Non-Contact Guard Monitoring Safety System BNS/AES

Contents

Introduction Introduction Page 4 PDF classification Page 5 Application, design and operating principle Safety Sensors Page 6 Series BNS Page 8 Series AES Page 10 **Selecting BNS/AES systems** Selection Page 13 Method I Page 14 Method II Page 15 Page 16 Method III Page 17 Method IV **Selection tables BNS Safety Sensors** Page 18 **Product section** Safety Sensors Page 20 Page 27 Control modules Wiring diagrams Page 32 **Appendix** Explanation of symbols Page 46 Information about standards and literature Page 47

Introduction

EN 60947-5-3

Machinery brought into circulation within the EC require a CE mark. This CE mark indicates that the essential health and safety requirements, specified in the relevant EC directives, are fulfilled.

For machines, the Machinery Directive EC 98/37/EC [1] is of particular importance. Standards, the socalled harmonised standards, are listed under this directive. These standards may be, but do not have to be applied in the design of machines. If, however, they are taken into account, it is assumed that the machines satisfy the above mentioned essential health and safety requirements and may bear the CE mark without special further tests (presumption of conformity).

An important aspect of the Machinery Directive is the protection of persons from hazards caused by machinery. To conform to this requirement machines are often fitted with safety guards.

The standard EN 1088 [6] listed under the Machinery Directive describes the principal construction of such safety guards and the principles involved in monitoring them.

Various systems can be employed in the monitoring of movable separating guard devices. One possible monitoring device is the magnetic proximity switch with safety function described in EN 1088.

Technical details and design features are described in the product standard for "Proximity devices with defined behaviour under fault conditions" (PDF), EN 60947-5-3 [9], which is also listed under the Machinery Directive.

In the literature such proximity switches have been given a variety of names including noncontact position switches.

Schmersal uses the term Safety Sensor.

PDF Classification - Relationship to Control Categories:

According to the Machinery Directive [1], the machine manufacturer is required to carry out a hazard and risk analysis according to EN 292-2 [3] and EN 1050 [5]. The manufacturer must select the necessary Control Category according to EN 954-1 [4] and design the safety related parts of his control system accordingly.

The choice of suitable Safety Sensors proves to be difficult because, although EN 954-1 [4] specifies Control Categories (B to 4), these categories cannot be found in the product standard, EN 60947-5-3 [9], which is relevant to Safety Sensors. Instead, the Safety Sensors are classified as show in Table 1.

The relationship between the Control Categories given in EN 954-1 and the PDF classes given in EN 60947-5-3 is shown in Table 2 below.

Since the relationship between Control Category and PDF is not clear, we recommend that products are used which conform to the required Control Category according to EN 954-1 and have been verified to the neccessary PDF classification.

Class	Meaning
PDF-D	Reliability through special design
PDF-T	With test capability
PDF-S	Single-fault tolerant
PDF-M	Self-monitoring

Tab. 1: Classification of PDFs

Control Category to EN 954-1	PDF Class to EN 60947-5-3
В	D
1	S
2	Т
3	S
4	M

Tab. 2: Relationship between Control Category and PDF Classification for SCHMERSAL safety systems BNS/AES

Application:

Due to their non-contact principle of operation, Safety Sensors can be completely encapsulated. As a consequence they are particularly suitable for monitoring safety guards which, on account of their design restrains or due to strenuous environmental conditions, can only be monitored with a great deal of effort using classical safety switches. They are especially suitable for use in areas where high levels or dust of dirt prevail.

Complete encapsulation also allows a smooth and easily cleaned shape, as preferred in the food processing industry with its high standards of hygiene. Of course, the materials used for the Safety Sensors are compatible with foodstuffs.

Their non-contact principle of operation also facilitates hidden mounting behind panels. This is another advantage in the food processing industry, because correct sensor function is not affected by installation behind stainless steel.

Classical safety switches with a separate actuator need precise alignment of the switch and the actuator. Here, again due to their non-contact principle, Safety Sensors are easier to mount, as they are more tolerant to misalignment between the actuator and sensor.

Another advantage is the substantially smaller shape in comparison to electromechanical switches. Owing to their small size, Safety Sensors are found in applications where little space is available and also in the monitoring of small guard doors and flaps which demand a correspondingly small actuating radius.

Typical applications for Safety Sensors are printing machines, machinery in the food processing industry and packaging machines.

Fig. 1: Typical components of a PDF system

rs

Design / Operating principle :

According to EN 60947-5-3 [9], proximity switches with defined behaviour under fault conditions (PDF) consist of three components.

Figure 1 shows the three typical components:

- 1 The active parts: Proximity switch plus actuator,
- 2 the output signal switching device (OSSD)
- **3** and (where required) a control and monitoring module.

These three components need not necessarily be separate from one another.

Schmersal offers these three components as a system. This system has been tested and approved by the German notified body BG. This ensures that all components are compatible with each other and optimally suite to the relevant safeguarding function.

Safety Sensors in the series BNS have reed contacts as mechanical contacts. These contacts are either opened or closed by a magnetic field applied externally. The status of the contacts is monitored by a control module of the AES series.

This module also provides the current limit for the reed contacts. A current that is too high would lead to welding of the reed contacts and therefore to a malfunction of the Safety Sensor.

In addition, the control modules are tolerant to bouncing of the reed contacts causal by the impact of a closing guard – which can result in a short-term signal "Safety Guard open". This can lead to a premature switching-off of the control module and is prevented by a switch-on delay. This method helps ensure that no fault signals occur, the-

reby increasing the availability of the machinery.

For this sort of function the µP technology employed by Schmersal in its control modules offers advantages. Such "additional functions" can be realised more easily and with more space saving than when using conventional, discrete electronics.

In the terminology of EN 60947-5-3, the AES control module corresponds to the control and monitoring device with integrated OSSD.

Series BNS

Normally closed/ normally open principle:

The reed contacts used in Safety Sensors are not positive break contacts. This explains the necessity of equipping Safety Sensors (PDFs) with a control unit to ensure the correct functioning of the contacts and therefore of the PDF.

Schmersal has selected normally closed and normally open contact combinations in the Safety Sensors. In this way the sensor combines two properties which are particularly described in EN 60204-1 [7]: redundancy (two contacts) and diversity (different prin-

ciples of operation). With higher Control Categories, EN 954-1 [4] suggests diversity as a way of preventing common cause failure (see [4]).

One such fault would be, for example, the welding of the NC contact due to a too high current when the safety guard is closed. This excessive current load may arise due to an excessive input capacitance on the connected control module. However, in the BNS/AES system Schmersal has taken appropriate precautions (diversity, current limit) to prevent this type of fault.

Coded and non-coded Safety Sensors:

Due to their operating principle, it is easy to tamper with magnetically operated Safety Sensors. The reed contacts change state in the presence of a simple magnetic field. In this case these devices are known as non-coded Safety Sensors. Where this type of sensor is used in applications for personnel protection, EN 1088 [6] requires the sensors to be mounted in a concealed position (Fig. 2).

To ensure better protection against tampering, which is particularly recommended with personnel protection applications,

Fig. 2: Concealed installation of a non-coded Safety Sensor

Schmersal offers coded magnetically Safety Sensors. In this case a special magnetic field with a particular polarisation and field strength must be applied to switch the reed contacts. A unique arrangement of the reed contacts within the switch has been chosen so that the contacts only switch with this special magnetic field.

According to EN 1088 [6], coded magnetically operated safety switches do not need to be mounted hidden – a fact that significantly simplifies the design effort and maintenance in operation (Fig. 3).

Switching distances / Hysteresis:

With Safety Sensors two important values are important:

One of them is the safe switching distance s_{ao} (assured operating distance) at which the Safety Sensor changes to the ON state under all defined ambient conditions and under consideration of all manufacturing tolerances [9].

The other is the safe distance for switching off sar (assured release distance) at which the Safety Sensor changes to the OFF state under all defined ambient conditions and under consideration

of all manufacturing tolerances [9].

These two figures are limits which should be taken into account during the design of the safety guard. In practice, these figures deviate from the actual measured figures, because the ambient conditions have a significant effect on the sensitivity of the Safety Sensor. For this reason the following normally applies in practice:

 $s_{ON} > s_{ao}$ and $s_{OFF} < s_{ar}$.

It should be noted however that there is a region $s_{ON} < s_{H} < s_{OFF}$ in which the sensor is still in the ON state, although the

actuator has been removed further than s_{ON} from the switch.

It is important to take this hysteresis zone into account when positioning the Safety Sensors. The guard door must be designed so that it always opens further than s_{ar} so that the control and monitoring device has definitely switched off before the guard door allows access to the hazardous area (see also Fig. 5, page 10).

Fig. 3: Installation of a coded Safety Sensor non-concealed

Fig. 4: Diagram of $s_{\text{ar}},\,s_{\text{ao}}$ and the hysteresis zone

Series AES

Mounting information:

As for all safety switches, the Safety Sensor must not be used as a mechanical stop [6]. Other components, such as dampers, must be provided for this.

EN 1088 [6] and also the information sheet from the German notified body BG (BGI 670) [10] give further information about the mounting of Safety Sensors:

- positive locking mounting (dowel pin) against sensor and actuator rotation and movement,
- mounting using components that are not self-loosening or self-releasing,
- possibly hidden installation if no coded actuator is used.

The maintenance aspect must be taken into account when mounting. It is therefore recommended that the proximity switch and actuator are mounted in a maintenance-friendly manner.

For reasons of safety we recommend that the actuator and sensor are mounted so that if one of the two components falls off, it cannot lie on the other one. This also renders tampering of the Safety Sensor more difficult.

Due to the switching distances and hysteresis, it must be ensured when mounting the devices that, particularly with large guard doors, the doors cannot be opened so far that access to the hazard area can be obtained, although the proximity switch has not yet switched OFF. Here, mounting in the vicinity of the closing edge is recommended (Fig. 5).

Many Safety Sensors are supplied with ready made cable. When routing the cable, a minimum bending radius of $R_{min} \ge 5$ d must be maintained, where d is the external diameter of the cable, so as not to damage the cable (Fig. 6).

Fig. 6: Minimum radius of the cable should be observed

Wiring of the BNS:

The connection of a single Safety Sensor to a control unit is very easy, see Fig. 7.

Often, multiple sensors are connected to one control module, to reduce the number of control modules required.

If a number of sensors are linked in series to a control module, the connection of the sensors themselves must be taken into account. With an NC/NO system such as Schmersal reccomands, the NC contacts of the in-

dividual sensors must be connected in series and the NO contacts in parallel. Only by doing this it is ensured that both inputs on the control module change their state when the guard door is closed or opened. The control module only provides the release signal when both inputs have changed their state.

A disadvantage with series-parallel wiring is the possibility that faults in one of the connected Safety Sensors can be overwritten by others and therefore not be detected. Consequently, this type of arrangement is not suitable for higher Control Categories according to EN 954-1 [4].

Fig. 7: Connection of a Safety Sensor to a control module

Fig. 8: Connection of multiple Safety Sensors to a control module

Detailed technical information at: www.schmersal.com

Selection

For the selection of a suitable BNS/AES safety system, the integration of the devices into the machine control plays a significant role.

This integration can be realised in numerous ways.

The following illustrations, Figs. 9 to 12, show four of the most common methods of integrating one or more Safety Sensors into a machine control. Below each figure a table is given with possible configurations, the Control Categories that can be achieved and reference to the corresponding wiring diagram.

Suitable BNS and AES device combinations can easily be found with the aid of these tables.

Selection of the required Safety Sensor can then be done with the aid of the selection table "BNS Safety Sensors" on page 18.

How to choose your BNS/AES system:

- Select the desired method of integrating the BNS into the machine control (Method I to IV).
- 2. The table given for the selected method shows the achievable Control Categories according to EN 954-1 and classifications to IEC 60947-5-3 for certain BNS contacts in combination with a given AES.
- Select the BNS/AES combination for the desired Control Category and classification.
- 4. Choose the required Safety Sensor based on the selected BNS contacts from the table "BNS Safety Sensors".
- 5. Check the technical data for the selected devices in the product section (pages 20 to 24).

Note:

With the BNS contacts the following should be noted:

The 1st figure states the number of NO contacts on the selected BNS.

The **2nd figure** states the number of NC contacts on the selected BNS.

Method I

Fig. 9: Individual monitoring with integrated control module

Description:Monitoring of a Safety Sensor using an integrated control module.

Category	Classification	Max. no. of	No. of enabling paths	Control	BNS	Wiring
to 954-1	to 60947-5-3	BNS		module	contacts	diagram
Cat. 1	PDF-S	1	1	Integrated	-01y -01zG	I.1

Method II

Fig. 10: Individual monitoring in the control module

Description:Monitoring of a Safety Sensor using a control

Sensor using a control module. Signal to the PLC via the control module.

Category to 954-1	Classification to 60947-5-3	Max. no. of BNS	No. of enabling paths	Control module	BNS contacts	Wiring diagram
Cat. 1	PDF-S	1	1	AES 1102	-12z	II.1
					-12zG	
Cat. 3	PDF-M	1	1	AES 1135	-11z	II.2
					-11zG	
Cat. 3	PDF-M	1	2	AES 1235	-11z	II.3
					-11zG	
Cat. 4	PDF-M	1	3	AES 1337	-11z	II.4
					-11zG	

Method III

Fig. 11: Series/parallel wiring inside the expander

Description:

Monitoring of a number of Safety Sensors using a control module via a separate input expander. Only one signal to the PLC via the control module.

Note:

The series/parallel wiring of the individual contacts takes place inside the expander.

Components for the input expander module (see page 31)

Protect-IE-02 Protect-IE-11

Optionally available for the wiring of sensors with integrated connector (see page 32) Y-Adapter BNS-Y-02 BNS-Y-11

Category to 954-1	Classification to 60947-5-3	Max. no. of BNS	No. of enabling paths	Control module	BNS contacts	Wiring diagram
Cat. 1	PDF-S	20	1	AES 1102	-12z-2187 -12zG-2187	III.1
Cat. 3 *	PDF-S	20	1	AES 1135	-11z -11zG	III.2
Cat. 3 *	PDF-S	20	2	AES 1235	-11z -11zG	III.3
Cat. 3 *	PDF-S	20	3	AES 1337	-11z -11zG	III.4

^{*} The malfunctioning of a sensor, e.g. due to a short circuit or a wire breakage, can be overwritten by the actuation of another sensor. This must be taken into account in the risk analysis.

Method IV

Fig. 12: Series/parallel circuit with individual monitoring in the control module

Description:

Monitoring of a number of Safety Sensors using a control module. Signalling of each Safety Sensor to the PLC via the control module.

Category to 954-1	Classification to 60947-5-3	Max. no. of BNS	No. of enabling paths	Control module	BNS contacts	Wiring diagram
Cat. 3	PDF-M	6	2	AES 2285 *	-11z	IV.1
Cat. 3	PDF-M	2	1	AES 1165-2250	-11z -11zG	IV.2
Cat. 3 *	PDF-M	3	1	AES 1185 **	-11z -11zG	IV.3
Cat. 3 *	PDF-M	2	2	AES 1265	-11z -11zG	IV.4

Internal series- and parallel connection of Safety Sensor contacts.

The malfunctioning of a sensor, e.g. due to a short circuit or a wire breakage, can be overwritten by the actuation of another sensor. This must be taken into account in the risk analysis.

^{**} No individual signal output

Selection tables: BNS Safety Sensors

Standard switching distance

Form	Sensor type	BNS contacts	Connection options	Actuator type	Coded	Distance s _{ao} /s _{ar} [mm]	Integrated monitoring
	BNS 33	-11z(G) -12z(G) -12z-2187 -12zG-2187-10	Ltg, ST Ltg, ST Ltg Ltg	BPS 33	•	5 / 15	
	BNS 36	-02z(G) -11z(G) -02/01z(G) -11/01z(G)	Ltg, ST Ltg, ST Ltg, ST Ltg, ST	BPS 36-1 BPS 36-2	•	5 / 15	
<u></u>	BNS 250	-11z(G) -12z(G) -12z-2187	Ltg Ltg Ltg	BPS 250	•	4 / 14	
	BNS 260	-02z(G) -11z(G) -02/01z(G) -11/01z(G)	Ltg, ST Ltg, ST Ltg, ST Ltg, ST	BPS 260-1 BPS 260-2	•	5 / 15	
Ф	BNS 303	-11z(G) -12z(G) -12z(G)-2187	Ltg, ST Ltg, ST Ltg	BPS 300 BPS 303	•	5 / 15	•
4	BNS 120	-11z -12z -12z-2187	Ltg Ltg Ltg	BP 8		10 / 22	
	BNS 180	-11z -12z -12z-2187	Ltg Ltg Ltg	BP 6		10 / 22	
	BNS 300	-01zG	Ltg, ST	BPS 300 BPS 303	•	5 / 15	•
	BNS 333	-01y	SK	BPS 300 BPS 303	•	4 / 14	•

G = with LED (option)

Ltg = Cable

 \mathbf{ST} = Plug-in connector

 $\mathbf{SK} = \mathbf{Screw} \ \mathbf{terminals}$

Technical data and ordering details can be obtained from the following pages.

Selection tables: BNS safety sensors

Increased switching distance

Form	Sensor type	BNS contacts	Connection options	Actuator type	Coded	Distance s _{ao} /s _{ar} [mm]	Integrated monitoring
	BNS 16	-12z	SK	BPS 16	•	8 / 18	
	BNS 33	-11z(G) -12z(G) -12z-2187 -12zG-2187- 10	Ltg, ST Ltg Ltg Ltg	BPS 33-2326	•	8 / 15	
	BNS 33S	-12z(G)	Ltg	BPS 33S	•	8 / 18	
Щ	BNS 303 -2211	-11z(G) -12z(G)	Ltg, ST Ltg, ST	BPS 300 BPS 303	•	8 / 18	
	BNS 120	-11z -12z -12z-2187	Ltg Ltg Ltg	BP 10 BP 15		20 / 32	
	BNS 180	-11z -12z -12z-2187	Ltg Ltg Ltg	BP 10 BP 15		20 / 32	
	BNS 300 -2211	-01zG	Ltg, ST	BPS 300 BPS 303	•	8 / 18	•
	BNS 30 -2211	-01z(G)	Ltg, ST	BPS 300 BPS 303	•	8 / 18	•
	BNS-B20	-12z(G)	Ltg, ST	BNS-B20-B01	•	0 / 22	

G = with LED (option)

Ltg = Cable

ST = Plug-in connector

SK = Screw terminals

Technical data and ordering details can be obtained from the following pages.

BNS 16

BNS 250

BNS 260

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 67 Termination: screw terminals Cable size: max. 2 x 1.5 mm² Cable entry: 3 x M20 Mode of operation: magnetic Control Category: up to 4* up to PDF-M* Classification: Magnetic actuator: coded BPS 16 Sao: 8 mm S_{ar}: 18 mm Max. switching voltage without LED: 100 VAC/DC Max. switching current without LED: Max. switching capacity without LED: 10 VA/W

Characteristics

Enclosure:	glass-fibre reinforced
	thermoplastic
Protection class:	IP 67
Termination:	Boflex cable
Cable size:	4 x 0.25 mm ²
Mode of operation:	magnetic
Control Category:	up to 4*
Classification:	up to PDF-M*
Magnetic actuator:	coded BPS 250
S _{ao} :	4 mm
S _{ar} :	14 mm
Max. switching voltage w	rithout LED: 24 VDC
Max. switching voltage w	vith LED: 24 VDC
Max. switching current w	ithout LED: 100 mA
Max. switching current w	rith LED: 10 mA
Max. switching capacity	with LED: 1 W
Max. switching capacity	with LED: 240 mW
Ambient temperature:	−25 °C + 70 °C

Characteristics

Enclosure: glass-fibre reinforced thermoplastict IP 67 Protection class: Termination: Boflex cable, or connector M8 4 x 0.25 mm² Cable size: 6 x 0.25 mm² Mode of operation: magnetic Control Category: up to 4* Classification: up to PDF-M* coded BPS 260 Magnetic actuator: S_{ao}: 5 mm 15 mm 75 VDC Max. switching voltage without LED: Max. switching voltage with LED: 24 VDC With 6-pole connector: 30 VDC Max. switching current without LED: 400 mA Max. switching current with LED: 10 mA 10 VA Max. switching capacity with LED: Max. switching capacity with LED: 240 mW Ambient temperature: - 25 °C ... + 70 °C

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

BNS 16-10z2

BPS 16

20

Ambient temperature:

Ordering details

– 25 °C ... + 70

No.	Replace	Description
1	11	please order 12
	12	1NO/2NC
		Actuating plane:
2	V	top
	R	right
	L	left
	D	front (cover)
	U	rear

sensor

actuator

BNS 16-12z-LR actuating direction from left and right with 2 x BPS 16

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

_	
ŒĎ	
AL.	

Ordering details

BNS 250-11z2-3 sensor **BPS 250** actuator

No.	Replace	Description
1	11	1NO/1NC
2	12 G	1NO/2NC with LED
3	2187	without LED only for Method III
		see page 15

Note: * only in combination with AES safety control module

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

Ordering details

BNS 260-102z3-4-5 sensor BPS 260-1, BPS 260-2 actuator

No.	Replace	Description
1		Safety contacts:
	11	1 NO / 1 NC
	02	2 NC
2		Signalling contacts:
	2187	No signalling contact
	/01	1 NC
3		Without LED
	G	With LED
(4)		Cable
_	ST	Connector
(5)	L	Left hand door
	R	Right hand door
		@ CLUMEDED!

BNS 33

BNS 33S

BNS 36

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 67 Termination: Boflex cable, connector M8x1 4 x 0.25 mm² Cable size: Mode of operation: magnetic Control Category: up to 4* up to PDF-M* Classification: Magnetic actuator: coded BPS 33, BPS 33-2326 S_{ao}: BPS 33: 5 mm BPS 33-2326: 8 mm BPS 33: 15 mm S_{ar}: BPS 33-2326: 15 mm

Max. switching voltage without LED: 100 VAC Max. switching voltage with LED: 24 VDC Max. switching current with LED: 10 mA 240 mW Max. switching capacity with LED: Ambient temperature: - 25 °C ... + 75 °C

Characteristics

Enclosure: glass-fibre reinforced thermoplastic IP 67 Protection class: Termination: Boflex cable Cable size: 4 x 0.25 mm² Mode of operation: magnetic Control Category: up to 4* up to PDF-M* Classification: coded BPS 33, Magnetic actuator: BPS 33-2326 BPS 33: 5 mm BPS 33-2326: 8 mm BPS 33: 15 mm

BPS 33-2326: 15 mm Max. switching voltage without LED: 100 VAC Max. switching voltage with LED: 24 VDC Max. switching current without LED: 250 mA Max. switching current with LED: 10 mA 240 mW Max. switching capacity with LED: Ambient temperature: - 25 °C ... + 80 °C

Characteristics

Enclosure:	glass-fibre reinforced
	thermoplastic
Protection class:	IP 67 to EN 60529
Termination:	cable LiYY,
	connector M8
Cable size:	4 x 0.25 mm ²
	6 x 0.25 mm ²
Control Category:	up to 4*
Classification:	up to PDF-M*
Magnetic actuator:	coded BPS 36
S _{ao} :	7 mm
S _{ar} :	17 mm
Max. switching voltage w	rithout LED: 75 VDC
Max. switching voltage w	rith LED: 24 VDC
With 6-pole connector:	30 VDC
Max. switching current w	ithout LED: 400 mA
Max. switching current w	ith LED: 10 mA
Max. switching capacity	without LED: 10 VA
Max. switching capacity	with LED: 240 mW
Ambient temperature:	– 25 °C + 70 °C

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

sensor

actuator

actuator

only for Method III see page 15

with connector M8x1

Description

1NO/1NC 1NO/2NC

with LED without LED

Approvals

BPS 33

1

2

(3)

4

BNS 33-11z2-3-4

BPS 33 -2326

No. Replace

11

12

G

ST

2187

Ordering details

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

BNS 33S-12z1 sensor **BPS 33S** actuator

Ordering details

No.	Replace	Description
1	G	with LED without LED

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

Ordering details

BNS 36-1223-4-5 sensor BPS 36-1, BPS 36-2 actuator

No.	Replace	Description
1		Safety contacts:
	11	1NO/1NC
	02	2 NC
2		Signalling contacts:
	2187	No signalling contact
	/01	1 NC
(3)		Without LED
_	G	With LED
(4)		Cable
_	ST	Connector
(5)	L	Left hand door
	R	Right hand door

BNS 303

BNS 120

BNS 180

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 67 Termination: Boflex cable, connector M12x1 Cable size: 4 x 0.25 mm² Mode of operation: magnetic Control Category: up to 4* up to PDF-M* Classification: Magnetic actuator: coded BPS 300, BPS 303, BPS 303 SS

S_{ao}: 5 mm ordering suffix -2211: 8 mm S_{ar}: 15 mm ordering suffix -2211: 18 mm

Max. switching voltage without LED: 100VAC Max. switching voltage with LED: 24 VDC Max. switching current without LED: 500 mA Max. switching current with LED: 10 mA Max. switching capacity with LED: 240 mW Ambient temperature: - 25 °C ... + 70 °C

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 67 Termination: Boflex cable Cable size: 4 x 0.25 mm² Mode of operation: magnetic Control Category: up to 4* Classification: up to PDF-M* Magnetic actuator: uncoded BP 8, BP 10, BP 15 SS BP 8: 10 mm BP 10, BP 15 SS: 20 mm

BP 10, BP 15 SS: 32 mm Max. switching voltage without LED: 100 VAC/DC Max. switching current without LED: 250 mA Max. switching capacity without LED: 3 VA/W

BP 8: 22 mm

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 67 Termination: Boflex cable Cable size: 4 x 0.25 mm² Mode of operation: magnetic Control Category: up to 4* Classification: up to PDF-M* uncoded BP 6, Magnetic actuator: BP 10, BP 15 SS BP 6: 10 mm BP 10, BP 15 SS: 20 mm BP 6: 22 mm BP 10, BP 15 SS: 32 mm

Max. switching voltage without LED: 100 VAC/DC Max. switching current without LED: 250 mA Max. switching capacity without LED: 3 VA/W

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14;

Approvals

BNS 120-10z-2

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

Ordering details

BNS 303-①z②-③-④ sensor BPS ... (see page 21) actuator

No.	Replace	Description
1	11	1NO/1NC
	12	1NO/2NC
2	G	with LED
		without LED
3	2211	increased switching
		distance
	2187	only for Method III (p. 15)
4	ST	with connector M12x1

Note: * only in combination with AES safety control module

EN 1088

Ordering details

BP ... (see page 21)

sensor actuator

No.	Replace	Description
1 2	11 12 2187	1NO/1NC 1NO/2NC only for Method III see page 15

Ordering details

BNS 180-10z-2 sensor **BP** ... (see page 21) actuator

No.	Replace	Description
1)	11 12 2187	1NO/1NC 1NO/2NC only for Method III see page 15

BNS 300

BNS 30

BNS 333

glass-fibre reinforced

Characteristics

Enclosure:

thermoplastic Protection class: IP 67 Termination: Boflex cable, connector M12x1 Cable size: 4 x 0.75 mm² Mode of operation: magnetic Control Category: (integrated control module) Classification: PDF-S Magnetic actuator: coded BPS 300. BPS 303, BPS 303 SS Sao: 5 mm ordering suffix -2211: 8 mm 15 mm ordering suffix -2211: 18 mm 250 VAC Max. switching voltage: Max. switching current: 3 A 1 enabling path Output: 24 VDC U_e: 30 mA

Characteristics

Enclosure: brass, nickel-plated Protection class: IP 67 Termination: Boflex cable, connector M12x1 Cable size: 4 x 0.75 mm² Mode of operation: magnetic Control Category: (integrated control module) Classification: PDF-S Magnetic actuator: coded BPS 300, BPS 303, BPS 303 SS 5 mm

ordering suffix -2211: 8 mm S_{ar}: 15 mm ordering suffix -2211: 18 mm Max. switching voltage: 250 VAC Max. switching current: 3 A Output: 1 enabling path U_e: 24 VDC I_e: 30 mA Max. switching capacity: 750 VA

Characteristics

Enclosure: glass-fibre reinforced thermoplastic Protection class: IP 65 Termination: screw terminals Cable size: max. 2 x 1.5 mm² Cable entry: 1 x M20 Mode of operation: magnetic Control Category: (integrated control module) Classification: PDF-S coded, BPS 300, Magnetic actuator: BPS 303, BPS 303 SS 4 mm

S_{ar}: 14 mm

Max. switching current: 5 A

Max. switching voltage: 250 VAC

Output: 1 enabling path

U_e: 24 VDC

I_e: max. 40 mA

Max. switching capacity: 1250 VA

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Standards

EN 60947-5-3; EN 954-1; BG-GS-ET-14; EN 1088

Approvals

750 VA

Approvals

Approvals

(€

Ordering details

Max. switching capacity:

BNS 300-01zG-①-② sensor BPS ... (see page 21) actuator

No.	Replace	Description
1	2211	increased switching distance
	2230	additional signal output
	2246	U _e 42 VAC
(2)	ST	with connector M12x1

Ordering details

BNS 30-01zG-①-② sensor BPS ... (see page 21) actuator

No.	Replace	Description
1	2211	increased switching distance
	2230	additional signal output
	2246	U _e 42 VAC
2	ST	with connector M12x1

Ordering details

BNS 333-01y ① ② Sensor BPS ... (s. Seite 21) Betätiger

No.	Replace	Description
1	V R L	Betätigungsebene: vorderseitig rechtseitig linksseitig
2	D U M20	deckelseitig unterseitig Leitungseinführung M 20

BNS-B20

Characteristics

Enclosure: glass-fibre reinforced thermoplastic
Protection class: IP 67 to EN 60529
Connection: connector M 12 x 1, eight pole

Control category: up to 4 to EN 954-1
Classification: up to PDF-M
to IEC 60947-5-3

 $\begin{array}{ccc} S_{ao} \colon & 0 \text{ mm} \\ S_{ar} \colon & 22 \text{ mm} \\ \text{Max. switching voltage with connector: } 24 \text{ VDC} \\ \text{with connector and LED:} & 24 \text{ VDC} \\ \text{with cable:} & 110 \text{ VAC/DC} \\ \text{with cable and LED:} & 24 \text{ VDC} \\ \end{array}$

Max. switching capacity

with LED: 240 mW without LED: 3 W Ambient temperature: -25 °C ... + 70 °C

Standards

IEC 60947-5-3; BG-GS-ET-14

Approvals

Ordering details

BNS-B20-12z①-②-③ Sensor BNS-B20-B01 Actuator

No.	Replace	Description
1		without LED
	G	with LED
2		with bottom cable
	Н	with rear cable
	ST	with bottom M12 connector
3	L	Left-hand hinged door *
	R	Right-hand hinged door *

Actuators

BP 6 without enclosure

Actuators

Actuators

Ordering details

Stainless steel:

Actuators: Without enclosure:

Ordering details

BP 6 BP 8

BP 10

BP 15 SS

Actuators:

BPS 16
BPS 250
BPS 260
BPS 33

Ordering details

Actuators:

BPS 33S
BPS 36

Thermoplastic:
BPS 300
Thermoplastic for food
processing industry:
BPS 303

Actuators

System components

System components

Ordering details

Actuators: Stainless steel for food processing industry: Spacer

BPS 303 SS Distanzstück BNS 260

Ordering details

Cable with connector (female) for BNS 260PVC with snap fitting, 6-pinwith straight connector, 2 m cable11843425 m cable118434310m cable1184344with angled connector, 2 m cable1184345

2 m cable 1184345 5 m cable 1184346 10m cable 1184347

Ordering details

Cable with connector (female) for BNS 260

PVC with snap fitting , 4-pin

with straight connector , 2 m cable
5 m cable
10m cable
with angled connector , 2 m cable
5 m cable
1184357

1184358

10m cable

1184360

AES 1102

AES 1135/1136/1165

AES 1235/1236/1265

Characteristics

24 VDC ± 15 % Up: 110 VAC 24 VAC 42 VAC 0.1 A Start conditions: automatic Feedback circuit: no Stop category: 0 Control Category: Monitored inputs: 2 NC / 1 NO

Enabling contacts: 1 enabling path max. 250 VAC, Contact load capacity: max. 4 A ($\cos \varphi = 1$) Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: I FD Dimensions: 22.5 x 75 x 110 mm

Inductive loads to be suppressed by Note:

Characteristics

Signalling output:

24 VDC ± 15% U_e: 0.2 A Start conditions: automatic Feedback circuit: no Stop category: 0 Control Category: 3 Monitored inputs: 1 NC / 1 NO **Enabling contacts:** 1 enabling path max. 250 VAC, Contact load capacity: max. $6 A (\cos \varphi = 1)$

Y1 + Y2 = max. 100 mA,p-type, short-circuit proof Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: LED (ISD) Dimensions: 22.5 x 100 x 121 mm

Inductive loads to be suppressed by

means of a suitable circuit.

2 transistor outputs,

Characteristics

U_e: 24 VDC \pm 15% 0.2 A Start conditions: automatic or start button Feedback circuit: yes Stop category: 0 Control Category: 3 Monitored inputs: 1 NC / 1 NO Enabling contacts: 2 enabling paths max. 250 VAC, Contact load capacity: max. $6 A (\cos \varphi = 1)$

Signalling output: 1/2 transistor outputs Y1+Y2 = max. 100 mAp-type, short-circuit proof

Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: LED (ISD) Dimensions: 22.5 x 100 x 121 mm

Inductive loads to be suppressed by

means of a suitable circuit.

 ϵ

means of a suitable circuit.

Standards

Note:

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Standards

Note:

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Standards

 ϵ c(UL)_{US}

IEC/EN 60204-1; EN 954-1; EN 60947-5-3;

Ordering details

BG-GS-ET-14; BG-GS-ET-20

AES 1102 ① 2 NC / 1 NO No. Replace Description 24 VDC 1 110 VAC .3 24 VAC .4 42 VAC

Approvals

 ϵ **S** CUL)_{US}

Ordering details

AES 113①		1 NC / 1 NO
AES 1165-2250		2x 1 NC / 1 NO
No. Replace		Description
1	5 6	Without start-up test With start-up test

Approvals

Ordering details

AES	5 123① 5 1265	1 NC / 1 NO 2x 1 NC / 1 NO Description
1	5 6	Without start-up test With start-up test

AES 2135 / 2136

AES 2335 / 2336

AES 2365 / 2366

Characteristics

24 ... 230 VAC U_e: 24 VDC 0,2 A Start conditions: Feedback circuit: no Stop category: 0 Control Category: 3 Monitored inputs: 2 Enabling contacts: 1 enabling paths

Contact load capacity: max. 250 VAC, max. 6 A ($\cos \varphi = 1$) screw terminals

Termination: Cable size: max. 2.5 mm² Status indicator: LED (ISD) Dimensions: 45 x 100 x 121 mm

Characteristics

24 ... 230 VAC U.: 24 VDC 0.3 A Start conditions: automatic or start button Feedback circuit: yes Stop category: 0 Control Category: 3 Monitored inputs: 2

3 enabling paths Enabling contacts: Signalling output: 2 transistor outputs 24 VDC

Y1+Y2 = max. 100 mA p-type, short-circuit proof Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: LED (ISD) Dimensions: 45 x 100 x 121 mm

Characteristics

24 ... 230 VAC U_e: 24 VDC 0.2 A Start conditions: automatic or start button Feedback circuit: yes Stop category: 0 Control Category: 3 Monitored inputs: 2 Enabling contacts: 4 enabling paths Signalling output: 2 transistor outputs 24 VDC Y1+Y2 = max. 100 mAp-type, short-circuit proof

Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: LED (ISD) Dimensions: 45 x 100 x 121 mm

Note: Inductive loads to be suppressed by means of a suitable circuit. Note: Inductive loads to be suppressed by means of a suitable circuit.

Inductive loads to be suppressed by Note: means of a suitable circuit.

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Ordering details

AES 213①

No.	Replace	Description
1	5	Without start-up test With start-up test

Ordering details

AES 233①

No.	Replace	Description
1	5 6	Without start-up test With start-up test

Ordering details

AES 236①

No.	Replace	Description
1	5 6	Without start-up test With start-up test

AES 2535 / 2536

AES 2565 / 2566

AES 1185

Characteristics

24 ... 230 VAC U_e: 24 VDC 0.3 A Start conditions: automatic or start button Feedback circuit: yes Stop category: 0

Control Category: 3 Monitored inputs: 2 4 enabling paths **Enabling contacts:**

Signalling output: 2 transistor outputs 24 VDC

Y1+Y2 = max. 100 mAp-type, short-circuit proof Termination: screw terminals Cable size: max. 2.5 mm²Status indicator: LED (ISD) Dimensions: 45 x 100 x 121 mm

Characteristics

24 ... 230 VAC U.: 24 VDC 0.2 A Start conditions: automatic or start button Feedback circuit: yes Stop category: 0 Control Category: 3

Monitored inputs: 2 4 enabling paths Enabling contacts: Signalling output: 2 transistor outputs 24 VDC

Y1+Y2 = max. 100 mAp-type, short-circuit proof screw terminals max. 2.5 mm² LED (ISD)

45 x 100 x 121 mm

Characteristics

U_e: 24 VAC/DC \pm 15% 0.2 A Start conditions: automatic or start button Feedback circuit: no Stop category: 0 Control Category: 3 Monitored inputs: 3 x 1 NC / 1 NO Enabling contacts: 1 enabling path Contact load capacity: max. 250 VAC, max. $4 A (\cos \varphi = 1)$

Termination: screw terminals Cable size: max. 2.5 mm² Status indicator: LED (ISD) 22.5 x 100 x 121 mm Dimensions:

Note:

Inductive loads to be suppressed by means of a suitable circuit. Note:

Termination:

Status indicator:

Cable size:

Dimensions:

Inductive loads to be suppressed by means of a suitable circuit.

Note: Inductive loads to be suppressed by means of a suitable circuit.

IEC/EN 60204-1; EN 954-1; EN 60947-5-3;

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

Approvals

Standards

Ordering details

AES 253①

No.	Replace	Description
1	5 6	Without start-up test With start-up test

Ordering details

AES 256①

No.	Replace	Description
1	5 6	Without start-up test With start-up test

Ordering details

BG-GS-ET-14; BG-GS-ET-20

AES 1185①

No. Replace	Description
① .3	24 VDC 24 VAC

AES 1337

AES 2285

Characteristics

24 VDC -15%/+20%, U_e: 24 VAC -15%/+10% 0.08 A Start conditions: Start, reset button,

(trailing edge), autostart Feedback circuit: yes Stop category: 0 Control Category: 4

1 NC / 1 NO Monitored inputs: Enabling contacts: 3 enabling paths max. 250 VAC, Contact load capacity:

max. 6 A ($\cos \varphi = 1$)

Signalling output: 1 NC contact

100 mA, short-circuit proof Termination: plug-in screw terminals

Cable size: max. 2.5 mm² Status indicator: 4 LED

Dimensions: 22.5 x 120 x 121 mm

Characteristics

24 VDC -15%/+20% U_e: 0.11 A Start conditions: Start, reset button,

(trailing edge), autostart Feedback circuit: yes

Stop category: 0 Control Category: 3 6 x 1 NC / 1 NO Monitored inputs: 2 enabling paths Enabling contacts:

Contact load capacity: max. 250 VAC, max. 6 A ($\cos \varphi = 1$) 6 NC contacts Signalling output:

6 x 20 mA, short-circuit proof

Inductive loads to be suppressed by

means of a suitable circuit.

(€

1 NC contact 2 A

Termination: plug-in screw terminals Cable size: max. 2.5 mm² Status indicator: 3 LED Dimensions: 45 x 120 x 121 mm

Inductive loads to be suppressed by Note:

IEC/EN 60204-1; EN 954-1; EN 60947-5-3;

means of a suitable circuit.

Note: **Standards**

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

BG-GS-ET-14; BG-GS-ET-20

Standards

Approvals (UL) (SP)

(€

Ordering details

AES 1337 ①

No. Replace	Description
1	24 VAC/DC

Approvals

(UL) (SP)

Ordering details

AES 2285 ①

No. Replace	Description
①	24 VDC

PROTECT-IE-02

PROTECT-IE-11

Characteristics

U_e:

residual ripple max. 10% 0.075 A; plus Y1-Y4 Start conditions: Autostart Feedback circuit: no Stop category: 0 Control Category: 3 / 4 (depending on the sequential circuit and exclusion of fault accumulation) 4 x 2 NC Monitored inputs: Outputs: 2 x S 4 relay outputs Signalling output: 24 VDC, 100 mA Termination: cage clamps,

24VDC -15%/+20%,

plug-in terminals

48 x 126 x 6 1 mm

max. 2,5 mm²

5 LED

Cable size: Status indicator: Dimensions:

Characteristics

24VDC -15%/+20%, U_e: residual ripple max. 10% 0.075 A; plus Y1-Y4 Start conditions: Autostart Feedback circuit: no Stop category: 0 Control Category: 3 / 4 (depending on the sequential circuit and exclusion of fault accumulation) 4 NC / 4 NO Monitored inputs: Outputs: 2 x S 4 relay outputs Signalling output: 24 VDC, 100 mA Termination: cage clamps, plug-in terminals Cable size: max. 2,5 mm² Status indicator: 5 LED Dimensions: 48 x 126 x 6 1 mm

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

(€)

Ordering details

PROTECT-IE-02-①

No. Replace	Description
1	cage clamps
SK	plug-in terminals

Standards

IEC/EN 60204-1; EN 954-1; EN 60947-5-3; BG-GS-ET-14; BG-GS-ET-20

Approvals

c^{UL}∪s C €

Ordering details

PROTECT-IE-11-①

No.	Replace	Description
1		cage clamps
	SK	plug-in terminals

Accessories for series-wiring

Y-Adapter BNS-Y-11

Y-Adapter BNS-Y-02

Technical data

Rated voltage: max. 30 V
Rated current: max. 400 mA
Protection class: IP 67 (when screwed)

Y expander can be

screwed with: 1 x connector, M8 x 1, straight

2 x coupling, M8 x 1, straight

Number of poles: 4-pole Mechanical life: min. 100 insertion/

withdrawal cycles

Ambient temperature Tu: -25 °C ... + 70 °C

- Enables wiring and connecting BNS safety sensors to a common safety-monitoring module. All conventional 4-pole cables with M8 x 1 connector and coupling can be used as connecting cable.
- The sensor chain is extended by plugging in other Y-adapters in the direction indicated by the arrow. The final safety sensor is plugged into the expander coupling as terminal device.
- The BNS-Y-11 adapter is suitable for BNS safety sensors with NC and NO contacts. The BNS-Y-11 enables realising a series/parallel wiring, in which the NC contacts of the safety sensors are wired in series and the NO contacts are wired in parallel.
- Suitable BNS safety sensors: BNS 260-11z-ST, BNS 36-11z-ST, BNS 33-11zST.

- The BNS-Y-02 adapter is suitable for BNS safety sensors with two NC contacts. The BNS-Y-02 enables realising a series-wiring, in which both NC contacts of each safety sensors are redundantly wired in series.
- Suitable BNS safety sensors: BNS 260-02z-ST, BNS 36-02z-ST, BNS 33-02zST-2187.

Approvals

Approvals

(€

 ϵ

Ordering details

BNS-Y-11

Ordering details

BNS-Y-02

Note

Only safety sensors with the same contact configuration can be wired in series. The BNS-Y-11 and BNS-Y-02 types must not be wired together.

The maximum length of the series-wiring is 50 m

BNS with integrated control module

Features

Description: • Monitoring of one safety guard

Safety Sensor with integrated

control module

Control Category of the system:

• 1 to EN 954-1

Classification

of the system: • PDF-S to EN 60947-5-3

Comments:

• Signal to PLC as an option (BNS 300-01zG-2230,

BNS 300-012G-2230)

Product selection

Safety Sensors: BNS 30-01zG

BNS 300-01zG BNS 333-01y

Control module: integrated

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

BNS + AES 1102

Features		Product selection	
Description:	Monitoring of one safety guardConnection of one Safety Sensor to one control module	Safety Sensors:	BNS 16-12z. BNS 33-12z(G) BNS 33S-12z(G) BNS 36-11/01z(G)
Input circuit:	• 3 channel		BNS 250-12z(G)
Control Category of the system:	• 1 to EN 954-1		BNS 260-11/01z(G) BNS 303-12z(G) BNS 180-12z BNS 120-12z
Classification of the system:	• PDF-S to EN 60947-5-3	Control module:	AES 1102
Comments:	No signal to PLC		

The wiring diagram is shown with the safety guard closed and no power on the module. Note:

BNS + AES 1135

Features		Product selection	
Description:	Monitoring of one safety guardConnection of one Safety Sensor to one control module	Safety Sensors:	BNS 16-12z. BNS 33-11z(G) BNS 33S-12z(G) BNS 36-11z(G)
Input circuit:	• 2 channel		BNS 250-11z(G)
Control Category of the system:	• 3 to EN 954-1		BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 1135
Comments:	Signal to PLC		

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

BNS + AES 1235

Features		Product selection	
Description:	Monitoring of one safety guardConnection of one Safety Sensor to one control module	Safety Sensors:	BNS 16-12z. BNS 33-11z(G) BNS 335-12z(G)
Input circuit:	• 2 channel		BNS 36-11z(G) BNS 250-11z(G)
Control Category of the system:	• 3 to EN 954-1		BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 1235
Comments:	Signal to PLC		

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

Features

Description:

Monitoring of one safety guard

Connection of one Safety Sensor

to one control module

Input circuit: • 2 channel

Start: • Monitored reset

Control Category

of the system: • 4 to EN 954-1

Classification

of the system: • PDF-M to EN 60947-5-3

Comments: • Signal to PLC

Product selection

Safety Sensors: BNS 16-12z.

BNS 33-11z(G) BNS 33S-12z(G) BNS 36-11z(G) BNS 250-11z(G)

BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z

BNS 120-11z

Control module: AES 1337

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

Features		Product selection	
Description:	 Monitoring of multiple safety guards Connection of multiple Safety Sensors to one control module (possibly via an external expander) 	Safety Sensors:	BNS 16-12z. BNS 33-12z-2187 BNS 33-12zG-2187-10 BNS 33S-12z BNS 36-02/01z(G) BNS 250-12z-2187
Input circuit:	• 3 channel		BNS 260-02/01z BNS 303-12z(G)-2187
Control Category of the system:	• 1 to EN 954-1		BNS 180-12z-2187 BNS 120-12z-2187
Classification of the system:	• PDF-S to EN 60947-5-3	Control module:	AES 1102
Comments:	No signal to PLCMax. 20 Safety Sensors reccomended		

Note:

The wiring diagram is shown with the safety guard closed and no power on the module.

Features

Comments:

• Signal to PLC

 Max. 20 Safety Sensors reccomended

Description:	 Monitoring of multiple safety 	Safety Sensors:	BNS 16-12z.
	guards		BNS 33-11z(G)
	 Connection of multiple Safety 		BNS 33S-12z
	Sensors to one control module		BNS 36-11z(G)
	(possibly via an external expander)		BNS 250-11z(G)
			BNS 260-11z(G)
Input circuit:	• 2 channel		BNS 303-11z(G)
			BNS 180-11z
Control Category			BNS 120-11z
of the system:	• 3 to EN 954-1		
-		Control module:	AES 1135
Classification			
of the system:	 PDF-S to EN 60947-5-3 		

Product selection

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

 \triangle	П	112	

Description:

• Monitoring of multiple safety

guards

 Connection of multiple Safety Sensors to one control module (possibly via an external expander)

Input circuit:

• 2 channel

Control Category of the system:

• 3 to EN 954-1

Classification

of the system:

• PDF-S to EN 60947-5-3

Comments:

• Signal to PLC

Max. 20 Safety Sensors reccomended

Product selection

Safety Sensors:

BNS 16-12z. BNS 33-11z(G) BNS 33S-12z

BNS 36-11z(G) BNS 250-11z(G) BNS 260-11z BNS 303-11z(G)

BNS 180-11z BNS 120-11z

Control module: AES 1235

Note:

The wiring diagram is shown with the safety guard

closed and no power on the module.

 е			172		9
_	60			_	-

Description: • Monitoring of multiple safety

guards

 Connection of multiple Safety Sensors to one control module (possibly via an external expander)

Input circuit:

• 2 channel

Control Category of the system:

• 3 to EN 954-1

Classification

of the system: • PDF-S to EN 60947-5-3

Comments:

• Signal to PLC

 Max. 20 Safety Sensors reccomended

Product selection

Safety Sensors:

BNS 16-12z. BNS 33-11z(G)

BNS 33S-12z BNS 36-11z(G) BNS 250-11z(G)

BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z

BNS 120-11z

Control module: AES 1337

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

Features		Product selection	
Description:	Monitoring of 6 safety guardsConnection of 6 Safety Sensors to one control module	Safety Sensors:	BNS 16-12z. BNS 33-11z BNS 33S-12z(G) BNS 36-11z(G)
Input circuit:	• 2 channel		BNS 250-11z
Control Category of the system:	• 3 to EN 954-1		BNS 260-11z(G) BNS 303-11z BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 2285
Comments:	• Signal to PLC		

Note: The wiring diagram is shown with the safety guard closed and no power on the module.

BNS + AES 1165-2250

Features		Product selection	
Description:	Monitoring of 2 safety guardsConnection of 2 Safety Sensors to one control module	Safety Sensors:	BNS 16-12z. BNS 33-11z(G) BNS 33S-12z(G) BNS 36-11z(G)
Input circuit:	• 2 channel		BNS 250-11z(G)
Control Category of the system:	• 3 to EN 954-1		BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 1165-2250
Comments:	• Signal to PLC		

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

Features		Product selection	
Description:	Monitoring of 3 safety guardsConnection of 3 Safety Sensors to one control module	Safety Sensors:	BNS 16-12z. BNS 33-11z(G) BNS 33S-12z(G) BNS 36-11z(G)
Input circuit:	• 2 channel		BNS 250-11z(G) BNS 260-11z(G)
Control Category of the system:	• 3 to EN 954-1		BNS 260-112(G) BNS 303-11z(G) BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 1185
Comments:	No signal to PLC		

The wiring diagram is shown with the safety guard closed and no power on the module. Note:

Features		Product selection	
Description:	 Monitoring of 2 safety guards Connection of 2 Safety Sensors to one control module 	Safety Sensors:	BNS 16-12z. BNS 33-11z(G) BNS 33S-12z(G)
Input circuit:	• 2 channel		BNS 36-11z(G) BNS 250-11z(G)
Control Category of the system:	• 3 to EN 954-1		BNS 260-11z(G) BNS 303-11z(G) BNS 180-11z BNS 120-11z
Classification of the system:	• PDF-M to EN 60947-5-3	Control module:	AES 1265
Comments:	• Signal to PLC		

Note: The wiring diagram is shown with the safety guard

closed and no power on the module.

The latest product information and news at: www.schmersal.com

Explanation of symbols

Control Cotogony 1 to FN 054.1	
Control Category 1 to EN 954-1	
Control Category 2 to EN 954-1	
Control Category 3 to EN 954-1	
Control Category 4 to EN 954-1	
PDF with reliability through special design)
PDF with test capability	
PDF with single-fault tolerancePDF-S	,
PDF with self-monitoring	1
Conforms to European Directives see Declaration of conformity	
UL approval, USA	
UL/CSA approval, USA	s
CSA approval, Canada	
CSA/UL approval, Canada	s
TÜV prototype-tested	7
BG prototype-tested	

Safety Sensor
Spanner size across flats
Integrated system diagnosisISD
Rated insulation voltage U _i
Thermal current test
Rated operating voltage U _e
Rated operating current
Rated control voltage
Assured operating distance S _{ao}
Assured release distance

Information About Standards and Literature

Standards:

[1] Machinery Directive 98/37/EC of the European Parliament and of the Council of 22nd June 1998 on the approximation of the laws of the Member States relating to machinery (formerly 89/392/ECC)

[2] EN ISO 12100-1
 Safety of machinery basic concepts, general principles for design; basic terminology, methodology

[3] EN ISO 12100-2 Safety of machinery basic concepts, general principles for design;technical principles and specifications

[4] EN 954-1
 Safety of machinery Safety-related parts of control systems General principles for design

[5] EN 1050Safety of machinery -Principles for risk assessment

[6] EN 1088 Safety of machinery -Interlocking devices associated with guards -Principles for design and selection

[7] EN 60204-1 Safety of machinery -Electrical equipment of machines -General requirements

viour under fault condition

[8] EN 60947-5-2 Low-voltage switchgear and controlgear -Control circuit devices and switching elements -Proximity switches

[9] EN 60947-5-3
 Low-voltage switchgear and controlgear Control circuit devices and switching elements Requirements for proximity devices with defined beha-

[10] BGI 670 Selection and Installation of proximity switches for safety functions The Schmersal Group has published a technical book about machine safety available in English in one volume or German in two volumes.

Several chapters of these books also contain detailed notes for the selection and the design of safety guards fitted with Safety Sensors.

 Werner Defren/ Franz Kreutzkampf: Machine Safety in the European Community. Wuppertal, 1. Edition 2003, ISBN 3-926069-13-9

 Werner Defren/ Dr. Karl Wickert: Sicherheit für den Maschinen- und Anlagenbau.
 Wuppertal, 2. Auflage 2001,
 ISBN 3-926069-10-4

 Werner Defren/ Franz Kreutzkampf: Personenschutz in der Praxis.
 Wuppertal 2001, ISBN 3-926069-11-2

48

K.A. Schmersal GmbH Safety control systems

Möddinghofe 30 D-42279 Wuppertal Germany

Phone +49 - (0)2 02 - 64 74 - 0 Fax +49 - (0)2 02 - 64 74 - 1 00

E-Mail info@schmersal.com Internet http://www.schmersal.com