## Frequency Inverter

## CFW-11

User's Manual



## FREQUENCY

## INVERTER

## MANUAL

## Series: CFW-11

Language: English
Document: 10000280997 / 04
Models: 142... 211 A / 220... 230 V
105... 211 A / 380... 480 V

| Version | Review | Description |
| :---: | :---: | :--- |
| - | R01 | First edition |
| - | R02 | Setting in Table 3.6 on page 3-23 |
| - | R03 | General revision |
| - | R04 | General revision |

1 SAFETY INSTRUCTIONS ..... 1-1
1.1 SAFETY WARNINGS IN THE MANUAL ..... 1-1
1.2 SAFETY WARNINGS IN THE PRODUCT. ..... 1-1
1.3 PRELIMINARY RECOMMENDATIONS ..... 1-2
2 GENERAL INSTRUCTIONS ..... 2-1
2.1 ABOUT THE MANUAL ..... 2-1
2.2 TERMS AND DEFINITIONS ..... 2-2
2.3 ABOUT THE CFW-11 ..... 2-4
2.4 IDENTIFICATION LABELS FOR THE CFW-11 ..... 2-7
2.5 RECEIVING AND STORAGE ..... 2-10
3 INSTALLATION AND CONNECTION ..... 3-1
3.1 MECHANICAL INSTALLATION ..... 3-1
3.1.1 Installation Environment ..... 3-1
3.1.2 Mounting Considerations ..... 3-2
3.1.3 Cabinet Mounting ..... 3-5
3.1.4 Installation of the Inverter Hoisting Eyes ..... 3-6
3.1.5 Installation of the Inverter with Nema1 Kit (Option, CFW1 1 ..... T..
ON1...) on a Wall ..... 3-7
3.1.6 Access to the Control and Power Terminal Strips ..... 3-7
3.1.7 Removal of the Cable Passage Plate ..... 3-9
3.1.8 HMI Installation at the Cabinet Door or Command Panel (Remote HMI) ..... 3-10
3.2 ELECTRICAL INSTALLATION ..... 3-10
3.2.1 Identification of the Power and Grounding Terminals ..... 3-11
3.2.2 Power/Grounding Wiring and Fuses ..... 3-11
3.2.3 Power Connections ..... 3-16
3.2.3.1 Input Connections ..... 3-16
3.2.3.2 AC Power Supply Considerations ..... 3-17
3.2.3.2.1 IT Networks ..... 3-17
3.2.3.2.2 Command Fuses of Pre-Charge Circuit ..... 3-19
3.2.3.3 Dynamic Braking ..... 3-19
3.2.3.2.1 Sizing the Braking Resistor ..... 3-20
3.2.3.2.2 Installation of the Braking Resistor ..... 3-21
3.2.3.4 Output Connections ..... 3-22
3.2.4 Grounding Connections ..... 3-24
3.2.5 Control Connections ..... 3-25
3.2.6 Typical Control Connections ..... 3-31
3.3 SAFETY STOP FUNCTION ..... 3-34
3.3.1 Installation ..... 3-35
3.3.2 Operation ..... 3-36
3.3.2.1 Truth Table ..... 3-36
3.3.2.2 State of Inverter, Fault and Alarm Related to Safety Stop Function ..... 3-36
3.3.2.3 STO Status Indication ..... 3-36
3.3.2.4 Periodic Test. ..... 3-37
3.3.3 Examples of Wiring Diagrams of Inverter Control Signal ..... 3-38
3.3.4 Technical Specifications ..... 3-39
3.3.4.1 Electrical Control Characteristics ..... 3-39
3.3.4.2 Operational Safety Characteristics ..... 3-39
3.4 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC COMPATIBILITY ..... 3-40
3.4.1 Conformal Installation ..... 3-40
3.4.2 Standard Definitions ..... 3-41
3.4.3 Emission and Immunity Levels ..... 3-42
4 HMI ..... 4-1
4.1 INTEGRAL KEYPAD - HMI-CFW1 1 ..... 4-1
4.2 PARAMETERS ORGANIZATION ..... 4-4
5 FIRST TIME POWER-UP AND START-UP ..... 5-1
5.1 PREPARE FOR START-UP ..... 5-1
5.2 START-UP ..... 5-2
5.2.1 Password Setting in P0000 ..... 5-2
5.2.2 Oriented Start-Up ..... 5-3
5.2.3 Setting Basic Application Parameters ..... 5-5
5.3 SETTING DATE AND TIME ..... 5-8
5.4 BLOCKING PARAMETERS MODIFICATION ..... 5-9
5.5 HOW TO CONNECT A PC ..... 5-9
5.6 FLASH MEMORY MODULE ..... 5-10
6 TROUBLESHOOTING AND MAINTENANCE ..... 6-1
6.1 OPERATION OF THE FAULTS AND ALARMS ..... 6-1
6.2 FAULTS, ALARMS AND POSSIBLE CAUSES ..... 6-2
6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS ..... 6-8
6.4 INFORMATION FOR CONTACTING TECHNICAL SUPPORT ..... 6-9
6.5 PREVENTIVE MAINTENANCE ..... 6-9
6.5.1 Cleaning Instructions ..... 6-10
7 OPTION KITS AND ACCESSORIES ..... 7-1
7.1 OPTION KITS ..... 7-1
7.1.1 Nemal Protection Degree ..... 7-1
7.1.2 Degree of Protection IP55 ..... 7-1
7.1.3 Safety Stop Function ..... 7-1
7.1.4 Braking IGBT ..... 7-1
7.1.5 24 Vdc External Control Power Supply ..... 7-2
7.2 ACCESSORIES ..... 7-3
8 TECHNICAL SPECIFICATIONS ..... 8-1
8.1 POWER DATA ..... 8-1
8.2 ELECTRICAL/GENERAL SPECIFICATIONS ..... 8-6
8.3 CODES AND STANDARDS ..... 8-7
8.4 CERTIFICATIONS ..... 8-8
8.5 MECHANICAL DATA ..... 8-9
8.6 NEMA1 KIT ..... 8-11

## 1 SAFETY INSTRUCTIONS

This manual provides information for the proper installation and operation of the CFW- 11 frequency inverter.

Only trained and qualified personnel should attempt to install, start-up, and troubleshoot this type of equipment.

### 1.1 SAFETY WARNINGS IN THE MANUAL



The following safety warnings are used in this manual:

## DANGER!

Failure to follow the recommended procedures listed in this warning may result in death, serious injury, and equipment damage.

## DANGER!

Les procedures concernées par cet avertissement ont destinées à protéger l'utilisateur centre de dangers mortels, de blessures et de détériorations matérielles importantes.

## ATTENTION!

Failure to follow the recommended procedures listed in this warning may result in equipment damage.

## NOTE!

This warning provides important information for the proper understanding and operation of the equipment.

### 1.2 SAFETY WARNINGS IN THE PRODUCT

The following symbols are attached to the product and require special attention:


Indicates a high voltage warning.


Electrostatic discharge sensitive components.
Do not touch them.


Indicates that a ground (PE) must be connected securely.


Indicates that the cable shield must be grounded.


Indicates a hot surface warning.

### 1.3 PRELIMINARY RECOMMENDATIONS

## DANGER!

Only trained personnel, with proper qualifications, and familiar with the CFW-11 and associated machinery shall plan and implent the installation, starting, operation, and maintenance of this equipment. The personnel shall follow all the safety instructions described in this manual and/or defined by the local regulations.
Failure to comply with the safety instructions may result in death, serious injury, and equipment damage.

## DANGER!

Seulement personnes avec la qualification adéquate et familiarisation avec le CFW-1 1 et équipements associés doivent planifiquer ou implementer linstallation, mise en marche, operation et entretien de cet équipement. Cettes personnes doivent suivre toutes les instructions de sécurités indiquées dans ce manuel, et/ou définies par normes locales.
L'inobservance des instructions de sécurité peut résulter en risque de vie et/ou dommages de cet équipement.

## NOTE!

For the purpose of this manual, qualified personnel are those trained and able to:

1. Install, ground, power-up, and operate the CFW-11 according to this manual and to the current legal safety procedures.
2. Use the protection equipment according to the established regulations.
3. Provide first aid.

## DANGER!

Always disconnect the main power supply before touching any electrical device associated with the inverter. Several components may remain charged with high voltage and/or in movement (fans), even after the AC power supply has been disconnected or turned off.
Wait at least 10 minutes to guarantee the fully discharge of capacitors.
Always connect the equipment frame to the ground protection (PE).

## DANGER!

Débranchez toujours l'alimentation principale avant d'entrer en contact avec un appareil électrique associé au variateur.
Plusieurs composants peuvent rester chargés à un potentiel électrique élevé et/ou être en mouvement (ventilateurs), même après la déconnexion ou la coupure de l'alimentation en courant alternatif. Attendez au moins 10 minutes que les condensateurs se déchargent complètement.
Raccordez toujours la masse de l'appareil à une terre protectrice (PE).

## ATTENTION!

The electronic boards contain components sensitive to electrostatic discharges. Do not touch the components and terminals directly. If needed, touch first the grounded metal frame or wear an adequate ground strap.

## Do not perform a withstand voltage test on any part of the inverter! If needed, please, consult WEG.

## NOTE!

Frequency inverters may cause interference in other electronic devices. Follow the recommendations listed in Chapter 3 INSTALLATION AND CONNECTION on page 3-1, to minimize these effects.

## NOTE!

Fully read this manual before installing or operating the inverter.

## DANGER!

## Crushing Hazard

In order to ensure safety in load lifting applications, electric and/or mechanical devices must be installed outside the inverter for protection against accidental fall of load.

## DANGER!

This product was not designed to be used as a safety element. Additional measures must be taken so as to avoid material and personal damages.
The product was manufactured under strict quality control, however, if installed in systems where its failure causes risks of material or personal damages, additional external safety devices must ensure a safety condition in case of a product failure, preventing accidents.

## DANGER!

## Risque d'écrasement

Afin d'assurer la sécurité dans les applications de levage de charges, les équipements électriques et/ ou mécaniques doivent être installés hors du variateur pour éviter une chute accidentelle des charges.

## DANGER!

Ce produit n'est pas conçu pour être utilisé comme un élément de sécurité. Des précautions supplémentaires doivent être prises afin d'éviter des dommages matériels ou corporels. Ce produit a été fabriqué sous un contrôle de qualité conséquent, mais s'il est installé sur des systèmes où son dysfonctionnement entraîne des risques de dommages matériels ou corporels, alors des dispositifs de sécurité externes supplémentaires doivent assurer des conditions de sécurité en cas de défaillance du produit, afin d'éviter des accidents.

## 2 GENERAL INSTRUCTIONS

### 2.1 ABOUT THE MANUAL

This manual exposes how to install, to start-up in V/f (scalar) mode, the main characteristics and shows how to troubleshoot the most common problems of the CFW-11 inverter series frame size E models.


It is also possible to operate the CFW-1 1 in the following control modes: WW, Sensorless Vector and Vector with Encoder. For further details on the inverter operation with other control modes, refer to the programming manual.

## ATTENTION!

The operation of this equipment requires installation instructions and detailed operation provided in the user's manual, programming manual and manuals/guides for kits and accessories. The user's manual and the parameters quick reference are supplied in a hard copy together with the inverter. The user guides are also provided in a hard copy along with the kit/accessories. The other manuals are available at www.weg.net.
A printed copy of the files available on WEG's website can be requested at your local WEG dealer.

For information on other functions, accessories, and communication, please refer to the following manuals:
$\square$ Programming manual, with a detailed description of the parameters and advanced functions of the CFW-11.

■ Incremental encoder interface module manual.

■ I/O expansion module manual.

■ RS-232/RS-485 serial communication manual.

■ CANopen slave communication manual.

■ Anybus-CC communication manual.DeviceNet communication manual.

■
Ethercat communication manual.

■ Profibus DP communication manual.

■ Symbinet communication manual.

■ SoftPLC manual.

### 2.2 TERMS AND DEFINITIONS

Normal Duty Cycle (ND): inverter duty cycle that defines the maximum continuous operation current ( $\|_{\text {nom-N0 }}$ ) and the overload current ( $110 \%$ for 1 minute). The ND cycle is selected by setting P0298 (Application) $=0$ (Normal Duty (ND)). This duty cycle shall be used for the operation of motors that are not subjected to high torque loads (with respect to the motor rated torque) during its operation, starting, acceleration or deceleration.
$\mathrm{I}_{\text {nom-NN: }}$ : inverter rated current for use with the normal duty (ND) cycle.
Overload: $1.1 \times I_{\text {nom.ND }} / 1$ minute.
Heavy Duty Cycle (HD): inverter duty cycle that defines the maximum continuous operation current ( $\left.\right|_{\text {nom-N0 }}$ ) and the overload current ( $150 \%$ for 1 minute). The HD cycle is selected by setting PO298 (Application) $=1$ (Heavy Duty (HD)). This duty cycle shall be used for the operation of motors that are subjected to high torque (with respect to the motor rated torque) during its operation, starting, acceleration, or deceleration.
$\mathrm{I}_{\text {nom-ND }}$ : inverter rated current for use with the heavy duty (HD) cycle.
Overload: $1.5 \times \mathrm{I}_{\text {nom.ND }} / 1$ minute.
Rectifier: the input circuit of the inverters that converts the input $A C$ voltage into $D C$; it is made of thyristors and power diodes.

Pre-charge Circuit: charges the DC Link capacitors with limited current, which avoids higher peak currents at the inverter power-up.

DC Link: inverter intermediate circuit; DC voltage obtained from the rectification of the $A C$ input voltage or from an external power supply. It feeds the inverter output IGBTs bridge.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ Arms: set of two IGBTs of the inverter output phases $\mathrm{U}, \mathrm{V}$, and W .

IGBT: insulated Gate Bipolar Transistor; basic component of the output inverter bridge. The IGBT works as an electronic switch in the saturated (closed switch) and cut-off (open switch) modes.

Braking IGBT: works as a switch to activate the braking resistors; it is controlled by the DC Link voltage level.
Gate Driver: circuit used to turn-on and turn-off the IGBTs.

PWM: pulse width modulation; pulsed voltage that feeds the motor.
Switching Frequency: frequency of the IGBTs switching in the inverter bridge, normally expressed in kHz .
Heatsink: it is a metal part designed for dissipating the heat generated by the power semiconductors.
PE: protective earth.

MOV: metal oxide varistor.

PTC: resistor which resistance value in ohms increases proportionally to the temperature increase; used as a temperature sensor in electrical motors.

NTC: resistor which resistance value in ohms decreases proportionally to the temperature increase; used as a temperature sensor in power modules.

HMI - Human Machine Interface: it is a device that allows the motor control, and the visualization and modification of the inverter parameters. The CFW- 11 HMI presents keys for the motor command, navigation keys and a graphic LCD display.

FLASH Memory: non-volatile memory that can be electronically written and erased.

RAM Memory: random access memory (volatile).

USB: universal serial bus; is a serial bus standard that allows devices to be connected using the "Plug and Play" concept.

General Enable: when activated, this function accelerates the motor via acceleration ramp set in the inverter. When deactivated, this function immediately blocks the PWM pulses. The general enable function may be controlled through a digital input set to this function or via serial communication.

Start/Stop: when enabled in the inverter (start), this function accelerates the motor via acceleration ramp up to the speed reference. When disabled (stop), this function decelerates the motor via deceleration ramp up to the complete motor stop; at this point, the PWM pulses are blocked. The start/stop function may be controlled through a digital input set for this function or via serial communication. The operator keys (1) (Start) and 0 (Stop) of the keypad work in a similar way.

STO: safe torque off; functional safety function available as an option in CFW- 11 inverter series. When STO function is enabled the inverter guarantees that there is no movement of the motor shaft. It's also called safety stop function in CFW- 11 documentation.

PLC: programmable logic controller.

TBD: value to be defined.

AC: alternated current.

DC: direct current.

Amp, A: ampères.
${ }^{\circ} \mathrm{C}$ : celsius degree.

CFM: cubic feet per minute; unit of flow.
cm: centimeter.
${ }^{\circ} \mathrm{F}$ : fahrenheit degree.

Hz: hertz.
ft: foot.
hp: horse power $=746$ Watts; unit of power, used to indicate the mechanical power of electrical motors.
in: Inch.
kg : kilogram $=1000$ grams.
kHz: kilohertz $=1000$ Hertz.

I/s: liters per second.
lb: pound.
m : meter.
mA : miliampère $=0.001$ Ampère .
min: minute.
mm: millimeter.
ms : millisecond $=0.001$ seconds.

Nm: newton meter; unit of torque.
rms: "root mean square"; effective value.
rpm: revolutions per minute; unit of speed.
s: second.

V: volts.
$\Omega$ : ohms.

### 2.3 ABOUT THE CFW-11

The CFW-11 frequency inverter is a high performance product designed for speed and torque control of three-phase induction motors. The main characteristic of this product is the "Vectrue" technology, which has the following advantages:

- Scalar control (V/f), VVW, or vector control programmable in the same product.
$\square$ The vector control may be programmed as "sensorless" (which means standard motors without using encoders) or as "vector control" with the use of an encoder.

■ The "sensorless" control allows high torque and fast response, even in very low speeds or at the starting.

■ The "vector with encoder" control allows high speed precision for the whole speed range (even with a standstill motor).

■ "Optimal Braking" function for the vector control, allowing the controlled braking of the motor and avoiding the use of the braking resistor in some applications.

■ "Self-Tuning" feature for vector control. It allows the automatic adjustment of the regulators and control parameters from the identification (also automatic) of the motor parameters and load.

$\left(^{*}\right)$ The capacitor of RFI filter and MOV connected to the ground must be disconnected with IT network, high impedance grounding network and corner-grounded delta networks. Refer to Item 3.2.3.2.1 IT Networks on page 3-17 for more details.

Figure 2.1-Block diagram for the CFW-11


Figure 2.2-Main components of the CFW-11
(1) USB Connector


USB Led
Off: No USB connection
On/Flashing: USB communication is active
(3)

STATUS Led
Green: Normal operation with no fault or alarm
Yellow: Alarm condition
Flashing red: Fault condition


Figure 2.3-LEDs and USB connector

### 2.4 IDENTIFICATION LABELS FOR THE CFW-11

There are two nameplates on the CFW-11: one complete nameplate is affixed to the side of the inverter and a simplified one is located under the keypad. The nameplate under the keypad allows the identification of the most important characteristics of the inverter even if they are mounted side-by-side.

(a) Nameplate affixed to the side of the inverter

(b) Nameplate located under the keypad

Figure 2.4 - (a) and (b)-Nameplates


Figure 2.5-Location of the nameplates
HOW TO CODIFY THE CFW-11 MODEL (SMART CODE)

|  |  | Inverter Model |  |  |  |  | Available Option Kits (can be installed in the product from the factory) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Refer to Ch list of mod specificatio | Chapter 8 TECHNICAL SPECIFICATIO dels for the CFW- 11 series and for a on | NS on page 8 complete inver | -1, for a rter's technical |  | Refer to Chapte inverter model | er 8 TECHNIC | CAL SPECIFIC | CATIONS on | page 8-1 to chec | k option kit | availability for | ach |  |
| Example | BR | CFW-11 | 0211 | T | 4 | S | -- | -- | - - | -- | -- | -- | -- | -- | Z |
| Field description | Market identification (defines the manual language and the factory settings) | WEG CFW-11 frequency inverter series | Rated output current for use with the Normal Duty (ND) cycle | Number of power phases | Power supply voltage | Option kit | Enclosure type | Keypad | Braking | RFI filter | Safety stop | 24 Vdc external power supply for control | Special hardware | Special soffware | Character that identifies the code end |
| Available options | 2 characters |  | $\begin{aligned} & 220 \ldots 230 \mathrm{~V} \text { models: } \\ & 0142=115 \mathrm{~A}(\mathrm{HD}) / 142 \mathrm{~A}(\mathrm{ND}) \\ & 0180=142 \mathrm{~A}(\mathrm{HD}) / 180 \mathrm{~A}(\mathrm{ND}) \\ & 0211=180 \mathrm{~A}(\mathrm{HD}) / 211 \mathrm{~A}(\mathrm{ND}) \\ & 380 \ldots 480 \mathrm{~V} \text { models: } \\ & 0105=88 \mathrm{~A}(\mathrm{HD}) / 105 \mathrm{~A} \text { (ND) } \\ & 0142=115 \mathrm{~A}(\mathrm{HD}) / 142 \mathrm{~A} \text { (ND) } \\ & 0180=142 \mathrm{~A}(\mathrm{HD}) / 180 \mathrm{~A} \text { (ND) } \\ & 0211=180 \mathrm{~A}(\mathrm{HD}) / 211 \mathrm{~A} \text { (ND) } \end{aligned}$ | $\begin{aligned} & \mathrm{T}=\text { three- } \\ & \text { phase } \\ & \text { power supply } \end{aligned}$ | $\begin{aligned} & 2=220 \ldots 230 \mathrm{~V} \\ & 4=380 \ldots 480 \mathrm{~V} \end{aligned}$ | $\mathbf{S}=\text { standard }$ product $\mathrm{O}=$ product with option kit | Blank = <br> standard <br> (IP20) <br> N1 = Nemal $55 \text { = IP55 }$ | Blank = standard keypad IC = no keypad (blind cover) | Blank = standard (no braking IGBT) DB $=$ with braking IGBT | Blank $=$ standard (with internal RFI filter) | Blank = standard (Safety Stop function is not available) $\mathrm{Y}=$ with Safety Stop function according to EN-954-1 category 3 | Blank = standard (not available) $\mathrm{W}=$ 24 Vdc external power supply for control | Blank = standard H1 = special hardware \#1 | Blank = standard S1 = special software \#1 |  |

### 2.5 RECEIVING AND STORAGE

The CFW-11 frame size E models are supplied packed in wooden boxes.

There is an identification label affixed to the outside of this package, the same one that is affixed to the side of the inverter.

## Follow the instructions below to remove the CFW-11 from the package:

1-Put the shipping container over a flat and stable area with the assistance of another two people.

2- Open the wood crate.

3- Remove all the packing material (the cardboard or styrofoam protection) before removing the inverter.

Check the following items once the inverter is delivered:
$\square$ Verify that the CFW-11 nameplate corresponds to the model number on your purchase order.

■ Inspect the CFW-1 1 for external damage during transportation.

Report any damage immediately to the carrier that delivered your CFW- 11 inverter.

If CFW-11 is to be stored for some time before use, be sure that it is stored in a clean and dry location that conforms to the storage temperature specification (between $-25^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ and $\left.140^{\circ} \mathrm{F}\right)$ ). Cover the inverter to prevent dust accumulation inside it.

## ATTENTION!

Capacitor reforming is required if drives are stored for long periods of time without power. Refer to the procedures in Section 6.5 PREVENTIVE MAINTENANCE on page 6-9.

## 3 INSTALLATION AND CONNECTION

This chapter provides information on installing and wiring the CFW-11. The instructions and guidelines listed in this manual shall be followed to guarantee personnel and equipment safety, as well as the proper operation of the inverter.

### 3.1 MECHANICAL INSTALLATION

### 3.1.1 Installation Environment



## Avoid:

■
Direct exposure to sunlight, rain, high humidity, or sea-air.

■ Inflammable or corrosive gases or liquids.

■ Excessive vibration.

■ Dust, metallic particles, and oil mist.

## Environment conditions for the operation of the inverter:

■ Temperature: $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ - standard conditions (surrounding the inverter).

From $45^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ - current derating of $2 \%$ each ${ }^{\circ} \mathrm{C}$ (or $1.11 \%$ each ${ }^{\circ} \mathrm{F}$ ) above $45^{\circ} \mathrm{C}$ (113 ${ }^{\circ}$ ).

■ Inverters CFW-11 with IP55 degree protection: - $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ - standard conditions (surrounding the inverter).

From $40^{\circ} \mathrm{C}$ a $50^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ - current derating of $2 \%$ for each degree Celsius above $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

- Humidity: from $5 \%$ to $95 \%$ non-condensing.

■ Altitude: up to $1000 \mathrm{~m}(3,300 \mathrm{ft})$ - standard conditions (no derating required).

『 From 1000 m to $4000 \mathrm{~m}(3,300 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply current derating of $1 \%$ for each $100 \mathrm{~m}(328 \mathrm{ft})$ above $1000 \mathrm{~m}(3,300 \mathrm{ft})$ of altitude.
From 2000 m to $4000 \mathrm{~m}(6,600 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply maximum voltage derating ( 240 V for models $220 \ldots 240 \mathrm{~V}$, and 480 V for models $380 \ldots 480 \mathrm{~V}$ ) of $1.1 \%$ for each $100 \mathrm{~m}(328 \mathrm{ft})$ above $2000 \mathrm{~m}(6,600 \mathrm{ft})$.

■ Pollution degree: 2 (according to EN50178 and UL508C) with non-conductive pollution. Condensation shall not originate conduction through the accumulated residues.

### 3.1.2 Mounting Considerations

Consult the inverter weight at the Table 8.1 on page 8-2.
Mount the inverter in the upright position on a flat and vertical surface.
External dimensions and fixing holes position according to the Figure 3.1 on page 3 -3. Refer to the Section 8.5 MECHANICAL DATA on page 8-9 for more details.

First put the screws on the surface where the inverter will be installed, install the inverter and then tighten the screws.
Minimum mounting clearances requirements for proper cooling air circulation are specified in Figure 3.2 on page 3-4.

Do not install heat sensitive components right above the inverter.

## ATTENTION!

When arranging two or more inverters vertically, respect the minimum clearance $A+B$ (Figure 3.2 on page 3-4) and provide an air deflecting plate so that the heat rising up from the bottom inverter does not affect the top inverter.

## ATTENTION!

Provide conduit for physical separation of the signal, control, and power conductors (refer to Section 3.2 ELECTRICAL INSTALLATION on page 3-10).


(c) Surface Mounting for Models with Optional Protection IP55

| Model | c2 | c3 | d3 | e3 | Torque (*) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | M | mm <br> (in) | mm <br> (in) | N.m <br> (lbf.in) |
| IP20/ | M8 | M8 | 315 <br> $(12.40)$ | 615 <br> $(24.21)$ | 20.0 <br> $(177.0)$ |
| IP55 | M8 | - | - | - | 20.0 |
| $(177.0)$ |  |  |  |  |  |

Tolerances for dimensions d 3 and $\mathrm{e} 3:+1.0 \mathrm{~mm}(+0.039 \mathrm{in})$
Tolerances for remaining dimensions: $\pm 1.0 \mathrm{~mm}$ ( $\pm 0.039$ in)

Figure 3.1 - (a) to (c) - Mechanical installation details - mm (in)


|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| Model | mm <br> (in) | mm <br> (in) | mm <br> (in) | mm <br> (in) |
| CFW110142 T 2 | $\begin{gathered} 100 \\ (3.94) \\ \hline \end{gathered}$ | $\begin{gathered} 130 \\ (5.12) \\ \hline \end{gathered}$ | $\begin{gathered} 20 \\ (0.78) \end{gathered}$ | $\begin{gathered} 40 \\ (1.57) \\ \hline \end{gathered}$ |
| CFW11 0180 T 2 | 150 | 250 |  | 80 |
| CFW110211 T 2 | (5.91) | (9.84) |  | (3.15) |
| CFW110105 T 4 | $\begin{gathered} 100 \\ (3.94) \\ \hline \end{gathered}$ | $\begin{gathered} 130 \\ (5.12) \\ \hline \end{gathered}$ |  | $\begin{gathered} 40 \\ (1.57) \\ \hline \end{gathered}$ |
| CFW11 0142 T 4 | $\begin{gathered} 150 \\ (5.91) \end{gathered}$ | $\begin{gathered} 250 \\ (9.84) \end{gathered}$ |  | $\begin{gathered} 80 \\ (3.15) \end{gathered}$ |
| CFW11 0180 T 4 |  |  |  |  |
| CFW110211 T 4 |  |  |  |  |

Tolerance: $\pm 1.0 \mathrm{~mm}( \pm 0.039 \mathrm{in})$
Figure 3.2-Free spaces for ventilation, above, below, at the front and at the sides of the inverter

### 3.1.3 Cabinet Mounting

There are two possibilities for mounting the inverter: through the wall mounting or flange mounting (the heatsink is mounted outside the cabinet and the cooling air of the power module is kept outside the enclosure). The following information shall be considered in these cases:

## Surface assembly:

$\square$ Provide adequate exhaustion so that the internal cabinet temperature is kept within the allowable operating range of the inverter.

■ The power dissipated by the inverter at its rated condition, as specified in Table 8.1 on page 8-2 to Table 8.5 on page 8-4 "Dissipated power in Watts - Through the wall mounting".

■ The cooling air flow requirements, as shown in Table 3.1 on page 3-5.

■ The position and diameter of the mounting holes, according to Figure 3.1 on page 3-3.

## Flange assembly:

$\square$ The power specified in Table 8.1 on page 8-2 to Table 8.5 on page 8-4 "Dissipated power in Watts Flange mounting" will be dissipated inside the cabinet. The other losses (power modules) will be dissipated at the external ventilation duct.
$\square$ The inverter securing supports (position I of Figure 2.2 on page 2-6) and the hoisting eyes (position J of Figure 2.2 on page 2-6) must be removed and repositioned according to the Figure 3.3 on page $3-6$ and Figure 3.4 on page 3-6.

■ The portion of the inverter that is located outside the cabinet has protection degree IP54. Provide an adequate gasket for the cabinet opening to ensure that the enclosure rating is maintained. Example: silicone gasket.

■ Mounting surface opening dimensions and position/diameter of the mounting holes, as shown in Figure 3.1 on page 3-3.

Table 3.1-Cooling air flow for frame size E models

| Model | CFM | 1/s | $\mathrm{m}^{3} / \mathrm{min}$ |
| :---: | :---: | :---: | :---: |
| CFW110142 T 2 | 180 | 95 | 5.1 |
| CFW110180 T 2 | 265 | 125 | 7.5 |
| CFW110211 T 2 | $367{ }^{*}$ ) | $174{ }^{(*)}$ | $10.4{ }^{(*)}$ |
| CFW110105 T 4 | 138 | 65 | 3.9 |
| CFW110142 T 4 | 180 | 95 | 5.1 |
| CFW110180 T 4 | 265 | 125 | 7.5 |
| CFW110211 T 4 | $367{ }^{*}{ }^{*}$ | $174{ }^{*}$ ) | $10.4{ }^{(*)}$ |

(*) With optional degree of protection IP55.


Figure 3.3-Repositioning the mounting supports

### 3.1.4 Installation of the Inverter Hoisting Eyes

Two hoisting eyes for the inverter lifting, which are mounted at the inverter sides (rear part), are supplied. By inverting their position, as shown in the Figure 3.4 on page $3-6$, two points for hoisting the inverter, which are very useful during the mechanical installation of the inverter, are obtained.


Figure 3.4 - Installation of the inverter hoisting eyes

### 3.1.5 Installation of the Inverter with Nema1 Kit (Option, CFW11....T...ON1...) on a Wall

『 Fixing holes position and diameter according to the Figure 3.1 on page 3-3.

■ External dimensions of the inverter with Nemal kit according to the Section 8.6 NEMA1 KIT on page 8-1 1 .

■ Fasten the inverter.

■ Install the Nemal kit top on the inverter as showed in the Figure 3.5 on page 3-7 using the 2 M 8 screws supplied with the product.


### 3.1.6 Access to the Control and Power Terminal Strips

It is necessary to remove the keypad (HMI) and the control rack cover in order to get access to the control terminal strip (see Figure 3.6 on page 3-7). In order to get access to the power terminal strip, remove the bottom front cover (see Figure 3.7 on page 3-8).


Figure 3.6-HMI and control rack cover removal


Figure 3.8 - Bottom front cover removal for models with optional IP55

At the CFW11 0180 T 2 ON1, CFW11 0211 T 2 ON1, CFW11 0180 T 4 ON1 and CFW11 0211 T 4 O N 1 inverters (supplied with Nemal kit), it is also necessary to remove the front cover of the Nemal kit bottom part in order to be able to execute the electrical installation of power - see the Figure 3.9 on page 3-9.


Figure 3.9-Removal of the Nemal kit bottom front cover at the CFW110180T2ON1, CFW11 0211 T2ON1,
CFW110180 T4ON1 and CFW110211 T4ON1 inverters in order to get access to the power terminal block

### 3.1.7 Removal of the Cable Passage Plate

When it is not necessary neither IP20 nor Nemal protection degree, the cable passage plate may be removed in order to make the inverter electric installation easier. Remove the 4 M 4 screws, according to the procedure presented in the Figure 3.10 on page 3-9.
(1)

(2)



Figure 3.10-Removal of the cable passage plate

### 3.1.8 HMI Installation at the Cabinet Door or Command Panel (Remote HMI)



Figure 3.11 - Data for the HMI installation at the cabinet door or command panel - mm [in]
The keypad frame accessory can also be used to fix the HMI, as mentioned in the Table 7.1 on page 7-4 of models of the accessories.

### 3.2 ELECTRICAL INSTALLATION

DANGER
The following information is merely a guide for proper installation. Comply with applicable local regulations for electrical installations.

## DANGER

Les informations suivantes constituent uniquement un guide pour une installation correcte. Respectez les réglementations locales en vigueur pour les installations électriques.

## DANGER

Make sure the AC power supply is disconnected before starting the installation.

## DANGER

Vérifiez que l'alimentation secteur CA est débranchée avant de commencer l'installation.


## ATTENTION!

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with applicable local codes.

### 3.2.1 Identification of the Power and Grounding Terminals

R/L1, S/L2, T/L3: AC power supply.
U/T1, V/T2, W/T3: motor connection.
$D C+$ : this is the positive potential terminal in the DC Link circuit.
$B R$ : braking resistor connection.
DC-: this is the negative potential terminal in the DC Link circuit.

(a) IP20/Nemal

(b) IP55 with disconnector switch

Figure 3.12-Grounding and power terminals

### 3.2.2 Power/Grounding Wiring and Fuses

## ATTENTION!

Use proper cable lugs for the power and grounding connection cables.

## ATTENTION!

Sensitive equipment such as PLCs, temperature controllers, and thermal couples shall be kept at a minimum distance of $0.25 \mathrm{~m}(9.84 \mathrm{in})$ from the frequency inverter and from the cables that connect the inverter to the motor.

## DANGER!

Wrong cable connection:

- The inverter will be damaged in case the input power supply is connected to the output terminals (U/T1, V/T2, or W/T3).
- Check all the connections before powering up the inverter.
- In case of replacing an existing inverter by a CFW-11, check if the installation and wiring is according to the instructions listed in this manual.


## DANGER!

Mauvaise connexion des câbles:

- Le variateur sera endommagé si l'alimentation d'entrée est connectée aux bornes de sortie (U/T1, V/T2 ou W/T3).
- Vérifier toutes les connexions avant de mettre le variateur sous tension
- En cas de remplacement d'un variateur existant par un CFW-11, vérifier si l'installation et le câblage sont conformes aux instructions figurant dans ce manuel.


## ATTENTION!

Residual Current Device (RCD):

- When installing an RCD to guard against electrical shock, only devices with a trip current of 300 mA should be used on the supply side of the inverter.
- Depending on the installation (motor cable length, cable type, multimotor configuration, etc.), RCD nuisance trips may occur. Contact the RCD manufacturer for selecting the most appropriate device to be used with inverters.


## NOTE!

The wire gauge values listed in Table 3.2 on page 3-13 are orientative values. Installation conditions and the maximum permitted voltage drop shall be considered for the proper wiring sizing.

## Input fuses:

■ Use High Speed Fuses at the input for the protection of the inverter rectifier and wiring refer to Table 3.2 on page 3-13 for selecting the appropriate fuse rating (consider the cold current extinction value (not the melting value)) to protect the input rectifier diodes of the inverter and wiring.

- In order to meet UL requirements, use class $\mathbf{J}$ fuses at the inverter supply with a current not higher than the values of Table 3.4 on page 3-17.
$\square$ Optionally, slow blow fuses can be used at the input they must be sized for 1.2 x the inverter rated input current. In this case, the installation is protected against short-circuit, but not the inverter input rectifier. This may result in major damage to the inverter in the event of an internal component failure.

Table 3.2 - Recommended wire size/fuses - use only copper wire [ $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ ]

| Model | $\begin{aligned} & 0 \\ & \varepsilon_{1}^{0} \\ & \text { ㅎㄴㄴ } \end{aligned}$ | Power Terminal |  |  | Over--load Class | Wire Size |  |  | Fuse <br> [A] | $\begin{aligned} & \text { Fuse } \\ & \mathrm{I}^{2} \dagger \\ & {\left[\mathrm{~A}^{2} \mathrm{~s}\right]} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Terminals | Bolt (Wrench/Screw Head Type) | Recommended Torque N.m (lbf.in) |  | mm ${ }^{2}$ | AWG | Terminals |  |  |
| CFW110142 T 2 |  | R/L1 ,S/L2,T/L3, | M8 (Phillips hex head) | 15 (132.75) | HD | 50 | 1/0 | Ring tongue terminal | 250 | 39200 |
|  |  | $\mathrm{DC}+, \mathrm{DC}-, \mathrm{DCL}+, \mathrm{DCL}-$ |  |  | ND | 70 | 2/0 |  |  |  |
|  |  | $\stackrel{\ominus}{\square}$ | M5 and M8 (Phillips hex head) | M5: 3.5 (31.0); M8: $10(88.5)$ | HD/ND | 35 | 2 |  |  |  |
| CFW110180 T 2 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+, \mathrm{DC}-, \mathrm{DCL}+, \mathrm{DCL} \end{gathered}$ | M10 (hexagonal screw) ${ }^{(1)}$ | 30 (265.5) | HD | $\begin{gathered} 70 \\ \text { (or } 2 \times 25 \text { ) } \end{gathered}$ | $\begin{gathered} 2 / 0 \\ \text { (or } 2 \times 4 \text { ) } \\ \hline \end{gathered}$ | Ring tongue terminal | 350 | 218000 |
|  |  |  |  |  | ND | $\begin{gathered} 120 \\ \text { (or } 2 \times 35) \end{gathered}$ | $\begin{gathered} 4 / 0 \\ (\text { or } 2 \times 2) \end{gathered}$ |  |  |  |
|  |  | $\stackrel{\ominus}{\square}$ | M5 and M8 (Phillips hex head) | $\begin{gathered} \text { M5: } \\ 3.5(31.0) ; \\ \text { M8: } \\ 10(88.5) \end{gathered}$ | HD/ND | 50 | 1 |  |  |  |
| CFW110211 T2 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+, \mathrm{DC}-\mathrm{DCL}+, \mathrm{DCL} \end{gathered}$ | M10 (hexagonal screw) ${ }^{(1)}$ | 30 (265.5) | HD | $\begin{gathered} 120 \\ \text { (or } 2 \times 35 \text { ) } \end{gathered}$ | $\begin{gathered} 4 / 0 \\ (\text { or } 2 \times 2) \\ \hline \end{gathered}$ | Ring tongue terminal | 400 | 218000 |
|  |  |  |  |  | ND | $\begin{gathered} 150 \\ \text { (or } 2 \times 50 \text { ) } \end{gathered}$ | $\begin{gathered} 300 \\ (\text { or } 2 \times 1) \end{gathered}$ |  |  |  |
|  |  | $\stackrel{\square}{\ni}$ | M5 and M8 (Phillips hex head) | $\begin{gathered} \text { M5: } \\ 3.5(31.0) ; \\ \text { M8: } \\ 10(88.5) \end{gathered}$ | HD/ND | 70 | 2/0 |  |  |  |
| CFW110105 T 4 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T1} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+, \mathrm{DC}-\mathrm{DCL}+, \mathrm{DCL} \end{gathered}$ | M8 (Phillips hex head) | 15 (132.75) | HD | 35 | 2 | Ring tongue terminal | 160 | 39200 |
|  |  |  |  |  | ND | 50 | 1 |  |  |  |
|  | E | $\stackrel{\ominus}{\square}$ | M5 and M8 (Phillips hex head) | M5: 3.5 (31.0); M8: $10(88.5)$ | HD/ND | 25 | 4 |  |  |  |
| CFW110142 T 4 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T1}, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+\mathrm{DC}-, \mathrm{DCL}+, \mathrm{DCL} \end{gathered}$ | M8 (Phillips hex head) | 15 (132.75) | HD | 50 | 1/0 | Ring tongue terminal | 250 | 39200 |
|  |  |  |  |  | ND | 70 | 2/0 |  |  |  |
|  |  | $\stackrel{\ominus}{9}$ | M5 and M8 (Phillips hex head) | M5: 3.5 (31.0); M8: $10(88.5)$ | HD/ND | 35 | 2 |  |  |  |
| CFW110180 T 4 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+, \mathrm{DC}-\mathrm{DCL}+, \mathrm{DCL} \end{gathered}$ | M10 (hexagonal screw) ${ }^{(1)}$ | 30 (265.5) | HD | $\begin{gathered} 70 \\ \text { (or } 2 \times 25 \text { ) } \end{gathered}$ | $\begin{gathered} 2 / 0 \\ (\text { (or } 2 \times 4) \end{gathered}$ | Ring tongue terminal | 350 | 218000 |
|  |  |  |  |  | ND | $\begin{gathered} 120 \\ \text { (or } 2 \times 35 \text { ) } \end{gathered}$ | $\begin{gathered} 4 / 0 \\ (\text { or } 2 \times 2 \text { ) } \end{gathered}$ |  |  |  |
|  |  | $\stackrel{1}{5}$ | M5 and M8 (Phillips hex head) | $\begin{gathered} \text { M5: } \\ 3.5(31.0) ; \\ \text { M8: } \\ 10(88.5) \\ \hline \end{gathered}$ | HD/ND | 50 | 1 |  |  |  |
| CFW110211 T 4 |  | $\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \\ \mathrm{DC}+, \mathrm{DC}-, \mathrm{DCL}+, \mathrm{DCL}- \end{gathered}$ | M10 (hexagonal screw) ${ }^{(1)}$ | 30 (265.5) | HD | $\begin{gathered} 120 \\ \text { (or } 2 \times 35 \text { ) } \end{gathered}$ | $\begin{gathered} 4 / 0 \\ (\text { or } 2 \times 2 \text { ) } \\ \hline \end{gathered}$ | Ring tongue terminal | 400 | 218000 |
|  |  |  |  |  | ND | $\begin{gathered} 150 \\ \text { (or } 2 \times 50 \text { ) } \end{gathered}$ | $\begin{gathered} 300 \\ (\text { or } 2 \times 1) \end{gathered}$ |  |  |  |
|  |  | $\stackrel{1}{\square}$ | M5 and M8 (Phillips hex head) | $\begin{gathered} \text { M5: } \\ 3.5(31.0) ; \\ \text { M8: } \\ 10(88.5) \end{gathered}$ | HD/ND | 70 | 2/0 |  |  |  |

(1) IP55 models: R/L1 ,S/L2,T/L3 using hexagonal screw M8 (Phillips hex head).

Table 3.3 - (a) and (b) - Recommended terminals for power connections
(a) Cables with size in $\mathrm{mm}^{2}$

| Wire Size [mm ${ }^{2}$ ] | Screw | Manufacturer | Lug Terminal, Code | Crimping Tool Code | Number of Crimps |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | M5 | Hollingsworth | RM 25-5 | H 6.500 | 1 |
|  |  | Tyco | 33468 | 59975-1 | 1 |
|  | M8 | Hollingsworth | RM 25-8 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA3CL | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U3CRT | 1 |
|  |  | Tyco | 33470 | 59975-1 | 1 |
|  | M10 | Hollingsworth | RM 25-10 | H 6.500 | 1 |
|  |  | Tyco | 33471 | 59975-1 | 1 |
| 35 | M5 | Hollingsworth | RM 35-5 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA2CL2 | Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U2CRT | 1 |
|  |  | Tyco | 330301 | 59975-1 | 1 |
|  | M8 | Hollingsworth | RM 35-8 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YAC2CL | Tool without die: MY29-3 or Y644 or Y81 Tool Tool+die: Y46 or Y35 or Y750 / U2CRT | 1 |
|  |  | Tyco | 322870 | 59975-1 | 1 |
| 50 | M5 | Hollingsworth | RM 50-5 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA1CL2 | Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 36915 | Manual tool: 1490748-1, Jaw: 1490413-5 + 1490414-3 | 1 |
|  | M8 | Hollingsworth | RM 50-8 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YAlCL | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 36916 | Manual tool: $1490748-1$, Jaw: $1490413-5+$ $1490414-3$ | 1 |
|  | M10 | Hollingsworth | RM 50-10 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YAlCL4 | Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 36917 | Manual tool: 1490748-1, Jaw: 1490413-5 + 1490414-3 | 1 |
| 70 | M5 | Hollingsworth | RM 70-5 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA26L2 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321869 | Manual tool: 1490748-1, Jaw: 1490413-6 + 1490414-3 | 1 |
|  | M8 | Hollingsworth | RM 70-8 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA26L | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321870 |  | 1 |
|  | M10 | Hollingsworth | RM 70-10 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA26L4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321871 | Manual tool: 1490748-1, Jaw: 1490413-6 + 1490414-3 | 1 |
| 120 | M10 | Hollingsworth | RM120-10 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA29L4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U29RT | 1 |
|  |  | Tyco | 322252 | Hydraulic pump: 1804700-1 (electric) or 1583659-1 (foot pump), 1583662-1 -2 or -3 (1.8 m, 3 m or 6 m ) | 1 |
| 150 | M10 | Hollingsworth | RM150-10 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA30L24 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U30RT | 1 |
|  |  | Tyco | 322252 | Hydraulic pump: 1804700-1 (electric) or 1583659-1 (foot pump), 1583662-1 -2 or -3 (1.8 m, 3 m or 6 m ) | 1 |

(b) Cables with size in AWG

| Wire size [AWG/ kcmil] | Screw | Manufacturer | Lug Terminal, Code | Crimping Tool Code | Number of Crimps |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | M5 | Hollingsworth | R 410 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA4CL2 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U4CRT | 1 |
|  |  | Tyco | 33468 | 59975-1 | 1 |
|  | M8 | Hollingsworth | R 4516 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA4CL3 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U4CRT | 1 |
|  |  | Tyco | 33470 | 59975-1 | 1 |
|  | M10 | Hollingsworth | R 438 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA4CL4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U4CRT | 1 |
|  |  | Tyco | 33471 | 59975-1 | 1 |
| 2 | M5 | Hollingsworth | R 210 | H 6.500 | 1 |
|  |  | Burndy (FCl) | YA2CL2 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U2CRT | 1 |
|  |  | Tyco | 330301 | 59975-1 | 1 |
|  | M8 | Hollingsworth | R 2516 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA2CL | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U2CRT | 1 |
|  |  | Tyco | 322870 | 59975-1 | 1 |
| 1 | M5 | Hollingsworth | R 110 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA1CL2 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 330301 | 59975-1 | 1 |
|  | M8 | Hollingsworth | R 1516 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YAlCL | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 322870 | 59975-1 | 1 |
|  | M10 | Hollingsworth | R 138 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YAlCL4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U1CRT | 1 |
|  |  | Tyco | 321600 | 59975-1 | 1 |
| 1/0 | M8 | Hollingsworth | R 10516 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA25L | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U25RT | 1 |
|  |  | Tyco | 36916 | Manual tool: 1490748-1, Jaw: 1490413-5 + 1490414-3 | 1 |
| 2/0 | M5 | Hollingsworth | R 2010 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA26L2 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321869 | Manual tool: 1490748-1 $\text { Jaw: } 1490413-6+1490414-3$ | 1 |
|  | M8 | Hollingsworth | R 20516 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA26L | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321870 | $\begin{gathered} \text { Manual tool: 1490748-1 } \\ \text { Jaw: } 1490413-6+1490414-3 \end{gathered}$ | 1 |
|  | M10 | Hollingsworth | R 2038 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA26L4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U26RT | 1 |
|  |  | Tyco | 321871 | Manual tool: 1490748-1 Jaw: 1490413-6 + 1490414-3 | 1 |
| 4/0 | M10 | Hollingsworth | R 4038 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA28L4 | Tool without die: MY29-3 or Y644 or Y81 Tool+die: Y46 or Y35 or Y750 / U28RT | 1 |
|  |  | Tyco | 36932 | Manual tool: 1490748-1 Jaw: 1490413-8 + 1490414-3 | 1 |
| 300 | M10 | Hollingsworth | R30038 | H 6.500 | 1 |
|  |  | Burndy (FCI) | YA30L24 | Tool without die: MY29-3 or Y644 or Y81 Tool + die: Y46 or Y35 or Y750 / U30RT | 1 |
|  |  | Tyco | 322252 | Hydraulic pump: 1804700-1 (electric) or 1583659-1 (foot pump), 1583662-1 -2 or -3 (1.8 m, 3 m or 6 m ) | 1 |

### 3.2.3 Power Connections



Figure 3.13 - Power and grounding connections

### 3.2.3.1 Input Connections

## DANGER!

Provide a disconnect device for the input power supply of the inverter.
This device shall disconnect the input power supply for the inverter when needed (for instance, during servicing).

## DANGER!

Montez un dispositif de coupure sur l'alimentation du variateur.
Ce composant déconnecte l'alimentation du variateur si cela est nécessaire (ex. pendant l'entretien et la maintenance).

## ATTENTION!

A contactor or another device that frequently disconnects and reapplies the AC supply to the inverter in order to start and stop the motor may cause damage to the inverter power section. The drive is designed to use control signals for starting and stopping the motor. If used for that purpose, the input device must not exceed one operation per minute otherwise the inverter may be damaged.

## ATTENTION!

The power supply that feeds the inverter shall have a grounded neutral. In case of IT networks, follow the instructions described in Item 3.2.3.2.1 IT Networks on page 3-17.

## NOTE!

The input power supply voltage must be compatible with the inverter rated voltage.

## NOTE!

Power factor correction capacitors are not needed at the inverter input $(R, S, T)$ and must not be installed at the output of the inverter $(\mathrm{U}, \mathrm{V}, \mathrm{W})$.

### 3.2.3.2 AC Power Supply Considerations

■ Suitable for circuits with capacity to deliver no more than:

- 100 kA symmetric at 240 V or 480 V when the inverter is protected by fuses.
- 65 kA symmetric at 240 V or 480 V when the inverter is protected by reverse-type circuit breakers (for compliance with UL standard and suggestion of circuit breaker current, see Table 3.4 on page 3-17).

Table 3.4 - Maximum rated current of the circuit breakers according to the inverter model

| Model | Inverter Protection with Class J Fuses |  | Inverter Protection with Circuit Breaker |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rated <br> Current of Fuse | Maximum Power Supply Short- Circuit Current | Rated Current of Circuit Breaker | Minimum Cabinet Dimensions <br> (depth x height x width) | Maximum Power Supply Short-Circuit Current |
| CFW11 0142 T 2 | 200 A | 100 kA | 160 A | $254 \times 914 \times 660 \mathrm{~mm}$ | 65 kA |
| CFW11 0180 T 2 | 200 A |  | 200 A |  |  |
| CFW110211 T2 | 250 A |  | 250 A |  |  |
| CFW110105 T 4 | 125 A |  | 125 A |  |  |
| CFW110142 T 4 | 200 A |  | 160 A |  |  |
| CFW110180 T 4 | 200 A |  | 200 A |  |  |
| CFW110211 T 4 | 250 A |  | 250 A |  |  |

### 3.2.3.2.1 IT Networks

## ATTENTION!

In order to be able to use the frame size E CFW-1 1 inverter in IT networks (neutral conductor not grounded or grounded via a high ohmic value resistor) or in corner-grounded delta systems, it is necessary to remove the RFI filter capacitor and the MOV connected to the ground by changing the position of the Jl jumper on the PRT1 board from $\Theta(X E 1)$ to "NC", according to the Figure 3.14 on page 3-18.

(a) Location of the PRTI board (inverter without the bottom front cover)

(b) Location of the PRTI board for models with optional IP55


Figure 3.14 - (a) to (c)-Location of the PRTI board and procedure for disconnecting the RFI filter and the MOV connected to the ground - necessary for using the inverter in IT or corner-grounded delta networks

### 3.2.3.2.2 Command Fuses of Pre-Charge Circuit

■ Besides the RFI filter capacitors and the MOV's, the PRT1 board also has 2 fuses for protecting the inverter command circuit.

■ The PRT1 board location is presented in the Figure 3.14 on page 3-18.

■ The location of the PRT1 fuses is presented in the Figure 3.14 on page 3-18.
$\square$ Specification of the command fuses:
Slow blow fuse 0.5 A / 600 V .
Manufacturer: Cooper Bussmann.
Part number: FNQ-R-1/2.
WEG part number: 10411493.

Consider the following items for the use of protection devices on the supply side of the inverter such as residual current devices or isolation monitors:

■ The detection of a phase-to-ground short-circuit or an insulation fault shall be processed by the user, i.e., the user shall decide whether to indicate the fault and/or block the inverter operation.
$\boxed{\square}$ Contact the RCD manufacturer for selecting the most appropriate device to be used with inverters in order to avoid nuisance tripping due to the high frequency leakage currents that flow through the leakage capacitances of the inverter, cable, and motor system to the ground.

### 3.2.3.3 Dynamic Braking

## ATTENTION!

For the CFW- 11 frame size E models, only those with the DB option (CFW1 1XXXXTXODB) have the braking IGBT incorporated to the product.

The braking torque that can be obtained from the frequency inverter without braking resistors varies from $10 \%$ to $35 \%$ of the motor rated torque.

Braking resistors must be used to obtain higher braking torques. In this case, the energy regenerated in excess is dissipated in a resistor mounted externally to the inverter.

This type of braking is used in cases where short deceleration times are desired or when high inertia loads are driven.

The "Optimal Braking" feature may be used with the vector control mode, which eliminates in most cases the need of an external braking resistor.

## NOTE!

Set P0151 and P0185 to their maximum values ( 400 V or 800 V ) when using dynamic braking.

### 3.2.3.2.1 Sizing the Braking Resistor

The following application data shall be considered for the adequate sizing of the braking resistor:

■ Desired deceleration time

■ Load inertia.

■ Braking duty cycle.

In any case, the effective current value and the maximum braking current value presented in Table 3.5 on page 3-20 shall be respected.

The maximum braking current defines the minimum braking resistor value in ohms.

The DC Link voltage level for the activation of the dynamic braking function is defined by parameter P0153 (dynamic braking level).

The power of the braking resistor is a function of the deceleration time, the load inertia, and the load torque.

For most applications, a braking resistor with the value in ohms indicated in Table 3.5 on page 3-20 and the power of $20 \%$ of the rated driven motor power. Use wire type resistors in a ceramic support with adequate insulation voltage and capable of withstanding high instantaneous power with respect to rated power. For critical applications with very short deceleration times and high inertia loads (ex.: centrifuges) or short duration cycles, consult WEG for the adequate sizing of the braking resistor.

Table 3.5 - Dynamic braking specifications

| Inverter Model | Maximum Braking Current ( $I_{\text {max }}$ ) <br> [A] | Maximum Braking Power (peak value) $\begin{gathered} \left(\mathrm{P}_{\max }\right)^{(2)} \\ {[\mathrm{kW}]} \end{gathered}$ | Effective Braking Current $\left(I_{\text {effective }}\right)^{(1)}$ <br> [A] | Dissipated Power (mean value) in the Braking Resistor $\left(P_{R}\right){ }^{(2)}$ [kW] | Recommended Resistor [ $\Omega$ ] | Power Wire Size (terminals DC+ and $B R)^{(3)}$ [mm² (AWG)] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CFW110142T2O...DB... | 266.7 | 106.7 | 142.0 | 30.2 | 1.5 | $\begin{gathered} 70(2 / 0) \text { or } \\ 2 \times 25(2 \times 4) \end{gathered}$ |
| CFW110180T2O...DB... | 266.7 | 106.7 | 180.0 | 48.6 | 1.5 | $\begin{gathered} 120(4 / 0) \text { or } \\ 2 \times 35(2 \times 2) \end{gathered}$ |
| CFW110211T2O...DB... | 333.3 | 133.3 | 211.0 | 53.4 | 1.2 | $\begin{aligned} & 150(300) \text { or } \\ & 2 \times 50(2 \times 1) \end{aligned}$ |
| CFW110105T4O...DB... | 186.0 | 148.8 | 105.0 | 47.4 | 4.3 | 50 (1) |
| CFW110142T4O...DB... | 266.7 | 213.3 | 142.0 | 60.5 | 3.0 | $\begin{gathered} 70(2 / 0) \text { or } \\ 2 \times 25(2 \times 4) \end{gathered}$ |
| CFW110180T4O...DB... | 266.7 | 213.3 | 180.0 | 97.2 | 3.0 | $\begin{gathered} 120(4 / 0) \text { or } \\ 2 \times 35(2 \times 2) \end{gathered}$ |
| CFW110211T4O...DB... | 363.6 | 290.9 | 191.7 | 80.8 | 2.2 | $\begin{aligned} & 120(250) \text { or } \\ & 2 \times 50(2 \times 1) \end{aligned}$ |

(1) The effective braking current presented is just an indicative value, because it depends on the braking duty cycle. The effective braking current can be obtained from the equation below, where $t_{b r}$ is given in minutes and corresponds to the sum of all braking times during the most severe cycle of 5 (five) minutes.
$I_{\text {effective }}=I_{\max } \times \sqrt{\frac{t_{b r}}{5}}$
(2) The $P_{\max }$ and $P_{R}$ values (maximum and mean power of the braking resistor respectively) presented are valid for the recommended resistors and for the effective braking currents presented in Table 3.5 on page 3-20. The resistor power shall be changed according to the braking duty cycle.
(3) For specifications on the recommended terminal type (bolt and tightening torque) for the connection of the braking resistor (terminals DC + and $B R$ ), refer to the $D C+$ terminal specification at the Table 3.2 on page 3-13.

### 3.2.3.2.2 Installation of the Braking Resistor

Install the braking resistor between the power terminals DC + and BR.

Use twisted cable for the connection. Separate these cables from the signal and control cables. Size the cables according to the application, respecting the maximum and effective currents.

If the braking resistor is installed inside the inverter cabinet, consider its additional dissipated energy when sizing the cabinet ventilation.

Set parameter P0154 with the resistor value in ohms and parameter P0155 with the maximum resistor power in kW .

## DANGER!

The inverter has an adjustable thermal protection for the braking resistor. The braking resistor and the braking transistor may damage if parameters P0153, P0154, and P0155 are not properly set or if the input voltage surpasses the maximum permitted value.

## DANGER!

Le variateur possède une protection thermique réglable pour la résistance de freinage. La résistance de freinage et le transistor de freinage peuvent être endommagés si les paramètres P0153, P0154 et P0155 ne sont pas correctement définis ou si la tension d'entrée dépasse la valeur maximale autorisée.

The thermal protection offered by the inverter, when properly set, allows the protection of the resistor in case of overload; however, this protection is not guaranteed in case of braking circuitry failure. In order to avoid any damage to the resistor or risk of fire, install a thermal relay in series with the resistor and/or a thermostat in contact with the resistor body to disconnect the input power supply of the inverter, as presented in Figure 3.15 on page 3-21.


Figure 3.15-Braking resistor connection

## NOTE!

DC current flows through the thermal relay bimetal strip during braking.

### 3.2.3.4 Output Connections

## ATTENTION!

The inverter has an electronic motor overload protection that shall be adjusted according to the driven motor. When several motors are connected to the same inverter, install individual overload relays for each motor.

## ATTENTION!

The motor overload protection available at the CFW-1 1 is in accordance with the IEC60947-4-2 and UL508C standards, note the following information:

- Trip current equal to 1.25 times the motor rated current (P0401) adjusted in the oriented startup menu.

■ The parameter P0159 maximum setting (Motor Thermal Class) is 3 (Class 20).
■ The parameter P0398 maximum setting (Motor Service Factor) is 1.15.

## ATTENTION!

If a disconnect switch or a contactor is installed between the inverter and the motor, never operate them with a spinning motor or with voltage at the inverter output.

The characteristics of the cable used for the inverter and motor interconnection, as well as the physical location are extremely important to avoid electromagnetic interference in other equipment and to not affect the life cycle of motor windings and motor bearings controlled by inverters.

## Recommendations for the motor cables:

## Unshielded Cables:

$\square$ Can be used when it is not necessary to meet the European directive of electromagnetic compatibility (2004/108/EC).

■ Keep motor cables away from other cables (signal cables, sensor cables, control cables, etc.), according to Table 3.6 on page 3-23.
$\square$ The emission of the cables may be reduced by installing them inside a metal conduit, which shall be grounded at both ends.

- Connect a fourth cable between the motor ground and the inverter ground.


## NOTE!

The magnetic field created by the current circulation in these cables may induce current in close metal pieces, heat them, and cause additional electrical losses. Therefore, keep the 3 (three) cables ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) always together.

## Shielded Cables:

$\square$ They are mandatory when the electromagnetic compatibility directive (2004/108/EC) shall be met, as defined by the standard EN 61800-3 "Adjustable Speed Electrical Power Drive Systems". These cables act mainly by reducing the irradiated emission in the radio-frequency range.

■ In reference to the type and details of installation, follow the recommendations of IEC 60034-25 "Guide for Design and Performance of Cage Induction Motors Specifically Designed for Converter Supply" - refer to a summary in Figure 3.16 on page 3-23. Refer to the standard for further details and eventual modifications related to new revisions.

■ Keep motor cables away from other cables (signal cables, sensor cables, control cables, etc.), according to Table 3.6 on page 3-23.
$\square$ The grounding system shall be well interconnected among the several installation locations such as the grounding points of the motor and the inverter. Voltage difference or impedance between the several points may cause the circulation of leakage currents among the equipment connected to the ground, resulting in electromagnetic interference problems.

Table 3.6-Minimum separation distance between motor cables and all other cables

| Cable Length | Minimum Separation Distance |
| :---: | :---: |
| $\leq 30 \mathrm{~m}(100 \mathrm{ft})$ | $\geq 10 \mathrm{~cm}(3.94 \mathrm{in})$ |
| $>30 \mathrm{~m}(100 \mathrm{ft})$ | $\geq 25 \mathrm{~cm}(9.84 \mathrm{in})$ |



Symmetrical shielded cables: three concentric conductors with or without a ground conductor, symmetrically manufactured, with an external shield of copper or aluminum.

## Notes:

(1) $\mathrm{SCu}=$ copper or aluminum external shielding.
(2) $\mathrm{AFe}=$ steel or galvanized iron.
(3) $P E=$ ground conductor.
(4) Cable shielding shall be grounded at both ends (inverter and motor). Use $360^{\circ}$ connections for a low impedance to high-frequencies. Refer to Figure 3.17 on page 3-24.
(5) For using the shield as a protective ground, it shall have at least $50 \%$ of the power cables conductivity. Otherwise, add an external ground conductor and use the shield as an EMC protection.
(6) Shielding conductivity at high-frequencies shall be at least $10 \%$ of the power cables conductivity.

Figure 3.16 - Motor connection cables recommended by IEC 60034-25

■ Connection of the motor cable shield to ground: make a connection with low impedance for high frequencies. Example in the Figure 3.17 on page 3-24. In inverters without the Nemal kit, connect the motor cable shield to the ground in a similar mode, with the clamp at the inverter inner part, according to the Figure 3.17 on page 3-24.


Figure 3.17-Example of the motor cable shield connection at the inner part of the Nemal kit supplied with the product

### 3.2.4 Grounding Connections

## DANGER!

Do not share the grounding wiring with other equipment that operate with high currents (e.g. high power motors, soldering machines, etc.). When installing several inverters, follow the procedures presented in Figure 3.18 on page 3-25 for the grounding connection.

## DANGER!

Ne pas partager le câblage de mise à la terre avec d'autres équipements opérant avec des intensités élevées (par ex: moteurs haute puissance, postes de soudure, etc.). Lors de l'installation de plusieurs variateurs, appliquer les procédures présentées dans l'illustration 3.18 pour la connexion de mise à la terre.

## ATTENTION!

The neutral conductor of the network must be solidly grounded; however, this conductor must not be used to ground the inverter.

## DANGER!

The inverter must be obligatorily connected to a protective ground (PE).
Observe the following:

- Use a minimum wire gauge for grounding connection is provided in Table 3.2 on page 3-13. Conform to local regulations and/or electrical codes in case a different wire gauge is required.
- Connect the inverter grounding connections to a ground bus bar, to a single ground point, or to a common grounding point (impedance $\leq 10 \Omega$ ).
- To comply with IEC 61800-5-1 standard, connect the inverter to the ground by using a single conductor copper cable with a minimum wire gauge of $10 \mathrm{~mm}^{2}$, since the leakage current is greater than 3.5 mA AC .


## DANGER!

Le variateur doit être raccordé à une terre de protection (PE).
Observer les règles suivantes:

- Utilisez la section minimale de raccordement à la terre indiquée dans le Tableau 3.2. Se conformer aux à la règlementation locale et/ou aux codes de l'électricité si une autre épaisseur de fil est nécessaire.
- Connectez la masse du variateur à une barre collectrice de terre en un seul point ou à un point commun de raccordement à la terre (impédance $\leq 10 \Omega$ ).
- Pour assurer la conformité avec la norme CEI 61800-5-1, connecter le variateur à la terre grâce à un câble en cuivre à un conducteur ayant une épaisseur de fil minimale de $10 \mathrm{~mm}^{2}$, étant donné que le courant de fuite est supérieur à 3,5 mA C.A.


Figure 3.18-Grounding connections with multiple inverters

### 3.2.5 Control Connections

The control connections (analog inputs/outputs, digital inputs/outputs), must be made at the CC11 control board terminal strip XC1.

Functions and typical connections are presented in Figure 3.19 on page 3-27.

|  | Connector XC1 |  | Factory Default Function | Specifications |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | + REF | Positive reference for potentiometer | Output voltage: $+5.4 \mathrm{~V}, \pm 5 \%$ Maximum output current: 2 mA |
|  | 2 | All + | Analog input 1: speed reference (remote) | Differential <br> Resolution: 12 bits <br> Signal: 0 to $10 \mathrm{~V}\left(\mathrm{R}_{\mathbb{1}}=400 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathbb{N}}=500 \Omega\right)$ Maximum voltage: $\pm 30 \mathrm{~V}$ |
|  | 3 | Al1- |  |  |
| cow | 4 | REF- | Negative reference for potentiometer | Output voltage: - 4.7 V , $\pm 5$ \% Maximum output current: 2 mA |
|  | 5 | Al2 + | Analog input 2: no function | Differential <br> Resolution: 11 bits + signal <br> Signal: 0 to $\pm 10 \mathrm{~V}\left(\mathrm{R}_{\mathbb{N}}=400 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathbb{1}}=500 \Omega\right)$ <br> Maximum voltage: $\pm 30 \mathrm{~V}$ |
|  | 6 | Al2- |  |  |
|  | 7 | AO1 | Analog output 1: speed | Galvanic Isolation <br> Resolution: 11 bits <br> Signal: 0 to $10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{L}} \leq 500 \Omega\right)$ <br> Protected against short-circuit |
|  | 8 | $\begin{aligned} & \text { AGND } \\ & (24 \mathrm{~V}) \end{aligned}$ | Reference ( 0 V ) for the analog outputs | Connected to the ground (frame) through an impedance: $940 \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of DGND * |
| amp | 9 | AO2 | Analog output 2: motor current | Galvanic Isolation <br> Resolution: 11 bits <br> Signal: 0 to $10 \mathrm{~V}\left(R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) / 0$ to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA}\left(R_{\mathrm{L}} \leq 500 \Omega\right)$ <br> Protected against short-circuit |
|  | 10 | $\begin{aligned} & \text { AGND } \\ & (24 \mathrm{~V}) \end{aligned}$ | Reference ( 0 V ) for the analog outputs | Connected to the ground (frame) through an impedance: $940 \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of DGND * |
|  | 11 | DGND* | Reference ( 0 V ) for the 24 Vdc power supply | Connected to the ground (frame) through an impedance: $940 \Omega$ resistor in parallel with a 22 nF capacitor. Same reference as the one of AGND (24 V) |
|  | 12 | COM | Common point of the digital inputs |  |
|  | 13 | 24 Vdc | 24 Vdc power supply | 24 Vdc power supply, $\pm 8 \%$ <br> Capacity: 500 mA <br> Note: In the models with the 24 Vdc external control power supply (CFW1 1...O...W...) pin $13 \circ \mathrm{XC1}$ is considered na input, that is, the user must provide a supply for the inverter (for further details refer to Item 7.1.5 24 Vdc External Control Power Supply on page 7-2 for more details). In all the other models this terminal is an output, i.e., the user has a 24 Vdc power supply available there |
|  | 14 | COM | Common point of the digital inputs |  |
| / ${ }^{-\cdots \cdots}$ | 15 | DII | Digital input 1: Start/Stop | 6 isolated digital inputs <br> High level $\geq 18 \mathrm{~V}$ <br> Low level $\leq 3 \mathrm{~V}$ <br> Maximum input voltage $=30 \mathrm{~V}$ <br> Input current: 11 mA @ 24 Vdc |
|  | 16 | DI2 | Digital input 2: direction of rotation (remote) |  |
|  | 17 | DI3 | Digital input 3: no function |  |
|  | 18 | DI4 | Digital input 4: no function |  |
| $\qquad$ | 19 | DI5 | Digital input 5: Jog (remote) |  |
| - | 20 | DI6 | Digital input 6: $2^{\text {nd }}$ ramp |  |
|  | 21 | NCl | Digital output 1 DO1 (RL1): no fault | Contact rating: <br> Maximum voltage: 240 Vac <br> Maximum current: 1 A <br> NC - normally closed contact <br> C - common <br> NO - normally open contact |
|  | 22 | Cl |  |  |
|  | 23 | NO1 |  |  |
|  | 24 | NC2 | Digital output 2 DO2 (RL2): N $>N_{x}$ - Speed > P0288 |  |
|  | 25 | C2 |  |  |
|  | 26 | NO 2 |  |  |
|  | 27 | NC3 | Digital output 3 DO3 (RL3): $\mathrm{N}^{*}>\mathrm{N}_{\mathrm{x}}$ - Speed reference $>$ P0288 |  |
|  | 28 | C3 |  |  |
|  | 29 | NO3 |  |  |

(a) Digital inputs working as "Active High"

(b) Digital inputs working as "active low"

Figure 3.19 - (a) and (b) - Signals at connector XC1

## NOTE!

In order to use the digital inputs as "active low", remove the jumper between $\mathrm{XC1:11}$ and 12 and install it between XC1:12 and 13 .


Figure 3.20-Connector XC1 and DIP-switches for selecting the signal type of the analog inputs and outputs
The analog inputs and outputs are factory set to operate in the range from 0 to 10 V ; this setting may be changed by using DIP-switch S1.

Table 3.7-Configuration of DIP-switches for selecting the signal type of analog inputs and outputs

| Signal | Factory Default Function | DIP-Switch | Selection | Factory Setting |
| :---: | :--- | :---: | :--- | :---: |
| Al1 | Speed reference (remote) | S1.4 | OFF: 0 to 10 V (factory setting) <br> ON: 4 to $20 \mathrm{~mA} / 0$ to 20 mA | OFF |
| AI2 | No function | S1.3 | OFF: 0 to $\pm 10 \mathrm{~V}$ (factory setting) <br> ON: 4 to $20 \mathrm{~mA} / 0$ to 20 mA | OFF |
| AO1 | Speed | S 1.1 | OFF: 4 to $20 \mathrm{~mA} / 0$ to 20 mA <br> ON: 0 to 10 V (factory setting) | ON |
| AO2 | Motor current | S1.2 | OFF: 4 to $20 \mathrm{~mA} / 0$ to 20 mA <br> ON: 0 to 10 V (factory setting) | ON |

Parameters related to the analog inputs and outputs (AI1, $\mathrm{Al} 2, \mathrm{AO} 1$, and AO 2 ) shall be programmed according to the DIP-switches settings and desired values.

Follow instructions below for the proper installation of the control wiring:

1. Wire gauge: $0.5 \mathrm{~mm}^{2}$ (20 AWG) to $1.5 \mathrm{~mm}^{2}$ (14 AWG).
2. Maximum tightening torque: 0.50 N.m (4.50 lbf.in).
3. Use shielded cables for the connections in XCl and run the cables separated from the remaining circuits (power, $110 \mathrm{~V} / 220 \mathrm{Vac}$ control, etc.), as presented in Table 3.6 on page 3-23. If control cables must cross other cables, it must be done perpendicularly among them, keeping a minimum of $5 \mathrm{~cm}(1.9 \mathrm{in}$ ) distance at the crossing point.


Frame size E inverters - SRB4.00 board
Figure 3.21 - SRBXX board connections (Safety Stop function)

Table 3.8 - Minimum separation distances between wiring

| Cable Length | Minimum Separation <br> Distance |
| :---: | :---: |
| $\leq 30 \mathrm{~m}(100 \mathrm{ft})$ | $\geq 10 \mathrm{~cm}(3.94 \mathrm{in})$ |
| $>30 \mathrm{~m}(100 \mathrm{ft})$ | $\geq 25 \mathrm{~cm}(9.84 \mathrm{in})$ |

4. The adequate connection of the cable shield is shown in Figure 3.22 on page 3-30. Figure 3.23 on page 3-30 shows how to connect the cable shield to the ground.


Figure 3.22-Shield connection


Figure 3.23 - Example of shield connection for the control wiring
5. Relays, contactors, solenoids or coils of electromechanical brakes installed close to the inverter may eventually create interferences in the control circuitry. To eliminate this effect, RC suppressors (with AC power supply) or free-wheel diodes (with DC power supply) must be connected in parallel to the coils of these devices.

### 3.2.6 Typical Control Connections

Control connection 1 - Run/Stop function controlled from the keypad (Local Mode).

With this control connection it is possible to run the inverter in local mode with the factory default settings. This operation mode is recommended for first-time users, since no additional control connections are required.

For the start-up in this operation mode, please follow instructions listed in Chapter 5 FIRST TIME POWER-UP AND START-UP on page 5-1.

Control connection 2-2 - Wire Start/Stop function (Remote Mode).

This wiring example is valid only for the default factory settings and if the inverter is set to remote mode. With the factory default settings, the selection of the operation mode (local/remote) is performed through the
 remote mode.


Figure 3.24-XC1 wiring for control connection \#2

Control connection 3-3-Wire Start/Stop function.
Enabling the Start/Stop function with 3 Wire control.
Parameters to set:
Set DI3 to START
P0265 = 6
Set DI4 to STOP
P0266 = 7

Set P0224 = 1 (DIx) for 3 wire control in Local mode.
Set P0227 = 1 (DIx) for 3 wire control in Remote mode.

Set the Direction of Rotation by using digital input \#2 (DI2).
Set P0223 $=4$ to Local Mode or P0226 $=4$ to Remote Mode.
S1 and S2 are Start (NO contact) and Stop (NC contact) push-buttons respectively.
The speed reference can be provided through the analog input (as in Control Connection \#2), through the keypad (as in control connection \#1) or through any other available source.


Figure 3.25-XC1 wiring for control connection \#3

Control connection 4 - Forward/Reverse.

Enabling the Forward/Reverse function.
Parameters to set:
Set DI3 to FORWARD
P0265 = 4
Set DI4 to REVERSE
P0266 $=5$

When the Forward/Reverse function is set, it will be active either in Local or Remote mode. At the same time, the operator keys O and (1) will remain always inactive (even if P0224 = 0 or P0227 = 0).

The direction of rotation is determined by the Forward and Reverse inputs.
Clockwise to forward and counter-clockwise to reverse.
The speed reference can be provided by any source (as in control connection \#3).


Figure 3.26-XCl wiring for control connection \#4

### 3.3 SAFETY STOP FUNCTION

The inverters CFW 11 ...O...Y... have the board SRBXX that implements Safety Stop function. Through this board it is possible to control two safety relays (K1 and K2) that actuate directly on the power circuit, more specifically on the IGBTs gate drivers power supply. The basic functional block diagram is shown in Figure 3.27 on page 3-34.

The safety relays guarantee that the IGBTs remain switched off when Safety Stop function is activated, even in case of an internal single failure. The position of SRBXX board and XC25 terminals (Safety Stop control terminals) on the inverter is shown in Figure 3.21 on page 3-29.

The Safety Stop function prevents the motor starting accidentally.


Figure 3.27 - Basic block diagram of Safety Stop function available in CFW-11 inverter series

## DANGER!

The activation of the Safety Stop function does not guarantee electrical safety of the motor terminals (they are not isolated from the power supply in this condition).

## DANGER!

L'activation de la fonction d'arrêt de sécurité ne garantit pas la sécurité électrique des bornes du moteur (elles ne sont pas isolées de l'alimentation électrique dans cet état).

## ATTENTION!

In case of a multiple fault in the power stage of the inverter, the motor shaft can rotate up to 360/ (number of poles) degrees even with the activation of Safety Stop function. That must be considered in the application.

## NOTE!

Inverter Safety Stop function is only one component of the safety control system of a machine and/or process. When inverter and its Safety Stop function is correctly used and with other safety components, it's possible to fulfill the requirements of standard EN 954-1 / ISO 13849-1, Category 3 (machine safety) and IEC/EN 61508 , SIL2 (safety control/signaling applied to processes and systems).

The parameter P0029 shows if the inverter has identified correctly SRBXX board. See Bit 9 in Table 3.9 on page 3-35 for details.

Table 3.9 - Content of P0029 parameter

| Bits |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 1 | 1 | 0 | $0=\text { with }$ <br> braking IGBT <br> 1 = without braking IGBT | 0 | 0 = control circuit is supplied from an external +24 Vdc power supply 1 = control circuit is fed by the inverter SMPS | 0 = inverter without safety stop option 1 = inverter with Safety Stop option | 0 = inverter without RFI filter 1 = inverter with RFI filter | Voltage inverter: <br> $00=$ <br> $01=$ <br> $10=$ <br> $11=$ <br> 660/6 | of the <br> 0 V <br> 0 V <br> 0 V <br> 0 V or | Inv |  | out |  |  |  |
| Hexadecimal digit \#4 |  |  |  | Hexadecimal digit \#3 |  |  |  | Hexadecimal digit \#2 | igit \#2 |  |  | Hexadecimal digit \# 1 |  |  |  |

### 3.3.1 Installation

## NOTE!

If the degree of protection of the used inverter is lower than IP54, it must be installed inside an IP54 (minimum) cabinet.

Table 3.10-XC25 terminals (Safety Stop terminals) signals

| XC25 Terminals |  | Function | Specifications |
| :---: | :---: | :--- | :--- |
| 1 | STO1 | Terminal 1 of safety relay K1 coil | Coil rated voltage: 24 V , range: $20 \ldots 30 \mathrm{Vdc}$ |
| 2 | GND1 | Terminal 2 of safety relay K1 coil | Coil resistance: $960 \Omega \pm 10 \% @ 20{ }^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$ |
| 3 | STO2 | Terminal 1 of safety relay K2 coil | Coil rated voltage: 24 V , range: $20 \ldots .30 \mathrm{Vdc}$ |
| 4 | GND2 | Terminal 2 of safety relay K2 coil | Coil resistance: $960 \Omega \pm 10 \% @ 20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$ |

## NOTE!

Terminals XC25: 2 and XC25: 4 are not internally connected to the reference of the inverter power supply +24 V . These terminals are often connected to the control terminal $\mathrm{XC1:11}$.

## NOTE!

Follow recommendations of Item 3.2.5 Control Connections on page 3-25.

For XC25 control cabling considers the following:
『 Use wire gauge from $0.5 \mathrm{~mm}^{2}$ (20 AWG) to $1.5 \mathrm{~mm}^{2}$ ( 14 AWG ) and maximum tightening torque of maximum 0.50 N.m (4.50 lbf.in).

■ Use shielded cables connected to ground only on inverter side. Use the provided metallic pieces as shown on Figure 3.23 on page 3-30.

『 Run the cables separated from the remaining circuits (power, $110 \mathrm{~V} / 220 \mathrm{Vac}$ control, etc.).

### 3.3.2 Operation

### 3.3.2.1 Truth Table

Table 3.11-Safety Stop function operation

| STO1 Logic Level <br> (Voltage Between <br> XC25:1-2 <br> Terminals) | STO2 Logic Level <br> (Voltage Between <br> XC25:3-4 <br> Terminals) | Safety Stop <br> Function |  |
| :---: | :---: | :---: | :--- |
| $0(0 \mathrm{~V})$ | $0(0 \mathrm{~V})$ | Activated <br> (enabled) | Inverter remains in STO state and does not accept commands. In order to escape this <br> condition, it's required to have STO1 $=1$ and STO2 $=1$ simultaneously |
| $0(0 \mathrm{~V})$ | $1(24 \mathrm{~V})$ | Fault | Inverter is tripped by F160 fault (Safety Stop function related fault). To escape this <br> condition, it's required to reset the inverter |
| $1(24 \mathrm{~V})$ | $0(0 \mathrm{~V})$ | Disabled | Inverter accepts commands normally <br> $1(24 \mathrm{~V})$$\quad 1(24 \mathrm{~V})$ |

## NOTE!

Maximum delay between STO 1 and STO2 signals: 100 ms (otherwise inverter will be tripped by F 160 fault).

Safety Stop function takes priority over all other functions of the inverter.

This function should not be used as a control for starting and/or stopping the inverter.

### 3.3.2.2 State of Inverter, Fault and Alarm Related to Safety Stop Function

Table 3.12-State of inverter, fault and alarm related to Safety Stop function

| State/Fault/Alarm | Description | Cause |
| :--- | :--- | :--- |
| STO state | Safety Stop activated | Voltage between terminals 1 and 2 (relay K1 coil) and between terminals 3 and 4 (relay K2 coil) <br> of XC25 lower than 17 V |
| F160 fault | Safety Stop function <br> fault | It's applied voltage to relay K1 coil (STO1) but it's not applied voltage to relay K2 coil (STO2) or <br> vice-versa or there is a delay of more than 100 ms between one signal and the other. To solve it, <br> correct the external circuit that generates STO1 and STO2 signals |

### 3.3.2.3 STO Status Indication

State of the inverter is shown on the left upper side of the display and in parameter P0006.

Possible states of the inverter: ready, run (inverter enabled), undervoltage, fault, self-tuning, configuration, DC braking and STO (Safety Stop function activated).

It's possible to set one or more digital and relay outputs of the inverter to indicate that Safety Stop function is activated (state of the inverter $=$ STO), if the inverter is or not on a fault state and more specifically if the inverter was tripped by F160 fault (Safety Stop function fault). For that use the parameters P0275 (DO1), P0276 (DO2), P0277 (DO3), P0278 (DO4) and P0279 (DO5) according to Table 3.13 on page 3-37.

Table 3.13-P0275...P0279 options for indication of state of inverter or faults on DOx digital outputs

| DOx Digital Output Function | Value to be Set on P0275...P0279 | Comment |
| :---: | :---: | :---: |
| State of the inverter $=$ STO (Safety Stop function activated) | 33 | Safety Stop function disabled: relay/transistor OFF Safety Stop function activated: relay/transistor ON |
| F160 fault (inverter tripped by Safety Stop function fault actuation) | 34 | Without F160 fault: relay/transistor OFF With fault F160: relay/transistor ON |
| Fault (inverter tripped by actuation of any fault) | 13 | Without fault: relay/transistor OFF With fault: relay/transistor ON |
| Without fault (state of the inverter is not fault) | 26 | With fault: relay/transistor OFF Without fault: relay/transistor ON |

Refer to inverter programming manual for a complete list of options for parameters P0275...P0279.

### 3.3.2.4 Periodic Tes $\dagger$

Safety Stop function, alternatively safety stop inputs (STO 1 and STO2), must be activated at least once a year for preventive maintenance purposes. Inverter power supply must be switched off and then on again before carrying out this preventive maintenance. If during testing the power supply to the motor is not switched off, safety integrity is no longer assured for the Safety Stop function. The drive must therefore be replaced to ensure the operational safety of the machine or of the system process.

### 3.3.3 Examples of Wiring Diagrams of Inverter Control Signal

It is recommended to use inverter DII and DI2 digital inputs set as 3-wire start/stop commands and the wiring diagrams of inverter control signal according to Figure 3.28 on page 3-38.

(a) STO or SSO safety function (without an external safety relay)

(b) SS1 safety function with an external safety relay (*)

Note:
$\left(^{*}\right)$ For specifications of external safety relay, which is required to realize SS1 (stop category 1), refer to Item 3.3.4 Technical Specifications on page 3-39.

Figure 3.28 - (a) and (b) - Inverter control wiring examples (XC1 and XC25 terminals) to realize STO (or SSO, i.e., stop category 0) and SSI (stop category 1) safety functions according to IEC/EN 61800-5-2 and IEC/EN 60204-1 standards - DII and DI2 inputs set as 3-wire start/stop commands

Circuit operation of SS1 function from Figure 3.28 on page 3-38:
In this case, when the activation command is given to the external safety relay, safety relay opens inverter DI2 signal (via terminals 23 to 24 ) and motor is decelerated first by the inverter (via deceleration ramp). When the time delay set at the external safety relay expires (this delay must be higher than required time to stop the motor, taking into account deceleration time set on the inverter and inertia of the motor load), the safety relay delayed contacts (terminals 47 to 48 and 57 to 58 ) opens inverter STO 1 and STO2 signals and the inverter Safety Stop function is activated. The motor stops according to category 1 (SS1) of standard IEC/EN 60204-1.

In order to drive the motor again, it is required to apply STO 1 and STO2 signals again (to close terminals 13 to 23 and 23 to 24 ) and apply a pulse on inverter DII input (START).

### 3.3.4 Technical Specifications

### 3.3.4.1 Electrical Control Characteristics

| Safety Stop function inputs | XC25:1-2, XC25:3-4 | 2 independent inputs for Safety Stop function <br> Power supply: 24 Vdc (max. 30 V ) <br> Impedance: $960 \Omega$ <br> State 0 if 22 V , state 1 if $>17 \mathrm{~V}$ |
| :--- | :--- | :--- |
| External safety relay <br> specifications (only when SS1 <br> function is required according <br> to IEC/EN 61800-5-2 and <br> IEC/EN 60204-1 standards) <br> refer to Figure 3.28 on page <br> $3-38$ | General requirements | Output requirements | | IEC 61508 and/or EN 954-1 and/or ISO 13849-1 |
| :--- |
|  |

### 3.3.4.2 Operational Safety Characteristics

| Protection | Of the machine | Safety Stop function which forces stopping and/or prevents the motor from restarting <br> unintentionally, conforming to EN 954-1/ISO 13849-1 category 3, IEC/EN 61800-5-2 <br> and IEC/EN 60204-1 |
| :--- | :--- | :--- |
|  | Of the system process | Safety Stop function which forces stopping and/or prevents the motor from restarting <br> unintentionally, conforming to IEC/EN 61508 level SIL2 and IEC/EN 61800-5-2 |

### 3.4 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC COMPATIBILITY


#### Abstract

The frame size E CFW- 11 inverters have an internal RFI filter for the reduction of the electromagnetic interference. These inverters, when properly installed, meet the requirements of the electromagnetic compatibility directive - "EMC Directive 2004/108/EC".


The CFW-11 inverter series has been designed only for industrial applications. Therefore, the emission limits of harmonic currents defined by the standards EN 61000-3-2 and EN 61000-3-2/A14 are not applicable.

## ATTENTION!

Do not use inverters with internal RFI filters in IT networks (neutral is not grounded or grounding provided by a high ohm value resistor) or in grounded delta networks ("delta corner earthed"), because these type of networks damage the filter capacitors of the inverter.

### 3.4.1 Conformal Installation

For the conformal installation use:

1. Jl cable in the position $\rightleftharpoons$ (XE1). Refer to Item 3.2.3.2.1 IT Networks on page 3-17.
2. a) Shielded output cables (motor cables) with the shield connected at both ends, motor and inverter, by means of a low impedance to high frequencies connection.

Use the clamps supplied with the product, making sure there is a good contact between the shield and that clamp.

Keep the separation distance to the other cables according to the Table 3.6 on page 3-23 indication.
Refer to the Item 3.2.3 Power Connections on page 3-16, for more information.

Maximum motor cable length and conduced and radiated emission levels according to the Figure 3.15 on page 3-21.

If a lower conducted emission level category is wished, then an external RFI filter must be used at the inverter input. For more information (RFI filter commercial reference, motor cable length and emission levels) refer to the Table 3.15 on page 3-42.
b) As a second option only for the V/f and VVW control modes when using a sinusoidal output filter: Adjust the switching frequency in 5 or $10 \mathrm{kHz}(\mathrm{PO} 297=2$ or 3$)$ and the parameter P 0350 in 2 or 3 (not allowing the automatic reduction of the switching frequency to 2.5 kHz ). Refer to Table 8.2 on page $8-3$ to Table 8.5 on page $8-4$ for output current specification for 5 kHz and 10 kHz . Output cables (motor cables) that are not shielded can be used, provided that RFI filters are installed at the inverter input and output, as presented in the Table 3.16 on page $3-43$. The maximum motor cable length and the emission levels for each configuration are also presented. Keep the separation from the other cables according to the Table 3.8 on page 3-29. Refer to the Item 3.2.3 Power Connections on page 3-16 for more information. The filters presented in Table 3.16 on page $3-43$ were defined for the operation of the inverter at 5 kHz switching frequency and rated output current as shown in Table 8.2 on page 8-3 and Table 8.3 on page 8-3. Those filters can also be used for 10 kHz , however they are not optimized for it. In order to optimize them for use with the inverter at 10 kHz , refer to the Table 8.4 on page 8-4 and Table 8.5 on page 8-4.
3. Use shielded control cables, keeping them separate from the other cables as described in Item 3.2.5 Control Connections on page 3-25.
4. Inverter grounding according to the instructions on Item 3.2.4 Grounding Connections on page 3-24.

### 3.4.2 Standard Definitions

## IEC/EN 61800-3: "Adjustable Speed Electrical Power Drives Systems"

## - Environment:

First Environment: includes domestic premises. It also includes establishments directly connected without intermediate transformer to a low-voltage power supply network which supplies buildings used for domestic purposes. Example: houses, apartments, commercial installations, or offices located in residential buildings.

Second Environment: includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.
Example: industrial area, technical area of any building supplied by a dedicated transformer.

## - Categories:

Category C1: inverters with a voltage rating less than 1000 V and intended for use in the First Environment.

Category C2: inverters with a voltage rating less than 1000 V , intended for use in the First Environment, not provided with a plug connector or a movable installations, and installed and commissioned by a professional. Note: A professional is a person or organization familiar with the installation and/or commissioning of inverters, including the EMC aspects.

Category C3: inverters with a voltage rating less than 1000 V and intended for use in the Second Environment only (not designed for use in the First Environment).

Category C4: inverters with a voltage rating equal to or greater than 1000 V , or with a current rating equal to or greater than 400 Amps , or intended for use in complex systems in the Second Environment.

## EN 55011: "Threshold values and measuring methods for radio interference from industrial, scientific and medical (ISM) high-frequency equipment"

Class B: equipment intended for use in the low-voltage power supply network (residential, commercial, and light-industrial environments).

Class A1: equipment intended for use in the low-voltage power supply network. Restricted distribution.
Note: Must be installed and commissioned by a professional when applied in the low-voltage power supply network.

Class A2: equipment intended for use in industrial environments.

### 3.4.3 Emission and Immunity Levels

| EMC Phenomenon | Basic Standard | Level |
| :---: | :---: | :---: |
| Emission: |  |  |
| Mains terminal disturbance voltage Frequency range: 150 kHz to 30 MHz | $\begin{gathered} \text { IEC/EN61800-3 (2004) } \\ + \text { A1 (2011) } \end{gathered}$ | It depends on the inverter model and on the motor cable lenght. Refer to Table 3.15 on page 3-42 |
| Electromagnetic radiation disturbance Frequency range: 30 MHz to 1000 MHz |  |  |
| Immunity: |  |  |
| Electrostatic discharge (ESD) | IEC 61000-4-2 (2008) | 4 kV for contact discharge and 8 kV for air discharge |
| Fast transient-burst | IEC 61000-4-4 (2012) | $2 \mathrm{kV} / 5 \mathrm{kHz}$ (coupling capacitor) power input cables $1 \mathrm{kV} / 5 \mathrm{kHz}$ control cables, and remote keypad cables $2 \mathrm{kV} / 5 \mathrm{kHz}$ (coupling capacitor) motor output cables |
| Conducted radio-frequency common mode | IEC 61000-4-6 (2013) | 0.15 to $80 \mathrm{MHz} ; 10 \mathrm{~V} ; 80 \% \mathrm{AM}(1 \mathrm{kHz})$ <br> Motor cables, control cables, and remote keypad cables |
| Surge immunity | IEC 61000-4-5 (2014) | $1.2 / 50 \mu \mathrm{~s}, 8 / 20 \mu \mathrm{~s}$ 1 kV line-to-line coupling 2 kV line-to-ground coupling |
| Radio-frequency electromagnetic field | IEC 61000-4-3 (2010) | $\begin{aligned} & 80 \mathrm{MHz} \text { to } 1000 \mathrm{GHz} \\ & 10 \mathrm{~V} / \mathrm{m} \\ & 1,4 \mathrm{GHz} \text { to } 2 \mathrm{GHz} \\ & 3 \mathrm{~V} / \mathrm{m} \\ & 2 \mathrm{GHz} \text { to } 2,7 \mathrm{GHz} \\ & 1 \mathrm{~V} / \mathrm{m} \\ & 80 \% \mathrm{AM}(1 \mathrm{kHz}) \end{aligned}$ |

Table 3.15-Conducted and radiated emission levels

| Inverter Model (With Built-in RFI Filter) | Without External RFI Filter |  | With External RFI filter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Conducted Emission Maximum Motor Cable Length | Radiated Emission - without Metallic Cabinet | External RFI <br> Filter Part Number (Manufacturer: EPCOS) | Conducted Emission Maximum Motor Cable Length | Radiated Emission with Metallic Cabinet |
|  | Category C3 | Category |  | Category C2 | Category |
| CFW110142 T 2 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0150S020 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110180 T 2 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0180S020 ${ }^{(1)}$ | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110211 T 2 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0250S020 ${ }^{(2)}$ | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110105 T 4 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0150S020 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110142 T 4 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0150S020 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110180 T 4 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0180S020(1) | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |
| CFW110211 T 4 | $100 \mathrm{~m}(330 \mathrm{ft})$ | C3 ${ }^{(1)}$ | B84143B0250S020 ${ }^{(2)}$ | $100 \mathrm{~m}(330 \mathrm{ft})$ | C2 |

(1) For inverter/filter surrounding air temperature higher than $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ and continuous output current higher than 172 Arms, it's required to use B84143B0250S020 filter.
(2) For inverter/filter surrounding air temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and HD applications (heavy duty cycle, output current $<180$ Arms), it's possible to use B84143B0180S020 filter.

Table 3.16 - Required RFI filters for unshielded motor cable installations and further information on conducted and radiated levels

| Inverter Model (with built-in RFI filter) | Inverter Duty Cycle | External RFI Filters Part Number (manufacturer: EPCOS) |  |  |  | Conducted Emission Maximum Motor Cable Length <br> Category C1 | Radiated Emission Category |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Surrounding Air Temperature $=45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ |  | Surrounding Air Temperature$=40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ |  |  |  |  |
|  |  | Inverter Input | Inverter Output ${ }^{(1)}$ | Inverter Input | Inverter Output ${ }^{(1)}$ |  | Without Metallic Cabinet | Inside a Metallic Cabinet |
| CFW110142 T 2 | ND | B84143-D150-R127 | B84143-V180-R127 | B84143-D150-R127 | B84143-V180-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D120-R127 | B84143-V180-R127 | B84143-D120-R127 | B84143-V180-R127 |  |  |  |
| CFW110180 T 2 | ND | B84143-D200-R127 | B84143-V180-R127 | B84143-D200-R127 | B84143-V180-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D150-R127 | B84143-V180-R127 | B84143-D150-R127 | B84143-V180-R127 |  |  |  |
| CFW110211 T 2 | ND | B84143-D200-R127 | B84143-V320-R127 | B84143-D200-R127 | B84143-V320-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D200-R127 | B84143-V180-R127 | B84143-D200-R127 | B84143-V180-R127 |  |  |  |
| CFW110105 T 4 | ND | B84143-D90-R127 | B84143-V95-R127 | B84143-D90-R127 | B84143-V95-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D75-R127 | B84143-V95-R127 | B84143-D75-R127 | B84143-V95-R127 |  |  |  |
| CFW110142 T 4 | ND | B84143-D120-R127 | B84143-V180-R127 | B84143-D120-R127 | B84143-V180-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D90-R127 | B84143-V95-R127 | B84143-D120-R127 | B84143-V180-R127 |  |  |  |
| CFW110180 T 4 | ND | B84143-D150-R127 | B84143-V180-R127 | B84143-D150-R127 | B84143-V180-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D120-R127 | B84143-V180-R127 | B84143-D120-R127 | B84143-V180-R127 |  |  |  |
| CFW110211 T 4 | ND | B84143-D200-R127 | B84143-V180-R127 | B84143-D200-R127 | B84143-V320-R127 | $\begin{gathered} 300 \mathrm{~m} \\ (984.2 \mathrm{ft}) \end{gathered}$ | C2 | C2 |
|  | HD | B84143-D150-R127 | B84143-V180-R127 | B84143-D150-R127 | B84143-V180-R127 |  |  |  |

(1) The output filter is of the sinusoidal type, i.e., the motor voltage waveform is approximately sinusoidal, not pulsed as in the applications without this filter.

## 4 HMI

This chapter are described the following information:

The operator keys and their functions.

- The indications on the display.

■ Parameter structure.


### 4.1 INTEGRAL KEYPAD - HMI-CFW11

The integral keypad can be used to operate and program (view/edit all parameters) of the CFW- 11 inverter.

The inverter keypad navigation is similar to the one used in cell phones and the parameters can be accessed in numerical order or through groups (Menu).


Figure 4.1-Operator keys

## Battery:

## NOTE!

The battery is necessary only to keep the internal clock operation when the inverter stays without power. If the battery is completely discharged or if it is not installed in the keypad, the displayed clock time will be invalid and an alarm condition "A181-Invalid clock time" will be indicated whenever the $A C$ power is applied to the inverter.

The battery life expectancy is of approximately 10 years. When necessary, replace the battery by another of the CR2032 type.


Figure 4.2 - HMI battery replacement

## NOTE!

At the end of the battery useful life, please do not discard batteries in your waste container, but use a battery disposal site.

## Installation:

■ The keypad can be installed or removed from the inverter with or without AC power applied to the inverter.
$\square$ The HMI supplied with the product can also be used for remote command of the inverter. In this case, use a cable with male and female D-Sub9 (DB-9) connectors wired pin to pin (mouse extension type) or a market standard Null-Modem cable. Maximum length of $10 \mathrm{~m}(33 \mathrm{ft})$. It is recommended the use of the $\mathrm{M} 3 \times 5.8$ standoffs supplied with the product. Recommended torque: 0.5 N.m (4.5 lbf.in).

When power is applied to the inverter, the display automatically enters the monitoring mode. Figure 4.3 on page 4-3 presents the monitoring screen displayed for the factory default settings. By properly setting specific inverter parameters, other variables can be displayed in the monitoring mode or the value of a parameter can be displayed using bar graphs or with larger characters as presented in Figure 4.3 on page 4-3.

(a) Monitoring screen with the factory default settings

(b) Example of a monitoring screen with bar ghaphs

(c) Example of a monitoring screen displaying a parameter with a larger font size

Figure 4.3 - (a) to (c) - Keypad monitoring modes

### 4.2 PARAMETERS ORGANIZATION

When the right soft key ("MENU") is pressed in the monitoring mode, the display shows the first 4 groups of parameters. An example of how the groups of parameters are organized is presented in Table 4.1 on page 4-4. The number and name of the groups may change depending on the firmware version used. For further details on the existent groups for the firmware version used, please refer to the programming manual.

Table 4.1-Groups of parameters

| Level 0 |  | Level 1 |  | Level 2 |  | Level 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monitoring | 00 | ALL PARAMETERS |  |  |  |  |
|  | 01 | PARAMETER GROUPS | 20 | Ramps |  |  |
|  |  |  | 21 | Speed References |  |  |
|  |  |  | 22 | Speed Limits |  |  |
|  |  |  | 23 | V/f Control |  |  |
|  |  |  | 24 | Adjust. V/f Curve |  |  |
|  |  |  | 25 | VVW Control |  |  |
|  |  |  | 26 | V/f Current Limit. |  |  |
|  |  |  | 27 | V/f DC Volt. Limit. |  |  |
|  |  |  | 28 | Dynamic Braking |  |  |
|  |  |  | 29 | Vector Control | 90 | Speed Regulator |
|  |  |  |  |  | 91 | Current Regulator |
|  |  |  |  |  | 92 | Flux Regulator |
|  |  |  |  |  | 93 | I/F Control |
|  |  |  |  |  | 94 | Self-Tuning |
|  |  |  |  |  | 95 | Torque Curr. Limit. |
|  |  |  |  |  | 96 | DC Link Regulator |
|  |  |  | 30 | HMI |  |  |
|  |  |  | 31 | Local Command |  |  |
|  |  |  | 32 | Remote Command |  |  |
|  |  |  | 33 | 3-Wire Command |  |  |
|  |  |  | 34 | FWD/REV Run Comm. |  |  |
|  |  |  | 35 | Zero Speed Logic |  |  |
|  |  |  | 36 | Multispeed |  |  |
|  |  |  | 37 | Electr. Potentiom. |  |  |
|  |  |  | 38 | Analog Inputs |  |  |
|  |  |  | 39 | Analog Outputs |  |  |
|  |  |  | 40 | Digital Inputs |  |  |
|  |  |  | 41 | Digital Outputs |  |  |
|  |  |  | 42 | Inverter Data |  |  |
|  |  |  | 43 | Motor Data |  |  |
|  |  |  | 44 | FlyStart/RideThru |  |  |
|  |  |  | 45 | Protections |  |  |
|  |  |  | 46 | PID Regulator |  |  |
|  |  |  | 47 | DC Braking |  |  |
|  |  |  | 48 | Skip Speed |  |  |
|  |  |  | 49 | Communication | 110 | Local/Rem Config. |
|  |  |  |  |  | 111 | Status/Commands |
|  |  |  |  |  | 112 | CANopen/DeviceNet |
|  |  |  |  |  | 113 | Serial RS232/485 |
|  |  |  |  |  | 114 | Anybus |
|  |  |  |  |  | 115 | Profibus DP |
|  |  |  | 50 | SoftPLC |  |  |
|  |  |  | 51 | PLC |  |  |
|  |  |  | 52 | Trace Function |  |  |
|  | 02 | ORIENTED START-UP |  |  |  |  |
|  | 03 | CHANGED PARAMETERS |  |  |  |  |
|  | 04 | BASIC APPLICATION |  |  |  |  |
|  | 05 | SELF-TUNING |  |  |  |  |
|  | 06 | BACKUP PARAMETERS |  |  |  |  |
|  | 07 | I/O CONFIGURATION | 38 | Analog Inputs |  |  |
|  |  |  | 39 | Analog Outputs |  |  |
|  |  |  | 40 | Digital Inputs |  |  |
|  |  |  | 41 | Digital Outputs |  |  |
|  | 08 | FAULT HISTORY |  |  |  |  |
|  | 09 | READ ONLY PARAMS. |  |  |  |  |

## 5 FIRST TIME POWER-UP AND START-UP

This chapter describes how to:

- Check and prepare the inverter before power-up.
- Power-up the inverter and check the result.

- Set the inverter for the operation in the $\mathrm{V} / \mathrm{f}$ mode based on the power supply and motor information by using the Oriented Start-Up routine and the Basic Application group.


## NOTE!

For a detailed description of the VVW or Vector control modes and for other available functions, please refer to the CFW-11 programming manual.

### 5.1 PREPARE FOR START-UP

The inverter shall have been already installed according to the recommendations listed in Chapter 3 INSTALLATION AND CONNECTION on page 3-1. The following recommendations are applicable even if the application design is different from the suggested control connections.

## DANGER!

Always disconnect the main power supply before performing any inverter connection.

## DANGER!

Débranchez toujours l'alimentation principale avant d'effectuer une connexion sur le variateur.

1. Check if power, grounding, and control connections are correct and firmly secured.
2. Remove from the inside of the inverter all installation material left behind.
3. Verify the motor connections and if the motor voltage and current is within the rated value of the inverter.
4. Mechanically uncouple the motor from the load:

If the motor cannot be uncoupled, make sure that the chosen direction of rotation (forward or reverse) will not result in personnel injury and/or equipment damage.
5. Return the inverter covers.
6. Measure the power supply voltage and verify if it is within the allowed range, according to the Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1.
7. Apply power to the input:

Close the input disconnect switch.
8. Check the result of the first time power-up:

The keypad should display the standar monitoring mode (Figure 4.3 on page $4-3$ ) and the status LED should be steady green.

### 5.2 START-UP

The start-up procedure for the $\mathrm{V} / \mathrm{f}$ is described in three simple steps by using the Oriented Start-up routine and the Basic Application group.

## Steps:

1. Set the password for parameter modification.
2. Execute the Oriented Start-up routine.
3. Set the parameters of the Basic Application group.

### 5.2.1 Password Setting in P0000

| Step | Action/Result | Display Indication |
| :---: | :---: | :---: |
| 1 | - Monitoring mode <br> - Press"Menu" (rigth soft key) | Ready C LOC Grpmi |
|  |  |  |
|  |  | 15:45 Menu |
| 2 | - Group "00 ALL PARAMETERS" is already selected <br> - Press "Select" | GIE ALL FARAMETERS <br> 01 FARAMETER GROUPS <br> G2 ORIENTED START-UP <br> 03 CHANGED FARAMETERS |
|  |  | Return 15:45 Select |
| 3 | - Parameter "Access to Parameters P0000: 0 " is already selected <br> - Press "Select | Ready C LOC Eripm |
|  |  |  |
|  |  | Return 15:45 Select |
| 4 | - To set the password, press the Up Arrow until number 5 is displayed in the keypad | Ready C LOC Er-pmic |
|  |  | FEIEE <br> fccess to Parameters [ |
|  |  | Return 15:45 Save |
| 5 | - When number 5 is displayed in the keypad, press "Save" | Ready C Loc Erpmi |
|  |  | FEIEIE <br> Access to Parameters $\qquad$ |
|  |  | Return 15:45 Save |
| 6 | - If the setting has been properly performed, the keypad should display "Access to Parameters P0000: 5" <br> - Press "Return" (left soft key) | Ready C LOC Erromi |
|  |  | Access to Parameters PGGG6: 5 Speed Reference Fede1: 90 rpm |
|  |  | Return 15:45 Select |
| 7 | - Press "Return" | Ready C LOC Er-pm |
|  |  | BIG ALL PARAMETERS 日1 PARAMETER GROUPS Q2 ORIENTED START-UF 日S CHANGED PARAMETERS |
|  |  | Return 15:45 Select |
| 8 | - The display returns to the Monitoring mode | Ready C LoC Erapm |
|  |  |  |
|  |  | 15:45 Menu |

Figure 5.1 - Steps for allowing parameters modification via P0000

### 5.2.2 Oriented Start-Up

There is a group of parameters named "Oriented Start-up" that makes the inverter settings easier. Inside this group, there is a parameter P0317, that shall be set to enter into the Oriented Start-up routine.

The Oriented Start-up routine allows you to quickly set up the inverter for operation with the line and motor used. This routine prompts you for the most commonly used parameters in a logic sequence.

In order to enter into the Oriented Start-up routine, follow the sequence presented in Figure 5.2 on page 5-4, first modifying parameter P0317 = 1 and then, setting the other parameters as they are displayed on the HMI.

Setting the parameters in the Oriented Start-Up routine causes the automatic content modification of the other parameters and/or internal inverter variables.

During the Oriented Start-up routine, the message "Config" will be displayed at the left top corner of the HMI display.

| Step | Action/Result | Display Indication |
| :---: | :---: | :---: |
| 1 | - Monitoring mode <br> - Press "Menu" (right soft key) |  |
|  |  | 13:48 Menu |
| 3 | - Group "01 PARAMETER GROUPS" is selected |  |
| 5 | - Parameter "Oriented StartUp P0317: No" has been already selected <br> - Press "Select" | Ready C LOC Erpmi <br> Driented Start-LIp <br> Pagif: No <br> Return 13:48 Select |
| 7 | ```- The parameter value is modified to "P0317 = [001] Yes" - Press "Save"``` |  |


| Step | Action/Result | Display Indication |
| :---: | :---: | :---: |
| 2 | - Group "00 ALL PARAMETERS" has been already selected |  |
| 4 | - Group "02 ORIENTED START-UP" is <br> then selected <br> - Press "Select" |  |
| 6 | - The value of "P0317 = [000] No" is displayed | Ready C LOC <br> Fripin <br> Oriented Start-Lip <br> Clala] No <br> Return $13: 48$ Save |
| 8 | - At this point the Oriented Start-up routine starts and the "Config" status is displayed at the top left corner of the keypad <br> - The parameter "Language P0201: English" is already selected <br> - If needed, change the language by pressing "Select". Then, press 1 m or to scroll through the available options and press "Save" to select a different language |  |


| Step | Action/Result | Display Indication | Step | Action/Result | Display Indication |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | - If needed, change the value of PO202 according to the type of control. To do so, press "Select" <br> - The settings listed here are valid only for PO202 $=0$ N/f 60 Hz ) or P0202 $=1 \mathrm{~N} / \mathrm{f} 50 \mathrm{~Hz}$ ). For other options (Adjustable V/f, VVW, or Vector modes), please refer to the programming manual |  | 10 | If needed, change the value of P0296 according to the line rated voltage. To do so, press "Select". This modification will affect P0151, P0153, P0185, P0321, P0322, P0323, and P0400 |  |
| 11 | - If needed, change the value of P0298 according to the inverter application. To do so, press "Select" <br> This modification will affect P0156, P0157, P0158, P0401, P0404 and P0410 (this last one only if P0202 $=0$, 1 , or $2-\mathrm{V} / \mathrm{f}$ control) The time and the activation level of the overload protection will be affected as well | Config C LOC Grpm <br> Line Rated Voltage <br> PGe96: 44E-46ay <br> Application <br> Pgepe: Heaut Duty <br> Reset | 12 | - If needed, change the value of P0398 according to the motor service factor. To do so, press "Select". This modification will affect the current value and the activation time of the motor overload function | Config CLOC Grpm <br> Application  <br> PG298: Heaus Duty  <br> Motor Service Factor  <br> Pgese: 1.15 <br> Reset $13: 48$ |
| 13 | - If needed, change the value of P0400 according to the motor rated voltage. To do so, press "Select". This modification adjusts the output voltage by a factor $x$ $=$ P0400/P0296 |  | 14 | - If needed, change the value of P0401 according to the motor rated current. To do so, press "Select". This modification will affect P0156, P0157, P0158, and P0410 |  |
| 15 | - If needed, set P0402 according to the motor rated speed. To do so, press "Select". This modification affects PO122 to P0131, P0133, P0134, P0135, P0182, P0208, P0288, and P0289 |  | 16 | - If needed, set P0403 according to the motor rated frequency. To do so, press "Select". This modification affects P0402 |  |
| 17 | - If needed, change the value of P0404 according to the motor rated power To do so, press "Select" This modification affects P0410 |  | 18 | - This parameter will only be visible if the encoder board ENC1 is installed in the inverter <br> - If there is an encoder connected to the motor, set P0405 according to the encoder pulses number. To do so, press "Select" |  |
| 19 | - If needed, set P0406 according to the motor ventilation. To do so, press "Select" <br> - To complete the Oriented Start-Up routine, press "Reset" (left soft key) or 0 . |  | 20 | - After few seconds, the display returns to the Monitoring mode |  |

Figure 5.2 - Oriented Start-up

### 5.2.3 Setting Basic Application Parameters

After running the Oriented Start-up routine and properly setting the parameters, the inverter is ready to operate in the $V / f$ mode.

The inverter has a number of other parameters that allow its adaptation to the most different applications. This manual presents some basic parameters, whose setting is necessary in the majority of cases. To make this task easier, there is a group named Basic Application. A summary of the parameters inside this group is listed in Table 5.1 on page 5-6. There is also a group of read only parameters that shows the value of the most important inverter variables such as voltage, current, etc. The main parameters comprised in this group are listed in Table 5.2 on page 5-7. For further details, please refer to the CFW-11 programming manual.

Follow steps outlined in Figure 5.3 on page $5-5$ to set the parameters of the Basic Application group.

The procedure for start-up in the $\mathrm{V} / \mathrm{f}$ operation mode is finished after setting these parameters.

| Step | Action/Result | Display Indication |
| :---: | :---: | :---: |
| 1 | - Monitoring mode <br> - Press "Menu" <br> (right soft key) |  |
| 3 | - Group "01 <br> PARAMETER GROUPS" is then selected |  |
| 5 | - Group "03 CHANGED PARAMETERS" is selected |  |
| 7 | - Parameter "Acceleration Time P0100: 20.0 s" has been already selected - If needed, set P0100 according to the desired acceleration time. To do so, press "Select" <br> - Proceed similarly until all parameters of group "04 BASIC APPLICATION" have been set. When finished, press "Return" (left soft key) |  |
| 9 | The display returns to the Monitoring mode and the inverter is ready to run |  |


| Step | Action/Result | Display Indication |
| :---: | :---: | :---: |
| 2 | - Group "00 <br> ALL PARAMETERS" has been already selected |  |
| 4 | - Group "02 ORIENTED START-UP" is then selected | Ready C LOC <br> GU ALL PARAMETERS <br> Q1 FARRMMETER GROUPS <br> GE GRIENTED START-IF <br> 日3 CHANGED PARAMETERS <br> Retum |
| 6 | - Group "04 BASIC APPLICATION" is selected Press "Select" |  |
| 8 | - Press "Return" | 01 FARAMETER GROUPS <br> G2 ORIENTED START-UF <br> Q3 CHANGED FARANIETERS <br> [044 EASIC AFFLICATION |
|  |  | Return 15:45 Select |

Figure 5.3-Setting parameters of the Basic Application group

Table 5.1 - Parameters contained in the basic application group

| Parameter | Name | Description | Setting Range | Factory Setting | User Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P0100 | Acceleration Time | - Defines the time to linearly accelerate from 0 up to the maximum speed (PO134) <br> - If set to 0.0 s , it means no acceleration ramp | 0.0 to 999.0 s | 20.0 s |  |
| P0101 | Deceleration Time | - Defines the time to linearly decelerate from the maximum speed (PO134) up to 0 <br> - If set to 0.0 s , it means no deceleration ramp | 0.0 to 999.0 s | 20.0 s |  |
| P0133 | Minimum Speed | - Defines the minimum and maximum values of the speed reference when the drive is enabled <br> - These values are valid for any reference source | 0 to 18000 rpm | 90 rpm ( 60 Hz motor) 75 rpm ( 50 Hz motor) |  |
| P0134 | Maximum Speed |  |  | 1800 rpm ( 60 Hz motor) 1500 rpm ( 50 Hz motor) |  |
| P0135 | Max. Output Current (V/F control mode current limitation) | - Avoids motor stall under torque overload condition during the acceleration or deceleration <br> - The factory default setting is for "Ramp Hold": if the motor current exceeds the value set at P0135 during the acceleration or deceleration, the motor speed will not be increased (acceleration) or decreased (deceleration) anymore. When the motor current reaches a value below the programmed in P0135, the motor speed is again increased or decreased <br> - Other options for the current limitation are available. Refer to the CFW-11 programming manual | $\begin{aligned} & 0.2 \times\left.\right\|_{\text {rot-HD }} \text { to } \\ & 2 \times\left.\right\|_{\text {rat-HD }} \end{aligned}$ | $1.5 \times \mathrm{I}_{\text {rot-HD }}$ |  |
| P0136 | Manual Torque Boost | - Operates in low speeds, modifying the output voltage $x$ frequency curve to keep the torque constant <br> - Compensates the voltage drop at the motor stator resistance. This function operates in low speeds increasing the inverter output voltage to keep the torque constant in the $\mathrm{V} / \mathrm{f}$ mode <br> - The optimal setting is the smallest value of P0136 that allows the motor to start satisfactorily. An excessive value will considerably increase the motor current in low speeds, and may result in a fault (F048, F051, F071, F072, F078 or F183) or alarm (A046, A047, A050 or A1 10) condition | 0 to 9 | 1 |  |

Table 5.2 - Main read only parameters

| Parameter | Description | Setting Range |
| :---: | :---: | :---: |
| P0001 | Speed Reference | 0 to 18000 rpm |
| P0002 | Motor Speed | 0 to 18000 rpm |
| P0003 | Motor Current | 0.0 to 4500.0 A |
| P0004 | DC Link Voltage (Ud) | 0 to 2000 V |
| P0005 | Motor Frequency | 0.0 to 300.0 Hz |
| P0006 | VFD Status | $\begin{aligned} & 0=\text { Ready } \\ & 1=\text { Run } \\ & 2=\text { Undervoltage } \\ & 3=\text { Fault } \\ & 4=\text { Self-tuning } \\ & 5=\text { Configuration } \\ & 6=\text { DC-Braking } \\ & 7=\text { STO } \end{aligned}$ |
| P0007 | Motor Voltage | 0 to 2000 V |
| P0009 | Motor Torque | -1000.0 to 1000.0 \% |
| P0010 | Output Power | 0.0 to 6553.5 kW |
| P0012 | DI8 to DI1 Status | 0000h to 00FFh |
| P0013 | DO5 to DO1 Status | 0000h to 001 Fh |
| P0018 | Al1 Value | -100.00 to $100.00 \%$ |
| P0019 | Al2 Value | -100.00 to $100.00 \%$ |
| P0020 | Al3 Value | -100.00 to $100.00 \%$ |
| P0021 | Al4 Value | -100.00 to $100.00 \%$ |
| P0023 | Software Version | 0.00 to 655.35 |
| P0027 | Accessories Config. 1 | Hexadecimal code |
| P0028 | Accessories Config. 2 | representing the identified accessories. Refer to Chapter 7 OPTION KITS AND ACCESSORIES on page 7-1 |
| P0029 | Power Hardware Config. | Hexadecimal code according to the available models and option kits. Refer to the software manual for a complete code list |
| P0030 | IGBTs Temperature U | $\begin{aligned} & -20.0 \text { to } 150.0^{\circ} \mathrm{C}(-4 \\ & \left.{ }^{\circ} \mathrm{F} \text { to } 302^{\circ} \mathrm{F}\right) \end{aligned}$ |
| P0031 | IGBTs Temperature V | $\begin{aligned} & -20.0 \text { to } 150.0^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to } 302^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$ |
| P0032 | IGBTs Temperature W | $\begin{aligned} & -20.0 \text { to } 150.0^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to } 302{ }^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$ |
| P0033 | Rectifier Temperature | $\begin{aligned} & -20.0 \text { to } 150.0^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to } 302{ }^{\circ} \mathrm{F}\right) \end{aligned}$ |
| P0034 | Internal Air Temp. | $\begin{aligned} & -20.0 \text { to } 150.0^{\circ} \mathrm{C} \\ & \left(-4^{\circ} \mathrm{F} \text { to } 302^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$ |
| P0036 | Fan Heatsink Speed | 0 to 15000 rpm |
| P0037 | Motor Overload Status | 0 to 100 \% |
| P0038 | Encoder Speed | 0 to 65535 rpm |
| P0040 | PID Process Variable | 0.0 to 100.0 \% |
| P0041 | PID Setpoint Value | 0.0 to 100.0 \% |
| P0042 | Time Powered | 0 to 65535h |
| P0043 | Time Enabled | 0.0 to 6553.5h |
| P0044 | kWh Output Energy | 0 to 65535 kWh |


| Parameter | Description | Setting Range |
| :---: | :---: | :---: |
| P0045 | Fan Enabled Time | 0 to 65535h |
| P0048 | Present Alarm | 0 to 999 |
| P0049 | Present Fault | 0 to 999 |
| P0050 | Last Fault | 0 to 999 |
| P0051 | Last Fault Day/Month | 00/00 to 31/12 |
| P0052 | Last Fault Year | 00 to 99 |
| P0053 | Last Fault Time | 00:00 to 23:59 |
| P0054 | Second Fault | 0 to 999 |
| P0055 | Second Flt. Day/Month | 00/00 to 31/12 |
| P0056 | Second Fault Year | 00 to 99 |
| P0057 | Second Fault Time | 00:00 to 23:59 |
| P0058 | Third Fault | 0 to 999 |
| P0059 | Third Fault Day/Month | 00/00 to 31/12 |
| P0060 | Third Fault Year | 00 to 99 |
| P0061 | Third Fault Time | 00:00 to 23:59 |
| P0062 | Fourth Fault | 0 to 999 |
| P0063 | Fourth Flt. Day/Month | 00/00 to 31/12 |
| P0064 | Fourth Fault Year | 00 to 99 |
| P0065 | Fourth Fault Time | 00:00 to 23:59 |
| P0066 | Fifth Fault | 0 to 999 |
| P0067 | Fifth Fault Day/Month | 00/00 to 31/12 |
| P0068 | Fifth Fault Year | 00 to 99 |
| P0069 | Fifth Fault Time | 00:00 to 23:59 |
| P0070 | Sixth Fault | 0 to 999 |
| P0071 | Sixth Fault Day/Month | 00/00 to 31/12 |
| P0072 | Sixth Fault Year | 00 to 99 |
| P0073 | Sixth Fault Time | 00:00 to 23:59 |
| P0074 | Seventh Fault | 0 to 999 |
| P0075 | Seventh Flt.Day/Month | 00/00 to 31/12 |
| P0076 | Seventh Fault Year | 00 to 99 |
| P0077 | Seventh Fault Time | 00:00 to 23:59 |
| P0078 | Eighth Fault | 0 to 999 |
| P0079 | Eighth Flt. Day/Month | 00/00 to 31/12 |
| P0080 | Eighth Fault Year | 00 to 99 |
| P0081 | Eighth Fault Time | 00:00 to 23:59 |
| P0082 | Ninth Fault | 0 to 999 |
| P0083 | Ninth Fault Day/Month | 00/00 to 31/12 |
| P0084 | Ninth Fault Year | 00 to 99 |
| P0085 | Ninth Fault Time | 00:00 to 23:59 |
| P0086 | Tenth Fault | 0 to 999 |
| P0087 | Tenth Fault Day/Month | 00/00 to 31/12 |
| P0088 | Tenth Fault Year | 00 to 99 |
| P0089 | Tenth Fault Time | 00:00 to 23:59 |
| P0090 | Current At Last Fault | 0.0 to 4000.0 A |
| P0091 | DC Link At Last Fault | 0 to 2000 V |
| P0092 | Speed At Last Fault | 0 to 18000 rpm |
| P0093 | Reference Last Fault | 0 to 18000 rpm |
| P0094 | Frequency Last Fault | 0.0 to 300.0 Hz |
| P0095 | Motor Volt.Last Fault | 0 to 2000 V |
| P0096 | Dlx Status Last Fault | 0000h to 00FFh |
| P0097 | DOx Status Last Fault | 0000h to 001 Fh |

### 5.3 SETTING DATE AND TIME



Figure 5.4 - Setting date and time

### 5.4 BLOCKING PARAMETERS MODIFICATION

To prevent unauthorized or unintended parameters modification, parameter P0000 should be set to a value different from 5. Follow the same procedures described in Item 5.2.1 Password Setting in P0000 on page 5-2.

### 5.5 HOW TO CONNECT A PC

## NOTE!

- Always use a standard host/device shielded USB cable. Unshielded cables may lead to communication errors.
- Recommended cables: Samtec:

USBC-AM-MB-B-B-S-1 (1 meter).
USBC-AM-MB-B-B-S-2 (2 meters).
USBC-AM-MB-B-B-S-3 (3 meters).

- The USB connection is galvanically isolated from the mains power supply and from other high voltages internal to the inverter. However, the USB connection is not isolated from the Protective Ground (PE). Use an isolated notebook for the USB connection or a desktop connected to the same Protective Ground (PE) of the inverter.

Install the SuperDrive G2 software to control motor speed, view, or edit inverter parameters through a personal computer (PC).

Basic procedures for transferring data from the PC to the inverter:

1. Install the SuperDrive G2 software in the PC.
2. Connect the PC to the inverter through a USB cable.
3. Start SuperDrive G2.
4. Choose "Open" and the files stored in the PC will be displayed.
5. Select the file.
6. Use the command "Write Parameters to the Drive".

- All parameters are now transferred to the inverter.

Refer to the CFW-11 programming manual and to SoftPLC manual for further details.

### 5.6 FLASH MEMORY MODULE

Location as presented in Figure 2.2 on page 2-6 item D.

## Functions:

- Store a copy of the inverter parameters.
- Transfer parameters stored in the FLASH memory to the inverter.
- Transfer firmware stored in the FLASH memory to the inverter.
- Store programs created by the SoftPLC.

Whenever the inverter is powered up, this program is transferred to the RAM memory located in the inverter control board and executed.

Refer to the CFW-11 programming manual and to SoftPLC manual for further details.

## ATTENTION!

Before installing or removing the FLASH memory module, disconnect the inverter power supply and wait for the complete discharge of the capacitors.

## 6 TROUBLESHOOTING AND MAINTENANCE

This chapter presents:

- Lists all faults and alarms that may occur.
- Indicates the possible causes of each fault and alarm.
- Lists most frequent problems and corrective actions.

- Instructions for periodic inspections and preventive maintenance on the equipment.


### 6.1 OPERATION OF THE FAULTS AND ALARMS

When a fault is detected (fault (FXXX)):

■ The PWM pulses are blocked.

■ The keypad displays the fault code and description.

■ The "STATUS" LED starts flashing red.

■ The output relay set to "NO FAULT" opens.
$\square$ Some data is saved in the control circuit EEPROM memory:

- Keypad and EP (Electronic Pot) speed references, in case the function "Reference backup" is enabled in PO120.
- The fault code that occurred (shifts the last nine previous faults and alarms).
- The state of the motor overload function integrator.
- The state of the operating hours counter (P0043) and the powered-up hours counter (P0042).

Reset the inverter to return the drive to a "READY" condition in the event of a fault. The following reset options are available:
$\square$ Removing the power supply and reapplying it (power-on reset).

- Pressing the operator key (manual reset).

■ Through the "Reset" soft key.

『 Automatically by setting P0340 (auto-reset).

च Through a digital input: Dlx $=20$ (P0263 to P0270).

When an alarm situation (alarm (AXXX)) is detected:

■ The keypad displays the alarm code and description.

■ The "STATUS" LED changes to yellow.

■ The PWM pulses are not blocked (the inverter is still operating).

### 6.2 FAULTS, ALARMS AND POSSIBLE CAUSES

Table 6.1 - Faults, alarms and possible causes

| Fault/Alarm | Description | Possible Causes |
| :---: | :---: | :---: |
| F006 Imbalance or Input Phase Loss | Mains voltage imbalance too high or phase missing in the input power supply. <br> Note: <br> - If the motor is unloaded or operating with reduced load this fault may not occur. <br> - Fault delay is set at parameter P0357 P0357 = 0 disables the fault. <br> - In the case of using single-phase it is necessary to disable this failure. | Phase missing at the inverter's input power supply. Input voltage imbalance $>5 \%$. <br> Phase loss at L3/R or L3/S may cause F021 or F185. Phase loss at L3/T will cause F006. |
| F021 <br> DC Link Undervoltage | DC Link undervoltage condition occurred. | च The input voltage is too low and the DC Link voltage dropped below the minimum permitted value (monitor the value at Parameter P0004): <br> Ud < 223 V - For a $220 / 230 \mathrm{~V}$ three-phase input voltage. <br> Ud < 385 V - For a 380 V input voltage (P0296 = 1). <br> Ud $<405 \mathrm{~V}$ - For a $400 / 415 \mathrm{~V}$ input voltage (P0296 = 2). <br> $\mathrm{Ud}<446 \mathrm{~V}$ - For a $440 / 460 \mathrm{~V}$ input voltage ( $\mathrm{P} 0296=3$ ). <br> $\mathrm{Ud}<487 \mathrm{~V}$ - For a 480 V input voltage (P0296 = 4). <br> Phase loss in the input power supply. <br> Pre-charge circuit failure. <br> Parameter P0296 was set to a value above of the power supply rated voltage. |
| F022 DC Link Overvoltage | DC Link overvoltage condition occurred. | The input voltage is too high and the DC Link voltage surpassed the maximum permitted value: <br> $\mathrm{Ud}>400 \mathrm{~V}$ - For $220 / 230 \mathrm{~V}$ input models (P0296 = 0) $\mathrm{Ud}>800 \mathrm{~V}$ - For $380 / 480 \mathrm{~V}$ input models (P0296 = 1, 2, 3 , or 4). <br> Inertia of the driven-load is too high or deceleration time is too short. <br> Parameters P0151 or P0153 or P0185 set to high. |
| F030 <br> Power Module U Fault | Power Module U IGBTs desaturation. | Ø Short-circuit between motor phases U and V or U and W . |
| F034 <br> Power Module V Fault | Power Module V IGBTs desaturation. | 『 Short-circuit between motor phases V and U or V and W . |
| F038 <br> Power Module W Fault | Power Module W IGBTs desaturation. | $\square$ Short-circuit between motor phases W and U or W and V . |
| F042 <br> DB IGBT Fault | Desaturation of Dynamic Braking IGBT occured. | Short-circuit between the connection cables of the dynamic braking resistor. |
| A046 <br> High Load on Motor | Load is too high for the used motor. <br> Note: <br> It may be disabled by setting P0348 $=0$ or 2 . | - Settings of P0156, P0157, and P0158 are too low for the used motor. <br> Motor shaft load is excessive. |
| A047 <br> IGBT Overload Alarm | An IGBT overload alarm occurred. <br> Note: <br> It may be disabled by setting P0350 $=0$ or 2 . | - High current at the inverter output - consider the values of the Table 8.1 on page 8-2 to Table 8.5 on page 8-4 according to the used switching frequency. |
| F048 <br> IGBT Overload Fault | An IGBT overload fault occurred. | च High current at the inverter output - consider the values of the Table 8.1 on page $8-2$ to Table 8.5 on page 8-4 according to the used switching frequency. |
| A050 <br> IGBT High <br> Temperature | A high temperature alarm was detected by the NTC temperature sensors located on the IGBTs. <br> Note: <br> It may be disabled by setting P0353 $=2$ or 3 . | Surrounding air temperature is too high ( $>45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ ) and output current is too high. <br> - Heatsink fan blocked or defective. <br> Very dirty heatsink. |
| F051 IGBT <br> Overtemperature | A high temperature fault was detected by the NTC temperature sensors located on the IGBTs. |  |


| Fault/Alarm | Description | Possible Causes |
| :---: | :---: | :---: |
| F065 <br> Encoder Signal Fault (SW) | Feedback obtained via encoder does not match the commanded speed. <br> The fault can be disabled via parameter P0358. | W Wiring between encoder and encoder interface accessory interrupted. <br> V Encoder is defective. <br> Encoder coupling to the motor is broken. <br> Inverter operating in current limit (In case the application needs to run in such condition, this fault should be disabled via parameter P0358). |
| F066 <br> Encoder Signal Fault (SW) | Feedback obtained via encoder does not match the commanded speed. <br> The fault can be disabled via parameter P0358. | ■ Wiring between encoder and encoder interface accessory interrupted. <br> V Encoder is defective. <br> Encoder coupling to the motor is broken. <br> V Inverter operating in current limit (in case the application needs to run in such condition, this fault should be disabled via parameter P0358). |
| F067 <br> Incorrect Encoder/ Motor Wiring | Fault related to the phase relation of the encoder signals, if PO202 $=4$ and P0408 $=0,2,3$ or 4 . <br> Note: <br> - It is not possible to reset this fault (when P0408>1). - In this case, turn off the power supply, solve the problem, and then turn it on again. <br> - When P0408 = 0, it is possible to reset this fault. This fault could be disabled by means of parameter P0358. <br> In this case it is possible to reset this fault. |  |
| F071 <br> Output Overcurrent | Output overcurrent fault. | Excessive load inertia or acceleration time too short. Settings of P0135 or P0169 and P0170 are too high. |
| F072 <br> Motor Overload | The motor overload protection operated. <br> Note: <br> It may be disabled by setting P0348 $=0$ or 3 . | Settings of P0156, P0157, and P0158 are too low for the used motor. <br> Motor shaft load is excessive. |
| F074 <br> Ground Fault | A ground fault occured either in the cable between the inverter and the motor or in the motor itself. Note: <br> It may be disabled by setting P0343 $=0$. | Shorted wiring in one or more of the output phases. <br> V Motor cable capacitance is too large, resulting in current peaks at the output. ${ }^{11}$ |
| F076 <br> Motor Current Imbalance | Fault of motor current imbalance. <br> Note: <br> It may be disabled by setting P0342 $=0$. | ■ Loose connection or broken wiring between the motor and inverter connection. <br> V Vector control with wrong orientation. <br> V Vector control with encoder, encoder wiring or encoder motor connection inverted. |
| F077 <br> DB Resistor Overload | The dynamic braking resistor overload protection operated. | ■ Excessive load inertia or desacceleration time too short. <br> Motor shaft load is excessive. <br> Parameter P0154 and P0155 incorrect setting. |
| F078 Motor Overtemperature | Fault related to the PTC temperature sensor installed in the motor. <br> Note: <br> - It may be disabled by setting P0351 = 0 or 3 . <br> - It is necessary to set an analog input/output to the PTC function. | Excessive load at the motor shaft. <br> Excessive duty cycle (too many starts/stops per minute) <br> Surrounding air temperature too high. <br> Loose connection or short-circuit (resistance $<100 \Omega$ ) in the wiring connected to the motor termistor. <br> Motor termistor is not installed. <br> Blocked motor shaft. |
| F079 <br> Encoder Signal Fault | Lack of encoder signals. The fault can be disabled via switches of the ENC1, ENC2 board. | Broken wiring between motor encoder and option kit for encoder interface. <br> V Defective encoder. <br> V Encoder accessory defective or not well installed on the product, and control configured for vector with encoder. |
| F080 <br> CPU Watchdog | Microcontroller watchdog fault. | $\square$ Electrical noise. |
| F082 <br> Copy Function Fault | Fault while copying parameters. | ■ Communication problem with the HMI. |
| F084 <br> Auto-diagnosis Fault | Auto-diagnosis fault. | ■ Please contact WEG. |
| A088 <br> Communication Lost | Indicates a problem between the keypad and control board communication. | V Loose keypad cable connection. Electrical noise in the installation. |
| A090 <br> External Alarm | External alarm via digital input. <br> Note: <br> It is required to set a digital input to "No external alarm". | Wiring was not connected to the digital input (DI1 to DI8) set to "No external alarm". |
| F091 <br> External Fault | External fault via digital input. <br> Note: <br> It is required to set a digital input to "No external fault". | Wiring was not connected to the digital input (DI1 to DI8) set to "No external fault". |


| Fault/Alarm | Description | Possible Causes |
| :---: | :---: | :---: |
| F099 Invalid Current Offset | Current measurement circuit is measuring a wrong value for null current. | - Defect in the inverter internal circuitry. |
| A1 10 High Motor Temperature | Alarm related to the PTC temperature sensor installed in the motor. <br> Note: <br> - It may be disabled by setting P0351 $=0$ or 2 . <br> - It is required to set the analog input/output to the PTC function. | Excessive load at the motor shaft. <br> Excessive duty cycle (too many starts/stops per minute). <br> Surrounding air temperature too high. <br> Loose connection or short-circuit (resistance $<100 \Omega$ ) in the wiring connected to the motor termistor. <br> V Motor termistor is not installed. <br> V Blocked motor shaft. |
| A128 <br> Timeout for Serial Communication | Indicates that the inverter stopped receiving valid messages within a certain time interval. <br> Note: <br> It may be disabled by setting P0314 $=0.0 \mathrm{~s}$. | V Check the wiring and grounding installation. <br> V Make sure the inverter has sent a new message within the time interval set at P0314. |
| A129 <br> Anybus is Offline | Alarm that indicates interruption of the Anybus-CC communication. | - PLC entered into the idle state. <br> ■ Programming error. Master and slave set with a different number of I/O words. <br> Communication with master has been lost (broken cable, unplugged connector, etc.). |
| A130 <br> Anybus Access Error | Alarm that indicates an access error to the Anybus-CC communication module. | D Defective, unrecognized, or improperly installed Anybus-CC module. <br> Conflict with a WEG option board. |
| A133 CAN Not Powered | Alarm indicating that the power supply was not connected to the CAN controller. | Broken or loose cable. Power supply is off. |
| A134 <br> Bus Off | Inverter CAN interface has entered into the bus-off state. | Incorrect communication baud-rate. <br> Two nodes configured with the same address in the network. Wrong cable connection (inverted signals). |
| A135 CANopen Communication Error | Alarm that indicates a communication error. | Ø Communication problems. <br> Wrong master configuration/settings. <br> Incorrect configuration of the communication objects. |
| A136 Idle Master | Network master has entered into the idle state. | PLC in IDLE mode. <br> Bit of the PLC command register set to zero (0). |
| A137 <br> DNet Connection <br> Timeout | I/O connection timeout - DeviceNet communication alarm. | Ø One or more allocated I/O connections have entered into the timeout state. |
| A138 ${ }^{(2)}$ <br> Profibus DP Interface in Clear Mode | It indicates that the inverter received a command from the Profibus DP network master to enter the clear mode. | Verify the network master status, making sure it is in execution mode (Run). <br> Refer to the Profibus DP communication manual for more information. |
| A139 (2) Offline Profibus DP Interface | It indicates an interruption in the communication between the Profibus DP network master and the inverter. | $\square$ Verify whether the network master is correctly configured and operating normally. <br> V Verify the network installation in a general manner - cable routing, grounding. <br> V Refer to the Profibus DP communication manual for more information. |
| A140 (2) Profibus DP Module Access Error | It indicates an error in the access to the Profibus DP communication module data. | V Verify whether the Profibus DP module is correctly fit into the slot 3 . <br> V Refer to the Profibus DP communication manual for more information. |
| F150 <br> Motor Overspeed | Overspeed fault. It is activated when the real speed exceeds the value of P0134 x (100 \% + P0132) for more than 20 ms . | Wrong settings of P0161 and/or P0162. Problem with the hoist-type load. |
| F151 <br> FLASH Memory Module Fault | FLASH Memory Module fault (MMF-03). | Defective FLASH memory module. <br> FLASH memory module is not connected properly. |
| A152 <br> Internal Air High Temperature | Alarm indicating that the internal air temperature is too high. <br> Note: <br> It may be disabled by setting P0353 $=1$ or 3 . | V Surrounding air temperature too high $\left(>45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)\right)$ and excessive output current. <br> V Defective internal fan. <br> High temperature $\left(>45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)\right)$ inside the cabinet. |
| F153 Internal Air Overtemperature | Internal air overtemperature fault. |  |
| F156 <br> Undertemperature | Undertemperature fault, measured at the IGBTs temperature sensors. | - Surrounding air temperature $\leq-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$. |
| F160 <br> Safety Stop Relays | Safety Stop relay fault. | It was only applied +24 Vdc to one STO input (STO1 or STO2). <br> - One of the relays is defective. |


| Faul/Alarm | Description | Possible Causes |
| :---: | :---: | :---: |
| F161 <br> Timeout PLC11CFW-11 | $\square$ Refer to the PLC1 1-01 Module programming manual. |  |
| Al62 <br> Incompatible PLC <br> Firmware |  |  |
| $\begin{array}{\|l\|} \hline \text { A1 } 63 \\ \text { Break Detect Al1 } \\ \hline \end{array}$ | It indicates that the All current (4-20 mA or 20-4 mA ) reference is out of the 4 to 20 mA range. | - Broken All cable. <br> ■ Bad contact at the signal connection to the terminal strip. |
| A164 <br> Break Detect AI2 | It indicates that the Al2 current ( $4-20 \mathrm{~mA}$ or 20-4 mA ) reference is out of the 4 to 20 mA range. | ■ Broken Al2 cable. <br> V Bad contact at the signal connection to the terminal strip |
| $\begin{array}{\|l\|} \hline \text { A165 } \\ \text { Break Detect Al3 } \\ \hline \end{array}$ | It indicates that the Al3 current ( $4-20 \mathrm{~mA}$ or 20-4 mA ) reference is out of the 4 to 20 mA range. | - Broken Al3 cable. <br> V Bad contact at the signal connection to the terminal strip. |
| A166 <br> Break Detect Al4 | It indicates that the Al4 current ( $4-20 \mathrm{~mA}$ or 20-4 mA ) reference is out of the 4 to 20 mA range. | - Broken Al4 cable. <br> V Bad contact at the signal connection to the terminal strip. |
| A177 <br> Fan Replacement | Heatsink fan replacement alarm (P0045 > 50000 hours). <br> Note: <br> This function may be disabled by setting P0354 $=0$. | ■ Maximum number of operating hours for the heatsink fan has been reached. |
| A178 <br> Heatsink Fan Speed <br> Alarm | This alarm indicates a problem with the heatsink fan. | D Dit on the blades and in the bearings of the fan <br> - Defective fan. <br> Defective fan power supply connection. |
| $\begin{aligned} & \text { F179 } \\ & \text { Heatsink Fan Speed } \\ & \text { Fault } \end{aligned}$ | Heatsink fan speed feedback fault. <br> Note: <br> This function may be disabled by setting P0354 $=0$. | D Dirt at the heatsink fan blades and ball bearings. <br> V Heatsink fan defect. <br> Defective fan power supply connection. |
| A181 <br> Invalid Clock Value | Invalid clock value alarm. | ■ It is necessary to set date and time at parameters PO194 to P0199. <br> ■ Keypad battery is discharged, defective, or not installed. |
| F182 <br> Pulse Feedback Fault | Indicates a fault on the output pulses feedback. | No motor connected or the motor connected to the inverter output is too small. <br> - Possible defect on the internal circuits of the inverter. <br> Possible solutions: <br> Reset inverter and try again. <br> Vet P0356 = 0 and try again |
| F183 <br> GBT overload + Temperature | Overtemperature related to the IGBTs overload protection. | Surrounding air temperature too high. <br> Operation with overload at frequencies below 10 Hz consider the Table 8.1 on page 8-2 and Table 8.5 on page $8-4$ values according to the used switching frequency. |
| $\begin{aligned} & \text { F185 } \\ & \text { Pre-charge Contactor } \\ & \text { Fault } \end{aligned}$ | Fault in the pre-charge contactor circuit. | ■ Open command fuse. Refer to Item 3.2.3.2.2 Command <br> Fuses of Pre-Charge Circuit on page 3-19. <br> $\square$ Phase loss at the input in $\mathrm{L} 1 / \mathrm{R}$ or $\mathrm{L} 2 / \mathrm{S}$. <br> V Defect in the pre-charge contactor and/or related circuit. Inverter CFW1 1 frame size E powered by DC Link: P0355 should be programd to 0 . |
| F186 ${ }^{(3)}$ <br> Sensor 1 Temperature <br> Fault | It indicates a temperature fault at the sensor 1 . | $\square$ Motor high temperature. |
| F187 ${ }^{(3)}$ <br> Sensor 2 Temperature <br> Fault | It indicates a temperature fault at the sensor 2 . |  |
| F188 ${ }^{(3)}$ <br> Sensor 3 Temperature <br> Fault | It indicates a temperature fault at the sensor 3 . |  |
| F189 ${ }^{(3)}$ <br> Sensor 4 Temperature <br> Fault | It indicates a temperature fault at the sensor 4. |  |
| F190 (3) <br> Sensor 5 Temperature <br> Fault | It indicates a temperature fault at the sensor 5 . |  |


| Fault／Alarm | Description | Possible Causes |
| :---: | :---: | :---: |
| A191 ${ }^{(3)}$ <br> Sensor 1 Temperature Alarm | It indicates a temperature alarm at the sensor 1 ． | V Motor high temperature． <br> －A problem in the wiring connecting the sensor to the IOE 01 （02 or 03）． |
| A192 ${ }^{(3)}$ <br> Sensor 2 Temperature Alarm | It indicates a temperature alarm at the sensor 2 ． |  |
| A193 ${ }^{(3)}$ <br> Sensor 3 Temperature <br> Alarm | It indicates a temperature alarm at the sensor 3 ． |  |
| A194（3） <br> Sensor 4 Temperature <br> Alarm | It indicates a temperature alarm at the sensor 4. |  |
| A195 ${ }^{(3)}$ <br> Sensor 5 Temperature Alarm | It indicates a temperature alarm at the sensor 5. |  |
| A196 ${ }^{(3)}$ <br> Sensor 1 Cable Alarm | Sensor 1 cable alarm． | V Shorted temperature sensor． |
| A197 ${ }^{(3)}$ <br> Sensor 2 Cable Alarm | Sensor 2 cable alarm． |  |
| A198 ${ }^{(3)}$ <br> Sensor 3 Cable Alarm | Sensor 3 cable alarm． |  |
| A199 ${ }^{(3)}$ <br> Sensor 4 Cable Alarm | Sensor 4 cable alarm． |  |
| A200 ${ }^{(3)}$ <br> Sensor 5 Cable Alarm | Sensor 5 cable alarm． |  |
| F228 <br> Serial Communication Timeout | －Refer to the RS－232／RS－485 Serial communication manual． |  |
| F229 <br> Anybus Offline | V Refer to the Anybus－CC communication manual． |  |
| F230 <br> Anybus Access Error |  |  |  |
| F233 <br> CAN Bus Power Failure | 》 Refer to the CANopen communication manual and／or the DeviceNet communication manual． |  |
| F234 <br> Bus Off |  |  |  |
| F235 <br> CANopen <br> Communication Error | マ Refer to the CANopen communication manual． |  |
| F236 <br> Master Idle | マ Refer to the DeviceNet communication manual． |  |
| F237 <br> DeviceNet Connect Timeout |  |  |  |
| F238 ${ }^{(2)}$ <br> Profibus DP Interface in Clear Mode | Refer to the Profibus DP communication manual． |  |
| F239 (2) <br> Offline Profibus DP <br> Interface |  |  |  |
| $\text { F240 }{ }^{(2)}$ <br> Profibus DP Module Access Error |  |  |  |
| A700 ${ }^{(4)}$ <br> Detached HMI | Alarm or fault related to the HMI disconnection． | RTC function block has been activated in the applicative and the HMI is disconnected from the inverter． |
| F701 ${ }^{(4)}$ Detached HMI |  |  |
| A702 ${ }^{(4)}$ Inverter Disabled | Alarm indicating that the General Enable command is not active． | च The SoftPLC Run／Stop command is equal to Run or a movement block has been enable while the inverter is general disabled． |


| Fault/Alarm | Description | Possible Causes |
| :--- | :--- | :--- |
| A704 (4) <br> Two Movements <br> Enabled | Two movements have been enabled. | It occurs when two or more movement blocks are enabled <br> simultaneously. |
| A706 (4) <br> Speed Reference <br> Not Programmed for <br> SoftPLC | Speed reference not programmed for SoffPLC. | It occurs when a movement block has been enabled and the <br> speed reference has not been configured for SoftPLC (check <br> P0221 and PO222). |

(1) Very long motor cables (longer than 100 meters) present a high parasite capacitance against the ground. The circulation of parasite currents through those capacitances may cause the ground fault circuit activation and thus disabling the inverter with F074, immediately after the inverter enabling. Possible solutions:

- Decrease the carrier frequency (P0297).
- Install an output reactor between the inverter and the motor.
(2) With a Profibus DB module connected into the slot 3 (XC43).
(3) With IOE-01 (02 or 03) modules connected into the slot 1 (XC41).
(4) All the models with a SoftPLC applicative.


### 6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS

| Problem | Point to be Verified | Corrective Action |
| :---: | :---: | :---: |
| Motor does not start | Incorrect wiring | 1. Check all power and control connections. For instance, the digital inputs set to Start/Stop, General Enable, or no external error shall be connected to the 24 Vdc or to DGND* terminals (refer to Figure 3.19 on page 3-27) |
|  | Analog reference (if used) | 1. Check if the external signal is properly connected <br> 2. Check the status of the control potentiometer (if used) |
|  | Incorrect settings | 1. Check if parameters are properly set for the application |
|  | Fault | 1. Check if the inverter is not blocked due to a fault condition <br> 2. Check if terminals $\mathrm{XC1:13}$ and $\mathrm{XC1:11}$ are not shorted (short-circuit at the 24 Vdc power supply) |
|  | Motor stall | 1. Decrease motor overload <br> 2. Increase P0136, P0137 (V/f), or P0169/P0170 (vector control) |
| Motor speed fluctuates (oscillates) | Loose connection | 1. Stop the inverter, turn off the power supply, and tighten all power connections <br> 2. Check all internal connections of the inverter |
|  | Defective reference potentiometer | 1. Replace potentiometer |
|  | Oscillation of the external analog reference | 1. Identify the cause of the oscillation. If it is caused by electrical noise, use shielded cables or separate from the power and control wiring |
|  | Incorrect settings (vector control) | 1. Check parameters P0410, P0412, P0161, P0162, P0175, and P0176 <br> 2. Refer to the programming manual |
| Motor speed too high or too low | Incorrect settings (reference limits) | 1. Check if the values of P 0133 (minimum speed) and P0134 (maximum speed) are properly set for the motor and application used |
|  | Control signal from the analog reference (if used) | 1. Check the level of the reference control signal <br> 2. Check the settings (gain and offset) of parameters P0232 to P0249 |
|  | Motor nameplate | 1. Check if the motor has been properly sized for the application |
| Motor does not reach the rated speed, or motor speed starts oscillating around the rated speed (Vector Control) | Settings | 1. Decrease P0180 <br> 2. Check P0410 |
| Off display | Keypad connections | 1. Check the inverter keypad connection |
|  | Power supply voltage | 1. Rated values shall be within the limits specified below: 220 / 230 V power supply: - Minimum: 187 V <br> - Maximum: 253 V <br> $380 / 480 \mathrm{~V}$ power supply: - Minimum: 323 V <br> - Maximum: 528 V |
|  | Mains supply fuses open | 1. Replace fuses |
| Motor does not operate in the field weakning region (Vector Control) | Settings | 1. Decrease P0180 |
| Low motor speed and P0009 = P0169 or P0170 (motor operating with torque limitation), for P0202 $=4$ - vector with encoder | Encoder signals are inverted or power connection is inverted | 1. Check signals $\bar{A}-A, \bar{B}-B$, refer to the incremental encoder interface manual. If signals are properly installed, exchange two of the output phases. For instance $U$ and $V$ |

### 6.4 INFORMATION FOR CONTACTING TECHNICAL SUPPORT

## NOTE!

For technical support and servicing, it is important to have the following information in hand:
■ Inverter model.
■ Serial number, manufacturing date, and hardware revision that are listed in the product nameplate (refer to Section 2.4 IDENTIFICATION LABELS FOR THE CFW-1 1 on page 2-7).
$\square \quad$ Installed software version (check parameter P0023).
■ Application data and inverter settings.

### 6.5 PREVENTIVE MAINTENANCE

## DANGER!

च Always turn off the mains power supply before touching any electrical component associated to the inverter.

■ High voltage may still be present even after disconnecting the power supply.
च To prevent electric shock, wait at least 10 minutes after turning off the input power for the complete discharge of the power capacitors.

- Always connect the equipment frame to the protective ground (PE). Use the adequate connection terminal in the inverter.


## DANGER!

■ Débranchez toujours l'alimentation principale avant d'entrer en contact avec un appareil électrique associé au variateur.
$\square$ Des tensions élevées peuvent encore être présentes, même après déconnexion de l'alimentation.
■ Pour éviter les risques d'électrocution, attendre au moins 10 minutes après avoir coupé I'alimentation d'entrée pour que les condensateurs de puissance soient totalement déchargées.
■ Raccordez toujours la masse de l'appareil à une terre protectrice (PE). Utiliser la borne de connexion adéquate du variateur.

## ATTENTION!

The electronic boards have electrostatic discharge sensitive components.
Do not touch the components or connectors directly. If necessary, first touch the grounded mettalic frame or wear a ground strap.

## Do not perform any withstand voltage test! If necessary, consult WEG.

The inverters require low maintenance when properly installed and operated. The Table 6.3 on page 6-10 presents main procedures and time intervals for preventive maintenance. The Table 6.4 on page $6-10$ provides recommended periodic inspections to be performed every 6 months after inverter start-up.

Table 6.3 - Preventive maintenance

| Maintenance | Interval | Instructions |
| :--- | :--- | :--- |
| Fan replacement | After 50000 operating hours (1) | Replacement procedure shown in Figure 6.1 on page 6-11 |
| Keypad battery replacement | Every 10 years | Refer to the Chapter 4 HMI on page 4-1 |
| Electrolytic <br> capacitors | If the inverter is stocked <br> (not being used): <br> "Reforming" | Every year from the manufacturing <br> date printed in the inverter <br> identification label (refer to Item 2.4 | | Apply power to the inverter (voltage between 220 and |
| :--- |
| 230 Vac, single-phase or three-phase, 50 or 60 Hz) for at |
| least one hour. Then, disconnect the power supply and wait |
| IDENTIFICATION LABELS FOR THE |
| CFW-11 on page 2-7) |

(1) The inverters are set at the factory for automatic fan control ( $\mathrm{PO} 035=2$ ), which means that they will be turned on only when the heatsink temperature exceeds a reference value. Therefore, the operating hours of the fan will depend on the inverter usage conditions (motor current, output frequency, cooling air temperature, etc.). The inverter stores the number of operating hours of the fan in parameter P0045. When this parameter reaches 50000 operating hours, the keypad display will show alarm A177.

Table 6.4 - Recommended periodic inspections - Every 6 months

| Component | Abnormality | Corrective Action |
| :---: | :---: | :---: |
| Terminals, connectors | Loose screws | Tighten |
|  | Loose connectors |  |
| Fans/Cooling system | Dirty fans | Cleaning |
|  | Abnormal acoustic noise | Replace fan. Refer to the Figure 6.1 on page 6-11 Check the fan connection |
|  | Blocked fan |  |
|  | Abnormal vibration |  |
|  | Dust in the cabinet air filter | Cleaning or replacement |
| Printed circuit boards | Accumulation of dust, oil, humidity, etc. | Cleaning |
|  | Odor | Replacement |
| Power module/ <br> Power connections | Accumulation of dust, oil, humidity, etc. | Cleaning |
|  | Loose connection screws | Tighten |
| DC Link capacitors | Discoloration/odor/electrolyte leakage | Replacement |
|  | Expanded or broken safety valve |  |
|  | Frame expansion |  |
| Power resistors | Discoloration |  |
|  | Odor |  |
| Heatsink | Dust accumulation | Cleaning |
|  | Dirty |  |

### 6.5.1 Cleaning Instructions

When it is necessary to clean the inverter, follow the instructions below:

## Ventilation system:

$\square$ Disconnect the inverter power supply and wait at least 10 minutes.
$\square$ Remove the dust from the cooling air inlet by using a soft brush or a flannel.
$\square$ Remove the dust from the heatsink fins and from the fan blades by using compressed air.

## Electronic boards:

■ Disconnect the inverter power supply and wait at least 10 minutes.
$\square$ Remove the dust from the electronic board by using an anti-static brush or an ion air gun (Charges Burtes Ion Gun - reference A6030-6DESCO).

■ If needed, remove the boards from the inverter.

■ Always wear a ground strap.

(b) CFW11 0142 T 2, CFW11 0180 T 2, CFW11 0211 T 2, CFW11 0142 T 4, CFW11 0180 T 4 and CFW11 0211 T 4 models

Figure 6.1 - (a) and (b) - Heatsink fan removal
(1)


Cable connection
(2)


Fan fitting
(a) CFW11 0105 T 4 model
(1)


Cable connection
(2)


Fan and fan grill fastening
(b) CFW11 0142 T 2, CFW11 0180 T 2, CFW11 0211 T 2, CFW11 0142 T 4, CFW11 0180 T 4 and CFW11 0211 T 4 models

Figure 6.2 - (a) and (b) - Heatsink fan installation

## 7 OPTION KITS AND ACCESSORIES

This chapter presents:

■ The option kits that can be incorporated to the inverter from the factory:

- Braking IGBT.
- Safety Stop according to EN 954-1 category 3.
- External 24 Vdc power supply for control and keypad.
- Nemal protection degree (Frame size E).


■ Instructions for the proper use of the option kits.
$\square$ The accessories that can be integrated to the inverters.

Details for the installation, operation, and programming of the accessories are described in their own manuals and were not included in this chapter.

### 7.1 OPTION KITS

Some models cannot incorporate all available option kits. Refer to Table 7.1 on page 7-4 for a detailed description of the option kits that are available for each inverter model.

The inverter codification is described in Chapter 2 GENERAL INSTRUCTIONS on page 2-1.

### 7.1.1 Nema1 Protection Degree

Inverters with the following codification CFW1 IXXXXXXON1. Refer to Item 3.1.5 Installation of the Inverter with Nemal Kit (Option, CFW1 1....T...ON1 ...) on a Wall on page 3-7, and Section 8.6 NEMA1 KIT on page 8-1 1 .

### 7.1.2 Degree of Protection IP55

Inverters with code CFW11XXXXXXO55. Refer to Item 3.1.6 Access to the Control and Power Terminal Strips on page 3-7.

### 7.1.3 Safety Stop Function

Inverters with the following codification CFW11...O...Y.... Refer to Section 3.3 SAFETY STOP FUNCTION on page 3-34.

### 7.1.4 Braking IGBT

Inverters with the following codification: CFW11XXXXTXODB. Refer to Item 3.2.3.2 AC Power Supply Considerations on page 3-17.

### 7.1.5 24 Vdc External Control Power Supply

Inverters with the following codification: CFW1 1...O...W...

The use of this option kit is recommended with communication networks (Profibus, DeviceNet, etc.), since the control circuit and the network communication interface are kept active (with power supply and responding to the network communication commands) even in the event of main power supply interruption.

Inverters with this option have a built-in DC/DC converter with a 24 Vdc input that provides an adequate output for the control circuit. In such manner the power supply of the control circuit will be redundant, i.e., it can be provided by a 24 Vdc external power supply (connection as shown in Figure 7.1 on page 7 -3) or by the standard internal switched-mode power supply of the inverter.

Observe that the inverters with the external 24 Vdc power supply option use terminals $\mathrm{XC1} 1: 11$ and 13 as the input for the external power supply and no longer as an output as in the standard inverter (Figure 7.1 on page 7-3).

In case of interruption of the external 24 Vdc power source, the digital inputs, outputs and analog outputs will have no power supply, even if the mains power is on. Therefore, it is recommended to keep the 24 Vdc power source always connected to terminals XC1:11 and 13 .

The keypad displays warnings indicating the inverter status: if the 24 Vdc power source is connected, if the mains power source is connected, etc.


Figure 7.1 - Connection terminals and 24 Vdc external power supply rating

## NOTE!

A class 2 power supply must be used in order to comply with the UL508C standard.

### 7.2 ACCESSORIES

The accessories are installed in the inverter easily and quickly using the "Plug and Play" concept. When the accessory is connected into the slot, the control circuitry identifies the model and displays the installed accessory code in P0027 or P0028. The accessory shall be installed with the inverter power supply off.

The code and model of each availabe accessory is presented in the Table 7.1 on page 7-4. The accessories can be ordered separately and will be shippe in an individual package containing the components and the manual with detailed instructions for the product installation, operation, and programming.

## ATTENTION!

Only one module can be fitted at once in each slot (1, 2, 3, 4, or 5).

Table 7.1 - Accessory models

| WEG Part Number | Name | Description | Slot | Identification Parameters |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | P0027 | P0028 |
| Control Accessories for Installation in the Slots 1, 2 and 3 |  |  |  |  |  |
| 11008162 | IOA-01 | IOA module: 1 voltage/current analog input (14 bits); 2 digital inputs; 2 voltage/current analog outputs ( 14 bits ); 2 open-collector digital outputs | 1 | FD-- | ---- |
| 11008099 | IOB-01 | IOB module: 2 isolated analog inputs (voltage/current); 2 digital inputs; 2 isolated analog outputs (voltage/current) (the programming of the outputs is identical as in the standard CFW-11); 2 open-collector digital outputs | 1 | FA-- | ---- |
| 11008100 | ENC-01 | 5 to 12 Vdc incremental encoder module, 100 kHz , with an encoder signal repeater | 2 | --C2 | ---- |
| 11008101 | ENC-02 | 5 to 12 Vdc incremental encoder module, 100 kHz | 2 | --C2 | ---- |
| 11008102 | RS485-01 | RS-485 serial communication module (Modbus) | 3 | ---- | CE-- |
| 11008103 | RS232-01 | RS-232C serial communication module (Modbus) | 3 | ---- | CC-- |
| 11008104 | RS232-02 | RS-232C serial communication module with DIP-switches for programming the microcontroller FLASH memory | 3 | ---- | CC-- |
| 11008105 | CAN/RS485-01 | CAN and RS-485 interface module (CANopen/DeviceNet/Modbus) | 3 | ---- | CA-- |
| 11008106 | CAN-01 | CAN interface module (CANopen/DeviceNet) | 3 | ---- | CD-- |
| 11008911 | PLC11-01 | PLC module | 1,2 and 3 | ---- | $--x x^{(1)(3)}$ |
| Anybus-CC Accessories for Installation in the Slot 4 |  |  |  |  |  |
| 11008158 | DEVICENET-05 | DeviceNet interface module | 4 | ---- | $--x x^{(2)(3)}$ |
| 10933688 | ETHERNET/IP-05 | EtherNet/IP interface module | 4 | ---- | $--x x^{(2)(3)}$ |
| 11550476 | MODBUSTCP-05 | Modbus TCP interface module | 4 | ---- | $--x x^{(2)(3)}$ |
| 11550548 | PROFINETIO-05 | PROFINET IO interface module | 4 | ---- | $--x x^{(2)(3)}$ |
| 11008107 | PROFDP-05 | Profibus DP interface module | 4 | ---- | $--x x^{(2)(3)}$ |
| 11008161 | RS485-05 | RS485 (passive) interface module (Modbus) | 4 | ---- | $--x x^{(2)(3)}$ |
| 11008160 | RS232-05 | RS232 (passive) interface module (Modbus) | 4 | -- | $--x x^{(2)(3)}$ |
| Flash Memory Module for Installation in the Slot 5 - Factory Settings Included ${ }^{(6)}$ |  |  |  |  |  |
| 11719952 | MMF-03 | FLASH memory module | 5 | ---- | $--x x^{(7)}$ |
| Stand-alone HMI, Blank Cover, and Frame for Remote Mounted HMI |  |  |  |  |  |
| 11008913 | HMI-01 | Stand-alone HMI ${ }^{(4)}$ | HMI | - | - |
| 11010521 | RHMIF-01 | Remote HMI frame kit IP65 | - | - | - |
| 11010298 | HMID-01 | Blank cover for the HMI slot | HMI | - | - |
| 10950192 | HMI CAB-RS-1M | 1 m serial remote keypad cable set | - | - | - |
| 10951226 | HMI CAB-RS-2M | 2 m serial remote keypad cable set | - | - | - |
| 10951223 | HMI CAB-RS-3M | 3 m serial remote keypad cable set | - | - | - |
| 10951227 | HMI CAB-RS-5M | 5 m serial remote keypad cable set | - | - | - |
| 10951240 | HMI CAB-RS-7.5M | 7.5 m serial remote keypad cable set | - | - | - |
| 10951239 | HMI CAB-RS-10M | 10 m serial remote keypad cable set | - | - | - |
| Miscellaneous |  |  |  |  |  |
| 10960842 | KN1E-01 | Nemal kit for the frame size E models CFW1 10142 T 2, CFW1 10105 T 4 and CFW11 0142 T 4 (standard for N1 option) ${ }^{(5)}$ | - | - | - |
| 10960850 | KN1E-02 | Nemal kit for the frame size E models CFW1 10180 T 2, CFW1 10211 T 2, CFW11 0180 T 4 and CFW11 0211 T 4 (standard for N1 option) ${ }^{(5)}$ | - | - | - |
| 10960844 | PCSE-01 | Kit for power cables shielding - frame E (included in the standard product) | - | - | - |
| 10960847 | CCS-01 | Kit for control cables shielding (included in the standard product) | - | - | - |
| 10960846 | CONRA-01 | Control rack (containing the CC11 control board) | - | - | - |
| 11337710 | KME-01 | Frame size E movement kit | - | - | - |

(1) Refer to the PLC module manual.
(2) Refer to the Anybus-CC communication manual.
(3) Refer to the programming manual.
(4) Use DB-9 pin, male-to-female, straight-through cable (serial mouse extension type) for connecting the keypad to the inverter or Null-Modem standard cable. Maximum cable length: $10 \mathrm{~m}(33 \mathrm{ft})$.
Examples:

- Mouse extension cable - $1.80 \mathrm{~m}(6 \mathrm{ft}$ ); Manufacturer: Clone.
- Belkin pro series DB9 serial extension cable 5 m (17 ft); Manufacturer: Belkin.
- Cables Unlimited PCM195006 cable, 6 ft DB9 m/f; Manufacturer: Cables Unlimited.
(5) Refer to the Section 8.6 NEMA1 KIT on page 8-11 for more details.
(6) Inverters with serial number below 1011361739 use MMF-01 control card.
(7) The MMF-03 module has a reserved space for the user (for example: write the application software version SoftPLC).


## 8 TECHNICAL SPECIFICATIONS

This chapter describes the technical specifications (electric and mechanical) of the CFW- 11 inverter series frame size E models.

### 8.1 POWER DATA

## Power Supply:


$\boxtimes$ Voltage tolerance: $-15 \%$ to $+10 \%$ of the nominal voltage.

■ Frequency: $50 / 60 \mathrm{~Hz}(48 \mathrm{~Hz}$ to 62 Hz$)$.
$\square$ Phase imbalance: $\leq 3 \%$ of the rated phase-to-phase input voltage.

『 Overvoltage according to Category III (EN 61010/UL 508C).

■ Transient voltage according to Category III.

- Maximum of 60 connections per hour (1 per minute).

■ Efficiency: according to class IE2 as per EN 50598-2.

■ Typical input power factor:

- 0.94 for models with three-phase input in the rated condition.
$\boxtimes \operatorname{Cos} \phi$ (displacement factor): $>0.98$.

Table 8.1-Technical specifications of the CFW-11 inverter series frame size E models

| Model |  |  | Models With 220... 230 V Power Supply |  |  | Models With 380... 480 V Power Supply |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { CFW11 } \\ & 0142 \text { T } 2 \end{aligned}$ | $\begin{aligned} & \text { CFW11 } \\ & 0180 \text { T } 2 \end{aligned}$ | $\begin{aligned} & \text { CFW11 } \\ & 0211 \text { T } 2 \end{aligned}$ | $\begin{gathered} \text { CFW11 } \\ 0105 \text { T } 4 \end{gathered}$ | $\begin{gathered} \text { CFW11 } \\ 0142 \text { T } 4 \end{gathered}$ | $\begin{aligned} & \text { CFW11 } \\ & 0180 \text { T } 4 \end{aligned}$ | $\begin{aligned} & \text { CFW11 } \\ & 0211 \text { T } 4 \end{aligned}$ |
| Frame Size |  |  | E |  |  |  |  |  |  |
| Number of Power Phases |  |  | 3中 |  |  |  |  |  |  |
| Use With Normal Duty (ND) Cycle | Rated Output Current ${ }^{(1)}$ [Arms] |  | 142 | 180 | 211 | 105 | 142 | 180 | 211 |
|  | Overload Current ${ }^{(2)}$ [Arms] | 1 min | 156.2 | 198.0 | 232 | 115.5 | 156.2 | 198.0 | 232.1 |
|  |  | 3 s | 213 | 270 | 317 | 157.5 | 213.0 | 270 | 317 |
|  | Rated Carrier Frequency[kHz] |  | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
|  | Maximum Motor ${ }^{(4)}$ [HP/kW] |  | 50/37 | 60/45 | 75/55 | 75/55 | 100/75 | 150/110 | 175/132 |
|  | Rated Input Current [Arms] |  | 142.0 | 180.0 | 211.0 | 105.0 | 142.0 | 180.0 | 211.0 |
|  | Dissipated Power [W] | Surface Mounting ${ }^{(5)}$ | 1850 | 2200 | 2490 | 1650 | 2230 | 2660 | 3040 |
|  |  | Flange Mounting ${ }^{(6)}$ | 240 | 410 | 410 | 230 | 240 | 410 | 410 |
| Use With Heavy Duty (HD) Cycle | Rated Output Current ${ }^{(1)}$ [Arms] |  | 115 | 142 | 180 | 88 | 115 | 142 | 180 |
|  | Overload Current ${ }^{(2)}$ [Arms] | 1 min | 172.5 | 213 | 270 | 132.0 | 172.5 | 213.0 | 270 |
|  |  | 3 s | 230 | 284 | 360 | 176.0 | 230.0 | 284 | 360 |
|  | Rated Carrier Frequency[kHz] |  | $5{ }^{(3)}$ | $5^{(3)}$ | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
|  | Maximum Motor ${ }^{(4)}$ [HP/kW] |  | 40/30 | 50/37 | 75/55 | 60/45 | 75/55 | 100/75 | 150/110 |
|  | Rated Input Current [Arms] |  | 115.0 | 142.0 | 180.0 | 88.0 | 115.0 | 142.0 | 180.0 |
|  | Dissipated Power [W] | Surface Mounting ${ }^{(5)}$ | 1700 | 2120 | 2240 | 1340 | 1710 | 2140 | 2530 |
|  |  | Flange Mounting | 230 | 390 | 400 | 220 | 230 | 390 | 400 |
| Surrounding Air Temperature [ ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ ] |  |  | $\begin{gathered} -10 \ldots 45^{\circ} \mathrm{C}\left(14 \ldots 113^{\circ} \mathrm{F}\right) \text { (IP21/NEMA1) } \\ -10 \ldots 40^{\circ} \mathrm{C}\left(14 \ldots 104^{\circ} \mathrm{F}\right) \text { (IP55) } \end{gathered}$ |  |  |  |  |  |  |
| Dynamic Braking |  |  | Optional (the standard product does not have dynamic braking) |  |  |  |  |  |  |
| RFI Filter |  |  | Built-in |  |  |  |  |  |  |
| Weight [kg (lb)] |  |  | $\begin{gathered} 64.0 \\ (141.1) \\ \hline \end{gathered}$ | $\begin{gathered} 65.0 \\ (143.3) \end{gathered}$ | $\begin{gathered} 65.0 \\ (143.3) \end{gathered}$ | $\begin{gathered} 62.5 \\ (137.8) \end{gathered}$ | $\begin{gathered} 64.0 \\ (141.1) \\ \hline \end{gathered}$ | $\begin{gathered} 65.0 \\ (143.3) \end{gathered}$ | $\begin{gathered} 65.0 \\ (143.3) \end{gathered}$ |
| Availability of Option Kits that Can be Incorporated Into the Product | Cabinet Enclosure |  | Yes, NEMAI (separated KN1E-01); IP55 | Yes, NEMAI (separated kitKN1E-02); IP55 |  | Yes, NEMA1 (separated kit KN1E-01); IP55 |  | Yes, NEMAI (separated kit KN1E-02); IP55 |  |
| (refer to the | Dynamic Braking |  | Yes |  |  |  |  |  |  |
| intelligent code in Chapter 2 GENERAL INSTRUCTIONS on page 2-1) ${ }^{(7)}$ | Safety Stop |  | Yes |  |  |  |  |  |  |
|  | 24 Vdc External Control Power Supply |  | Yes |  |  |  |  |  |  |

The notes for Table 8.1 on page 8-2 to Table 8.5 on page 8-4 are located after the Table 8.5 on page 8-4.

Table 8.2 - Specifications of the CFW-11 series frame size E models for a switching frequency of 5 kHz and $\mathrm{Ta}=45^{\circ} \mathrm{C}{ }^{(*)}$

|  | Model | $\begin{gathered} \stackrel{N}{N} \\ \text { in } \\ \stackrel{0}{6} \\ \text { ㅇㄴ } \end{gathered}$ |  | Use with Normal Duty (ND) Cycle |  |  |  |  |  |  | Use with Heavy Duty (HD) cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rated Output | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor ${ }^{(4)}$ [HP/kW] | Rated Input Current [Arms] | Dissipated <br> Power [W] |  | Rated Output Current ${ }^{(1)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor ${ }^{(4)}$ [HP/kW] | Rated Input Current [Arms] | Dissipated Power [W] |  |
|  |  |  |  | rent ${ }^{(1)}$ <br> [Arms] |  | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |  | $\begin{gathered} 1 \\ \min \end{gathered}$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |
|  | $\begin{gathered} \text { CFW } 11 \\ 0142 \\ \text { T } 2 \end{gathered}$ | E | $3 \phi$ | 125.0 | 137.5 | 187.5 | 50/37 | 125.0 | 1880 | 230 | 102.0 | 153.0 | 204.0 | 40/30 | 102.0 | 1470 | 220 |
|  | $\begin{gathered} \text { CFW11 } \\ 0180 \\ \text { T } 2 \end{gathered}$ |  |  | 159.0 | 174.9 | 239 | 60/45 | 159.0 | 2280 | 400 | 125.0 | 187.5 | 250 | 50/37 | 125.0 | 1760 | 390 |
|  | $\begin{gathered} \text { CFW111 } \\ 0211 \\ \text { T2 } \end{gathered}$ |  |  | 186.0 | 204.6 | 279 | 75/55 | 186.0 | 2600 | 400 | 159.0 | 239 | 318 | 60/45 | 159.0 | 2190 | 390 |
|  | $\begin{gathered} \text { CFW11 } \\ 0105 \\ \text { T } 4 \end{gathered}$ |  |  | 82.0 | 90.2 | 123.0 | 60/45 | 82.0 | 1480 | 210 | 69.0 | 103.5 | 138.0 | 50/37 | 69.0 | 1240 | 210 |
|  | $\begin{gathered} \hline \text { CFW11 } \\ 0142 \\ \text { T } 4 \\ \hline \end{gathered}$ |  |  | 111.0 | 122.1 | 166.5 | 75/55 | 111.0 | 1980 | 220 | 90.0 | 135.0 | 180.0 | 75/55 | 90.0 | 1580 | 210 |
|  | $\begin{gathered} \hline \text { CFW11 } \\ 0180 \\ \text { T } 4 \\ \hline \end{gathered}$ |  |  | 140.0 | 154.0 | 210.0 | 100/75 | 140.0 | 2410 | 390 | 111.0 | 166.5 | 222.0 | 75/55 | 111.0 | 1920 | 380 |
|  | $\begin{array}{\|c\|} \hline \text { CFW11 } \\ 0211 \\ \text { T } 4 \\ \hline \end{array}$ |  |  | 164.0 | 180.4 | 246.0 | 125/90 | 164.0 | 2810 | 390 | 140.0 | 210.0 | 280.0 | 125/90 | 140.0 | 2400 | 380 |

The notes for Table 8.1 on page 8-2 to Table 8.5 on page 8-4 are located after the Table 8.5 on page 8-4.
(*) For models with optional IP55 must be consulted to WEG.

Table 8.3 - Specifications of the CFW-11 series frame size E models for a switching frequency of 5 kHz and $\mathrm{Ta}=40^{\circ} \mathrm{C}{ }^{(*)}$

|  | Model | $\begin{gathered} \text { N } \\ \text { N } \\ \text { © } \\ \text { E } \\ \text { ㄴㄴ } \end{gathered}$ |  | Use with Normal Duty (ND) Cycle |  |  |  |  |  |  | Use with Heavy Duty (HD) cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rated Output Current ${ }^{(1)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor (4) [HP/kW] | Rated Input Current [Arms] | Dissipated Power [W] |  | Rated Output Current ${ }^{(1)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor ${ }^{(4)}$ [HP/kW] | Rated Input Current [Arms] | Dissipated <br> Power [W] |  |
|  |  |  |  |  | $\begin{gathered} 1 \\ \mathrm{~min} \end{gathered}$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |  | $\stackrel{1}{\min }$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |
|  | $\begin{gathered} \text { CFW11 } \\ 0142 \text { T } 2 \end{gathered}$ | E | $3 \phi$ | 132.0 | 145.2 | 198.0 | 50/37 | 132.0 | 2010 | 230 | 108.0 | 162.0 | 216.0 | 40/30 | 108.0 | 1570 | 220 |
|  | $\begin{gathered} \text { CFW } 11 \\ 0180 \text { T } 2 \end{gathered}$ |  |  | 168.0 | 184.8 | 252 | 60/45 | 168.0 | 2430 | 410 | 132.0 | 198.0 | 264 | 50/37 | 132.0 | 1860 | 390 |
|  | $\begin{gathered} \text { CFW11 } \\ 0211 \text { T } 2 \end{gathered}$ |  |  | 196.0 | 216 | 294 | 75/55 | 196.0 | 2760 | 410 | 168.0 | 252 | 336 | 60/45 | 168.0 | 2320 | 390 |
|  | $\begin{array}{\|c\|c\|c\|c\|c\|} \text { CFWW1 } \\ 0105 \text { T } \end{array}$ |  |  | 87.0 | 95.7 | 130.5 | 75/55 | 87.0 | 1590 | 220 | 73.0 | 109.5 | 146.0 | 60/45 | 73.0 | 1310 | 210 |
|  | $\begin{gathered} \text { CFW } 11 \\ 0142 \text { T } 4 \end{gathered}$ |  |  | 117.0 | 128.7 | 175.5 | 100/75 | 117.0 | 2100 | 230 | 95.0 | 142.5 | 190.0 | 75/55 | 95.0 | 1670 | 220 |
|  | $\begin{array}{\|c\|c\|c\|} \text { CFW } 11 \\ 0180 \text { T } 4 \end{array}$ |  |  | 148.0 | 162.8 | 222.0 | 125/90 | 148.0 | 2560 | 400 | 117.0 | 175.5 | 234.0 | 100/75 | 117.0 | 2020 | 380 |
|  | $\begin{array}{\|c\|c\|l\|} \text { CFW1 } \\ 0211 ~ T 4 \end{array}$ |  |  | 173.0 | 190.3 | 259.5 | 150/110 | 173.0 | 2970 | 400 | 148.0 | 222.0 | 296.0 | 125/90 | 148.0 | 2540 | 390 |

The notes for Table 8.1 on page 8-2 to Table 8.5 on page 8-4 are located after the Table 8.5 on page 8-4.
(*) For models with optional IP55 must be consulted to WEG.

Table 8.4 - Specifications of the CFW-11 series frame size E models for a switching frequency of 10 kHz and $\mathrm{Ta}=45^{\circ} \mathrm{C}$ (*)

|  | Model | $\begin{gathered} 0 \\ \text { N } \\ \text { in } \\ \text { E } \\ \text { Dit } \end{gathered}$ |  | Use with Normal Duty (ND) Cycle |  |  |  |  |  |  | Use with Heavy Duty (HD) cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rated Output Current ${ }^{(1)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor (4) $\mathrm{HP} /$ kW ] | Rated Input Current [Arms] | Dissipated Power [W] |  | Rated Output Current ${ }^{(1)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor (4) $[\mathrm{HP} /$ kW] | Rated Input Current [Arms] | Dissipated Power [W] |  |
|  |  |  |  |  | $\begin{gathered} 1 \\ \min \end{gathered}$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |  | $\stackrel{1}{\min }$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |
|  | $\begin{gathered} \text { CFW11 } \\ 0142 \text { T } 2 \end{gathered}$ | E | $3 \phi$ | 100.0 | 110.0 | 150.0 | 40/30 | 100.0 | 1740 | 220 | 81.0 | 121.5 | 162.0 | 30/22 | 81.0 | 1390 | 210 |
|  | $\begin{aligned} & \text { CFW11 } \\ & 0180 \text { T } 2 \end{aligned}$ |  |  | 126.0 | 138.6 | 189 | 50/37 | 126.0 | 2140 | 390 | 100.0 | 150.0 | 200 | 40/30 | 100.0 | 1720 | 370 |
|  | $\begin{gathered} \text { CFW11 } \\ 0211 \text { T2 } \end{gathered}$ |  |  | 148.0 | 162.8 | 222 | 60/45 | 148.0 | 2500 | 390 | 126.0 | 189 | 252 | 50/37 | 126.0 | 2140 | 380 |
|  | CFW1 1 <br> 0105 T 4 |  |  | 58.0 | 63.8 | 87.0 | 50/37 | 58.0 | 1430 | 200 | 49.0 | 73.5 | 98.0 | 40/30 | 49.0 | 1240 | 200 |
|  | $\begin{gathered} \text { CFW11 } \\ 0142 \text { T } 4 \end{gathered}$ |  |  | 79.0 | 86.9 | 118.5 | 60/45 | 79.0 | 1910 | 210 | 64.0 | 96.0 | 128.0 | 50/37 | 64.0 | 1580 | 200 |
|  | CFW1 1 <br> 0180 T 4 |  |  | 99.0 | 108.9 | 148.5 | 75/55 | 99.0 | 2380 | 370 | 79.0 | 118.5 | 158.0 | 60/45 | 79.0 | 1980 | 360 |
|  | CFWI 1 <br> 0211 T4 |  |  | 117.0 | 128.7 | 175.5 | 100/75 | 117.0 | 2860 | 370 | 99.0 | 148.5 | 198.0 | 75/55 | 99.0 | 2510 | 370 |

The notes for Table 8.1 on page 8-2 to Table 8.5 on page 8-4 are located after the Table 8.5 on page 8-4.
${ }^{(*)}$ For models with optional IP55 must be consulted to WEG.

Table 8.5 - Specifications of the CFW-11 series frame size E models for a switching frequency of 10 kHz and $\mathrm{Ta}=40^{\circ} \mathrm{C}{ }^{(*)}$

|  | Model | $\begin{gathered} 0 \\ \text { N } \\ \text { N } \\ \text { © } \\ \underline{E} \\ \text { 누 } \end{gathered}$ |  | Use with Normal Duty (ND) Cycle |  |  |  |  |  |  | Use with Heavy Duty (HD) cycle |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Rated Output Current ${ }^{(8)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor ${ }^{(4)}$ [HP/kW] | Rated Input Current [Arms] | Dissipated Power [W] |  | Rated Output Current ${ }^{(8)}$ [Arms] | Overload Current ${ }^{(2)}$ [Arms] |  | Maximum Motor ${ }^{(4)}$ [HP/kW] | Rated Input Current [Arms] | Dissipated Power [W] |  |
|  |  |  |  |  | $\begin{gathered} 1 \\ \min \end{gathered}$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |  | $\begin{gathered} 1 \\ \min \end{gathered}$ | 3 s |  |  | Surface Mounting ${ }^{(5)}$ | Flange Mounting ${ }^{(6)}$ |
|  | $\begin{aligned} & \text { CFW11 } \\ & 0142 \mathrm{~T} 2 \end{aligned}$ | E | $3 \phi$ | 106.0 | 116.6 | 159.0 | 40/30 | 106.0 | 1850 | 220 | 86.0 | 129.0 | 172.0 | 30/22 | 86.0 | 1480 | 210 |
|  | $\begin{aligned} & \text { CFW11 } \\ & 0180 \text { T } 2 \end{aligned}$ |  |  | 133.0 | 146.3 | 200 | 50/37 | 133.0 | 2260 | 390 | 106.0 | 159.0 | 212 | 40/30 | 106.0 | 1810 | 380 |
|  | $\begin{gathered} \text { CFW11 } \\ 0211 \text { T2 } \end{gathered}$ |  |  | 156.0 | 172 | 234 | 60/45 | 156.0 | 2630 | 390 | 133.0 | 200 | 266 | 50/37 | 133.0 | 2250 | 380 |
|  | $\begin{aligned} & \text { CFWI1 } \\ & 0105 \text { T4 } \end{aligned}$ |  |  | 62.0 | 68.2 | 93.0 | 50/37 | 62.0 | 1530 | 200 | 52.0 | 78.0 | 104.0 | 40/30 | 52.0 | 1300 | 200 |
|  | $\begin{aligned} & \text { CFW11 } \\ & 0142 \mathrm{~T} 4 \end{aligned}$ |  |  | 84.0 | 92.4 | 126.0 | 60/45 | 84.0 | 2020 | 210 | 68.0 | 102.0 | 136.0 | 50/37 | 68.0 | 1670 | 200 |
|  | $\begin{aligned} & \text { CFW11 } \\ & 0180 \text { T } 4 \end{aligned}$ |  |  | 105.0 | 115.5 | 157.5 | 75/55 | 105.0 | 2500 | 380 | 84.0 | 126.0 | 168.0 | 60/45 | 84.0 | 2080 | 370 |
|  | $\begin{gathered} \text { CFW11 } \\ 0211 \text { T } 4 \end{gathered}$ |  |  | 124.0 | 136.4 | 186.0 | 100/75 | 124.0 | 3000 | 380 | 105.0 | 157.5 | 210.0 | 75/55 | 105.0 | 2620 | 370 |

(*) For models with optional IP55 must be consulted to WEG.
(1) Rated current in permanent duty under the following conditions:

- Recommended switching frequencies. For operation with higher switching frequencies, it is necessary to reduce the rated output current according to Table 8.2 on page $8-3$ and Table 8.5 on page 8-4.
- Ambient temperature around the inverter: $-10^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$. The inverter may operate in environments with ambient temperatures around the inverter up to $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ if a derating of $2 \%$ is applied to the output current for each ${ }^{\circ} \mathrm{C}$ above $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$. Such current derating is valid for all switching frequencies.
- Inverters CFW- 11 with IP55 degree protection: $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ - standard conditions (surrounding the inverter).
- Inverters CFW- 11 with IP55 degree protection: $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ - current derating of $2 \%$ for each degree Celsius above $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.
- Air relative humidity: $5 \%$ to $95 \%$ non-condensing.
- From 1000 m to $4000 \mathrm{~m}(3,300 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply current derating of $1 \%$ for each 100 m above 1000 m of altitude.
- From 2000 m to $4000 \mathrm{~m}(6,600 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply maximum voltage derating ( 240 V for models $220 \ldots 240 \mathrm{~V}$, and 480 V for models $380 \ldots 480 \mathrm{~V})$ of $1.1 \%$ for each $100 \mathrm{~m}(328 \mathrm{ft})$ above $2000 \mathrm{~m}(6,600 \mathrm{ft})$.
- Environment with pollution degree 2 (as per EN50178 and UL 508C).
(2) Table 8.1 on page $8-2$ presents only two points of the overload curve (actuation time of 1 min and 3 s ).

The complete overload curves of the IGBTs for ND and HD are presented below.
Depending on the inverter operating conditions (ambient temperature around the inverter, output frequency, possibility or not of switching frequency derating, etc.), the maximum operating time of the inverter with overload may be shortened.
(3) The switching frequency may be automatically reduced to 2.5 kHz , depending on the operating conditions (ambient temperature around the inverter, output current, etc.) - if P0350 $=0$ or 1 .
If necessary to operate always at 5 kHz , set $\mathrm{P} 0350=2$ or 3 , and consider the rated current values of Table 8.2 on page 8-3 and Table 8.3 on page 8-3. Note that, in this case, it is necessary to apply a current derating to the inverter rated output current.
(4) The motor outputs are only for guiding purposes for WEG motors of 230 V or 460 V with 4 poles. The proper sizing must be done according to the rated current of the motors used.
(5) The specified losses are valid for the nominal operating conditions, that is, for the rated output current and switching frequency.
(6) The dissipated power for flange mounting corresponds to the total losses of the inverter minus the losses on the power modules (IGBT and rectifier).
(7) In order to indicate that the inverter should come with such optional item, it is necessary to specify it in the inverter smart code.
(8) Ambient temperature around the inverter: -10 to $40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$. The inverter may operate in environments with ambient temperatures around the inverter up to $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ if a derating of $2 \%$ is applied to the output current for each ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.

- Air relative humidity: $5 \%$ to $90 \%$ non-condensing.
- From 1000 m to $4000 \mathrm{~m}(3,300 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply current derating of $1 \%$ for each 100 m above 1000 m of altitude.
- From 2000 m to $4000 \mathrm{~m}(6,600 \mathrm{ft}$ to $13,200 \mathrm{ft})$ - apply maximum voltage derating ( 240 V for models $220 \ldots 240 \mathrm{~V}$, and 480 V for models $380 \ldots 480$ V) of $1.1 \%$ for each $100 \mathrm{~m}(328 \mathrm{ft})$ above $2000 \mathrm{~m}(6,600 \mathrm{ft})$.
- Environment with pollution degree 2 (as per EN50178 and UL 508C).



Figure 8.1 - (a) and (b) - IGBT overload curves for ND and HD use

### 8.2 ELECTRICAL/GENERAL SPECIFICATIONS

| Control | Method | Voltage source <br> Type of control: <br> - V/f (Scalar) <br> - VVW: Voltage Vector Control <br> - Vector control with encoder <br> - Sensorless vector control (without encoder) <br> ■ PWM SVM (Space Vector Modulation) <br> - Full digital (software) current, flux, and speed regulators Execution rate: <br> - current regulators: $0.2 \mathrm{~ms}(5 \mathrm{kHz})$ <br> - flux regulator: $0.4 \mathrm{~ms}(2.5 \mathrm{kHz})$ <br> - speed regulator/speed measurement: 1.2 ms |
| :---: | :---: | :---: |
|  | Output Frequency | च 0 to $3.4 \times$ rated motor frequency (P0403). The rated frequency is programmable from 0 Hz to 300 Hz in the scalar mode and from 30 Hz to 120 Hz in the vector mode <br> Output frequency limits as a function of the switching frequency: <br> -125 Hz (switching frequency $=1.25 \mathrm{kHz}$ ) <br> -200 Hz (switching frequency $=2 \mathrm{kHz}$ ) <br> -250 Hz (switching frequency $=2.5 \mathrm{kHz}$ ) <br> -500 Hz (switching frequency $=5 \mathrm{kHz}$ ) <br> -1000 Hz (switching frequency $=10 \mathrm{kHz}$ ) |
| Performance | Speed Control | V/f (Scalar): <br> Regulation (with slip compensation): $1 \%$ of the rated speed <br> Speed variation range: 1:20 <br> VVW: <br> Regulation: $1 \%$ of the rated speed <br> Speed variation range: 1:30 <br> Sensorless: <br> Regulation: 0.5 \% of the rated speed <br> Speed variation range: 1:100 <br> Vector with Encoder (P0202 $=4$ induction motor o P0202 $=6$ permanent magnet): <br> Regulation: <br> $\pm 0.01$ \% of the rated speed with a 14 -bits analog input (IOA); <br> $\pm 0.01$ \% of the rated speed with a digital reference (Keypad, Serial, Fieldbus, Electronic Potentiometer, <br> Multispeed) <br> $\pm 0.05 \%$ of the rated speed with a 12 -bits analog input (CC11) <br> ■ Speed variation range: 1:1000 |
|  | Torque Control | Range: 10 to $180 \%$, regulation: $\pm 5 \%$ of the rated torque (PO202 $=4,6$ or 7 ) <br> Range: 20 to $180 \%$, regulation: $\pm 10 \%$ of the rated torque (P0202 $=3$, above 3 Hz ) |
| Inputs (CC11 Board) | Analog | 2 isolated differential inputs; resolution of AI1: 12 bits, resolution of Al2: 11 bits + signal, ( 0 to 10 ) V , (0 to 20) mA or (4 to 20) mA, impedance: $400 \mathrm{k} \Omega$ for $(0$ to 10$) \mathrm{V}, 500 \Omega$ for ( 0 to 20 ) mA or ( 4 to 20 ) mA , programmable functions |
|  | Digital | 『 6 isolated digital inputs, 24 Vdc , programmable functions |
| Outputs (CC11 Board) | Analog | 2 isolated analog outputs, (0 to 10) $\mathrm{V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$ (maximum load), 0 to $20 \mathrm{~mA} /$ 4 to $20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{L}} \leq 500 \Omega\right)$ resolution: 11 bits, programmable functions |
|  | Relay | - 3 relay outputs with NO/NC contacts, $240 \mathrm{Vac}, 1 \mathrm{~A}$, programmable functions |
| Safety | Protection | Output overcurrent/short-circuit Under/Overvoltage Phase loss Overtemperature Braking resistor overload IGBTs overload Motor overload External fault/alarm <br> - CPU or memory fault <br> Ø Output phase-ground short-circuit |


| Integral <br> Keypad <br> (HMI) | Standard Keypad | $\square$ $\square$ $\square$ $\square$ $\square$ | 9 operator keys: Start/Stop, Up arrow, Down arrow, Direction of rotation, Jog, Local/Remote, <br> Right soft key and Left soft key <br> Graphical LCD display <br> View/edition of parameters <br> Indication accuracy: <br> - current: $5 \%$ of the rated current <br> - DC Link voltage: 3 \% <br> - speed resolution: 1 rpm <br> Possibility of remote mounting |
| :---: | :---: | :---: | :---: |
| Enclosure | IP20 | $\square$ | Standard |
|  | IP21 | V | Inverters with kit IP21 |
|  | Nema 1 | $\square$ | Inverters with Nemal kit (KN1E-01 or KN1E-02) |
|  | IP54 | $\square$ | Inverter back part (external part for flange mounting) - for models 180T2, 211T2, 180T4 and 211 T4 need special hardware H1 |
|  | IP55 | $\square$ | Inverters with optional IP55 (CFW1 1...T...O55...) |
| PC Connection for Inverter Programming | USB Connector | V | USB standard Rev. 2.0 (basic speed) <br> Type B (device) USB plug <br> Interconnection cable: standard host/device shielded USB cable |

### 8.3 CODES AND STANDARDS

| Safety <br> Standards | च UL 508C - Power conversion equipment <br> Note: Suitable for Installation in a compartment handling conditioned air <br> च UL 840-Insulation coordination including clearances and creepage distances for electrical equipment <br> च EN61800-5-1 - Safety requirements electrical, thermal and energy <br> E EN 50178 - Electronic equipment for use in power installations <br> च EN 60204-1 - Safety of machinery. Electrical equipment of machines. Part 1: general requirements <br> Note: The final assembler of the machine is responsible for installing an safety stop device and a supply disconnecting device <br> च EN 60146 (IEC 146) - Semiconductor converters <br> च EN 61800-2 - Adjustable speed electrical power drive systems - Part 2: general requirements - Rating specifications for low voltage adjustable frequency AC power drive systems |
| :---: | :---: |
| Electromagnetic Compatibility (EMC) | ■ EN 61800-3 - Adjustable speed electrical power drive systems - Part 3: EMC product standard including specific test methods. <br> च EN 61000-4-2 - Electromagnetic compatibility (EMC) - Part 4: testing and measurement techniques - Section 2: Electrostatic discharge immunity test <br> च EN 61000-4-3 - Electromagnetic compatibility (EMC) - Part 4: testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test <br> च EN 61000-4-4 - Electromagnetic compatibility (EMC) - Part 4: testing and measurement techniques - Section 4: Electrical fast transient/burst immunity test <br> च EN 61000-4-5 - Electromagnetic compatibility (EMC) - Part 4: testing and measurement techniques - Section 5: Surge immunity test <br> च EN 61000-4-6 - Electromagnetic compatibility (EMC)- Part 4: testing and measurement techniques - Section 6: Immunity to conducted disturbances, induced by radio-frequency fields <br> ■ EN 61000-4-11 - Testing and measurement techniques - voltage dips, short interruptions and voltage variations immunity tests |
| Mechanical <br> Standards | EN 60529 - Degrees of protection provided by enclosures (IP code) <br> UL 50 - Enclosures for electrical equipment <br> EC60721-3-3 - Classification of environmental conditions - part 3: classification of groups of environmental parameters and their severities - section 3: stationary use at weather protected locations <br> Level 3M4 |

### 8.4 CERTIFICATIONS

| Certifications (*) | Notes |
| :---: | :--- |
| UL and cUL | E184430 |
| CE |  |
| IRAM |  |
| C-Tick | Link: http://ww2.eagle.org/en/rules-and-resources/type-approval-database.html <br> After accessing the link, click on "Select Option" and select "Data Search" <br> On the new window, the certificate number must be entered on the "Certificate Number" field: 15-RJ2890495. <br> Click on "Search" |
| ABS | STO Funtion, with certificate issued by TÜV Rheinland <br> Functional Safety |

$\left(^{*}\right)$ For updated information on certifications, please contact WEG.

### 8.5 MECHANICAL DATA

## IP20



Figure 8.2-Inverter dimensions - frame size E-mm [in]

## IP55



Figure 8.3-Inverter dimensions - for models with optional IP55 - frame size E-mm [in]

### 8.6 NEMA1 KIT



- Weight of the KN1E-01 kit: $2.12 \mathrm{~kg}(4.67 \mathrm{lb})$
(a) Frame size E with the Nemal kit KNIE-01-CFW11 0142 T 2 O NI, CFW11 0105 T 4 O N1 and CFW11 0142 T 4 O N1 models

- Weight of the KN1E-02 kit: $4.3 \mathrm{~kg}(9.48 \mathrm{lb})$
(b) Frame size E with the Nemal kit KN1E-02-CFW110180 T 2 O NI, CFW11 0211 T 2 O N1, CFW11 0180 T 4 O N1 and CFWll 0211 T4ON1 models

Figure 8.4 - (a) and (b)-Inverter with the Nemal kit

