UBW Technical Manual

Table of Contents

UBW Technical Manual

General Description 3
Part Number Description 4
Interrupt Capacity Ratings. 5
UBW 225 Trip Curves (15-225A) 6
UBW 250 Trip Curves 33
UBW 400 Trip Curves 35
UBW 600 Trip Curves 37
UBW 800 Trip Curves 39
UBW 1200 Trip Curves 40
UBW 2500 Trip Curves 42
Let Thru Curves 46
UBW Dimensions 49

General Description

General Circuit

Breaker Information

WEG's molded-case circuit breakers are designed to provide circuit protection for low voltage distribution systems. They are described by NEMA as, ". . . a device for closing and interrupting a circuit between separable contacts under both normal and abnormal conditions," and further- more as, ". . . a breaker assembled as an integral unit in a supporting and enclosing housing of insulating material." The NEC® describes them as, "A device designed to open and close a circuit by non-automatic means, and to open the circuit automatically on a predetermined overload of current, without injury to itself when properly applied within its rating."
So designed, WEG circuit breakers protect conductors against overloads and conductors and connected apparatus, such as motors and motor starters, against short circuits.

Circuit Breaker Components and Functions

Being essentially high interrupting capacity switches with repetitive elements, WEG's circuit breakers are comprised of three main functional components. These are:

1. Trip elements (thermal-magnetic or electronic)
2. Operating mechanism
3. Arc extinguishers

1. Trip Elements

The function of the trip element is to trip the operating mechanism in the event of a prolonged overload or short-circuit current. To accomplish this, a thermal- magnetic trip action is provided.

Thermal-Magnetic Breakers

WEG thermal-magnetic breakers are general purpose devices suitable for the majority of breaker applications and are considered the industry standard. Available from 15-800 A, thermal-magnetic breakers provide accurate reliable overload and short- circuit protection for conductors and connected apparatus. Thermal trip action is achieved through the use of a bimetal heated by the load current. On a sustained over- load, the bimetal will deflect, causing the operating mechanism to trip.

Because bimetals are responsive to the heat emitted by the current flow, they allow a longtime delay on light overloads, yet they have a fast response on heavier overloads.

Magnetic trip action is achieved through the use of an electromagnet in series with the load current. This provides an instantaneous tripping action when the current reaches a predetermined value. Front-adjustable magnetic trip elements are supplied as standard on 250 A frame circuit breakers and above 225 are fixed thermal and magnetic

Electronic RMS Trip Breakers

WEG electronic trip breakers are generally applied for applications where high levels of system coordination are called for. Available from 500-2500 A, today's electronic trip breakers can provide superior protection and coordination as well as additional protection features. Both the overload trip action and the short-circuit trip action of breakers with Digitrip electronic trip units are achieved by the use of current transformers and solidstate circuitry that monitors the current and initiates tripping through a flux shunt trip when an overload or a short circuit is present. All multiple-pole circuit breakers have trip elements in each pole and a common trip bar. An abnormal circuit condition in any one pole will cause all poles to open simultaneously.

Electronic RMS trip breakers can include trip features such as:

- Adjustable long-time pickup
- Adjustable short-time pickup
- Adjustable long delay time
- Adjustable short delay time
- Adjustable instantaneous pickup

Trip unit adjustments are made by setting switches on the front of the trip unit or by programming the trip unit electronically. All electronic RMS trip breakers are equipped with a manual push-to-trip mechanism.

2. Operating Mechanism

The function of the operating mechanism is to provide a means of opening and closing the breaker contacts. All mechanisms are of the quick-make, quick-break type and are "trip free." "Trip free" mechanisms are designed so that the contacts cannot be held closed against an abnormal circuit condition and are sometimes referred to as an "overcenter toggle mechanism." In addition to indicating whether the breaker is "on" or "off," the operating mechanism handle indicates when the breaker is "tripped" by moving to a position midway between the extremes. This distinct trip point is particularly advantageous where breakers are grouped, as in panelboard applications, because it clearly indicates the faulty circuit. The operating mechanism contains a positive on feature. In the normal switching operation, the handle of the circuit breaker will not be capable of being left readily at or near the off position when the main contacts are closed.

3. Arc Extinguishers

The function of the $\mathrm{DE}-\mathrm{ION}{ }^{\circledR}$ arc extinguisher is to confine, divide
extinguish the arc drawn between opening breaker contacts. It consists of specially shaped steel grids isolated from each other and supported by an insulating housing. When the contacts are opened, the arc drawn induces a magnetic field in the grids, which in turn draws the arc from the contacts and into the grids. The arc is thus split into a series of smaller arcs and the heat generated is quickly dissipated through the metal. These two actions result in a rapid removal of ions from the arc, which hastens dielectric build- up between the contacts and results in rapid extinction of the arc.

Description	UBW Breakers Frames $\mathbf{2 2 5}$ to $\mathbf{2 5 0 0}$
Select trip	Selective trip over a smaller range of fault currents within the interrupting rating (low short-time ratings). Typically 10-13 times the frame size
Operator type	Types of operators: mechanically operated over-center toggle or motor operator
Closing speed	Greater than 5-cycle closing for electrically operated devices
Mounting	Typically fixed-mounted but large frame sizes may be available in drawout construction
Interrupting rating	Interrupting duty at 480 Vac: $22-100$ kA
Current limiting	Current limiting available with and without fuses up to 200 kA
Relative cost	Low
Available frame sizes	Large number of frame sizes available. Typical 15-2500 A
Maintenance	Very limited maintenance possible on larger frame sizes
Enclosure types	Used in enclosures, panelboards, switchboards, MCCs and control panels
Series ratings	Available in series ratings
Enclosed rating	80% continuous-current rated
Standards	NEMA AB1/AB3 UL 489

UBW Part Number Sequence

[^0]Molded-Case Circuit Breakers

Interupting Capicity Ratings

225 Frame					
Type	Poles	240ac	480ac	600ac	250dc
N	3	65 K	35K	N/A	10K
H	3	100K	65 K	N/A	22 K
L	3	200K	100K	N/A	22 K
250 Frame					
Type	Poles	240ac	480ac	600ac	250dc
N	3	65 K	35K	18K	10K
H	3	100K	65K	25K	22 K
L	3	200K	100K	N/A	22K
400 Frame					
Type	Poles	240ac	480ac	600ac	250dc
N	3	65 K	35K	18K	10K
H	3	100K	65K	35K	22K
L	3	200K	100K	65 K	22 K
600 Frame					
Type	Poles	240ac	480ac	600ac	250dc
N	3	65 K	35K	25K	22K
H	3	100K	65 K	35K	25K
L	3	200K	100K	50K	30K
800 Frame					
Type	Poles	240ac	480ac	600ac	250dc
S	3	65 K	50K	25K	22 K
H	3	100K	65K	35 K	25
1200 Frame					
Type	Poles	240ac	480ac	600ac	DC Rated
S	3	85 K	50K	25K	NO
H	3	100K	65K	35K	NO
L	3	N/A	100K	65 K	N0
2500 Frame					
Type	Poles	240ac	480ac	600ac	DC Rated
H	3	125K	65K	50K	NO
L	3	200	100K	65 K	NO

UBW Time Current Curves
225 L

Time Current Curves

225 N/H

UBW Time Current Curves

225 L

Time Current Curves

225 N., H

UBW Time Current Curves

Time Current Curves

225 N., H.

Time Current Curves

225 N., H.

otes:
(1) Single-pole test data at $25^{\circ} \mathrm{C}$ based on NEMA procedures (AB 4-2003) for verifying performance of molded case circuit breakers performance of molded case circuit breakers - 11

Time Current Curves

225 N., H.

Time Current Curves
225 N., H.

Time Current Curves

Time Current Curves
225 N., H.

Time Current Curves
225 N., H.

Time Current Curves
225 N., H.

UBW Time Current Curves
225L

Time Current Curves
 225 N., H.

 Molded-Case Circuit Breakers

UBW Time Current Curves
250L

UBW Time Current Curves
400N, H
Current in Percent of Breaker Trip Unit Rating (I_{n})

UBW Time Current Curves
1200S, H, L

Circuit Breaiker Time/Current Curves (Phase Current)

Available Sensors	Rated Amperes	
($\mathrm{Ir}_{\mathbf{r}}$ / (I_{n})	800A	1200A
A	320 A	500 A
B	400 A	600 A
C	450A	630 A
D	500 A	700A
E	600A	800A
F	630 A	900 A
G	700A	1000A
H	800A	1200A

Long Delay Time Settings +0\%/-30\% (seconds)

800 A	2	4	6	8	10	12	14	14
1200 A	2	4	7	10	12	15	20	24

Notes:

1. Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton. Temperatures above $+85^{\circ} \mathrm{C}$ cause an over-temperature protection trip.
2. Application frequency is $50 / 60 \mathrm{~Hz}$.
3. There is a memory effect that can act to shorten the Long Delay. If the breaker trips on a Long Delay overload and is quickly reset, the memory capacitor will still have charge and a subsequent overload will cause the breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately five minutes is required between overloads to completely reset memory.
4. The right portion of the curve is determined by the interrupting rating of the circuit breaker
5. The left portion of the curve is shown as a multiple of the Long Delay Setting (Long Delay Pickup $=115 \%$ of I_{r}). Range is $110-120 \%$.
6. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.
7. The Short Delay Pickup has nine settings/positions, 2-8; the last two switch positions are the same: 9 X .
8. Short Delay $\mathrm{I}^{2} \mathrm{~T}$ band has a tolerance of $+15 \%$.
9. Breakpoint back to FLAT response occurs @ $8 x I_{r}$ for upper line of the $I^{2} T$ curve
10. For high fault current levels, an additional fixed instantaneous hardware override is provided to trip the breaker at 14400A. Instantaneous tolerance is $+/-20 \%$. For the 1600A frame only, if I_{r} is set to the maximum (position H) and SDPU is set to the maximum (position 9), then the SDPU setting and the instantaneous Override are set to the same value. The Instantaneous Override has precedence over SDPU. Therefore, the breaker will trip on Instantaneous Override
11. Maximum clearing time when using zone selective interlocking is 62 ms .

Current in Multiples of $\left(I_{r}\right)$

Current in 1000A Increments

Notes:

1. The maintenance mode feature must be ENABLED for these curves to apply. The LED indicator is blue when in maintenance mode.
2. The end of the curve is determined by the interrupting rating of the circuit breaker.
3. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.
4. Available pickup settings $\left(x I_{n}\right)$ (tolerance is $\pm 15 \%$) $2.5,4,6,7,8,10$.
5. The Maintenance Mode consists of the two lowest settings of the INST switch: 2.5 x and 4.0 x .
6. The Remote Maintenance Mode is enabled by applying 24 VDC to the two wire cable that exists the left side of the breaker. The wires are color coded as follows: Yellow $=+24 \mathrm{~V}$ and Black $=$ common ground. A blue colored LED, on the left side of the breaker is the Maintenance Mode section of the trip unit, will light. The lighted blue LED indicates that the lowest setting of the Maintenance Mode is enab affect on either the Mainte to 2. M of In IT INT hile the blue LED is lit In addition to the blue colored LED, a relay contact (C, NO) is avalable The wires for this contact exit the left hand side of the breaker and are color coded as follows: Blue $=\mathrm{C}$, and Red $=\mathrm{NO}$.

Current in Multiples of Ratings (I_{n})

UBW Time Current Curves
2500H, L

*1600A/2000A Faceplates shown, 2500A Faceplates may differ
I^{2} TTrip Style (LS, LSG

UBW Time Current Curves

2500H, L

Notes:

1. The Maintenance Mode feature must be ENABLED for these curves to apply. The LED indicator is blue when in Maintenance Mode.
2. The end of the curve is determined by the interrupting rating of the circuit breaker.
3. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.
4. Available pickup settings $\left(x I_{n}\right)$ (tolerance is $\pm 15 \%$) 1600A Frame: 2.5, 4, 6, $, 8,8,11$ 2000A Frame. 2.5, 4, 6, 7, 8, 8, 9
5. These curves are comprehensive for the complete family of Series 2500 F rame electronic breakers, including all frame sizs, ratings, and constructions. The total clearing times shown are conservative and consider the maximum response times of the trip unit, the circuit breaker opening, and the interruption of the curren n worst case conditions such as: maximum rated voltages, single-phase interruption, and minimum power factor. Faster clearing times are possible depending on the specific system

Time Current Curves
225, 250, 400, 600

Peak Let-Through ${ }^{2} \mathrm{t}$ Curve — $\mathbf{2 4 0 V}$

Peak Let-Through Current Curve - $\mathbf{2 4 0}$ V

Peak Let-Through $\mathrm{I}^{\mathbf{2} t} \mathbf{- 6 0 0} \mathrm{~V}$

Peak Let-Through Current - 600 V

Peak Let-Through 12t Curve - 480V

Peak Let-Through Current - 480 V

Frames 225, 250, 400, 600, 800, 1200, 2500

Frame Size	Overall Dimensions		
	A	B	C
	Inches/mm	Inches/mm	Inches $/ \mathrm{mm}$
225	$6 / 152$	$4.1 / 104$	$3.5 / 89$
250	$10 / 254$	$4.1 / 104$	$4.3 / 110$
400	$10.12 / 257$	$5.49 / 139$	$4.3 / 110$
600	$10.75 / 273.05$	$8.25 / 209.6$	$4 / 101.57$
800	$16 / 406.4$	$8.22 / 208.74$	$4.06 / 103.18$
1200	$16 / 406.4$	$8.25 / 209.55$	$5.5 / 139.7$
2500	$16 / 406.4$	$15.5 / 393.7$	$9 . / 228.6$

Mounting Hardware and Mounting Holes Dimensions

Frame	Qty	Std Bolt Size	Metric Size
225	4	$5 / 32-32$	$\mathrm{M} 4 \times 0.70$
250	4	$1 / 4-20$	$\mathrm{M} 6-1.0$
400	4	$1 / 4-20$	$\mathrm{M} 6-1.0$
600	4	$1 / 4-20$	$\mathrm{M} 6-1.0$
800	4	$1 / 4-20$	$\mathrm{M} 6-1.0$
1200^{*}	4	$5 / 16-18$	$\mathrm{M} 8-1.25$
2500^{\wedge}	4	$3 / 8-16$	$\mathrm{M} 11-1.50$

^ Supplied with Breaker

Frame	Dimensions	
	A	B
225	$1.375(34.93$	$4.5(114.30)$
250	$1.375(34.37$	$7.25(184.15$
400	$1.71(43.66)$	$8.438(214.32$
200	$8.75(222.25$	$9.53(242.09$
$800(\mathrm{MDL})$	$2.75(69.85$	$14.75(374.65$
1200	$2.75(69.85)$	$18.45(374.65)$
2500	$14.50(368.30)$	$15.00(381.00)$

Please contact your authorized distributor:
\square

[^0]: *If ordering with factory installed options replace $3 A$ with alpha numeric option code sequence

