Instructions

(Translation of the original instructions)
SNO 4083KM

Wieland Electric GmbH
Brennerstraße 10-14
D-96052 Bamberg
Del. +49 (0) $951 / 9324-0$
Tax +49 (0) $951 / 9324-198$
www.wieland-electric.com
www.wieland-electric.com
Basic device for EMERGENCY STOP and safety door applications

- Basic device according to EN 60204-1:2007 and EN ISO 13849-1:2007 for single or two-channel EMERGENCY STOP monitoring.
- PL e / category 4 according to EN ISO 13849-1:2007
- SILCL 3 according to DIN EN 62061:2005
- Stop category 0 according to DIN EN 60204-1
- Manual or automatic start
- With / without crossover detection
- Feedback circuit for monitoring external contactors
- Three enabling current paths, one messaging current path
- Evaluation unit for BWS 4 according to EN 61496-1
- Usage according to EN 81-1 and EN 50156-1
- For connection in series with a pressure sensitive mat according to EN 1760-1

Device versions
SNO 4083KM-A DC 24 with screw terminals, pluggable
SNO 4083KM-A AC 115-230 V with screw terminals, pluggable
SNO 4083KM-C DC 24 V with spring-loaded terminals, pluggable
SNO 4083KM-C AC 115-230 V with spring-loaded terminals, pluggable

Front view

Supply LED green, power supply indicator
K1, K2 LED green operating and status display for relays K1, K2 and the safety circuits.

SAFETY REGULATIONS

- Installation, commissioning, modification and retrofitting must only be performed by a qualified electrician.
- Disconnect the device / the system from the power supply before starting work. In the case of installation and system errors, mains voltage can be present on the control circuit in the case of non-galvanically isolated devices.
- Observe the electrotechnical and professional trade association safety regulations for installation of the equipment.
- Opening the case or other manipulation voids any warranty.
- In the case of improper use or any use other than for the intended purpose, the device must no longer be used and any warranty claim is void. Invalidating causes can be: strong mechanical loading of the device, such as occur when falling or voltages, currents, temperatures, humidity outside the specifications.
- Always check all safety functions in accordance with the applicable regulations during initial commissioning of your machine / system and observe the specified inspection cycles for safety devices.

WARNING

- Take the following safety precautions before starting installation / assembly or dismantling:

1. Disconnect the device / the system from the power supply before starting work.
2. Secure the machine / system against being switched on again.
3. Confirm that no voltage is present.
4. Ground the phases and short to ground briefly.
5. Cover and shield neighbouring live parts.
6. The devices must be installed in a switch cabinet with a protection class of at least IP54.

- Limited contact protection! Protection class according to EN 60529:
- Case / terminals: IP40 / IP20.
- Finger-proof according to EN 50274.

1 Proper use

The devices are safety switching devices. They must only be used as components of safety equipment on machines that is intended for the protection of persons, material, functions and machinery.

2 Function

The device is a two-channel safety switching device for EMERGENCY STOP equipment according to EN 60204-1. It performs self-monitoring during each ON-OFF cycle and is equipped with positively driven relays. The device is suitable for connection in series with short-circuiting pressure sensitive mats, pressure sensitive bumpers or switching edges with 4 -wire technology (without a monitoring resistor).

Basic function: After applying the supply voltage to the terminals A1/A2 and closed safety inputs, the enabling current paths are closed when a valid reset signal is established at S34. The enabling current paths are opened when the safety inputs are opened / de-energized.

Operating modes / System functions

- Single-channel or two-channel actuation
- With or without crossover detection
- Manual start (triggering with falling edge)
- Automatic start
- Evaluation of signal transmitters featuring equivalent or nonequivalent switching

NOTE

- The performance level (PL) and safety category in accordance with EN ISO 13849-1 depend on the external wiring, the application case, the choice of control device and how this is physically arranged on the machine.
- The user must carry out a risk assessment in accordance with ISO 14121-1.
- The entire system / machine must undergo validation in accordance with the applicable standards on the basis of this.
- The stated performance level will only be achieved if, taking into account the prevailing device load (see EN ISO 13849-1 Table C.1) and the application case, an average number of switching cycles per year is not exceeded (see EN ISO 13849-1, C.2.3 and Table K.1). Assuming that the B10d value is 400,000 for the maximum load, the maximum cycle number would be $400,000 / 0.1 \times 30=133,333$ switching cycles per year
- The safety-related characteristics only apply when the relays are switched at least once per year.
- Operating the device other than specified can result in malfunctions or destruction of the device.
- The device must be checked to ensure it is in perfect working order before commissioning, after replacement of modules and/or in the case of changes to an installation that has already undergone acceptance.
- For operation at $115-230 \mathrm{~V} \mathrm{AC}$, the operating equipment of the control circuits must be designed for a rated voltage of 300 V . Basic isolation between supply and control circuits.
- The specified times must always be adhered to when operating the device; otherwise, the device may become locked. Locking may be reversed by opening the safety inputs in the proper manner.
- The expansion units of the SNE series or external contactors with positively-driven contacts can be used for duplicating the enabling current paths
- The contacts must be fused with maximum 6 A operating class gG
- Control outputs S11 and S21 are equipped with overload protection (for short circuits). Once the cause of the error has been rectified, the device is ready for operation again after approx. 3 s .
- The control inputs and outputs are only used for the connection of control devices and not for the connection of external consumers such as lamps, relays or contactors
- External loads must be equipped with a suitable protection circuit for the load (e.g. RC elements, varistors, suppressors, etc.) in order to reduce electromagnetic interference and increase the service life of the output switching elements.
- The application-specific standards must be observed when installing and operating the device.
- In the case of an external incoming supply for inputs S12 and S22 (e.g. via the OSSD of electrosensitive protective equipment (installation 3) there is no assurance that the relays can be deactivated by interrupting or isolating the supply voltage at A1 / A2. The relays are deactivated when the safety circuits are opened.
- The safety functions have not been checked by UL. The certification process has been carried out in accordance with the requirements for general applications as stipulated by UL508.

3 Mounting

4 Terminal diagram

5 Function diagrams

Non-equivalent actuation with automatic start (installation 6, 7)

Notice:

LED blinking

LED permanently lit

1 - EMERGENCY STOP button, single-channel

3 - Safety light curtain BWS type 4, two-channel with crossover detection by BWS ${ }^{1)}$

5 - Pressure sensitive mat, two-channel with crossover detection

7 - Reset, automatic, with and without feedback circuit

2 - EMERGENCY STOP button, two-channel without crossover detection

4 - EMERGENCY STOP button, two-channel with crossover detection

6 - Solenoid switch, two-channel, non-equivalent, with crossover detection

8 - Reset, manual, monitored, with and without feedback circuit

[^0]| 9 - Power supply | | |
| :---: | :---: | :---: |
| | | $\begin{gathered} \mathrm{M} / \mathrm{N} \\ \mathrm{~A} 2 \end{gathered}$ |

7 Contact load derating

8 Relay service life

9 Dimensions

SNO 4083KM-A screw terminal

SNO 4083KM-C spring-loaded terminal

10 Technical data

Function	EMERGENCY STOP relay	
Function indicator	3 LEDs, green	
Power circuit		
Rated voltage U_{N}	24 V DC	115-230 V AC
Operating voltage range $\mathrm{U}_{\mathrm{B}}: 0.85-1.2 \times \mathrm{U}_{\mathrm{N}}$	20.4 to 28.8 V DC	97 to 253 V AC
Rated power	1.6 W	$1.8 \mathrm{~W} / 4.0 \mathrm{VA}$
Nominal frequency		$50-60 \mathrm{~Hz}$
Standby time	1.2 s max .	
Control circuits		
Input voltage	19.2 to 28.8 V DC	
$\begin{array}{ll}\text { Input current (typ. / max.) } & \text { S12/S22 } \\ & \text { S14/S34 }\end{array}$	$\begin{aligned} & 25 / 100 \mathrm{~mA} \\ & 3 / 5 \mathrm{~mA} \end{aligned}$	
Response time (manual start $\mathrm{t}_{\mathrm{A}_{1}}$, autom. start $\mathrm{t}_{\mathrm{A}_{2}}$)	250 ms	
Minimum activation time t_{M} (manual start, min. / max.)	$125 \mathrm{~ms} / 5 \mathrm{~s}$	
Standby time for reset $\mathrm{t}_{\text {BR }}$	$>4 \mathrm{~ms}$	
Recovery time t_{w}	120 ms	
Release time t_{R} (typ. / max.)	$12 / 35 \mathrm{~ms}$	
Synchronous time monitoring t_{s}	$1.5 \mathrm{~s} / 0.5 \mathrm{~s}$ (SNO 4083KM-A 0,5S)	
Test pulse S11: length / interval	$4 \mathrm{~ms} / 200 \mathrm{~ms}$	
Test pulse S12, S22: length / interval (Installation 3)	$<0.8 \mathrm{~ms}$ / $>5.5 \mathrm{~ms}$	
Test pulse ratio S12, S22: length / interval (Installation 3)	< 7 \%	
Test pulse length $\mathrm{t}_{\text {TR }}$, of the incoming test pulse	$<16 \mathrm{~ms}$	
Delay time t_{D} (time between test pulse and incoming test pulse)	$<48 \mathrm{~ms}$	
Max. line resistance per channel ${ }^{27} r$ 24 V DC $115-230$ V AC	$\begin{aligned} & \left(5+\left(\left(1.176 \times \mathrm{U}_{\mathrm{B}} / 24 \mathrm{~V}\right)-1\right) \times 200\right) \Omega \\ & 12 \Omega \end{aligned}$	
Output circuits	Enabling current paths 13/14, 23/24, 33/34	Messaging current paths 41/42
Contact	Normally open	Normally closed
Contact type	Positively driven	
Contact material	Ag alloy, gold plated	
Rated switching voltage U	230 V AC	
Max. thermal permanent current I_{TH}	6 A	2 A
$\begin{array}{ll}\text { Max. total current } \mathrm{IN}^{2} & 55^{\circ} \mathrm{C} \\ & 65^{\circ} \mathrm{C}\end{array}$	$\begin{array}{\|l\|} \hline 25 A^{2}(U L ~ 508: ~ \\ 9 A^{2} \end{array}$	
$\begin{array}{ll}\text { Utilisation category } & \text { AC-15 } \\ & \text { DC-13 }\end{array}$	$\begin{aligned} & \mathrm{U}_{e} 230 \mathrm{~V}, \mathrm{I}_{e} 5 \mathrm{~A} \\ & \mathrm{U}_{\mathrm{e}} 24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 5 \mathrm{~A} \end{aligned}$	
Short circuit protection	6 A class gG fuse, fuse integral $<100 \mathrm{~A}^{2} \mathrm{~S}$	
Conditional short-circuit current	1000 A	
Mechanical service life	10^{7} switching cycles	

[^1]| Terminals and connection data | Screw terminals | Spring-loaded terminals (TWIN) |
| :---: | :---: | :---: |
| Single-core or finely stranded | $1 \times 0,2 \mathrm{~mm}^{2}$ bis $2,5 \mathrm{~mm}^{2}$ $2 \times 0,2 \mathrm{~mm}^{2}$ bis $1,0 \mathrm{~mm}^{2}$ | $1 \times 0,2 \mathrm{~mm}^{2}$ bis $1,5 \mathrm{~mm}^{2}$ |
| Finely stranded with wire-end ferrule according to DIN 46228 | $\begin{aligned} & 1 \times 0,25 \mathrm{~mm}^{2} \text { bis } 2,5 \mathrm{~mm}^{2} \\ & 2 \times 0,25 \mathrm{~mm}^{2} \text { bis } 1,0 \mathrm{~mm}^{2} \\ & \hline \end{aligned}$ | $1 \times 0,25 \mathrm{~mm}^{2}$ bis $1,5 \mathrm{~mm}^{2}$ |
| AWG conductor size (only use Cu wires) | 26-14 | 24-16 |
| Maximum tightening torque | 0,5 bis 0,6 $\mathrm{Nm}(5-7 \mathrm{lbf}-\mathrm{in})$ | |
| Stripping length | 7 mm | |
| General data | EN 60664-1 | |
| Air gap and creepage paths between the circuits | | |
| Output circuits 1 | 13/14 and 23/24 | |
| Output circuits 2 | 33/34 and 41/42 | |
| Power circuit | A1/A2 | |
| Control circuits | S11, S12, S21, S22, S14 and S34 | |
| Safety separation
 - Rated voltage 300 V
 - Overvoltage category IV (6kV) | Output circuits $1 \quad-$ Output circuits 2
 Output circuits 1 and $2-$ Power circuit
 Output circuits 1 and $2-$ Control circuits | |
| Basic insulation
 - Rated voltage 300 V
 - Overvoltage category III (4kV) | Output circuits 1
 Output circuits 2
 Power circuit - Control circuits (only 115-230 V AC) | |
| Protection class according to EN 60529 case/terminals | IP40 / IP20 | |
| Ambient operating temperature | -25 to $+65^{\circ} \mathrm{C}$ (UL508: -25 to $+55^{\circ} \mathrm{C}$) | |
| Storage temperature | -25 to $+75^{\circ} \mathrm{C}$ | |
| Weight | 0.2 kg | |
| Standards | EN ISO 13849-1, EN 62061, EN 81-1, EN 50156-1 | |
| Certifications | TÜV, cULus | |

11 Error codes and correction

Flashing code (SUPPLY-LED)	
$\mathbf{2}$	Crossover, can be rectified during operation
$\mathbf{3}$	Process error, failure to observe the correct sequence for two-channel actuation, can be rectified during opera- tion by repeating the actuation sequence correctly
$\mathbf{4}$	Synchronous time error, synchronous time exceeded in the case of two-channel actuation, can be rectified during operation by adhering to the synchronous time
$\mathbf{5}$	Maximum reset actuating time exceeded, can be rectified during operation by repeating the reset with the correct time
$\mathbf{6}$	Configuration error, can be rectified by ensuring the correct terminal assignment for the required configuration, the device has to be switched off and on again
$\mathbf{7}$	Permissible input voltage limits undershot / overshot at S12 and S22, can be rectified by setting the correct supply voltage, the device has to be switched off and on again
$\mathbf{8}$	Device temperature too high, can be rectified by reducing the contact loads or the ambient temperature, the device has to be switched off and on again
$\geq \mathbf{1 2}$	Internal monitoring event, please replace the device and contact after sales service
If an error is still indicated even after the cause has been rectified, inputs S12, S22, S14 and S34 must be kept open during power-on (e.g. pull out the connector). The error should then be cleared and you can perform a restart with the required installa- tion by means of a power-off and power-on operation.	

[^0]: ${ }^{1)}$ These installation types are not suitable for devices where $U_{B}=115-230 \mathrm{VAC}$.

[^1]: ${ }^{2)}$ If only one of the channels on a 2-channel device is used, the value is halved.

