 1060 hPa |  |
| Mechanical strength |  |  |  |
| Vibration according to |  | EN 60068-2-xx (see manual for further information) |  |
| Electrical safety |  |  |  |
| Protection class according to EN 60529 case/terminals |  | IP 40 / IP 20 |  |
| Finger-proof |  | EN 50274 |  |
| Air gap/Creepage paths |  | EN 60664-1 |  |
| EMC according to |  | EN 61000-4-xx (see manual for further information) |  |
| Surge voltage category |  | III |  |
| Degree of soiling |  | 2 inside, 3 outside |  |
| Terminals and connection data |  | Screw clamp terminals | Spring-loaded terminals |
| Single-core or finely stranded |  | $\begin{aligned} & 1 \times 0.14-2.5 \mathrm{~mm}^{2} / \\ & 2 \times 0.14-0.75 \mathrm{~mm}^{2} \end{aligned}$ | $2 \times 0.2-1.5 \mathrm{~mm}^{2}$ |
| Finely stranded with wire-end ferrule according to DIN 46228 |  | $\begin{aligned} & 1 \times 0.25-2.5 \mathrm{~mm}^{2} / \\ & 2 \times 0.25-0.5 \mathrm{~mm}^{2} \end{aligned}$ | $\begin{aligned} & 2 \times 0.25-1.5 \mathrm{~mm}^{2} \\ & \text { (trapezoid crimping) } \end{aligned}$ |
| AWG |  | 26-14 | 24-16 |
| Maximum tightening torque |  | 0,5-0,6 Nm (5-7 lbf-in) | - |
| Stripping length |  | max. 8 mm |  |

Terminal diagram


## Assembly, Disassembly



## Dimension Diagram



SNS 4084K-C DC 24V


