Safety in system: Protection for man and machine Main catalogue Automation technology I Edition 01

(8) 5CHMERSHL
K.A. Schmersal GmbH

Safety control systems

Möddinghofe 30
D-42279 Wuppertal
Phone: $\quad+49-(0) 2$ 02-64 74-0
Fax: $\quad+49-(0) 2$ 02-64 74-100

E-Mail: info@schmersal.de
Internet: www .schmersal.com

Welcome to Schmersal.
Thank you for choosing our products!
We present our extensive program in two brand new main catalogues:

Main catalogue

Automation Technology

The Main Catalogue Automation Technology gives an overview of electrical switchgear for automation technology.
The Schmersal program includes, amongst others, inductive, capacitive and magnetic proximity switches.

Main catalogue

 Safety technologyOur Main Catalogue Safety technology presents our program of industrial safety switchgear - from A to Z - including all relevant technical data.

Furthermore, catalogues are available for the following product groups and application fields: switchgear for Ex zones, lift switchgear and medical switchgear.

The data and values in this catalogue have been checked thoroughly. Technical modifications and errors excepted.

New products and program extensions
New developments are presented as of page I-6 under the heading "Innovations and new products". Since our main catalogue impossibly could contain the entire program from the Schmersal Group, special executions as well as complementary products and solutions are highlighted in the "Program extensions" at the end of each chapter.
Introduction Introduction and notices

Representations worldwide, see left cover	
Mounting instructions, see left cover	
Schmersal - The Company	$\mathrm{I}-2$
The Schmersal Group	$\mathrm{I}-4$
New products and innovations	$\mathrm{I}-6$

Position detection	Mechanical position detection	Position switches to EN 50041/EN 50047 Position and limit switches Gear switches Rotating spindle limit switches Slack-wire switches Belt alignment switches Micro switches Program extension	$\begin{aligned} & 1-1 \\ & 1-2 \\ & 1-32 \\ & 1-148 \\ & 1-151 \\ & 1-152 \\ & 1-154 \\ & 1-159 \\ & 1-188 \end{aligned}$
	Sensors		2-1
		Inductive proximity switches	2-2
		Capacitive proximity switches	2-60
		Optoelectronic proximity switches	2-64
		Magnetic switches	2-70

Command and		$3-1$
signalling devices	Pull-wire switches	$3-2$
	Foot switches	$3-7$
	Stack lights	$3-14$
	Program extension	$3-18$

Appendix			A-1
		Magnetic reed switches	A-2
	Inductive and capacitive proximity switches	A-6	
	Photoelectric proximity switches	A-12	

Automation technology

 Position detection

 Position detection}

Position detection

Position detection in automation technology - a traditional application field for Schmersal. In the early fifties, during the post-war reconstruction, a limit switch program suitable for heavy-duty application, amongst others, in construction site engines was created. Soon after that, a variety of position switches for stationary applications for machinery and process plant engineering was introduced because of the increasing automation activities of miscellaneous industries. Schmersal was also one of the pioneers when it comes to developing non-contact proximity switches as an alternative to the electromechanical switchgears.

Nowadays, Schmersal offers a large program of switchgears for automation technology: position switches with a large variety of actuators, gear switches, pull-wire switches, foot switches, micro switches, magnetic reed switches, inductive, capacitive and optoelectronic proximity switches...

As different as the switchgears and sensors in this catalogue might be, there is one common factor: they all were developed for automation technology applications. One of the requirements of this sector is an extremely high availability. Because of their reliability and long life, the Schmersal position switches and proximity switches are generally accepted and frequently used by numerous machine constructors and important end users of automated plants, for instance in automotive.

The extremely wide product range for position detection from Schmersal finds its roots in the customer orientation of our development and product team:
Many products were developed on request of our customers or adapted to the specifications for a specific application, such as our magnetic reed switches detecting multiple independent signals using one single device or fully electronic travel end switches for mobile cranes.

Since the machinery and devices, for which the Schmersal position switches and proximity switches are developed and manufactured, are used all over the world, Schmersal is worldwide at its customers' disposal.
Our international subsidiaries and qualified sales partners take care of the sales, consultancy and service at all industrial markets.

The Schmersal Group offers the largest program of safety switchgears and safety switching systems in the world. The individual development and production units of the group are concentrating on specific product groups. Our sales offices and partners provide a competent consultancy and service to the major industries - worldwide.

K.A. Schmersal GmbH Safety control systems

K.A. Schmersal, the parent company of the Schmersal Group, was founded at Wuppertal in 1945 by the fathers of the current generation of shareholders.

Initially, the company concentrated on the development and production of mechanically operated switchgears for mechanical engineering and lift technology. The product portfolio was continuously extended with mechanically operated safety switchgears and non-contact functioning safety sensors

In the early nineties, the Machinery Directive has been implemented. Schmersal began to develop safety switchgears, enabling the machine and plant builders to comply with the stringent safety requirements for machine safety.

The conversion from industrial safety switchgear manufacturer to expert in safety technology became essential for the company's growth and the company's expansion to a worldwide present company group.

At the Wuppertal plant, some 540 employees are currently employed.

Elan Schaltelemente GmbH \& Co. KG

Founded originally in Düsseldorf in 1952, Elan moved to Wettenberg in the Mittelhessen district in 1988.

Elan's focal business emphasis is placed on industrial low-voltage switchgears. Elan develops and manufactures switchgears, which distinguish from the conventional devices, by their mechanical, electrical and functional features.

Elan is one of the pioneers of safety technology: in the eighties, the company has already developed safety switchgear and systems for human protection.

Since 1997, Elan belongs to the Schmersal Group, where it has become the competence centre of the group for

- Command and signalling devices;
- Two-hand control panels,
- Safety relay modules and similar modules,
- Proprietary programmable electronic systems with safety function

In 2001, the company moved to a completely new production and administrative building at the same location, where currently 170 employees are working

K.A. Schmersal GmbH
 Safety control systems
 Möddinghofe 30, D-42279 Wuppertal
 Phone: +49 (0) 202 6474-0
 Fax: $\quad+49(0) 2026474-100$
 E-Mail: info@schmersal.de
 Internet: www.schmersal.com

Elan Schaltelemente
 \section*{GmbH \& Co. KG}

Im Ostpark 2, D-35435 Wettenberg
Phone: $\quad+49$ (0) 641 9848-0
Fax: $\quad+49(0) 641$ 9848-420
E-Mail: info@elan.schmersal.de
Internet: www.elan.de

steute Schaltgeräte GmbH \& Co. KG

As of 2004.1.1, the Company steute Schaltgeräte GmbH \& Co.KG has parted from the Schmersal Group. The company steute continues to have full access to the sales network of the Schmersal Group.
steute Schaltgeräte GmbH \& Co. KG
Brückenstraße 91, D-32584 Löhne
Phone: $\quad+49$ (0) $5731745-0$
Fax: $\quad+49$ (0) 5731745-200
E-Mail: info@steute.de
Internet: www.steute.de

ACE Schmersal
Eletroeletrônica Industrial Ltda.
Schmersal founded a subsidiary company in Brazil as early as 1974. The production facility located in Boituva (São Paulo) today has about 300 employees.

ACE offers a wide range of electromechanical and electronic products such as safety switchgears, command and signalling devices, foot switches and proximity switches.

Furthermore thermoplastic housings are manufactured which are partly assembled with command and signalling devices according to the customers's request. Application fields are inspection control panels for the lift technology, for which door contacts are also produced.

The ACE program is mainly distributed on the South American and Mexican market.

Schmersal Industrial Switchgear Co. Ltd

Schmersal has its own manufacturing plant in China since 1999. Here, about 60 employees produce - to the same quality standards as in the European factories position switches, safety switches and lift switchgears for the South-East Asian market.

Our sales office located in the centre of Shanghai supervises and co-ordinates four subsidiaries with offices in the major industrial centres of China.

ACE Schmersal

Eletroeletrônica Industrial Ltda.

Rodovia Boituva - Porto Feliz, Km 12
Vila Esplanada - CEP: 18550-000, Boituva - SP
Phone: $\quad+55(0)$ 15-263-98 66
Fax: $\quad+55(0)$ 15-263-98 90
E-Mail: export@aceschmersal.com.br
Internet: www.aceschmersal.com.br

Schmersal Industrial Switchgear

(Shanghai) Co. Ltd., Central Plaza 1001
Huang Pi Bei Road 227, 200003 Shanghai
Phone: +86-21-63 758287
Fax: $\quad+86-21-63758297$
E-Mail: sales@schmersal.com.cn
Internet: www.schmersal.com.cn

Position switches with insulation displacement connectors. Save time when fitting

For years already, switches to the DIN EN 50047 standard, such as for instance the Z/T 236 series from Schmersal, are used for a diversity of positioning applications in industrial automation. For safety applications, they are often used as type-1 safety switches, especially for guard-door monitoring.

Although these well-known switches being extremely reliable and polyvalent, they still are subject to improvement: the series Z/T 236 is now available with insulation displacement connectors. As a consequence, the work required in fitting the position switching is reduced: the user only needs to remove the outer cable insulation, place the wires into the slots and press the cover down - the switch is then connected. No stripping and cutting of the wires is required. The unique termination saves time and money, especially in large plants with many switches. Each switch saves up to two minutes of time upon fitting.

The versions with insulation displacement connectors are fully compatible with the traditional variants of the Z/T 236 series.

A large number of actuating elements are available - plungers, roller levers, angular levers, roller swivel levers, bar swivel levers... The user has the choice between versions with snap and slow action, slow action with contact overlapping or staggering. As the contacts are regarded, the user can choose between $1 \mathrm{NO} / 1 \mathrm{NC}$ contact, 2 NC or 2 NO contacts.

More information can be found on page 1-4

Series \mathbf{N} command and signalling devices Hygiene-compliant command and signalling devices

This program of hygiene-compliant command and signalling devices has been developed in accordance with the basic principles of hygienic design, laid down in the requirements of EN 1672-1 and EN 1672-2 for machines used in 1672-1 and EN 1672-2 for machines used in
the dairy, meat, poultry and fish processing industries. They feature special sealing to extensively prevent the ingress of dirt and bacteria in the gaps between the fixed and moving device components.

The special-shaped devices are easy to clean and avoid corners and edges or create smooth surfaces, so that dirt and bacteria cannot deposit or accumulate. Furthermore, the devices feature a special selection of materials and colour design.

This new range for mounting holes of 22.3 mm diameter consists of push buttons, illuminated push buttons with LEDs, selector switches with 2 and 3 positions and short and long knobs and levers, mushroom buttons, high and flat indicator lights with LEDs, emergencystop control devices, blanking plugs, lockable selector switch covers and adapter rings D-30/ D-22 mm.

The devices all have protection class IP 67.
The contact and light element system used is the tried and tested EF/EL system using screw terminals, flat-pin plugs and WAGO cage clamps.

More information can be found in the Catalogue \mathbf{N} from Elan

Catalogue

More information can be found on page 1-4

Compact and user-friendly foot switches. LKF/LKFS Series

The foot switches of the LKF/ LKFS series are suitable for "light duty" applications, e.g. for office technology, in laboratories or at conveyor belt of cash desks.

The housing of the switches is made of shock-resistant thermoplastic and has a very flat design, so that the operator only has to lift up his foot very little: an important condition for ergonomic, non-tiring operation of foot-operated machines and devices.

As an option, the LKF switches are also available with a protective shield.

More information can be found on page 3-10

Foot switches GFI/GFSI -
Optimal functioning and ergonomics

The design of the new foot switches of the GFI/GFIS series, an extension of the wellknown foot switches range GF/GFS, is extremely well-considered.

This foot switch, which was developed in collaboration with ergonomics specialists and industrial designers, is fully adapted to rough industrial operating conditions and simultaneously enables a non-tiring, safe operation.

The external components of the new foot switch are made of aluminium die-cast. The protective shield has a large wide opening, enabling a smooth operation of the pedal, even with safety shoes. On the inside, the protective shield features a bead, allowing for a better positioning of the switch.

The application field of electromechanical and non-contact position switches from the Schmersal Group ranges from high-precision mechanics to heavy-duty machine construction.	Selection table Position switches to EN $50041 / E N 50047$	$1-2$
A large range of actuating elements enables an optimal adaptation of the switches to the specific application.	Selection table Position and limit switches	$1-4$
	Gear switches	$1-32$
	Rotating spindle limit switches	$1-34$
	Slack-wire switches	$1-148$
	Belt alignment switches	$1-151$
	Micro switches	$1-152$
	Program extension	$1-154$
		$1-159$

Actuator

Position switch ranges	Position switch actuating elements

Range 95 as of page 1-14

- Thermoplastic housing
- 1 cable entry
- Design according to DIN EN 50047

Range 236 as of page 1-4

- Thermoplastic housing
- 1 cable entry
- Design according to DIN EN 50047

Range 256 as of page 1-4

- Thermoplastic housing
- 2 cable entries
- Size and switching points according to DIN EN 50047

Range 235 as of page 1-5

- Metal housing
- 1 cable entry
- Design according to DIN EN 50047

Range 255 as of page 1-5

- Metal housing
- 3 cable entry
- Design according to DIN EN 50047

Range 332 as of page 1-18

- Metal housing
- 1 cable entry
- Design according to DIN EN 50041

Range 336 as of page 1-22

- Thermoplastic housing
- 1 cable entry
- Design according to DIN EN 50041

Range 335 as of page 1-27

- Metal housing
- 1 cable entry
- Design according to DIN EN 50041

Range 355 as of page 1-27

- Metal housing
- 3 cable entries
- Size and switching points according to EN 50041
actuating elements

								DD	WHKM	TK TL DF
3K	4K	K4		V1H	V12H	V14H	V7H	V10H		
3K	4K	K4		V1H	V12H	V14H	V7H V			
3K	4K	K4		V1H	V12H	V14H	V7H			
3K	4K	K4		V1H	V12H	V14H	V7H			
			4VH				4V7H	H		
3K			4VH				4V7H	H		
3K			4VH				4V7H V			
3K			4VH				4V7H	V10H		

[^0]
Z/T 236

- Thermoplastic enclosure
- Double insulated 回
- Available with 2 positive break NC contacts
- Snap action with constant contact pressure up to switching point
- Slow action available with overlapping or staggered contacts
- 1 cable entry M20 x 1.5
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- Good resistance to oil and petroleum spirit

Z/T 256

- Mounting details to EN 50047
- 2 cable entries from sides M20 x 1.5

Technical data

Approvals

, (IU)s © (Cl)
(ϵ
Ordering details
(1)(2) 2(3)6-4)Z(5)-(6)-(7)-(8)-(9)

No. Option	Description	
(1)	Z	Snap action Θ
	T	Slow action Θ
(2)	For the appropriate actuator:	
	see as of page 1-6	
(3)	3	Slim design
	5	Large design
(4)	02	2 NC
	11	N NO / 1 NC
	20	2 NO *
(5)	H	Slow action
		with staggered contacts
	UE	with overlapping contacts

No. Option		Description
(6)	ID	$\begin{array}{l}\text { Cable entry M20 } \\ \text { Cut clamp } \\ \text { Cable entry NPT 1/2" } \\ \text { Connector M12 }\end{array}$
NPT	ST	$\begin{array}{l}\text { (A-Coding) }\end{array}$
(7)	2310	1297

Enclosure with

transversely

slotted mounting holes\end{array}\right]\)| Roller lever 7H |
| :--- |
| for safety duties |
| Gold-plated contacts |

Connector

Other product variants:

- 3-pole NC/NO contact combinations
- Change-over contacts, etc.

List S-IP ELAN, Wettenberg

* Switches with 2 NO contacts (20) are only suitable for positioning tasks!

Z/T 235

- Metal enclosure
- Available with 2 positive break NC contacts
- Snap action with constant contact pressure up to switching point
- Slow action available with overlapping or staggered contacts
- Wiring compartment
- 1 cable entry M20 x 1.5
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- Good resistance to oil and petroleum spirit
- Metal roller available on request
- EX version available
- AS-Interface Safety at Work available, see chapter 5

Z/T 255

- Mounting details to EN 50047
- 3 cable entries M20 x 1.5

Technical data

Approvals

Approvals
(IU) us (CCC)
C
(cc)

C ϵ
Ordering details
(1)(2) 2(3)5-(4)Z(5)-(6)-(7)-(8)-(9)

No. Option		Description	No. Option		Description
(1)	Z	Snap action Θ	(6)		Cable entry M20
	T	Slow action Θ		ID	Cut clamp
(2)	For the appropriate actuator:			NPT	Cable entry NPT 1/2"
	see as of page 1-6		(7)	1297	Enclosure with
(3)	3	Slim design			transversely
	5	Large design			slotted mounting holes
(4)	02	2 NC	(8)	2138	Roller lever 7H
	11	$1 \mathrm{NO} / 1 \mathrm{NC}$			for safety duties
	20	2 NO *	(9)	1637	Gold-plated contacts
(5)	H	Slow action			
		with staggered			
	UE	with overlappin			

Note

* Switches with 2 NO contacts (20) are only suitable for positioning tasks!

Plunger S

- Actuator type B to EN 50047
- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 0° to switch axis
Snap action: Min. $10 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$ Slow action: Min. $60 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$			TS 2..-11ZUE	
2 NC		TS 2..-02Z		
2 NO		TS 2..-20Z		TS 2..-20ZH

Roller plunger R

- Actuator type C to EN 50047
- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $20 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$ Slow action: Min. $120 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	ZR 2..-11Z	TR 2..-11Z	TR 2..-11ZUE	
2 NC	ZR 2..-02Z	TR 2..-02Z		TR 2..-02ZH
2 NO		TR 2..-20Z		TR 2..-20ZH

Plunger 4S

- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 0° to switch axis
Snap action: Min. $10 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $60 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$			T4S 2..-11ZUE	
2 NC		T4S 2..-02Z ${ }_{2}^{11-122}$		
2 NO		T4S 2..-20Z \square $13-14$ $23-24$		

Roller plunger 4R

- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $20 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $120 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z4R 2..-11Z	T4R 2..-11Z	T4R 2..-11ZUE	
2 NC		T4R 2..-02Z $11-12$ $21-22$		T4R 2..-02ZH
2 NO		T4R 2..-20Z		T4R 2..-20ZH

Offset roller lever 1R

- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $27 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $160 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Gontact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z1R 2..-11Z	T1R 2..-11Z	T1R 2..-11ZUE
2 NC	Z1R 2..-02Z	T1R 2..-02Z	
2 NO		T1R 2..-20Z	

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	ZK 2..-11Z	TK 2..-11Z	TK 2..-11ZUE	
2 NC	ZK 2..-02Z	TK 2..-02Z		TK 2..-02ZH
2 NO		TK 2..-20Z		TK 2..-20ZH

Angle roller lever 3K

- Actuating force: Min. 9 N
- Positive break force: 19 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $27 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$ Slow action: Min. $160 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuation from bottom parallel to the switch, therefore only suitable for small housings (Z/T 235 and Z/T 236)

Angle roller lever 4K

- Actuating force: Min. 6 N
- Positive break force: 16 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $44 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. 264 mm/min, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuation from bottom parallel to the switch, therefore only suitable for small housings (Z/T 235 and Z/T 236)

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$			T3K 2..-11ZUE	
2 NC	Z3K 2..-02Z	T3K 2..-02Z		
2 NO				T3K 2..-2OZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z4K 2..-11Z	T4K 2..-11Z	T4K 2..-11ZUE	
2 NC	Z4K 2..-02Z	T4K 2..-02Z		T4K 2..-02ZH
2 NO		T4K 2..-20Z		T4K 2..-20ZH

Angle roller lever K4

- Actuating force: Min. 6 N
- Positive break force: 16 N
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $56 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $336 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$			TK4 2..-11ZUE	
2 NC		TK4 2..-02Z		TK4 2..-02ZH \square ${ }_{21-22}^{1-12}$
2 NO				TK4 2..-2OZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NO

1 NC

TV1H 2..-02Z

TV1H 2..-20Z

TV1H 2..-02ZH

TV1H 2..-20ZH

Roller lever 7H

- Only for positioning tasks
- Lever angle adjustable in 10° steps
- Actuating torque: Min. 15 Ncm
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $240 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $1440 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuator head gasket, ordering suffix $-z$

Roller lever 7H-2138

- For safety tasks Θ, positive break, ordering suffix -2138
- Lever angle adjustable in 10° steps
- Actuating torque: Min. 15 Ncm
- Positive break torque: 18.5 Ncm
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $240 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $1440 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuator head gasket, ordering suffix -z

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NO ZV7H 2...-11Z TV7H 2...-11Z TV7H 2...-11ZUE

TV7H 2...-20Z

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$				
2 NC				
2 NO		$\begin{aligned} & \text { TV7H 2..-20Z } \\ & -2138 \end{aligned}$		$\begin{aligned} & \text { TV7H 2..-20ZH } \\ & -2138 \end{aligned}$

Rod lever 10H

- Only for positioning tasks
- Lever angle adjustable in 10° steps
- Plastic rod
- Actuating torque: Min. 15 Ncm
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $687 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $4122 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuator head gasket, ordering suffix $-z$
- Aluminium rod, ordering suffix -1183

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NO ZV10H 2.-11Z TV10H 2.-11Z TV10H 2.-11ZUE

1 NC

2 NC

2 NO

ZV10H 2..-11Z

ZV10H 2..-02Z

TV10H 2..-02Z

TV10H 2..-20Z

TV10H 2..-02ZH

TV10H 2..-20ZH

Roller lever 12H

- Metal lever with plastic roller
- Actuator type A to EN 50047
- Lever angle adjustable in 10° steps
- Actuating torque: Min. 15 Ncm
- Positive break torque: 18.5 Ncm
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $687 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$ Slow action: Min. $4122 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuator head gasket, ordering suffix -z
- Available with metal roller, ordering suffix -RMS

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$			TV12H 2..-11ZUE	
2 NC		TV12H 2..-02Z		
2 NO		TV12H 2..-20Z		TV12H 2..-20ZH

Roller lever 14H

- Metal lever with plastic roller
- Lever angle adjustable in 10° steps
- Actuating torque: Min. 15 Ncm
- Positive break torque: 18.5 Ncm
- Actuating speed with actuating angle 30° to switch axis
Snap action: Min. $687 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
Slow action: Min. $4122 \mathrm{~mm} / \mathrm{min}$, max. $1 \mathrm{~m} / \mathrm{s}$
- Actuator head gasket, ordering suffix -z
- Available with metal roller,
ordering suffix -RMS

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$				
2 NC		TV14H 2..-02Z		
2 NO		TV14H 2..-20Z		TV14H 2..-20ZH

ES/EM 95

- Thermoplastic enclosure
- Transverse slotted mounting holes
- Double insulated 回
- Snap action with constant contact pressure up to switching point
- Slow action available with overlapping contacts
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- 1 cable entry M20 x 1.5
- Good resistance to oil and petroleum spirit
- Knockouts for additional mounting holes if required

ES/EM 95 V

- Slow action with mechanical locking and blue unlocking button available, ordering suffix -V
- Enclosure with longitudinal slotted mounting holes, ordering suffix LL

Technical data

Standards:	IEC/EN 60947-5-1
	BG-GS-ET-15
Design:	DIN EN 50047
Enclosure:	glass-fibre reinforced thermoplastic, self-extinguishing
Protection class:	IP 67 to EN 60529
Contact material:	silver
Contact type:	change-over contact
	with double break, type Zb
	or 2 NC contacts, with
	galvanically separated contact bridges
Switching system:	\ominus IEC 60947-5-1
	slow or snap action,
	NC contacts with positive break
Connection:	screw terminals
Cable section:	max. $2.5 \mathrm{~mm}^{2}$
	(incl. conductor ferrules)
Cable entry:	$1 \times \mathrm{M} 20 \times 1.5$
$U_{\text {imp }}$:	6 kV
U_{i} :	500 V
1 the:	6 A

Utilisation category: AC-15, DC-13
I_{e} / U_{e} :
0.275 A / 250 VDC 1 A / 24 VDC 6 A gG D-fuse
Max. fuse rating:
Mechanical life:
Switching frequency: > 1 million operations

Ambient temperature: $\quad-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ Actuating speed referring
to the plunger: snap action: $\mathrm{min} .10 \mathrm{~mm} / \mathrm{min}$; slow action: min. $60 \mathrm{~mm} / \mathrm{min}$
Bounce duration:
slow action: in accordance with actuating speed
Switchover time snap action: > 5.5 ms slow action: in accordance with actuating speed

Approvals

C
Ordering details
E(1) 95 (2)-(3)-(4)-(5)-(6)

Note

* Switches with 2 NO contacts (2S) are only suitable for positioning tasks!

Long offset roller lever

- Plunger with watertight collar
- Wear-restistant thermoplastic roller
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Metal roller available on request

Rocking offset roller lever

- Only for positioning tasks
- Plunger with watertight collar
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Metal roller available on request

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	EM 95 WHLM 10E/1S	ES 95 WHLM 10E/1S ${ }_{11}^{235124}$	ES 95 WHLM UE 15-16
2 NC		ES 95 WHLM 20E	
2 NO			

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$		ES 95 WHKM 10E/1S \square ${ }_{1 T-12}^{2324}$	ES 95 WHKM UE $23-24$ $15-16$
2 NC		ES 95 WHKM 20E	
2 NO			

Wire lever DD

- Only for positioning tasks
- Lever angle adjustable in 10° steps
- Actuator heads can be repositioned by $4 \times 90^{\circ}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	EM 95 DD 10E/1S		ES 95 DD UE
2 NC		ES 95 DD 20E 	
2 NO		ES 95 DD 2 S	

Spring-rod lever DF

- Only for positioning tasks
- Lever angle adjustable in 10° steps
- Actuator heads can be repositioned by $4 \times 90^{\circ}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	EM 95 DF 10E/1S		ES 95 DF UE
2 NC		ES 95 DF 20E	
2 NO		ES 95 DF 2 S	

Spring rod TK

- Only for positioning tasks
- Wear-restistant thermoplastic tip
- Spring rod can be actuated from any direction

Contact variants

Contacts/ Switch travel	Snap action	Slow action

1 NO	EM 95 TK	ES 95 TK
1 NC	10E/1S	10E/1S
	$0 \quad \pi$	$0^{\circ} \pi^{\circ} \square^{\circ}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \text { ES } 95 \text { TL } \\ & \text { 1OE/1S } \\ & \underbrace{0^{\circ}}_{6^{\circ}} \quad \frac{\pi}{23-24} \\ & 11-12 \end{aligned}$

- Only for positioning tasks
- Spring rod can be actuated from any direction

Long spring wire TL

1 NC

10E/1S

Z 332

- Metal enclosure
- Gold-plated solid silver contacts
- Magnetic-storage snap action system
- Wiring compartment
- Short contact-bounce duration
- Switching system separated from snap action system, providing constant switching point independent of conatct wear
- Large contact break
- High repeat accuracy of switching point position
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- Good resistance to oil and petroleum spirit

Iechnical data

Standards:
IEC/EN 60947-5-1
BG-GS-ET-15
DIN EN 50041
Design:
Enclosure:

Protection class:
Contact material:
Contact type:

Switching system:

Connection:
Cable section:

$\mathrm{U}_{\mathrm{imp}}$:

U_{i} :
$I_{\text {the }}$:
6 A
Utilisation category: AC-15, DC-13
e/ U_{e} : $\quad 2.5 \mathrm{~A} / 230 \mathrm{VAC}$
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:
Switching-point accuracy: $\quad \pm 0.02 \mathrm{~mm}$
Actuating speed snap action: min. $10 \mathrm{~mm} / \mathrm{min}$
Contakt break for
complete stroke:
Bounce duration:
Switchover time snap action

Approvals

©(C)
C

Ordering details

Z (1) 332-11Y-(2)-(3)
No. Option || Description

For the appropriate actuator: see as of page 1-19
(2) 2138

Roller lever 7H for safety duties

Plunger S

- Actuator type B to EN 50041
- Actuating force: Min. 31 N

Contact variants

Contact variants

Contacts/ Switch travel	Snap action
1 No	ZR 332-11Y
1 NC	
	\square

- Actuator type C to EN 50041
- Actuating force: Min. 31 N
- Brass actuator roller

Roller lever H

| Contacts/
 Switch travel | Snap action |
| :--- | :--- | :--- |
| 1 NO | |
| 1 NC | Z4VH 332-11Y |

- Actuator type A to EN 50041
- Actuating torque: Min. 35 Ncm

Contact variants

Contact variants

Contacts/ Switch travel

1 NO

1 NC
Z4V10H 332-11Y

- Only for positioning tasks
- Actuator type D to EN 50041
- Plastic rod
- Actuating torque: Min. 35 Ncm
- Aluminium rod, ordering suffix -1183

Roller lever 7H

- Only for positioning tasks
- Actuating torque: Min. 35 Ncm

Contact variants

Contacts/ Switch travel	Snap action	
1 NO		
N NC		

Contact variants

Contacts/ Switch travel	Snap action
1 NO	Z4V7H 332-11Y
1 NC	-2138

- For safety tasks Θ, positive break, ordering suffix -2138
- Actuating torque: Min. 35 Ncm

Positve break angle ${ }^{\bullet}$ only valid with ordering suffix -2138

Roller lever 7H-2138

Z/T 336

- Thermoplastic enclosure
- Double insulated 回
- Available with positive break NC contacts to EN 60947-5-1
- Snap action with constant contact pressure up to switching point
- Slow action available with 2 positive break NC contacts
- Slow action available with overlapping or staggered contacts
- 1 cable entry M20 x 1.5
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- Good resistance to oil and petroleum spirit
- Metal roller available on request

Technical data

Standards:	IEC/EN 60947-5-1
	BG-GS-ET-15
Design:	DIN EN 50041
Enclosure:	glass-fibre reinforced thermoplastic, self-extinguishing
Protection class:	IP 67 to EN 60529
Contact material:	silver
Contact type:	change-over contact
	with double break, type Zb
	or 2 NC contacts, with
	galvanically separated contact bridges
Switching system:	Θ IEC 60947-5-1
	slow or snap action,
	NC contacts with positive break
Connection:	screw terminals
Cable section:	max. $2.5 \mathrm{~mm}^{2}$
	(incl. conductor ferrules)
Cable entry:	$1 \times \mathrm{M} 20 \times 1.5$
$\mathrm{U}_{\text {imp }}$:	6 kV
U_{i} :	500 V
$I_{\text {the }}$:	10 A
Utilisation category:	AC-15, DC-13
l_{e} / U_{e} :	4 A / 230 VAC
	$4 \mathrm{~A} / 24 \mathrm{VDC}$
Max. fuse rating:	6 A gG D-fuse
Ambient temperature:	e: $\quad-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Mechanical life:	30 million operations
Switching frequency:	: max. 5000/h
Bounce duration: sn	snap action: in accordance
	with actuating speed; slow action: < 2ms
Switchover time:	snap action: < 2 ms ;
	slow action: in accordance
	with actuating speed

Approvals

©(UL) © © (CC)

Ordering details

(1) (2) 336-(3)Z(4)-(5)-(6)-(7)

No. Option		Description
(1)	Z	Snap action Θ
	T	Slow action Θ
(2)	For the appropriate actuator: see as of page 1-23	
(3)	11	$1 \mathrm{NO} / 1 \mathrm{NC}$
	02	2 NC
	20	2 NO *
	01/01	1 NC left / 1 NC right
(4)	H	Slow action with staggered contacts
	UE	with overlapping contacts

Ordering details

No. Option		Description
(5)	NPT	Cable entry M20 Cable entry NPT 1/2" Connector M12 (A-Coding)
(6)	2310	(B-Coding) ST
(7)	1637	Roller lever 7H for safety duties Gold-plated contacts

Connector

* Switches with 2 NO contacts (20) are only suitable for positioning tasks!

Plunger S

- Actuator type B to EN 50041
- Required actuating force:

12 N for snap action, 17 N for slow action

- Actuating speed with actuating angle 0° to switch axis, max. $0.5 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
1 NO	ZS 336-11Z	TS 336-11Z	TS 336-11ZUE	
1 NC				
2 NC		TS 336-02Z 21-22		TS 336-02ZH 21-22
2 NO				TS 336-20ZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	ZR 336-11Z	TR 336-11Z	TR 336-11ZUE	
2 NC	ZR 336-02Z	TR 336-02Z		TR 336-02ZH
2 NO		TR 336-20Z		TR 336-20ZH \square ${ }_{23-24}^{13-14}$

Roller lever H

- Actuator type A to EN 50041
- Required actuating torque:

26 Ncm for snap action,
31 Ncm for slow action

- Actuating speed with actuating
angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

The positioning of the head on version "1 NC left/1 NC right" must be carried out in factory.

On version TVH 336-01/01z positive break only to one side.

Contact variants

Contacts/	Snap action	Slow action	Slow action Sith overlapping contacts	Slow action with staggered contacts

1 NO

1 NC

2 NC

1 NC left 1 NC right

T4VH 336-20Z

TVH 336-01/01Z

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \text { NO } \\ & 1 \text { NC } \end{aligned}$	Z4V10H 336-11Z	T4V10H 336-11Z	T4V10H 336-11ZUE	
2 NC	Z4V10H 336-02Z	T4V10H 336-02Z		T4V10H 336-02ZH
2 NO		T4V10H 336-20Z		T4V10H 336-20ZH

1 NC left 1 NC right

Rod lever 10H

- Only for positioning tasks
- Actuator type D to EN 50041
- Plastic rod
- Required actuating torque:

26 Ncm for snap action,
31 Ncm for slow action

- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$
- Aluminium rod, ordering suffix -1183

The positioning of the head on version "1 NC left/1 NC right" must be carried out in factory.

TV10H 336-01/01Z

Roller lever 7H

- Only for positioning tasks
- Required actuating torque:

26 Ncm for snap action,
31 Ncm for slow action

- Actuating speed with actuating
angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

The positioning of the head on version "1 NC left/1 NC right" must be carried out in factory.

Roller lever 7H-2138

- For safety tasks Θ, positive break, ordering suffix -2138
- Required actuating torque: 26 Ncm for snap action,
31 Ncm for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

The positioning of the head on version "1 NC left/1 NC right" must be carried out in factory.

On version TV7H 336-01/01z-2138 positive break only to one side.

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

NC 1 NC right

Z4V7H 336-11Z

Z4V7H 336-02Z

TV7H 336-01/01Z

T4V7H 336-02ZH

T4V7H 336-20ZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$				
2 NC				
2 NO				
1 NC left 1 NC right		$\begin{aligned} & \text { TV7H 336-01/01Z } \\ & -2138 \end{aligned}$		

Offset roller lever 1K

- Required actuating force:

12 N for snap action,
17 N for slow action

- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$

Gontact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NO Z1K 336-11Z T1K 336-11Z T1K 336-11ZUE

2 NO

Angle roller lever 3K

- Required actuating force: 12 N for snap action, 17 N for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$
- Actuation parallel to axis of switch from below

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z3K 336-11Z			
2 NC	Z3K 336-02Z	T3K 336-02Z		
2 NO				T3K 336-20ZH

Z/T 335

- Metal enclosure
- Snap action with constant contact pressure up to switching point
- Slow or snap action available with 2 positive break NC contacts to EN 60947-5-1
- Slow action available with overlapping or staggered contacts
- 1 cable entry M20 x 1.5
- Wide range of alternative actuators
- Actuator heads can be repositioned by $4 \times 90^{\circ}$
- Angle of roller lever adjustable in 10° steps
- Good resistance to oil and petroleum spirit
- Metal roller available on request
- EX version available

Z/T 355

- Mountings and switching points to EN 50041
- 3 cable entries M20 x 1.5
- EX version available

Approvals

-(U1) us ©

Ordering details

(1)(2) 3(3)5-4)Z(5)-(6)-(7)-(8)-(9)

	tion	Description	No. Option		Description
(1)	Z	Snap action Θ Slow action	(5)	H	Slow action with staggered contacts
(2)	For th see as	priate actuator: e 1-28		UE	with overlapping contacts
(3)	3	Slim design	(6)	G24	With LED
	5	Large design	(7)		Cable entry M20
(4)	11	$1 \mathrm{NO} / 1 \mathrm{NC}$		NPT	Cable entry NPT 1/2"
	02	2 NC	(8)	2138	Roller lever 7H
	20	2 NO *			for safety duties
	01/01	1 NC left / 1 NC right	(9)	1637	Gold-plated contacts
	12	$1 \mathrm{NO} / 2 \mathrm{NC}$			
	03	3 NC			

Approvals

C
(Ill) © (ϵ

Technical data

Standards:
IEC/EN 60947-5-1
BG-GS-ET-15
DIN EN 50041
Design:
Enclosure:
light-alloy diecast, paint finish
Protection class:
Contact material:
Contact type:

Switching system:

Connection:
Cable section:

Cable entry:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
$I_{\text {the }}$:
Utilisation category:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:
Bounce duration: snap action: in accordance with actuating speed;
slow action: < 2ms
snap action: < 2 ms ; slow action: in accordance with actuating speed
Switchover time:

Note

LED version
Ordering suffix G24, Protected against incorrect polarity and voltage spikes.

* Switches with 2 NO contacts (20) are only suitable for positioning tasks!

Plunger S

- Actuator type B to EN 50041
- Required actuating force: 12 N for snap action, 17 N for slow action
- Actuating speed with actuating angle 0° to switch axis, max. $0.5 \mathrm{~m} / \mathrm{s}$

Roller plunger R

- Actuator type C to EN 50041
- Required actuating force: 12 N for snap action, 17 N for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	ZS 3..-11Z	TS 3..-11Z		
2 NC	ZS 3..-02Z	TS 3..-02Z		TS 3..-02ZH
2 NO		TS 3..-20Z		TS 3..-20ZH
$\begin{aligned} & 1 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$		TS 3..-12Z	TS 3..-12ZUE	
3 NC		TS 3..-03Z $11-12$ $21-22$ $31-32$		TS 3..-03ZH

Contact variants

Roller lever H

- Actuator type A to EN 50041
- Required actuating torque: 26 Ncm for snap action, 31 Ncm for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

On version TVH ...-01/01z positive break only to one side.

Rod lever 10H

- Only for positioning tasks
- Actuator type D to EN 50041
- Plastic rod
- Required actuating torque:

26 Ncm for snap action,
31 Ncm for slow action

- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$
- Aluminium rod, ordering suffix -1183

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NC left 1 NC right

1 NO 2 NC

3 NC

T4VH 3..-20Z

TVH 3..-01/01Z

T4VH 3..-12Z

T4VH 3..-03Z

T4VH 3..-11ZUE

T4VH 3..-02ZH

T4VH 3..-20ZH

T4VH 3..-03ZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$		T4V10H 3..-11Z	T4V10H 3..-11ZUE	
2 NC		T4V10H 3..-02Z		T4V10H 3..-02ZH
2 NO		T4V10H 3..-20Z		T4V10H 3..-20ZH
1 NC left 1 NC right		TV10H 3..-01/01Z \square		
$\begin{aligned} & 1 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$		T4V10H 3..-12Z	T4V10H 3..-12ZUE	
3 NC		T4V10H 3..-03Z		T4V10H 3..-03ZH

Roller lever 7H

- Only for positioning tasks
- Required actuating torque: 26 Ncm for snap action, 31 Ncm for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

Roller lever 7H-2138

- For safety tasks Θ, positive break, ordering suffix -2138
- Required actuating torque: 26 Ncm for snap action,
31 Ncm for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $2.5 \mathrm{~m} / \mathrm{s}$

On version TV7H ...-01/01z-2138 positive break only to one side.

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts

1 NC left 1 NC right

1 NO 2 NC

3 NC

T4V7H 3..-02ZH

T4V7H 3..-20ZH

T4V7H 3..-03ZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z4V7H 3..-11Z-2138	T4V7H 3..-11Z-2138	T4V7H 3..-11ZUE-2138	
2 NC	Z4V7H 3..-02Z-2138	T4V7H 3..-02Z-2138		T4V7H 3..-02ZH-2138
2 NO		T4V7H 3..-20Z-2138		T4V7H 3..-20ZH-2138
1 NC left 1 NC right		TV7H 3..-01/01Z-2138 		
$\begin{aligned} & 1 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$		T4V7H 3..-12Z-2138	T4V7H 3..-12ZUE-2138	
3 NC		T4V7H 3..-03Z-2138		T4V7H 3..-03ZH-2138

Offset roller lever 1K

- Required actuating force: 12 N for snap action, 17 N for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$

Angle roller lever 3K

- Required actuating force: 12 N for snap action, 17 N for slow action
- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$
- Actuation parallel to axis of switch from below

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z1K 3..-11Z	T1K 3..-11Z	T1K 3..-11ZUE	
2 NC	Z1K 3..-02Z	T1K 3..-02Z		T1K 3..-02ZH
2 NO		T1K 3..-20Z		T1K 3..-20ZH
$\begin{aligned} & 1 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$		T1K 3..-12Z	T1K 3..-12ZUE	
3 NC		T1K 3..-03Z		T1K 3..-03ZH

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts	Slow action with staggered contacts
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NC} \end{aligned}$	Z3K 3..-11Z	T3K 3..-11Z		
2 NC	Z3K 3..-02Z	T3K 3..-02Z		
2 NO		T3K 3..-20Z		T3K 3..-20ZH
$\begin{aligned} & 1 \mathrm{NO} \\ & 2 \mathrm{NC} \end{aligned}$		T3K 3..-12Z $\begin{aligned} & 13-14 \\ & 21-22 \\ & 31-32 \end{aligned}$	T3K 3..-12ZUE	
3 NC		T3K 3..-03Z		T3K 3..-03ZH$21-22$ $31-32$

Selection tables: position switches and limit switches

Contact combinations

1 contact		2 contacts			3 contacts				4 contacts					6-10 contacts	
10	01	11	20	02	21	12	30	03	22	31	13	40	04	33	55
1		1	2		2	1	3		2	3	1	4		3	5
	1	1		2	1	2		3	2	1	3		4	3	5
		M													
		M													
		M ${ }^{11}$													
		T													
		T													
		M ${ }^{11}$													
		T													
		T/M		T											
		M													
		T/M													
		T/M	T	T											
					T	T	T	T							
									T/M	T	T				
T	T														
		T	T	T											
					T	T	T	T							
									T	T	T	T	T		
T	T														
		T/M													
			T	T	T	T									
							T	T	T/M	T	T				
														T*	
		T/M	T	T											
		T/M	T	T	T	T	T	T	T/M	T	T				
					T	T	T	T	T	T	T	T	T		
					M	M	M	M	M	M	M	M	M		
					T	T	T	T							
					M	M	M		M	M		M			
					M	M		M	M		M		M		
		T	T	T											
					M	M			M						
														T*	
							T	T							
															T*

				4 contacts									6 contacts			
10/20	10/20	02/01	01/02	11/11	11/20	11/02	11/11	21/10	30/10	01/03	20/20	02/02	21/21	12/12	30/30	03/03
3	3			2	3	1	2	3	4		4		4	2	6	
		3	3	2	1	3	2	1		4		4	2	4		6
				T	T	T	T	T	T	T						
T	T	T	T													
											T	T	T	T	T	T
											M	M	M	M		M
															T	T

M 660 and 6600

- Rubber enclosure
- Stainless steel case pre-wired cable
- Double-insulated 回
- M 660 without mounting flange, M 6600 with mounting flange
- Snap action, change-over contact with single break
- Gold-plated contacts
- Snap action with self-cleaning contacts
- With pre-wired cable $3 \times 0.75 \mathrm{~mm}^{2}$
- Protection class IP 65
- Suitable for aggressive environmental conditions
- Good resistance to petroleum spirit and oil
- Flange or central mounting
- Cable length 0.5 m Other lengths on request.

Approvals

Ordering details

M(1) 660 ②-11-k-y- (3)
No. Replace || Description
\(\left.$$
\begin{array}{l|l|l}\text { (1) } & \begin{array}{l}\text { For the appropriate actuator: } \\
\text { see page 1-35 and following }\end{array} \\
\text { (2) } & 0 & \begin{array}{l}\text { Without mounting flange }\end{array}
$$

(3) With mounting flange\end{array}\right)\)| With roller turned 90° |
| :--- |
| to axis of switch body |
| (only for 2R) |

Basic unit M

- Rubber enclosure
- Stainless steel case pre-wired cable

Contact variants

Rubber collar S

- Rubber enclosure
- Stainless steel case pre-wired cable

Contact variants

Contacts/
Snap action Switch travel

Change-over

contact with
double break

MS 660-11-k-y MS 6600-11-k-y

Telescopic plunger 1 S

- Threaded tube: Nickel-plated brass
- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point

Telescopic plunger $2 S$

- Threaded tube: Nickel-plated brass
- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point
- Bellows to protect plunger against soiling

Contact variants

Contact variants

Contacts/
Snap action Switch travel

Change-over

contact with
double break

Telescopic roller-plunger 2R

- Actuating speed with actuating angle 30° to switch axis: max. $0.5 \mathrm{~m} / \mathrm{s}$
- Threaded tube: Nickel-plated brass
- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point
- Also available with roller turned 90° to axis of switch body, ordering suffix -u

Contact variants
Contacts/ Switch travel

Change-over

 contact with double breakSnap action

M2R 660-11-k-y
M2R 6600-11-k-y

M 6610 and 6620

- Thermoplastic enclosure
- Double-insulated 回
- M 6610 without mounting flange, M 6620 with mounting flange
- Snap action, change-over contact with single break
- Gold-plated contacts
- Snap action with self-cleaning contacts
- With pre-wired cable $3 \times 0.75 \mathrm{~mm}^{2}$
- Protection class IP 67
- Suitable for aggressive environmental conditions
- Good resistance to petroleum spirit and oil
- Flange or central mounting
- Cable length 0.5 m Other lengths on request.

Technical data

Standards:
Enclosure:

Hexagon nuts:

Protection class:
Contact material:
Switching system:
Contact type:
Pre-wired cable:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
the:
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:

EC/EN 60947-5-1 glass-fibre reinforced thermoplastic with perbunan gaskets M 16×1,
nickel-plated steel IP 67 to EN 60529 gold-plated silver snap action, self-cleaning contacts change-over contact, single break H05VV-F $3 \times 0.75 \mathrm{~mm}^{2}$ 4 kV 250 V 4 A 1 A / 230 VAC AC-15 4 A gG D-fuse 0.35 mm $-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ 3 million operations 30000/h
min. $10 \mathrm{~mm} / \mathrm{min}$

$$
\pm 0.05 \mathrm{~mm}
$$

Contact variants

Change-over contact with double break

Rubber collar S

- Thermoplastic enclosure
- M 6610 without mounting flange, M 6620 with mounting flange

Contact variants

Contacts/

 Switch travel
Change-over

contact with double break

MS 6610-11-k-z

 MS 6620-11-k-z

Telescopic plunger 1S

- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point
- Bellows to protect plunger against soiling

Contact variants

Contacts/ Switch travel

Change-over

contact with double break

M1S 6610-11-k-z

Telescopic plunger 2 S

- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point
- Bellows to protect plunger against soiling

Contact variants
Contacts/ Switch travel

Change-over

 contact with double break
M2S 6610-11-k-z

Telescopic roller-plunger 2R

- Simple mounting with hexagonal steel nuts
- Large after-travel
- Good adjustment of switching point
- Also available with roller turned 90° to axis of switch body, ordering suffix -u

Contact variants

Contacts/ Switch travel

Change-over

contact with double break

M2R 6610-11-k-z

Download now

[^1]Data sheets, mounting and wiring instructions, declaration of conformity and other information at: www.schmersal.com

ES/EM 14

- Thermoplastic enclosure
- Double-insulated 回
- Slow action Θ, change-over or 2 NC with double break
- Snap action, change-over contact with single break
- Overlapping contacts available
- Mounting details to EN 50047
- Suitable for in-line mounting
- Pre-wired cable available,
cable length 1 m
- Protection class IP 67
- Ex version available

Technical data

Standards:
Enclosure:
IEC/EN 60947-5-1
thermoplastic,
self-extinguishing
UL 94-VO
Protection class:
Contact material:
Switching system:
IP 67 to EN 60529
silver
slow or snap action,
positive break
NC contacts Θ
Contact type:

Termination:
Cable section:

$\mathrm{U}_{\mathrm{imp}}$:
 U_{i} :

the:
$\mathrm{e} / \mathrm{U}_{\mathrm{e}}$:

Utilisation category:
Max. fuse rating:

Ambient temperature:
Mechanical life:
Switching frequency:
Repeat accuracy
of switching points:
Impact resistance/
resistance to shock:
ES 14: change-over contact, double break, galvanically separated contact bridges EM 14: change-over contact, single break
cable H05VV-F ES 14: $4 \times 0.75 \mathrm{~mm}^{2}$ EM 14: $3 \times 0.75 \mathrm{~mm}^{2}$ 4 kV
250 V
ES 14: 6 A
EM 14: 5 A
ES 14: 6 A / 250 VAC
0.25 A / 230 VDC

EM 14: 5 A / 250 VAC
0.16 A / 230 VDC

AC-15, DC-13
ES 14: 6 A gG D-fuse EM 14: 5 A gG D-fuse

$$
-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}
$$ >1 million operations 1800/h

ES 14: $\pm 0.1 \mathrm{~mm}$
EM 14: $\pm 0.2 \mathrm{~mm}$
$50 \mathrm{~g} / 6 \mathrm{~ms}$

Contact variants

Slow action,

1 NO / 1 NC

Snap action,
Change-over contact

Approvals

Ordering details

E(1) 14 (2)-(3)-(4)-(5)
No. Replace Description

(1)	S	Slow action Θ
	M	Snap action
(2)	For the appropriate actuator: see page 1-43 and following	
(3)	$\begin{aligned} & 10 \mathrm{O} / 1 \mathrm{~S} \\ & \text { 1S/1Ö UE } \end{aligned}$	1 NO/1 NC Overlapping contacts on request
	$20 ̈$	2 NC
(4)	ST	Plug-in connector M12 (A-Coding)
(5)	s	Cable output from side Cable length 1 m
	2 m	2 m
	5 m	5 m
	10 m	10 m

Plunger

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

Change-over

EM 14	
$\square_{1-2}^{1.5}$	

Plunger W

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Collar to protect against the entry of foreign bodies

Contact variants

| Contacts/
 Switch travel | Snap action | Slow action | |
| :--- | :--- | :--- | :--- | :--- |
| 1 NO / 1 NC | | | |

Plunger F

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

Change-over
EM 14 F

Ball plunger KU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Contact variants

| Contacts/
 Switch travel | Snap action | Slow action |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 ~ N O} / \mathbf{1 ~ N C}$ | | |

Ball plunger WKU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

Change-over EM 14 WKU

ES 14 WKU

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO / $\mathbf{1}$ NC		

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30°
- Metal rollers
- Can be supplied with actuator turned 90°

Roller plunger WR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°
- Collar to protect against the entry of foreign bodies

Change-over

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		
Change-over	EM 14 R	=

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$\mathbf{1 ~ N O ~ / ~ 1 ~ N C ~}$		

Roller plunger FR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°

Long spring wire TL

- Spring rod can be actuated from any direction
- Wire can be shortened 30 mm in actuating area
- Exact linear actuation not necessary
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

| Contacts/
 Switch travel | Snap action | Slow action | |
| :--- | :--- | :--- | :--- | :--- |
| 1 NO / 1 NC | | | |

Contact variants

Spring rod TF

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		ES 14 TF
Change-over	EM 14 TF	

Spring rod TK

- Wear-restistant plastic rod
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

| Contacts/
 Switch travel | Snap action | Slow action |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 ~ N O ~ / ~ 1 ~ N C ~}$ | | |

Roller lever D

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

Change-over

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

Change-over
EM 14 DS

Ball plunger at front VKU

- Actuation from any direction
- Actuator head with captive stainless steel ball actuator

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$\mathbf{1 ~ N O ~ / ~ 1 ~ N C ~}$		

Position and limit switches

Roller plunger at front VR

- Actuator can be transposed by 90°
- Wear-restistant thermoplastic roller

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO / 1 NC		
Change-over		

ES 13

- Thermoplastic enclosure
- Double-insulated 回
- Slow action Θ, change-over with double break
- Version with 3 contacts has cable on left-hand side
- Overlapping contacts available
- Suitable for in-line mounting
- Pre-wired cable available, cable length 1 m
- Protection class IP 67
- Ex version available

Technical data

Standards:	IEC/EN 60947-5-1
thermoplastic,	
Enclosure:	UL $94-$ VO self-extinguishing
Protection class:	IP 67 to EN 60529
silver	
Contact material:	slow action, Switching system: positive break
Contact type:	NC contacts Θ
	change-over contact,

Contact type:

Termination:

Cable section:

$U_{\text {imp }}$:
U_{i} :
$I_{\text {the }}: \quad 6 \mathrm{~A}$

Utilisation category:

Max. fuse rating:
Ambient temperature: Mechanical life:
Switching frequency:
Repeat accuracy of switching points:
Impact resistance/
resistance to shock:

250 V

6 A / 250 VAC
0.25 A / 230 VDC

AC-15, DC-13
6 A gG D-fuse

$$
-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}
$$

> 1 million operations 1800/h
$\pm 0.1 \mathrm{~mm}$
$50 \mathrm{~g} / 6 \mathrm{~ms}$ change-over contact, double break with
2 separate contact bridges cable H05VV-F $4 \times 0.75 \mathrm{~mm}^{2}$ 4 kV 0 V A
g / 6 ms

Contact variants

1 NO / 1 NC

Approvals

Ordering details

ES 13 (1) (2)-(3)-(4)
No. Replace
Description

(1)	For the appropriate actuator: see page 1-53 and following	
(2)	10̈/1S	1 NO/1 NC (3 contacts on request)
(3)	ST	Plug-in connector M12 (A-Coding)
	s	Cable output from side
	B	Cable entry M16 bottom
	SB	from side
(4)		Cable length 1 m
	2 m	2 m
	5 m	5 m
	10 m	10 m

Plunger

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

Contacts/

 Slow actionSwitch travel

1 NO / 1 NC
ES 13 10̈/1S

Plunger W

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel

1 NO / 1 NC
ES 13 W 10̈/1S

Plunger F

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 13 F 10̈/1S

Ball plunger KU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC

Ball plunger WKU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 15°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel	Slow action
$\mathbf{1}$ NO / 1 NC	ES 13 WKU 1Ö/1S
	0

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 13 FKU 10̈/1S

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Ball Ø 8 mm
- Exact repeatability of switching point

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30°
- Metal rollers
- Can be supplied with actuator turned 90°

Roller plunger WR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/

Switch travel
Slow action

1 NO / 1 NC
ES 13 R 10̈/1S

Contact variants

Contacts/

 Switch travel1 NO / 1 NC ES 13 WR 10̈/1S

Roller plunger FR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°

Offset roller lever WH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contact variants

Contacts/ Switch travel	Slow action
1 NO/1 NC	ES 13 WH 10̈/1S

Offset roller lever WHL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Roller lever WHK

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry
of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis

Contact variants

Contacts/ Switch travel	Slow action
1 NO/1 NC	ES 13 WHL 10̈/1S

Contact variants

Roller lever WPH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with actuating angle of $\alpha=30^{\circ}$ to switch axis
- Actuation parallel to axis of switch from below
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/ Switch travel	Slow action
$1 \mathrm{NO} / 1 \mathrm{NC}$	ES 13 WPH 10̈/1S

Roller lever D

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/
Slow action Switch travel

1 NO / 1 NC
ES 13 D 10̈/1S

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants
Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 13 DL 10̈/1S

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/
Slow action
Switch travel

1 NO / 1 NC
ES 13 DS 10̈/1S

Wire lever DD

- Wear-restistant thermoplastic tip
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Long spring wire TL

- Spring rod can be actuated from any direction
- Wire can be shortened 30 mm in actuating area
- Exact linear actuation not necessary
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 13 DD 1Ö/1S

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 13 TL 10̈/1S

Spring rod TF

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Spring rod TK

- Wear-restistant plastic rod
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants
Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 13 TF 10̈/1S

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC ES 13 TK 10̈/1S
$\stackrel{10}{105}$

E 12

- Metal enclosure
- Snap action, change-over contact with single break
- Suitable for in-line mounting
- Pre-wired cable available,
cable length 1 m
- Protection class IP 67
- Ex version available

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:
Termination:
Cable section:
U_{i} :
$I_{\text {the }}$:
I_{e} / U_{e} :

Utilisation category:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Repeat accuracy
of switching points:
Impact resistance/
resistance to shock:

IEC/EN 60947-5-1
pressure die cast Al alloy IP 67 to EN 60529 silver snap action change-over contact, single break cable H05VV-F $4 \times 0.75 \mathrm{~mm}^{2}$ 250 V 5 A 5 A / 250 VAC 0.16 A / 230 VDC AC-15, DC-13 5 A gG D-fuse

$$
-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}
$$

$$
1 \text { million operations }
$$

Contact variants

1-pole change-over contact
4 BK ${ }_{-1}^{1} \mathrm{BU}$
2 BN BL

$$
\pm 0.1 \mathrm{~mm}
$$

$50 \mathrm{~g} / 6 \mathrm{~ms}$

Approvals

Ordering details

E12(1)-(2)-(3)
No. Replace Description
For the appropriate actuator:

see page 1-64 and following	
s	Cable output from side
B	Cable entry M16 bottom
SB	from side
	Cable length 1 m
2 m	2 m
5 m	5 m
10 m	10 m

Plunger

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

| Contacts/ | Snap action |
| :--- | :--- | :--- | :--- |
| Switch travel | |$|$

Plunger W

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel	Snap action	
1-pole E 12 W change-over 0 contact		

Plunger F

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over contact	E 12 F	

Ball plunger KU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Contact variants

Contacts/ Switch travel	Snap action	
1-pole E 12 KU change-over 0 contact		

Ball plunger WKU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 15°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel	Snap action
1-pole change-over contact	E 12 WKU $^{1.5}$

Ball plunger FKU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Ball Ø 8 mm
- Exact repeatability of switching point

Contact variants

Contacts/ Switch travel	Snap action
1-pole E 12 FKU change-over contact	0

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30°
- Metal rollers
- Can be supplied with actuator turned 90°

Roller plunger WR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel	Snap action
1-pole change-over contact	E 12 R

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over 0 12 WR contact		

Roller plunger FR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°

Offset roller lever WH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over contact	E 12 FR	

Contact variants

Contacts/ Switch travel	Snap action	
1-pole	E 12 WH	
change-over	0	
contact		

Offset roller lever WHL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Roller lever WHK

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry
of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from right of switch axis

Contact variants

Contacts/ Switch travel	Snap action
1-pole change-over contact	E 12 WHL

Contact variants

Roller lever WPH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with actuating angle of $\alpha=30^{\circ}$ to switch axis
- Actuation parallel to axis of switch from below
- Metal rollers
- Can be supplied with actuator turned 180°
- Collar to protect against the entry of foreign bodies
- With plastic roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/ Switch travel	Snap action
1-pole change-over contact	E 12 WPH

Long spring wire TL

- Spring rod can be actuated from any direction
- Wire can be shortened 30 mm in actuating area
- Exact linear actuation not necessary
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over contact	E 12 TL	

Spring rod TF

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Contact variants

Contacts/ Switch travel	Snap action
1-pole	E 12 TF
change-over contact	\square

Contact variants

Contacts/ Switch travel	Snap action
1-pole	E 12 TK
change-over contact	

Contacts/ Snap action contact

- Wear-restistant plastic rod
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 18°

Spring rod TK

Roller lever D

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over contact	E 12 D	

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/ Switch travel

1-pole

change-over
contact

E 12 DL

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/ Switch travel	Snap action
1-pole change-over contact	E 12 DS

Wire lever DD

- Wear-restistant thermoplastic tip
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Contact variants

Contacts/ Switch travel	Snap action	
1-pole change-over contact	E 12 DD	

ES 51

- Metal enclosure
- Slow action Θ, change-over with double break
- 1 cable entry M16 x 1.5
- Protection class IP 65

Technical data

Standards:
Enclosure:

IEC/EN 60947-5-1
light-alloy diecast, paint finish
Protection class: Contact material: Switching system: Contact type:

Termination: Cable section:

U_{i} :

$I_{\text {the: }}$
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:

P 65 to EN 60529 silver slow action change-over contact, double break with
2 separate contact bridges screw terminals M 3 max. $1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

400 V 4 A
4 A / 400 VAC AC-15
4 A gG D-fuse $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ >1 million operations 3600/h $\$.2 \mathrm{~m} / \mathrm{s}$

Contact variants

1 NO / 1 NC
$23 \div \pi{ }_{11}=12$

Approvals

(ϵ

Ordering details

ES 51 (1) 10̈/1S
No. Replace
Description
For the appropriate actuator: see page 1-75 and following

Plunger

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Plunger W

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Contact variants
Contacts/
Slow action
Switch travel

1 NO / 1 NC
ES 51 10̈/1S

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 51 W 10̈/1S

Adjustable plunger ST

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Projection of plunger adjustable for fine setting of switching point

Contact variants
Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 51 ST 10̈/1S

Adjustable plunger WST

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Projection of plunger adjustable for fine setting of switching point
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel

1 NO / 1 NC
ES 51 WST 10̈/1S

Ball plunger KU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Plunger WK

- Large actuating surface
- Safe switching even with imprecise actuation
- Suitable for manual operation
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/	Slow action
Switch travel	

Contact variants

Contacts/

 Slow action Switch travel1 NO / 1 NC
ES 51 WK 10̈/1S

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30°
- Metal rollers
- Actuator heads can be repositioned in steps $4 \times 90^{\circ}$

Roller plunger WR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Can be supplied with actuator turned 90°
- Collar to protect against the entry of foreign bodies

Contact variants
Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 51 R 1Ö/1S

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 51 WR 10̈/1S

Roller lever H

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Slow action
1 NO / 1 NC	ES 51 H 1Ö/1S

Offset roller lever WH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Offset roller lever HL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contact variants

1 NO / 1 NC
ES 51 WHL 10̈/1S

Contacts/
Slow action Switch travel
Contacts/
.

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Plastic roller
- Actuator head can be repositioned
in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Offset roller lever WHL

Roller lever PH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with actuating angle of $\alpha=30^{\circ}$ to switch axis
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/

Slow action
Switch travel

1 NO / 1 NC
ES 51 PH 10̈/1S

Roller lever WPH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with actuating angle of $\alpha=30^{\circ}$ to switch axis
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/
Slow action
Switch travel

1 NO / 1 NC
ES 51 WPH 1Ö/1S

Roller lever HK

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis

Contact variants

Contacts/	Slow action
Switch travel	

Contact variants

Contacts/ Switch travel	Slow action
1 NO / 1 NC	ES 51 WHK 10̈/1S

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis

Roller lever D

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/
Slow action
Switch travel

1 NO / 1 NC
ES 51 D 10̈/1S

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 51 DL 10̈/1S

Wire lever DD

- Wear-restistant thermoplastic tip
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Spring-rod lever DF

- Spring rod can be actuated from any direction
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Contact variants

Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 51 DD 1Ö/1S

Contact variants

Contacts/ Slow action Switch travel

1 NO / 1 NC
ES 51 DF 10̈/1S

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants
Contacts/ Slow action
Switch travel

1 NO / 1 NC
ES 51 DS 10̈/1S
$\stackrel{y y}{70^{\circ}}$

ES/EM 41 and ES/EM 411

* Dimensions only for ES/EM 411
- Metal enclosure
- Slow action Θ, change-over or 2 NC with double break
- Snap action, change-over contact with double break
- Overlapping contacts available
- ES/EM 411: with 25 mm mounting centres
- 3 cable entries M16 x 1.5
- Protection class IP 65
- Available with interlocking
- For temperatures up to $180^{\circ} \mathrm{C}$ on request

Technical data
Standards:
Enclosure:
Protection class:
Contact material: Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category
Max. fuse rating:
Contact opening:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:
mpact resistance/
resistance to shock:

Contact variants

Snap action

 1 NO / 1 NC$\underset{21 \cdot}{13 \cdot}+14$

Slow action
1 NO / 1 NC
23- n $_{12}^{24}$

2 NC
$\begin{array}{r}11 . \mathrm{r} \\ 21 . \mathrm{P} \\ \hline 22\end{array}$

Slow action with overlapping contacts
1 NO / 1 NC
$23-\quad 24$

Approvals

Ordering details

E(1) (2) (3) (4)-(5)

No. Replace		Description
(1)	S	Slow action Θ
	M	Snap action
(2)	41	Standard housing
	411	Housing with 25 mm mounting centres
(3)	For the appropriate actuator:	
(4)	1Ö/1S	1 NO/1 NC
	1S/1Ö UE	Overlapping contacts on request
	$20 ̈$	2 NC
(5)	BL	Mounting straps on side
	RL5,3	Enclosure with circular mounting holes

Plunger

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Plunger W

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. 10̈/1S		
2 NC		ES 4.. 2Ö	-

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. W 10̈/1S	ES 4.. W 10̈/1S \square ${ }_{10}^{23-24}$ 11-12	
2 NC	2	ES 4.. W 2Ö	

Adjustable plunger ST

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Length of plunger adjustable by means of M 4 setting screw
- For fine setting of switch travel

Contact variants

Contacts/	Snap action	Slow action	Slow action Switch travel
		with overlapping contacts	

1 NO / 1 NC

2 NC
$\underset{0}{\text { EM 4.. ST }} \underset{55}{\text { 10̈/1S }}$
ES 4.. ST 10̈/1S

ES 4.. ST UE

Adjustable plunger WST

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 0°
- Length of plunger adjustable by means of M 4 setting screw
- For fine setting of switch travel
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping Switch travel

1 NO / 1 NC EM 4.. WST 1Ö/1S ES 4.. WST 1Ö/1S ES 4.. WST UE

Ball plunger KU

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 20°
- Can be actuated in line with or from side of switch axis
- Actuator head with captive stainless steel ball actuator
- Exact repeatability of switching point

Plunger WK

- Large actuating surface
- Safe switching even with imprecise actuation
- Suitable for manual operation
- Collar to protect against the entry of foreign bodies

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC

2 NC
EM 4.. KU 1Ö/1S ES 4.. KU 1Ö/1S

ES 4.. KU UE

ES 4.. KU $20 ̈$

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC

2 NC

EM 4.. WK 1Ö/1S ES 4.. WK 1Ö/1S ES 4.. WK UE

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30°
- Metal rollers
- Actuator can be repositioned by 90°

Roller plunger WR

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 25°
- Metal rollers
- Actuator can be repositioned by 90°
- Collar to protect against the entry of foreign bodies

2 NC

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. R 10̈/1S	ES 4.. R 10̈/1S	
2 NC	20in	ES 4.. R 2Ö	=

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts
Switch travel			

1 NO / 1 NC

ES 4.. WR 2Ö

ES 4.. WR UE

Offset roller lever H

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. H 10̈/1S		
2 NC	\pm	ES 4.. H 2Ö	

Offset roller lever WH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC
EM 4.. WH 10/1S

ES 4.. WH 20

Offset roller lever HL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping Switch travel

1 NO / 1 NC
EM 4.. HL 1Ö/1S ES 4.. HL 1Ö/1S

ES 4.. HL $20 ̈$

ES 4.. HL UE

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC
EM 4.. WHL 10/1S

ES 4.. WHL 10̈/1S ES 4.. WHL UE $\stackrel{4}{0} \quad$| 12 |
| :--- |
| \square |

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

ES 4.. WHL 200

Roller lever PH

 actuating angle of $\alpha=30^{\circ}$

- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping Switch travel

1 NO / 1 NC

2 NC

Roller lever WPH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC

2 NC

Roller lever HK

th an actuating angle of $\alpha=40^{\circ}$

- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping Switch travel

1 NO / 1 NC

2 NC
EM 4.. HK 1Ö/1S
ES 4.. HK 10̈/1S

4.. HK UE

ES 4.. HK 2O

Roller lever WHK

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC

NC

EM 4.. WHK 1Ö/1S ES 4.. WHK 1Ö/1S

ES 4.. WHK UE

Roller lever D

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. D 10̈/1S		
2 NC		ES 4.. D 2Ö \square	

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts
Switch travel			

1 NO / 1 NC

2 NC

EM 4.. DL 10̈/1S

ES 4.. DL 20̈

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/	Snap action	Slow action	Slow action Switch travel
with overlapping			
contacts			

1 NO / 1 NC

2 NC

ES 4.. DS UE

ES 4.. DS $20 ̈$

Spring-rod lever DF

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC

2 NC

EM 4.. DF 10̈/1S ES 4.. DF 10̈/1S

ES 4.. DF 2Ö

Wire lever DD

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$
- Wear-restistant thermoplastic tip
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°

Long spring wire TL

- Spring rod can be actuated from any direction
- Wire can be shortened 30 mm in actuating area
- Exact linear actuation not necessary
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/	Snap action	Slow action	Slow action Switch travel
with overlapping			
contacts			

1 NO / 1 NC

2 NC

ES 4.. DD 200

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. TL 10̈/1S	ES 4.. TL 10̈/1S	ES 4.. TL UE
2 NC		ES 4.. TL 2Ö	

Spring rod TF

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Long spring wire TFL

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO / 1 NC	EM 4.. TF 10̈/1S	ES 4.. TF 10̈/1S	ES 4.. TF UE
2 NC		ES 4.. TF 2Ö	는요

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. TFL 10̈/1S	ES 4.. TFL 10̈/1S	ES 4.. TFL UE
2 NC		ES 4.. TFL 20̈	$=$

Spring rod TK

- Wear-restistant thermoplastic tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 4.. TK 10̈/1S	ES 4.. TK 10̈/1S	ES 4.. TK UE
2 NC		ES 4.. TK 2Ö	里

M 330

- Metal enclosure
- Snap action, self-cleaning contacts, change-over contact, double break, silver contacts
- Galvanically separated contact bridges
- Mountings and switching points to EN 50041
- Particularly long life
- Suitable for low actuating speeds
- Free of silicon
- Proved in power station applications
- 1 cable entry M20 x 1.5
- Protection class IP 65
- Min. actuating speed $1 \mathrm{~mm} / \mathrm{min}$ with reference to the plunger
- Available with plug-in connection

Technical data

Standards:
IEC/EN 60947-5-1
DIN EN 50041
Enclosure:

Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
the:
${ }_{e} / U_{e}$:
Utilisation category:
Max. fuse rating:
Contact opening:
Switchover time:
light-alloy diecast, paint finish
IP 65 to EN 60529 silver
snap action change-over contact, double break, same potential screw terminals max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 4 kV 250 V 6 A 2.5 A / 230 VAC AC-15 6 A gG D-fuse $2 \times 0.5 \mathrm{~mm}$ $\leq 10 \mathrm{~ms}$
(with actuating speed $10 \mathrm{~mm} / \mathrm{min}$ on plunger) $\leq .5 \mathrm{~ms}$

$$
-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}
$$

Repeat accuracy
of switching points:
Bounce duration:
Ambient temperature:
Mechanical life:

Switching frequency:

Impact resistance/
resistance to shock:

$$
\text { > } 30 \text { million }
$$ operations 5000/h

$\pm 0.02 \mathrm{~mm}$
on plunger
$50 \mathrm{~g} / 6 \mathrm{~ms}$

Contact variants

1 NO / 1 NC

21.

Approvals

(ϵ
 Ordering details

M(1) 330-11y-(2)-(3)
No. Replace | Description

| (1) | For the appropriate actuator: |
| :--- | :--- | :--- |
| see page 1-101 and following | |

Note

LED version

Ordering suffix G24, protected against incorrect polarity and voltage spikes.

- Supply voltage indication: Green (GN)
- Switching position indication: Yellow (YE)

Plunger S

- Required actuating force 17.5 N
- To DIN EN 50041
- Version for high temperature up to $+160^{\circ} \mathrm{C}$, ordering suffix -1366

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch.

Telescopic plunger 2 S

-

- Collar to protect against the entry of foreign bodies

Contact variants

Contact variants

Contacts/
Snap action Switch travel

1 NO / 1 NC
M2S 330-11y

Roller plunger R

- Required actuating force 17.5 N
- Plastic roller
- Actuator head can be transposed by 90°
- To DIN EN 50041
- Metal roller available on request
- Version for high temperature up to $+160^{\circ} \mathrm{C}$, ordering suffix -1366

Offset roller lever K

- Required actuating force 19 N
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contact variants

Contacts/ Switch travel

Snap action

1 NO / 1 NC
MK 330-11y

Angle roller lever 3K

- Required actuating force 16 N
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Contact variants

Side plunger 35

Contact variants

Contacts/ Switch travel

1 NO / 1 NC
M3S 330-11y

- Required actuating force 17 N
- Collar to protect against the entry of foreign bodies
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Required actuating force 9.0 N
- Can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle of 15°

Side roller plunger 3R

- Required actuating force 17 N
- Collar to protect against the entry of foreign bodies
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Contact variants

Contact variants

Contacts/ Switch travel

1 NO / 1 NC
MAF 330-11y

Snap action

Spring rod lever AF

Forked roller lever 4D

- With latching end position
- Actuator head with 90° end position latching
- Required actuating torque 50.5 Ncm
- Plastic rollers
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

${ }^{\text {®®) }}$: Snap action point

Contact variants

Actuator head for lever V.

- Required actuating torque 50.5 Ncm
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Patented low-wear actuator head
- Version for high temperature up to $+160^{\circ} \mathrm{C}$, ordering suffix -1366
- Splined shaft and lever available with 10° toothing, ordering suffix -1164

The range of turning levers is presented on the next page.

Contact variants
Contacts/ Switch travel

Snap action

1 NO / 1 NC
MV. 330-11y

Roller lever 8H

- Required actuating torque 24 Ncm , ordering suffix -A
50.5 Ncm , without ordering suffix -A
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Lever with 10° toothing, ordering suffix -1164

Roller lever H

- Required actuating torque 50.5 Ncm
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Lever with 10° toothing, ordering suffix -1164

Roller lever 3H

- Required actuating torque 50.5 Ncm
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Lever with 10° toothing, ordering suffix -1164

Roller lever 7H

- Required actuating torque 50.5 Ncm
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Spring rod lever on shaft 4H

- Required actuating torque 50.5 Ncm
- Spring with projecting rod
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Rod lever 10H

- Required actuating torque 50.5 Ncm
- Plastic rod
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned
in steps $4 \times 90^{\circ}$
- Aluminium or stainless steel rod also available

Leaf-spring lever 2H

- Required actuating torque 50.5 Ncm
- Leaf spring 2.5 mm thick
- Epoxy-resin leaf spring
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Rod lever 9H

- Required actuating torque 50.5 Ncm
- Stainless steel rod
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Leaf-spring lever 6H

- Required actuating torque 50.5 Ncm
- Leaf spring 0.8 mm thick
- Spring-steel leaf spring
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

ES/EM 61

- Metal enclosure
- Slow action Θ, change-over or 2 NC with double break
- Snap action, change-over contact with double break
- Available with overlapping contacts
- 3 cable entries M20 x 1.5
- Protection class IP 65
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Ex version available

E(1) 61 (2) (3)
No. Replace Description

(1)	S	Slow action Θ (2)
M Snap action (3) For the appropriate actuator: see page 1-108 and following		
1Ö/1S	1 NO/1 NC	

Technical data
Standards:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
I_{e} / U_{e} :

Utilisation category:
Max. fuse rating:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
mpact resistance/
resistance to shock:

Contact variants

Slow action with overlapping contacts

ES 61: 16 A/ 400 VAC
EM 61: 6 A / 400 VAC
ES 61 2O: 6 A / 400 VAC
AC-15
16 A gG D-fuse
$-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
>1 million operations 5000/h

$$
\geq 0.2 \mathrm{~m} / \mathrm{s}
$$

$50 \mathrm{~g} / 6 \mathrm{~ms}$

Approvals

Ordering details
 Ordering details

Snap action

 1 NO / 1 NC$\underset{21 \cdot}{13 \cdot}+14$

Slow action
1 NO / 1 NC
$\underset{11}{23-} 24$

2 NC

1 NO / 1 NC
$23-\quad 24$
EC/EN 60947-5-1
light-alloy diecast, paint finish P 65 to EN 60529 silver slow or snap action change-over contact, double break with
2 separate contact bridges screw terminals max. $2.5 \mathrm{~mm}^{2}$ incl. conductor ferrules)

Plunger W

 actuating angle of 15°

- Exact repeatability of switching point
- Collar to protect against the entry of foreign bodies

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch.

Offset roller lever WH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=25^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 W 10̈/1S		
2 NC		ES 61 W 2Ö \|rind $\begin{aligned} & 11-12 \\ & \text { 21-22 }\end{aligned}$	\%

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts

1 NO / 1 NC EM 61 WH 1Ö/1S ES 61 WH 1Ö/1S ES 61 WH UE NC

Offset roller lever WHL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=40^{\circ}$ und $\beta=30^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the left should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping Switch travel

1 NO / 1 NC

2 NC

Contact variants

Contacts/	Snap action	Slow action	Slow action with overlapping contacts
Switch travel			

1 NO / 1 NC EM 61 WHK 1Ö/1S ES 61 WHK 1Ö/1S ES 61 WHK UE

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=40^{\circ}$
- Actuation only possible from one side (R.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Roller lever WHK

2 NC

Roller lever WPH

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Collar to protect against the entry of foreign bodies
- Metal roller available on request

Legend

α : Actuating angle from below

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
$1 \mathrm{NO} / 1 \mathrm{NC}$	EM 61 WPH 10̈/1S	ES 61 WPH 10̈/1S	ES 61 WPH UE \square $23-24$ $15-16$
2 NC		ES 61 WPH 200 ${ }^{0} \square \begin{aligned} & 6 \\ & \left.\begin{array}{l}11-12 \\ 21-22 \\ \hline\end{array}\right)\end{aligned}$	\%

Roller lever D

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO / 1 NC	EM 61 D 10̈/1S	ES 61 D 10̈/1S	ES 61 D UE
2 NC		$\text { ES } 61 \text { D } 2 \ddot{ }$ \qquad	

Long roller lever DL

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Roller lever DS

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 45°
- Wear-restistant thermoplastic roller
- Lever can be repositioned 10° steps clockwise or counter-clockwise
- Actuator can be repositioned by 180°
- Metal roller available on request

Contact variants

Contacts/	Snap action	Slow action	Slow action Switch travel
		with overlapping contacts	

1 NO / 1 NC

2 NC

ES 61 DL 2Ö

ES 61 DL UE

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 DS 10̈/1S	ES 61 DS 10̈/1S	ES 61 DS UE 15-16
2 NC		$\text { ES } 61 \text { DS } 20 ̈$ \square $\stackrel{11-12}{21-22}$	

Long spring wire TL

- Spring rod can be actuated from any direction
- Wire can be shortened 30 mm in actuating area
- Exact linear actuation not necessary
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 TL 10̈/1S	ES 61 TL 10̈/1S	ES 61 TL UE
2 NC		$\text { ES } 61 \text { TL } 20 ̈$	

Spring rod TF

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 TF 10̈/1S	ES 61 TF 10̈/1S	ES 61 TF UE $23-24$ $15-16$
2 NC		ES 61 TF 2Ö	

Long spring wire TFL

- With rounded steel tip
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Spring rod TK

- Wear-restistant plastic rod
- Spring rod can be actuated from any direction
- Elasticity of the spring allows for deflection above the max. switching angle

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 TFL 10̈/1S	ES 61 TFL 10̈/1S	ES 61 TFL UE
2 NC		ES 61 TFL 2Ö	

Contact variants

Contacts/ Switch travel	Snap action	Slow action	Slow action with overlapping contacts
1 NO/1 NC	EM 61 TK 10̈/1S	ES 61 TK 10̈/1S	ES 61 TK UE
2 NC		ES 61 TK 2Ö	

T/M 015

- Metal enclosure
- Slow action Θ, change-over or 2 NC or 2 NO with double break
- Snap action, change-over contact with double break
- Snap action with galvanically separated moving contacts
- Blow-out magnets available to switch high DC currents
- 3 cable entries
- Protection class IP 65

T 016

- Metal enclosure
- 3 contact, slow action Θ
- Blow-out magnets available
to switch high DC currents
- 3 cable entries
- Protection class IP 65

The switch travel of the contacts complies with the T/M 015 series (see page 1-116).

T/M 017

- Metal enclosure
- 4 contacts, $(\mathrm{NC}) \ominus$
- Snap action, change-over contact with double break
- Snap action with galvanically separated moving contacts
- Blow-out magnets available to switch high DC currents
- 3 cable entries
- Protection class IP 65

The switch travel of the contacts complies with the T/M 015 series (see page 1-116).

Approvals

Ordering details C
(1)(2) 015-(3) $\mathbf{y - 4}$

No. Replace
Description

(1)	T	Slow action Θ
	M	Snap action

or the appropriate actuator see page 1-116 and following

11	1 NO/1 NC
02	2 NC
20	2 NO
ü	Slow action
	with overlapping contacts
h	with staggered contacts

h
c with staggered contact Magnetic blow-out

Approvals

Ordering details

T(1) 016-(2) $\mathbf{y - 3}$
No. Replace
Description
For the appropriate actuator: see page 1-116 and following

12	$1 \mathrm{NO} / 2 \mathrm{NC}$
21	$2 \mathrm{NO} / 1 \mathrm{NC}$
03	3 NC
30	3 NO
ü	Slow action
	with overlapping contacts h
c	with staggered contacts
c	Magnetic blow-out

C

Approvals

Ordering details

(1) (2) 017-(3) $y-4)$
No. Replace || Description

T	Slow action Θ
M	Snap action
For the appropriate actuator:	
see page	$1-116$ and following
22	$2 \mathrm{NO} / 2 \mathrm{NC}$
13	$1 \mathrm{NO} / 3 \mathrm{NC}$
31	$3 \mathrm{NO} / 1 \mathrm{NC}$
ü	Slow action
	with overlapping contacts
h	with staggered contacts
c	Magnetic blow-out

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:

Contact type:

Termination: Cable section:
$U_{i m p}$:
U_{i} :
$I_{\text {the: }}$
I_{e} / U_{e} :

Utilisation category:
Max. fuse rating:
Contact opening:

Switchover time:
Bounce duration:
Ambient temperature:
Mechanical life:

Switching frequency:
Actuating speed:

IEC/EN 60947-5-1
light alloy, paint finish IP 65 to EN 60529 silver slow or snap action double break change-over contact, double break with
2 separate contact bridges slow action, positive break NC contacts Θ screw terminals M 3.5 max. $2.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules) 6 kV change-over contact: 500 V only NC or NO contacts: 400 V Snap action: 2.5 A / 400 VAC Slow action: 4 A / 400 VAC
with magnetic blow-out (ordering suffix -c): 1 A / 220 VDC, 4 A / 24 VDC AC-15, DC-13 20 A gG D-fuse snap action: max. $2 \times 1.2 \mathrm{~mm}$ slow action: max. $2 \times 2,5 \mathrm{~mm}$
snap action: $>40 \mathrm{~ms}$ snap action: $\Sigma_{2} .5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ snap action:
10 million operations slow action:
5 million operations max. 3000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .1 \mathrm{~mm} / \mathrm{s}$ on plunger

Plunger S

- Actuating speed $1 \mathrm{~m} / \mathrm{s}$ with an actuating angle of max. 20°

Actuation from the side of the plunger should be avoided, since this appreciably reduces the mechanical life of the position switch.

Telescopic plunger 2 S

- Actuating speed $1 \mathrm{~m} / \mathrm{s}$ with an actuating angle of max. 20°
- With large after-travel
- Actuator head with captive
stainless steel ball actuator
- Available with bellows to protect against heavy soiling, ordering suffix -q

Actuation from the side of the plunger should be avoided, since this appreciably reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO / 1 NC		
2 NC		TS 015-02y
2 NO		$\begin{aligned} & \text { TS 015-20y } \\ & \begin{array}{l} 0.25 \\ \hline \end{array} \quad . \quad \\ & \hline \end{aligned}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO / 1 NC		M2S 015-11y
2 NC		

Offset roller lever K

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$ and $\beta=45^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO / 1 NC	M2K 015-11y	

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$1 \mathrm{NO} / 1 \mathrm{NC}$		
2 NC		TK 015-02y
2 NO		

- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Offset roller lever 2K

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=60^{\circ}$ and $\beta=45^{\circ}$
- Actuation only possible from one side (L.H.S. in illustration)
- Free movement of actuator from other side
- Plastic roller

Angle roller lever 3K

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=45^{\circ}$
- Actuation parallel to axis of switch from below
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from below

Top-side actuation should be avoided, such actuation reducing the life of the position switch

Contact variants

Contacts/	Snap action	Slow action
Switch travel		

1 NO / 1 NC

M3K 015-11y

T3K 015-02y
T3K 015-11y

T3K 015-20y

Actuator head for lever V.

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$ with lever fitted
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Splined shaft and lever available

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
The range of turning levers is presented on the next page.

Contact variants

Contacts/ Switch travel	Snap action	Slow action	
1 NO/1 NC	MV. 015-11y		
2 NC		TV. 015-02y $\overbrace{}^{90^{\circ} \quad \\|^{16^{\circ}} 0^{\circ} 18^{\circ}}$	
2 NO	3	TV. 015-20y	

Roller lever 8H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Splined shaft and lever available

Roller lever H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Splined shaft and lever available

Roller lever 3H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Splined shaft and lever available

Roller lever 7H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Spring rod lever on shaft 4H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Elasticity of spring allows for inexact movement of actuator
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Rod lever 9H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Steel rod
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Rod lever 10H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Epoxy resin rod
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Leaf-spring lever 2H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Leaf spring 2.5 mm thick
- Epoxy-resin leaf spring
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Leaf-spring lever 6H

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Leaf spring 0.8 mm thick
- Spring-steel leaf spring
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

U 431

- Metal enclosure
- Switching points and contact function adjustable
- Slow action: one contact
- 1 cable entry
- Protection class IP 65

In the absence of other details in order, these single-pole switches are supplied with one NC contact

Technical data

Standards:

Enclosure:
Protection class:
Contact material:
Switching system:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$
U_{i} :
$I_{\text {the }}$:
I_{e} / U_{e} :
Max. fuse rating:
Contact opening:
Ambient temperature:
Mechanical life:
Contact life:

Switching frequency:
Actuating speed:

IEC/EN 60947-5-1 light alloy die-casting, paint finish IP 65 to EN 60529 silver
slow action screw terminals M 4
$\max .2 .5 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 16 A
6 A / 400 VAC
16 A gG D-fuse max. $2 \times 1.5 \mathrm{~mm}$ $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ 10 million operations 2 million operations at $6 \mathrm{~A} / 400 \mathrm{~V}$, $\cos \varphi=0,4$ max. 3000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .1 \mathrm{~mm} / \mathrm{s}$ on plunger

Contact variants

Plunger

Offset roller lever

Roller lever

Approvals

C

Ordering details

U(1) 431y-(2)-(3)
No. Replace
Description

(1)	For the appropriate actuator: see page 1-122 and following	
(2)		1 NC
	1S	1 NO
(3)	1272	Version for low temperatures to $-30^{\circ} \mathrm{C}$

Contact adjustment:

- Contact function, i. e. NC or NO contact, and switching points can be adjusted using a screwdriver
- Type of contact and switching points can be factory set to order.
- On lever-type actuator heads, the contact setting applies to both directions of actuation.

Note

Legend

VS: adjustable range of NO contact
VÖ: adjustable range of NC contact
N : after travel

- Metal enclosure
- Switching points and contact function adjustable
- Slow action: two contacts
- 3 cable entries
- Protection class IP 65

In the absence of other details in order, these double-pole switches are supplied with two NC contacts

- Metal enclosure
- Switching points and contact function adjustable
- Slow action: three contacts
- 3 cable entries
- Protection class IP 65

In the absence of other details in order, these triple-pole switches are supplied with three NC contacts

U 434

- Metal enclosure
- Switching points and contact function adjustable
- Slow action: four contact
- 3 cable entries
- Protection class IP 65

In the absence of other details in order, these four-pole switches are supplied with two NO and two NC contacts

Approvals

Ordering details C

U(1) 432y-(2)-(3)
No. Replace
Description
(3)

For the appropriate actuator:
see page 1-122 and following

	2 NC
2 S	2 NO
$1 \mathrm{~S} / 1 \mathrm{O}$	$1 \mathrm{NO} / 1 \mathrm{NC}$
1272	Version for low temperatures to $-30^{\circ} \mathrm{C}$

Approvals

(ϵ

Ordering details

U(1) 433y-(2)-(3)
No. Replace
Description
(2)

For the appropriate actuator: see page 1-122 and following 3 3
1S/2Ö
2S/10̈
1272
3 NO
1 NO/2 NC
2 NO/1 NC
Version for low

C ϵ temperatures to $-30^{\circ} \mathrm{C}$

Ordering details

U(1) 434y-(2)-(3)
No. Replace
Description

Approvals

\square

For the appropriate actuator: see page 1-122 and following

2 NO/2 NC
4 NC
4 NO
1 NO/3 NC
3 NO/1 NC
Version for low
temperatures to $-30^{\circ} \mathrm{C}$

Plunger S

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of max. 20°

Actuation from the side of the plunger should be avoided, since this appreciably reduces the mechanical life of the position switch

Roller lever 8H

- Weight of actuator 25 g
- Plastic roller
- Splined shaft and lever available
- Available with metal roller, ordering suffix -RMS

Roller lever 7H

- Weight of actuator 105 g
- Plastic roller
- Available with metal roller, ordering suffix -RMS

Offset roller lever K

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$ and $\beta=45^{\circ}$
- Plastic roller
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Actuator head for lever V.

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Splined shaft and lever available

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Roller lever H

- Weight of actuator 45 g
- Plastic roller
- Splined shaft and lever available
- Available with metal roller, ordering suffix -RMS

Spring rod lever on shaft 4H

- Weight of actuator 105 g

Roller lever 3H

- Weight of actuator 95 g
- Plastic roller
- Splined shaft and lever available
- Available with metal roller, ordering suffix -RMS

Rod lever 9H

- Weight of actuator 90 g
- Steel rod

Position and limit switches
Rod lever 10H

- Weight of actuator 75 g
- Plastic rod

Leaf-spring lever 2H

- Weight of actuator 85 g
- Leaf spring 2.5 mm thick
- Epoxy-resin leaf spring

Leaf-spring lever 6H

- Weight of actuator 85 g
- Leaf spring 0.8 mm thick
- Spring-steel leaf spring

- Metal enclosure
- 1 contact, slow action Θ
- 2 cable entries
- Protection class IP 65

- Metal enclosure
- 2 contact, slow action Θ
- Slow action available with overlapping contacts
- Snap action, change-over contact with double break
- 2 cable entries
- Protection class IP 65

T 452

- Metal enclosure
- 2 or 3 contact, slow action Θ
- Slow action available with
overlapping or staggered contacts
- 2 cable entries
- Protection class IP 65

The switch travel of the contacts complies with the T/M 441 or T 422 series (see page 1-126).

Approvals

Ordering details \quad C

T(1) 422-(2) $\mathbf{y - 3}$
No. Replace
Description
For the appropriate actuator:
see page 1-126 and following

01	1 NC
10	1 NO
k	Tropical version with ceramic insulation
t	Tropical and temperature- resistant version (40
	$-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
Gold-plated contacts	

1276-2
C

Approvals

Ordering details

(1) (2) 441-11y(3)-(4)-(5)

No. Replace Description

T	Slow action Θ
M	Snap action

For the appropriate actuator: see page 1-126 and following
ü Slow action with overlapping contacts
Cast iron enclosure
Aluminium enclosure
Tropical version with ceramic insulation Tropical and temperatureresistant version
$-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
Gold-plated contacts
C ϵ

Approvals

Ordering details

T(1) 452-(2) $\mathbf{y - 3}$
No. Replace
Description

(1)	For the appropriate actuator: see page 1-126 and following	
(2)	02	2 NC
	12	$1 \mathrm{NO} / 2 \mathrm{NC}$
	20	2 NO
	21	$2 \mathrm{NO} / 1 \mathrm{NC}$
(3)	k	Tropical version with ceramic insulation
	t	Tropical and temperatureresistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
	1276-2	Gold-plated contacts

T/M 461

- Metal enclosure
- 3 or 4 contact, slow action Θ
- Slow action available with overlapping or staggered contacts
- Snap action, change-over contact with double break
- 2 cable entries
- Protection class IP 65

The switch travel of the contacts complies with the T/M 441 or T 422 series (see page 1-126).

T 470

Metal enclosure

- 6 contact, slow action Θ
- Slow action available with overlapping or staggered contacts
- 4 cable entries
- Protection class IP 65

The switch travel of the contacts complies with the T/M 441 or T 422 series (see page 1-126).

Technical data

Standards:
Enclosure:

Protection class:
Contact material:
Switching system:
Contact type:

Termination: Cable section:
$U_{\text {imp }}$:
U_{i} :
$I_{\text {the: }}$
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Contact opening:

Switchover time:
Bounce duration
Ambient temperature:
Mechanical life:

Contact life:

Switching frequency Actuating speed:

IEC/EN 60947-5-1 cast iron, galvanised paint finish
IP 65 to EN 60529 silver slow or snap action, double break snap action: change-over contact up to 250 V , with galvanically separated contact bridges slow action:
positive break NC contacts Θ screw terminals M 4 max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules) snap action: 4 kV slow action: 6 kV snap action: 250 V slow action: 400 V suffix -k or -t: 500 V

16 A
snap action: 4 A / 230 V slow action: 4 A / 400 V
AC-15

16 A gG D-fuse snap action: max. $2 \times 2.5 \mathrm{~mm}$ slow action: max. $2 \times 6,0 \mathrm{~mm}$ snap action: $S_{35} \mathrm{~ms}$ snap action: $\leq 5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ snap action: 5 million operations slow action: 10 million operations 10 million operations at $1 \mathrm{~A} / 400 \mathrm{~V}$, $\cos \varphi=0,4$ max. 3000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .1 \mathrm{~mm} / \mathrm{s}$ on plunger

Approvals

Ordering details C
(1) (2) 461-(3) $y-(4)$

No. Replace		Description
(1)	T	Slow action Θ
	M	Snap action (only for -22y)
(2)	For the appropriate actuator:	
(3)	03	3 NC
	13	$1 \mathrm{NO} / 3 \mathrm{NC}$
	22	$2 \mathrm{NO} / 2 \mathrm{NC}$
	30	3 NO
	31	3 NO/1 NC
(4)	k	Tropical version with ceramic insulation
	t	Tropical and temperatureresistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
	1276-2	Gold-plated contacts

Approvals

C

ceramic insulation Tropical and temperatureresistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$ Gold-plated contacts

Ordering details

T(1) 470-(2) $\mathbf{y - 3}$
No. Replace
Description
For the appropriate actuator: see page 1-126 and following 33 3NO/3 NC (every other contact combination is possible, except 6 NO contacts or 6 NC contacts) Tropical version with
k
t

1276-2

Plunger S

- Actuating speed $1 \mathrm{~m} / \mathrm{s}$ with an actuating angle of max. 20°

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		
1 NC		TS 422-01y
1 NO		$\begin{gathered} \text { TS 422-10y } \\ \hline \end{gathered}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC	M2S 441-11y \square	T2S 441-11y
1 NC		$\begin{gathered} \text { T2S 422-01y } \\ 0 \end{gathered}$
1 NO		$$

Actuation from the side of the plunger should be avoided, since this appreciably reduces the mechanical life of the position switch.

Roller plunger R

- Actuating speed $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Actuator can be repositioned by 90°
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		TR 441-11y \square
1 NC		TR 422-01y
1 NO		$\begin{gathered} \text { TR 422-10y } \\ 0 \\ \hline \end{gathered}$

Offset roller lever K

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$ and $\beta=45^{\circ}$
- Plastic roller
- Actuator head can be repositioned
in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		
1 NC		TK 422-01y
1 NO		TK 422-10y

Offset roller lever J

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=30^{\circ}$ and $\beta=45^{\circ}$
- Plastic roller
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis
Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		
1 NC		$\begin{gathered} \text { TJ 422-01y } \\ 0 \\ 8 \end{gathered}$
1 NO		$\begin{gathered} \text { TJ 422-10y } \\ \hline \end{gathered}$

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$1 \mathrm{NO} / 1 \mathrm{NC}$	M2C 441-11y	T2C 441-11y
1 NC		T2C 422-01y
		$\begin{array}{ll} 0^{\circ} & 27^{\circ} \\ 90^{\circ} \end{array}$
1 NO		T2C 422-10y
		$\begin{array}{ll} 0^{\circ} & 20^{\circ} \\ \square & 0^{\circ} \end{array}$

Roller lever L

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- In temperature-resistant version, the roller can be mounted in two different positions on the shaft
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Splined shaft and lever available, ordering suffix -1801

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Contact variants

Contacts/ Switch travel	Snap action	Slow action
$1 \mathrm{NO} / 1 \mathrm{NC}$		
1 NC		TL 422-01y
1 NO		TL 422-10y

Roller lever D

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- In temperature-resistant version, the roller can be mounted in two different positions on the shaft
- Continuous adjustment of lever position 360°
- Lever can be transposed by 180°
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Metal roller available on request
- Splined shaft and lever available, ordering suffix -1801

Legend

α : Actuating angle from right of switch axis
β : Actuating angle from left of switch axis

Contact variants

Contacts/ Switch travel	Snap action	Slow action
1 NO/1 NC		$\begin{aligned} & \text { TD 441-11y } \\ & \begin{array}{l} 60^{\circ} \quad 36^{\circ} \\ \hline 0^{\circ} \\ \hline \end{array} \left\lvert\,\right. \end{aligned}$
1 NC		TD 422-01y
1 NO		TD 422-10y

T/M 035

- Metal enclosure
- Snap or slow action, change over or 2 NC with double break or 2 NO
- Slow action, 1 NC positive break Θ
- Operating shaft with ball bearings
- Blow-out magnets available to switch high DC currents
- 3 cable entries
- Protection class IP 67

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:

Contact type:

Termination:
Cable section:
$\mathrm{U}_{\text {imp }}:$
$\mathrm{U}_{\mathrm{i}}:$
$\mathrm{I}_{\text {the }}:$
:
${ }_{e} / U_{e}$:

Utilisation category:
Max. fuse rating:
Contact opening:

Switchover time:
Bounce duration:
Ambient temperature
Mechanical life:

Switching frequency:

Actuating speed:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish
IP 67 to EN 60529 silver
slow and snap action, double break snap action:
change-over contact,
with 2 galvanically separated
contact bridges
slow action:
positive break NC contacts Θ screw terminals M 3.5 max. $2.5 \mathrm{~mm}^{2}$ incl. conductor ferrules) 6 kV
400 V 10 A
snap action: 2.5 A / 400 VAC slow action: 4 A / 400 VAC

AC-15
20 A gG D-fuse snap action: max. $2 \times 1.2 \mathrm{~mm}$ slow action: max. $2 \times 2.5 \mathrm{~mm}$ snap action: 40 ms snap action: $\leq 2.5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ snap action: 10 million operations slow action:
5 million operations max. 3000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .1 \mathrm{~mm} / \mathrm{s}$ on plunger

Contact variants

Snap action

1 NO / 1 NC

Slow action

1 NO / 1 NC

2 NC

2 NO

Approvals

(ϵ
 Ordering details

(1)2L 035-(2)z(3)-(4)

No. Replace
Description

(1)	T	Slow action Θ
	M	Snap action
(2)	11	1 NO/1 NC
	02	2 NC
	20	2 NO
(3)	ü	Slow action
		with overlapping contacts with staggered contacts
(4)	h	Magnetic blow-out

T/M 250

- Metal enclosure
- Slow action Θ, change-over, 2 NC with double break or 4 NC
- Snap action, change-over contact with double break
- Switching mechanism can be set for switching to right, left or in both directions
- Blow-out magnets available to switch high DC currents
- 2 cable entries
- Protection class IP 67
- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of 30° Snap action: Min. $0.05 \mathrm{~m} / \mathrm{s}$ Slow action: Min. 0.005 m/s

Approvals

(ϵ
 Ordering details

(1)D 250-(2)z(3)-(4)-(5)

No. Replace		Description
(1)	T	Slow action Θ
	M	Snap action
(2)	11	1 NO/1 NC
	02	2 NC
	02/02	4 NC (2 right/2 left)
(3)	ü	Slow action with overlapping contacts
(4)	c	Magnetic blow-out
	r	Position latching $2 \times 45^{\circ}$
(5)	k	Tropical version with ceramic insulation
	t	Tropical and temperatureresistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
	1276-2	Gold-plated contacts

Technical data

Standards:
 Enclosure:

Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$
U_{i} :
$I_{\text {the }}$:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Contact opening:

Switchover time:
Bounce duration:
Ambient temperature:
Mechanical life:

Contact life:

Switching frequency: Actuating speed:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish
IP 67 to EN 60529 silver slow and snap action, double break snap action: change-over contact, up to 250 V , with
2 galvanically separated contact bridges slow action: change-over contact,
up to 250 V , with
2 galvanically separated contact bridges, positive break
NC contacts Θ screw terminals M 3.5 max. $2.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules) 6 kV
500 V
16 A
4 A / 400 VAC
AC-15
16 A gG D-fuse snap action: max. $2 \times 2.5 \mathrm{~mm}$ slow action: max. $2 \times 2 \mathrm{~mm}$ snap action: 35 ms snap action: $\leq 5 \mathrm{~ms}$

$$
-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}
$$

snap action:

10 million operations
slow action:
5 million operations 10 million operations at $1 \mathrm{~A} / 400 \mathrm{~V}$, $\cos \varphi=0,4$ max. 3000/h
$\max .3 \mathrm{~m} / \mathrm{s}$ at 30° snap action: 2-pole: min. $0.05 \mathrm{~m} / \mathrm{s}$, 1-pole: $\min .0 .005 \mathrm{~m} / \mathrm{s}$ slow action: min. $0.005 \mathrm{~m} / \mathrm{s}$

Note

Switching mechanism can be set

 for switching to right, left or in both directions
Position latching

Available with $2 \times 45^{\circ}$ position latching, suffix -r Also possible with position latching: $2 \times 30^{\circ}$, $2 \times 60^{\circ}, 2 \times 90^{\circ}, 1 \times 45^{\circ}, 1 \times 60^{\circ}$ and $1 \times 90^{\circ}$

Contact variants

Slow action 1 NO / 1 NC

2 NC

2 NC left
2 NC right

Force-travel diagram

Legend

F : actuating force
a: actuating travel

It is not possible to combine version with magnetic blow-out (Ordering suffix c) and temperature-restistant and tropical version (Ordering suffix t)

TS 064

- Metal enclosure
- 3 or 4 contact, slow action Θ
- Roller levers J and X can be subsequently fitted at plunger S
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- 2 cable entries M25 x 1.5
- Protection class IP 65

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch.
Recommendation: use roller lever

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:

Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 25 A
25 A / 400 VAC
AC-15
16 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0,01 \mathrm{~m} / \mathrm{s}$ on plunger max. 20° approx. 3.2 kg

Contact variants

Plunger S

Angle roller lever J

Angle roller lever \mathbf{X}

Approvals

(ϵ
 Ordering details

T(1) 064-(2) $\mathbf{y - 3}$
No. Replace
Description
For the appropriate actuator:
see page 1-134
(2)

03	3 NC
12	$1 \mathrm{NO} / 2 \mathrm{NC}$
21	$2 \mathrm{NO} / 1 \mathrm{NC}$
30	3 NO
04	4 NC
13	$1 \mathrm{NO} / 3 \mathrm{NC}$
22	$2 \mathrm{NO} / 2 \mathrm{NC}$
31	$3 \mathrm{NO} / 1 \mathrm{NC}$
40	4 NO
ü	Slow action
	with overlapping contacts
h	with staggered contacts
r	Position latching $2 \times 45^{\circ}$

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

MS 064

- Metal enclosure
- 3 or 4 contact, snap action with double break
- Roller levers J and X can be subsequently fitted at plunger S .
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- 2 cable entries M25 x 1.5
- Protection class IP 65

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch. Recommendation: use roller lever

Technical data

Standards:
 Enclosure:

Protection class:
Contact material: Switching system:

Contact type:

Termination: Cable section:
$\mathrm{U}_{\text {imp }}$:
U_{i} :
the:
${ }_{e} / U_{e}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature: Mechanical life:
Switching frequency:
Actuating speed:

Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
snap action, double break change-over contact, galvanically separated contact bridges screw terminals M 5
max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
6 kV
500 V

25 A
25 A / 400 VAC
AC-15
25 A gG D-fuse
with 400
V 3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 30000 operations max. 1000/h max. $1 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0,01 \mathrm{~m} / \mathrm{s}$ on plunger $\max .20^{\circ}$
approx. 3.6 kg

Contact variants

Plunger S

1 NC contact

Angle roller lever J
1 NC contact

1 NO contact

Angle roller lever X

1 NC contact

1 NO contact

Approvals

(ϵ
 Ordering details

M(1) 064-(2) $\mathbf{y - 3}$
No. Replace
Description
For the appropriate actuator:
see page 1-134
(2)

03	3 NC
12	$1 \mathrm{NO} / 2 \mathrm{NC}$
21	$2 \mathrm{NO} / 1 \mathrm{NC}$
30	3 NO
04	4 NC
13	$1 \mathrm{NO} / 3 \mathrm{NC}$
22	$2 \mathrm{NO} / 2 \mathrm{NC}$
31	$3 \mathrm{NO} / 1 \mathrm{NC}$
40	4 NO
r	Position latching $2 \times 45^{\circ}$

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

Plunger S

- Actuating speed $1 \mathrm{~m} / \mathrm{s}$ with an actuating angle of max. 20°
- Roller levers J and X can be subsequently fitted at plunger S .

Actuation from the side of the plunger should be avoided, since this reduces the mechanical life of the position switch.
Recommendation: use roller lever

Offiset roller lever J

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=45^{\circ}$ and $\beta=30^{\circ}$
- Plastic roller (metal roller on request)
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$
- Available with rubber roller, ordering suffix -1

Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

Offset roller lever \mathbf{X}

- Actuating speed max. $0.5 \mathrm{~m} / \mathrm{s}$ with an actuating angle of $\alpha=45^{\circ}$ and $\beta=30^{\circ}$
- Plastic roller (metal roller on request)
- Actuator head can be repositioned in steps $4 \times 90^{\circ}$

Actuation from the right should be avoided, since this reduces the mechanical life of the position switch.

T. 064

- Metal enclosure
- 3 contact, slow action Θ
- Actuating direction, each time 90° right-hand side and left-hand side rotation
- 2 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
$I_{\text {the: }}$
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
6 kV
500 V 25 A
25 A / 400 VAC
AC-15
16 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$ $\max .30^{\circ}$ approx. 3.5 kg

Contact variants

Roller lever

1 NO / 1 NC

only NO

only NC

Approvals

Ordering details

T(1) 064-(2) $\mathbf{y - 3}$
No. Replace

Description

For the appropriate actuator:
see page 1-146
(2)

03	3 NC
12	$1 \mathrm{NO} / 2 \mathrm{NC}$
21	$2 \mathrm{NO} / 1 \mathrm{NC}$
30	3 NO
$01 / 02$	1 NC left/2 NC right
$02 / 01$	2 NC left/1 NC right
$10 / 20$	1 NO left/2 NO right
$20 / 10$	2 NO left/1 NO right
ü	Slow action
	with overlapping contacts
h	with staggered contacts
r	Position latching $2 \times 45^{\circ}$

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146

M. 064 R

- Metal enclosure
- 3 or 4 contact, snap action with double break
- Actuating direction always 50° right-hand side rotation
- 2 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
ection class:
Contact material: Switching system:

Contact type:

Termination: Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
${ }^{\text {the: }}$
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature: Mechanical life: Switching frequency:
Actuating speed:

Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver snap action, double break change-over contact, galvanically separated contact bridges screw terminals M 5
max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

$$
6 \mathrm{kV}
$$

500 V
25 A
25 A / 400 VAC
AC-15
25 A gG D-fuse
with 400 V
3-phase 5.5 kW
(squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 30000 operations max. 1000/h $\max .3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 3.7 kg

Contact variants

Roller lever

1 NC

1 NO

Approvals

(ϵ
 Ordering details

M(1) 064-(2) $\mathbf{y - 3}$ - \mathbf{R}
No. Replace
Description

[^2]
Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146.

M. 064 L

- Metal enclosure
- 3 or 4 contact, snap action with double break
- Actuating direction always 55° left-hand side rotation
- 2 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material: Switching system:

Contact type:

Termination: Cable section:
$\mathrm{U}_{\mathrm{imp}}$:

Ithe: $^{\text {the }}$
l_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Max. motor power consumption:

Contact opening:
Ambient temperature: Mechanical life: Switching frequency:
Actuating speed:

Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
snap action, double break change-over contact, galvanically separated contact bridges screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

$$
6 \text { kV }
$$

$$
500 \mathrm{~V}
$$

$$
25 \mathrm{~A}
$$

25 A / 400 VAC
AC-15
25 A gG D-fuse
with 400 V
3-phase 5.5 kW
(squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 30000 operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 3.7 kg

Contact variants

Roller lever

1 NC

1 NO

Approvals

(ϵ
 Ordering details

M(1) 064-(2) y-(3)-L
No. Replace
Description
For the appropriate actuator:
see page 1-146

> (2)
$03 \quad 3$ NC
12
21 04
13 22
(3)
r
$1 \mathrm{NO} / 2 \mathrm{NC}$
2 NO/1 NC
4 NC
1 NO/3 NC
2 NO/2 NC
Position latching $2 \times 45^{\circ}$

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146

T. 067

- Metal enclosure
- 2 contact, slow action Θ
- Actuating direction, each time 90° right-hand side and left-hand side rotation
- 4 cable entries M20 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Contact opening:
Ambient temperature
Mechanical life:
Switching frequency: Actuating speed:

Actuating angle:
Weight:

EC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

6 kV
500 V 25 A
10 A / 230 VAC
AC-15
16 A gG D-fuse
max. $2 \times 4 \mathrm{~mm}$
$-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 3.4 kg

Contact variants

Roller lever

1 NO / 1 NC

2 NO

2 NC

Approvals

C

Ordering details

T(1) 067-(2)y-3)
No. Replace
Description
For the appropriate actuator:
see page 1-146
(2)

022 NC

20
01/01
10/10
ü
h

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146

T. 471

- Metal enclosure
- 4 or 6 contact, slow action Θ
- Actuating direction, each time 75° right-hand side and left-hand side rotation
- 3 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
$I_{\text {the: }}$
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:

EC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 25 A
10 A / 230 VAC
AC-15
16 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm}$) max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$ $\max .30^{\circ}$

Contact variants

Roller lever

Approvals

(ϵ
 Ordering details

T(1) 471-(2) $\mathbf{y - 3}$
No. Replace Description

For the appropriate actuator:
see page 1-146
2/02 2 NC left/2 NC right
20/20 2 NO left/2 NO right
03/03 $\quad 3$ NC left/3 NC right
12/12 1NO/2NC left/
1NO/2NC right
21/21 2NO/1NC left/
2NO/1NC right
(3)

30/
u
3 NO left/3 NO right
Slow action
with overlapping contacts with staggered contacts

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146

M. 471

- Metal enclosure
- 4 or 6 contact, snap action with double break
- Actuating direction, each time 60° right-hand side and left-hand side rotation
- 3 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material: Switching system:

Contact type:

Termination: Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
the:
l_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:

Actuating angle:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver snap action, double break change-over contact, galvanically separated contact bridges screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

$$
6 \text { kV }
$$

$$
500 \mathrm{~V}
$$

$$
25 \mathrm{~A}
$$

$$
10 \mathrm{~A} / 230 \mathrm{VAC}
$$

AC-15

$$
25 \text { A gG D-fuse }
$$

with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 30000 operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$ $\max .30^{\circ}$

Approvals

(ϵ

Ordering details

M(1) 471-(2) \mathbf{y}
No. Replace
Description
For the appropriate actuator:
see page 1-146
(2)

02/02 2 NC left/2 NC right
20/20 2 NO left/2 NO right 03/03 $\quad 3$ NC left/3 NC right
12/12 1NO/2NC left/

	1NO/2NC right
21/21	2NO/1NC left/

2NO/1NC left/
2NO/1NC right

M. 471 R

- Metal enclosure
- 3, 4 or 6 contact, snap action with double break
- Actuating direction always 65° right-hand side rotation
- 3 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination: Cable section:
$\mathrm{U}_{\text {imp }}$:
$\mathrm{U}_{\mathrm{i}}:$
$I_{\text {the }}$:
${ }_{e} / U_{e}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:

Actuating angle:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish P 65 to EN 60529 silver snap action, double break change-over contact, galvanically separated contact bridges screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

6 kV 500 V
25 A 10 A / 230 VAC AC-15 25 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm}$) max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 30000 operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$ $\max .30^{\circ}$

Approvals

(ϵ

Ordering details

M(1) 471-(2) $\mathbf{y - 3) - (4) ~}$
No. Replace

Description

For the appropriate actuator: see page 1-146

12	$1 \mathrm{NO} / 2 \mathrm{NC}$
21	$2 \mathrm{NO} / 1 \mathrm{NC}$
22	$2 \mathrm{NO} / 2 \mathrm{NC}$
33	$3 \mathrm{NO} / 3 \mathrm{NC}$
R	right-hand side rotation
L	left-hand side rotation
	(on request)
r	Position latching $2 \times 45^{\circ}$

Force-travel diagram

Gontact variants

Roller lever

1 NO / 1 NC

T 130

- Metal enclosure
- Up to 6 contact, slow action Θ
- 4 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\text {imp }}$
U_{i} :
Ithe:
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 25 A 10 A / 230 VAC AC-15 16 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm}$) max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 4.5 kg

Contact variants

Roller lever

NO contact

Approvals

(ϵ
 Ordering details

T(1) 130-(2) $\mathbf{y - 3}$
No. Replace Description

For the appropriate actuator:
see page 1-146
(2)

3
ü
h
$\begin{array}{ll}h & \text { with staggered contacts } \\ r & \text { Position latching } 2 \times 45^{\circ}\end{array}$

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146

T 240

- Metal enclosure
- Up to 10 contact, slow action Θ
- 4 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
slow action, double break positive break NC contacts Θ screw terminals M 5 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 25 A 10 A / 230 VAC AC-15 16 A gG D-fuse
with 400 V
3-phase 5.5 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm}$) max. $2 \times 4 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 1000/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 6.8 kg

Contact variants

Roller lever

NO contact

Approvals

(ϵ
 Ordering details

T(1) 240-(2)- \mathbf{y}-3
No. Replace
Description
For the appropriate actuator:
see page 1-146
(2)
$55 \quad 5 \mathrm{NO} / 5 \mathrm{NC}$
(all contact combinations are possible, except for only NO or NC contact) (3)
ü
h
$r \quad$ With staggered contacts

Force-travel diagram

Note

The contact combinations can be found in the table on page 1-32.

A selection of turning levers can be found on page 1-146.

T 136

- Metal enclosure
- 3 or 4 contact, slow action Θ
- 4 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver slow action, double break positive break NC contacts Θ screw terminals M 6 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 60 A
20 A / 400 VAC AC-15 20 A gG D-fuse
with 400 V
3-phase 15 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 3 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations max. 50/h max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 5.9 kg

Approvals

C

Ordering details

T(1) 136-(2) y
No. Replace Description

For the appropriate actuator:
see page 1-146
(2)

03	3 NC
30	3 NO

Force-travel diagram

Contact variants

Roller lever

NO contact

NC contact


```
T 246
```


- Metal enclosure
- Up to 6 contact, slow action Θ
- 4 cable entries M25 x 1.5
- Protection class IP 65
- Splined shaft and lever available with 10° toothing

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Utilisation category:
Max. fuse rating:
Max. motor power
consumption:

Contact opening:
Ambient temperature
Mechanical life:
Switching frequency:
Actuating speed:
Actuating angle:
Weight:

IEC/EN 60947-5-1 cast iron, galvanised, paint finish IP 65 to EN 60529 silver
slow action, double break positive break NC contacts Θ screw terminals M 6 max. $4 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 6 kV 500 V 60 A
20 A / 400 VAC AC-15 20 A gG D-fuse
with 400 V
3-phase 15 kW (squirrel-cage rotor $\mathrm{n}=1500 \mathrm{rpm})$ max. $2 \times 3 \mathrm{~mm}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 million operations
max. 50/h
max. $3 \mathrm{~m} / \mathrm{s}$, $\mathrm{min} .0 .05 \mathrm{~m} / \mathrm{s}$
$\max .30^{\circ}$ approx. 7.1 kg

Approvals

C
 Ordering details

T(1) 246-(2)y
No. Replace Description

For the appropriate actuator:
see page 1-146
(2) $\begin{array}{ll}\text { 03/03 } & 3 \mathrm{NC} \text { right/3 NC left } \\ 30 / 30 & 3 \mathrm{NO} \text { right/3 NO left }\end{array}$

Force-travel diagram

Contact variants

Roller lever

NO contact

NC contact

Roller lever L

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing
- Available with metal roller
- Available with rubber roller, ordering suffix -1

Roller lever A

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing
- Available with metal roller
- Available with rubber roller, ordering suffix -1

Roller lever 2A

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing
- Available with metal roller
- Available with rubber roller, ordering suffix -1

Roller lever V

- Actuating speed max. $3 \mathrm{~m} / \mathrm{s}$ with an actuating angle of α and $\beta=30^{\circ}$
- Plastic roller
- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing
- Available with metal roller
- Available with rubber roller, ordering suffix -1

Pull lever Z

- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing

Pull lever 27

- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing

Fork lever C

- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing

- Continuous adjustment of lever position 360°
- Splined shaft and lever available with 10° toothing

Legend

α : Actuating angle from right of switch axis β : Actuating angle from left of switch axis

More Details

Detailed technical information at: www.schmersal.com

G 50/150

- Snap or slow action
- Metal enclosure with impactresistant plastic hood
- Version G 50-2047, safety gear-switch for stage and studios to VBG 70
- Various cam shapes for varying switch travel
- Available for easy adjustment of switching points by setting disk cams from front
- Connecting flange available
- 2 cable entries M20 x 1.5
- Protection class IP 65

Only type G 50 is approved to VBG 70 as safety gear-switch for stages and studios, ordering suffix -2047

Approvals

\square
Ordering details
G (1)-(2)-(3)(4)(5)/(3)(4)(5)/...y-(6)

No.	Replace	Description
(1)	50	Transmission ratio $\leq 1: 50$
	150	Transmission ratio $\geq 1: 50$
(2)	100	Gear ratio
		For example: 1:100
		Refer to selection table page 1-150
(3)	M	Snap action M
	Z	Snap action Z Θ
	T	Slow action T Θ
(4)	1 to 4	Number of NO (max. 4)
(5)	1 to 4	Number of NC (max. 4)

(ϵ

Technical data

Fine switching point setting: max. 0.5 turns Gear ratio:
G 50: $\quad 1: 50,1: 35,1: 25,1: 17$
G 150: 1:150, 1:75, 1:100, 1:220, 1:300, 1:450 Contact blocks:
max. 8: on T/M 697
max. 4 with cams $\varnothing 36 \mathrm{~mm}$
G 50-050 and G 150-150:
Z/T 6881 (otherwise additional
1:1 ratio required)
Contact type:
M 697: 1 change-over contact,
T 697: 1 NC, double break,
Z/T 6881: change-over contact
with galvanically separated
contact bridges Θ
Switching system:
Termination:
slow and snap action T/M 697:
screw terminals M 3 Z/T 6881:
screw terminals M 3.5
max. $2.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules)
$\begin{array}{lr}\mathrm{U}_{\mathrm{imp}}: & 4 \mathrm{kV} \\ \mathrm{U}_{\mathrm{i}:}: & 250 \mathrm{~V}\end{array}$
T/M 697: 6 A
Z/T 6881: 10 A
T/M 697: 4 A / 230 VAC
Z/T 6881: 2.5 A / 230 VAC
Utilisation category:
AC-15
Max. fuse rating:
Switchover time:
6 A gL/gG D-fuse M 697: $\leq 10 \mathrm{~ms}$ Z 6881: $\leq 5 \mathrm{~ms}$
Bounce duration:
Ambient temperature: $\quad-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ Mechanical life:

T/M 697:
30 million operations Z/T 6881:
> 1 million operations
Switching frequency: T/M 697: 10.000/h
Z/T 6881: 3.000/h

No.	Replace	Description
(6)	FL1	With flange FL1 $1600-1$
	With front-setting pointed cam	
	With bowex coupling $1368-2$	With shaft with slot and key
	2047	For stages and studios to VBG 70 (only for G 50)

Note

Range of application

Gear switches are fit for multiple applications: motorisation of theatre scenes, controlling and positioning of lifts, and platforms, gate control, etc. Depending on the contact type, they are used for switching-off or positioning movement cycles. They are geared by means of an axle.

Operating principle

In the base models with transmission ratios of $i=1: 50$ (G50) or 1:150 (G 150), the gear revolutions are directly transmitted to the disc cam by the worm and the worm wheel, i.e. for every 50 or 150 axle revolutions, the disc cams are rotated once over 360°.
For the switching point set-up of the contacts, the central screw must be loosened. Each disc cam can be set from 4° to 4°; they all have gearing as well as a positive drive with the worm wheel. After the set-up has been carried out, the central screw must be firmly retightened.

For disc cams with front setting, "index 1600", the dowel of the disc cam must be pushed in using the screwdriver, which is located inside switch.

Note

Setting disk cams from front:

- Possible on all ø 24 mm cams
- Min. adjustment 3.4°
- Max. adjustment 360°
- Other cam combinations on request

Do not adjust against the switch plunger!

- Max. 4 contact blocks possible with contact block Z 6881, ordering suffix Z and T 6881, ordering suffix T11
- Max. 8 contact blocks possible with contact block M 697, ordering suffix M and T 697, ordering suffix T01

System components

Pointed cam 24 mm Ø

Ordering details

Pointed cam Ø 24 mm ordering suffix 1600$30^{\circ}$ cam Ø 24 mm 90° cam Ø 24 mm 180° cam Ø 24 mm ordering suffix 2281 ordering suffix 1601ordering suffix 2269$360^{\circ}$ full cam $\varnothing 24 \mathrm{~mm}$ ordering suffix 1905-

Cam forms ø 24mm:

- Standard cam forms:

Pointed, $30^{\circ}, 90^{\circ}, 180^{\circ}$ and 360° cam

- max. 8 contact blocks possible
- Suitable for setting from front

For further details see table on page 1-150

System components

360° full cam 24 mm Ø

Pointed cam $36 \mathrm{~mm} \varnothing$

60° cam $36 \mathrm{~mm} \varnothing$

180° cam $36 \mathrm{~mm} \varnothing$

System components

Flange FL1

Bowex coupling

Teardrop cam with front setting -1600-1

Ordering details

Flange FL1 ordering suffix -FL1
Pointed cam Ø 36 mm ordering suffix 1582-* 60° cam $\varnothing 36 \mathrm{~mm}$ ordering suffix 1582-* 180° cam Ø $36 \mathrm{~mm} \quad$ ordering suffix 1739-*

* Different combinations possible on request.

Cam forms:

- Standard cam forms:

Pointed, 60° and 180° cam

- Max. 4 contact blocks possible

Bowex coupling with shaft diameters
12 and 14 mm
12 and 12 mm
Shaft with slot and key
Teardrop cam with
front setting ordering suffix -1600-1*
(Example with 4 pointed cams)

Cams Ø 24

MSP 452

- Metal enclosure
- 4 contacts (NO)
- 2 cable entries
- Protection class IP 65

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
$\mathrm{U}_{\text {imp }}:$
$\mathrm{U}_{\mathrm{i}}:$
$\mathrm{I}_{\text {the }}:$
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Max. turning speed
of the spindle:

Actuating torque:
Load on spindle:
Weight:

IEC/EN 60947-5-1
cast iron, galvanised, paint finish IP 65 to EN 60529 silver
snap action, double break change-over contact, galvanically separated
contact bridges
screw terminals M 3
max. $2.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules) 4 kV
250 V
6 A
2.5 A / 230 VAC

AC-15
10 A (slow blow), 16 A (quick blow) max. $2 \times 0.5 \mathrm{~mm}$
$\leq 10 \mathrm{~ms}$
(with actuating speed $10 \mathrm{~mm} / \mathrm{min}$ on plunger) $\leq 1.5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 3 million operations
max. 200 rpm min .0 .5 rpm

20 Ncm
$\max .500 \mathrm{~N}$
1.7 kg

Approvals

Ordering details

MSP 452-11/11y

Note

This rotating spindle limit switch with snap action insert is only fit for use in normal to average operating conditions, e.g. for machine tools, cranes and conveyors. Protection class IP 65 to EN 60529.

Contact variants

Differential travel max. 1.25 rotations

Note

By reversing the contacts, the spindle revolutions can be set between 4 and 55 revolutions. The run-out towards each side is at least 5 revolutions.

T/M 441

- Metal enclosure
- Slow action, change-over with double break
- Snap action, change-over contact with double break
- 2 cable entries
- Protection class IP 65
- Suitable for heavy duty

Technical data
Standards:
Enclosure:
Protection class:
Contact material:
Switching system
Contact type:
Termination:
Cable section:
$\mathrm{U}_{\text {imp }}:$
$\mathrm{U}_{\mathrm{i}}:$
I the $^{\text {I }}$ I

Utilisation category:
Max. fuse rating:
Contact opening:

Switchover time:
Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:

Contact variants

Snap action

1 NO / 1 NC

Slow action 1 NO / 1 NC

Approvals

Ordering details

(1) 441-11y(2)-14-3)

No.	Replace	Description
(1)	M.	Snap action (2)
T.	Slow action Slow action with overlapping contacts	
	k	Tropical version with ceramic insulation
	1276	Tropical and temperature- resistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$ Gold-plated contacts

ES/EM 41 DB

- Metal enclosure
- Slow action: two contacts
- Snap action: 2 contacts
- 3 cable entries M20 x 1.5
- Protection class IP 65
- Plastic cover available
- Different actuating rollers available

Approvals

Ordering details
E(1) 41 DB (2)

No.	Replace	Description
(1)	S	Slow action
	M	Snap action
(2)	$1 \mathrm{O} / 1 \mathrm{~S}$	1 NO/1 NC
	$1 \mathrm{~S} / 1 \mathrm{O}$ UE	with overlapping contacts
	2 O	2 NC

M 330

- Metal enclosure
- 2 contacts
- Snap action with self-cleaning contacts
- Mounting details to EN 50041
- Adjustable-length rod lever with nylon roller
- LED version available
- 1 cable entry M20 x 1.5
- Protection class IP 65
- For light to medium duty
- Patented low-wear actuator head

Technical data

Standards:
Enclosure and cover material:

Protection class:
Contact material:
Contact type:

Switching system:

Termination:
Cable section:
$\mathrm{U}_{\text {imp }}$:
U_{i} :
the:
${ }_{e} / U_{e}$:
Utilisation category:
Max. fuse rating:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Repeat accuracy
of switching points:

Contact variants
1 NO / 1 NC

change-over contact,
double break
with 2 separate
contact bridges,
same potential
snap action,
self-cleaning contacts screw terminals M 3.5
max. $2.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules)
4 kV
250 V
6 A
2.5 A / 230 VAC

AC-15
$6 \mathrm{AgL} / \mathrm{gG}$ D-fuse max. $2 \times 0.5 \mathrm{~mm}$

$$
\leq 10 \mathrm{~ms}
$$

(with actuating speed $10 \mathrm{~mm} / \mathrm{min}$ on plunger) $\leq 1.5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ > 30 million operations max. 3000/h
$\pm 0.02 \mathrm{~mm}$ on plunger

Approvals

\square

C

Ordering details
MV10H 330-11y-1348- 1

No.	Replace	Description
(1)		Without LED
	G24	With LED

Note

LED version

Ordering suffix G24, protected against incorrect polarity and voltage spikes.

- Supply voltage indication: Green (GN)
- Switching position indication: Yellow (YE)

T/M 441

- Metal enclosure
- Slow action, change-over contact with double break
- Snap action, change-over contact with double break
- 2 cable entries
- Lever available with various lengths of roller
- Protection class IP 65
- Suitable for heavy duty

Approvals

(ϵ
 Ordering details

(1) 441-11y-(2)-(3)-(4)
\(\left.$$
\begin{array}{l|l|l}\text { No. } & \text { Replace } & \text { Description } \\
\hline \text { (1) } & \text { M. } & \begin{array}{l}\text { Snap action } \\
\text { (2) }\end{array} \\
\text { T. } & \begin{array}{l}\text { For the appropriate actuator: } \\
\text { see page 1-157 }\end{array} \\
\text { (4) } & \text { ü } & \begin{array}{l}\text { Slow action with } \\
\text { overlapping contacts } \\
\text { (4) }\end{array}
$$

tropical version with\end{array}\right\}\)| teramic insulation |
| :--- |

T/M 250

- Metal enclosure
- Slow action, change-over contact with double break
- Slow action available with overlapping or staggered contacts
- Snap action, change-over contact with double break
- 2 cable entries M25 x 1.5
- Lever available with various lengths of roller
- Protection class IP 65
- Suitable for heavy duty

Technical data

Standards:
Enclosure:
Protection class:
Contact material:
Contact type:

IEC/EN 60947-5-1
cast iron, galvanised, paint finish IP 67 to EN 60529
silver snap action: change-over contact,
with 2 galvanically separated contact bridges slow action: positive break NC contacts Θ slow and snap action screw terminals M 4 max. $2.5 \mathrm{~mm}^{2}$ incl. conductor ferrules)

500 V 16 A 4 A / 400 VAC

AC-15
16 A gL/gG D-fuse snap action: max. $2 \times 2.5 \mathrm{~mm}$ slow action: max. $2 \times 2 \mathrm{~mm}$

$$
\leq 35 \mathrm{~ms}
$$

Switchover time:
Bounce duration
Ambient temperature:

$$
-30^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}
$$

Mechanical life
Switching frequency: 10 million operations max. 3000/h

Contact variants

Snap action

1 NO / 1 NC

Slow action

1 NO / 1 NC

Snap action
2 NO / 2 NC

Slow action

2 NO / 2 NC

Approvals

Ordering details

(1) 250-(2)z-(3)-(4)

No.	Replace	Description
(1)	M.	Snap action
	T.	Slow action
(2)	11	$1 \mathrm{NO} / 1 \mathrm{NC}$
	22	$2 \mathrm{NO} / 2 \mathrm{NC}$
(3)	For the ap see page	priate actuator: 57
(4)	k	Tropical version with ceramic insulation
	t	Tropical and temperatureresistant version $-40^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$
	1276	Gold-plated contacts

Belt alignment switches
System components

Belt alignment lever 243

Ordering details

Belt alignment levers
243
ordering suffix -243
966
ordering suffix -966
1224 ordering suffix -1224

ZS 75 SR

- To IEC 60947-5-1
- Metal enclosure
- 2 or 4 contacts
- 2 cable entries M25 x 1.5
- Reset by push button or key possible
- Signalling lamp available on request for various voltage
- Ex version available

Approvals

(51) (UI)
(ϵ

Ordering details

ZS $\mathbf{7 5}$ SR (1) (2)

No.	Replace	Description
(1)	$10 ̈ / 1 \mathrm{~S}$	$1 \mathrm{NO} / 1 \mathrm{NC}$
	$2 \mathrm{O} / 2 \mathrm{~S}$	$2 \mathrm{NO} / 2 \mathrm{NC}$
	4 O	4 NC
(2)	VD	Push button reset
	VS	Key reset

M 610

- Thermoplastic enclosure
- Very long life
- Change-over contact, single break
- Snap action with self-cleaning contacts
- Enclosure dimensions to DIN 41635-B
- Soldering, plug or screw terminals
- Telescopic head available
- Various actuators available

Technical data

Standards:
Enclosure:
Actuator:
Protection class:

Degree of pollution:
Contact material:
Contact type:

Switching system:

Termination:

Cable section:
$\mathrm{U}_{\mathrm{imp}}:$
$\mathrm{U}_{\mathrm{i}}:$
$I_{\text {the }}$:
Utilisation category:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:

IEC/EN 60947-5-1 glass-fibre reinforced thermoplastic thermoplastic IP 40,
terminals IP 00 to EN 60529 change-over contact, single break snap action, self-cleaning contacts
soldering, plug or screw terminals max. $1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 4 kV 250 V 4 A
AC-15
2.5 A / 230 VAC
$6 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$ D-fuse approx 1.2 N $\min .0 .3 \mathrm{~N}$ $\underset{\substack{0.3 \mathrm{~mm} \\ \leq 10 \mathrm{~ms}}}{ }$ ig speed (with actu $\leq .5 \mathrm{~ms}$ $-30^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$0 million operations max. 10000/h $\mathrm{min} .1 \mathrm{~mm} / \mathrm{min}$

Contact variants

Change-over contact with double break

Actuator 1A...1D

Telescopic plunger 2S

Approvals

\square
Ordering details
M 610-11-(1)-(2)-(3)

No. Replace		Description
(1)	20	Soldering terminal with hole
	21	with collar Plug terminals 30
(2)	1006	Screw terminals Reduced actuating force 0.8 N Gold-nickel contact tips for low DC votages
(3)	AuNi	

Note

When mounting the switches, care must be taken to maintain electrical clearances to adjacent devices and metal parts.

The lever bearing position can be changed subsequently.

The contact/switch travel diagram relates to the plunger travel.

Actuator 1A

Lever bearing	I	II	III
Total travel $[\mathrm{mm}]$	2.70	1.90	1.50
Pre-travel $[\mathrm{mm}]$	1.50	1.05	0.80
Max. differential $[\mathrm{mm}]$	0.60	0.45	0.35
Actuating force $[\mathrm{N}]$	0.36	0.52	0.68
Min. return force $[\mathrm{N}]$	0.10	0.14	0.18

Actuator $1 E$

Actuator 1 C

Lever bearing	I	II	III
Total travel $[\mathrm{mm}]$	2.10	1.50	1.20
Pre-travel $[\mathrm{mm}]$	1.20	0.80	0.65
Max. differential $[\mathrm{mm}]$	0.50	0.35	0.25
Actuating force $[\mathrm{N}]$	0.47	0.67	0.87
Min. return force $[\mathrm{N}]$	0.13	0.18	0.23

- Roller 2.7 mm wide

Approvals

Ordering details C

M 610-11-(1)-1A-(2)-(3)-(4)

No. Replace	Description	
(1)	20	Soldering terminal with hole
(2)	with collar	
	21	Plug terminals Screw terminals Lever bearing II
(3)	III	Lever bearing I Lever bearing III
(4)	AuNi	Reduced actuating force 0.8 N Gold-nickel contact tips for low DC votages

(ϵ

Approvals

Ordering details

M 610-11-(1)-1C-(2)-(3)-(4)

No. Replace		Description
(1)	20	Soldering terminal with hole
	21	with collar
	30	Plug terminals
	60	Screw terminals
(2)		Lever bearing II
	1	Lever bearing I
	III	Lever bearing III
(3)	1006	Reduced actuating force 0.8 N
(4)	AuNi	Gold-nickel contact tips for low DC votages

C ϵ

Approvals

Ordering details
M 610-11-(1)-1E-(2)-(3)-(4)

No. Replace		Description
(1)	20	Soldering terminal with hole
	21	with collar
	30	Plug terminals
	60	Screw terminals
(2)		Lever bearing II
	1	Lever bearing I
	III	Lever bearing III
(3)	1006	Reduced actuating force 0.8 N
(4)	AuNi	Gold-nickel contact tips for low DC votages

Actuator 1D

Lever bearing	I	II	III
Total travel $[\mathrm{mm}]$	3.50	2.50	1.90
Pre-travel $[\mathrm{mm}]$	1.90	1.40	1.00
Max. differential $[\mathrm{mm}]$	0.80	0.55	0.40
Actuating force $[\mathrm{N}]$	0.28	0.40	0.52
Min. return force $[\mathrm{N}]$	0.08	0.11	0.14

Approvals

C
Ordering details
M 610-11-(1)-1D-(2)-(3)-(4)

No. Replace		Description
(1)	20	Soldering terminal with hole
(2)	with collar	
(2)	I	Plug terminals Screw terminals Lever bearing II Lever bearing I Lever bearing IIII
(3)	III	Reduced actuating force 0.8 N Gold-nickel contact tips for low DC votages
(4)	AuNi	

Telescopic plunger 2 S

Total travel [mm] 2.50
Pre-travel [mm] 0.50
Max. differential [mm] 0.20
Actuating force [N] 2.10
Min. return force [N$] \quad 0.30$

Total travel [mm]	2.50
Pre-travel [mm]	0.50
Max. differential [mm]	0.20
Actuating force [N]	2.10
Min. return force [N]	0.30

System components

Soldering terminal with hole

Plug terminal

Screw terminals

Approvals

Ordering details

M 610-11-(1)-2S-(2)-(3)

No. Replace		Description
(1)	20	Soldering terminal with hole
	21	with collar (2) (2)
	Plug terminals Screw terminals 1006	Seduced actuating Rorce 0.8 N
(3)	AuNi	Gold-nickel contact tips for low DC votages

Ordering details

Soldering terminal with hole with collar Plug terminal Screw terminals
ordering suffix -20 ordering suffix -21 ordering suffix -30 ordering suffix -60

M 630

- Thermoplastic enclosure
- Very long life
- Change-over contact, single break
- Snap action with self-cleaning contacts
- Robust design
- High switching capacity
- Temperature resistant up to $+120^{\circ} \mathrm{C}$
- Soldering, spade or universal terminals
- Various actuators available

Technical data

Standards:
Enclosure:
Actuator:
Protection class:

Degree of pollution:
Contact material:
Contact type:
Switching system:

Termination:

Cable section:
$U_{i m p}$:
U_{i} :
$I_{\text {the }}$:
Utilisation category:
I_{e} / U_{e} :
Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:

IEC/EN 60947-5-1 glass-fibre reinforced thermoplastic thermoplastic IP 40,
terminals IP 00 to EN 60529 2 silver change-over contact, single break snap action, self-cleaning contacts soldering, plug or screw terminals max. $1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

$$
\min .1 .2 \mathrm{~N}
$$

$$
0.9 \text { mm }
$$

$$
S_{30 \mathrm{~ms}}
$$

with actuating speed of
$10 \mathrm{~mm} / \mathrm{min}$ at plunger)
$\leq 5 \mathrm{~ms}$
$-30^{\circ} \mathrm{C} \ldots+120^{\circ} \mathrm{C}$
≥ 30 million operations max. 10000/h $\mathrm{min} .1 \mathrm{~mm} / \mathrm{min}$ $\pm 0.05 \mathrm{~mm}$

Contact variants

Change-over contact with double break

Approvals

\square
Ordering details
M 630-11-(1)-(2)-(3)

No. Replace		Description
(1)	2	Soldering terminal (2)
3	5	Plug terminals
(3)	C	Universal terminal Reduced actuating force 0.4 N With magnetic arc
		extinguishing to switch DC circuits

Micro switches

Actuator A

Actuator B

Actuator D

Actuator Length L1 Total length L

Actuator	Length L1 $[\mathrm{mm}]$	Total length L $[\mathrm{mm}]$
B17	17	20
B24	24	27
B30	30	33
B40	40	43
B50	50	53

Approvals

C
Ordering details
M 630-11-(1)-A (2)-(3)-(4)-(5)

No. Replace		Description
(1)	2	Soldering terminal
	3	Plug terminals
	5	Universal terminal
(2)	xx	Length L1 (mm) see table at the top
(3)		Lever bearing I
	II	Lever bearing II
(4)	934	Reduced actuating force 0.4 N
(5)	C	With magnetic arc extinguishing to switch DC circuits

Ordering details

M 630-11-(1)-B (2)-(3)-(4)-(5)

No. Replace	Description	
(1)	2	Soldering terminal (2)
(3)	xx	Ung terminals Universal terminal Length L1 (mm) see table at the top Lever bearing I
(4)	934	II Lever bearing II Reduced actuating force 0.4 N With magnetic arc extinguishing to switch DC circuits

Approvals

C ϵ

Ordering details

M 630-11-(1)-D (2)-(3)-(4)-(5)
N

(1)	2	Soldering terminal (2)
(3)	Px terminals	
(4)	934	Universal terminal Length L1 (mm) see table at the top
(5)	C	Lever bearing I Lever bearing II Reduced actuating force 0.4 N With magnetic arc extinguishing to switch DC circuits

Micro switches

Actuator E

Actuator Length L1 Total length L

	$[\mathrm{mm}]$	[mm]
E17	17	20
E24	24	27
E30	30	33
E40	40	43
E50	50	53

Actuator F

Actuator Length L1 Total length L [mm] [mm]
16.2
18.2

Approvals

$C \epsilon$
Ordering details
M 630-11-(1)-E (2)-(3)-(4)-(5)

No. Replace	
(1)	2
	3
	5
(2)	xx
(3)	
	II
(4)	934
(5)	C

Description
Soldering terminal Plug terminals Universal terminal Length L1 (mm) see table at the top Lever bearing I Lever bearing II Reduced actuating force 0.4 N With magnetic arc extinguishing to switch DC circuits

Approvals

Ordering details

M 630-11-(1)-F-(2)-(3)-(4)

No. Replace	Description	
(1)	2	Soldering terminal (2)
	3	Plug terminals Universal terminal Lever bearing I
(3)	934	Lever bearing II Reduced actuating force 0.4 N
(4)	C	With magnetic arc extinguishing to switch DC circuits

System components

Soldering terminal

Plug terminal

Ordering details

Soldering terminal Plug terminal Universal terminals
ordering suffix -2 ordering suffix -3 ordering suffix -5

Micro switches

Force-Travel diagrams

Force-Travel on plunger

Force-Travel on lever bearing I

Force-Travel on lever bearing II

Lever bearing I or II

Legend

L1: Actuating distance
h: Travel at actuator/plunger
F: Actuating force at actuator/plunger
E: Switch-on travel
A: Switch-off travel
S: Switching point $=\mathrm{h} / 1.78$
: Differential travel $=\mathrm{h} / 5.33$

M 6800 / M 6900

- Thermoplastic enclosure
- Very long life
- Change-over contact, double break
- Snap action
- Soldering, spade or universal terminals
- Suitable for low actuating speeds
- Available with end-position latching and in tandem version
- Various actuators available

Technical data

Switching system:
Termination:

Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
Ithe:
Utilisation category:
I_{e} / U_{e} :
Max. fuse rating:
Actuating force:
Ejection force:

Contact opening:
Switchover time:

Bounce duration:

Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:

Repeat accuracy of switching points:

IEC/EN 60947-5-1
thermoplastic thermoplastic
Actuator:
Protection class: IP 40, terminals IP 00 to EN
60529
Degree of pollution:
Contact material:
Contact type:
6800. change-over contact, double break, with galvanically separated contact bridges, same potential M 6900: change-over contact, double break, type Za self-cleaning contacts soldering, spade or universal terminals max. $1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
2.5 kV

250 V
6 A
AC-15
4 A / 230 VAC
$10 \mathrm{AgL} / \mathrm{gG}$ D-fuse
approx. 4 N
M 6800: min. 0.8 N
M 6900: min. 1.3 N $2 \times 0.5 \mathrm{~mm}$
$\leq 10 \mathrm{~ms}$
(with actuating speed $10 \mathrm{~mm} / \mathrm{min}$ on plunger) M 6800: $>.5 \mathrm{~ms}$ M 6900: $\leq 3.0 \mathrm{~ms}$

$$
-30^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}
$$ 30 million operations max. 10000/h

M 6800: $\mathrm{min} .1 \mathrm{~mm} / \mathrm{min}$ M 6900: min. $10 \mathrm{~mm} / \mathrm{min}$

M 6800: $\pm 0.02 \mathrm{~mm}$ at plunger M 6900: $\pm 0.05 \mathrm{~mm}$ at plunger

Contact variants

Actuator 80 A

Actuator 80 E

Actuator 80 B 9

Approvals

\square
Ordering details
M (1)-11-(2)-(3)

No. Replace		Description
(1)	6800	Double leaf-spring system
	6900	C spring system
(2)	2	Soldering terminal
	3	Spade terminals 6.3 mm
(3)	5	Universal terminal
		Standard
	P2	At rest in end positions
	P3	Tandem version

Note

Further actuators available on request.

Micro switches

Actuator 80 A

- Actuating force approx. 0.9 N

Actuator 80 E

- Actuating force approx. 0.95 N

Actuator 80 M

- Actuating force approx. 2.4 N

Approvals

Ordering details C

M (1)-11-(2)-(3)-80 A

No. Replace		Description
(1)	6800	Double leaf-spring system
	6900	C spring system Soldering terminal
(2)	2	Spade terminals 6.3 mm
(3)	5	Universal terminal Standard
	P2	At rest in end positions Tandem version

Ordering details

M (1)-11-(2)-(3)-80 E

No. Replace		Description
(1)	6800	Double leaf-spring system
		6900
(2)	2	C spring system
	3	Soldering terminal
(3)	5	Spade terminals 6.3 mm
		P2

Approvals

C ϵ

Ordering details

M (1)-11-(2)-(3)-80 M
No. Replace || Description

(1)	6800	Double leaf-spring system
(2)	2	C spring system Soldering terminal
	3	Spade terminals 6.3 mm (3)
	5	Universal terminal Standard
	P2	At rest in end positions Tandem version

Micro switches

Actuator 80 B 9

- Actuating force approx. 3.8 N
- Captive stainless steel ball

System components

Spade terminals

System components

Approvals

(ϵ

Ordering details

M (1)-11-(2)-(3)-80 B 9
No. Replace
Description

(1)	6800	Double leaf-spring system
	6900	C spring system
(2)	2	Soldering terminal
	3	Spade terminals 6.3 mm (3)
	5	Universal terminal Standard
	P2	At rest in end positions P3
	Tandem version	

Ordering details

Soldering terminal Spade terminals Universal terminals
ordering suffix -2 ordering suffix -3 ordering suffix -5

Ordering details

Latching in end position

 Tandem versionordering suffix P2 ordering suffix P3

Around the clock

Always there for you, the Online Catalogue at: www.schmersal.com

M 687

- Thermoplastic enclosure
- Flat design
- Very long life
- Change-over contact, double break
- Galvanically separated contact bridges
- Snap action with self-cleaning contacts
- Temperature resistant up to $+120^{\circ} \mathrm{C}$
- Screw or spade terminals
- Suitable for low actuating speeds

Technical data

Standards:
Enclosure:
body: pressure-setting plastic cover: glass-fibre reinforced thermoplastic
Actuator:
Protection class:

Degree of pollution:
Contact material:

Contact type:

Switching system:
Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
$I_{\text {the }}$:
Utilisation category:
l_{e} / U_{e} :
Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points: $\pm 0.02 \mathrm{~mm}$ at plunger

Contact variants

Change-over contact with double break

Plunger

Offset roller lever 8 R

Approvals

Ordering details

M 687-11-(1)-(2)-(3)

No. Replace	Description	
(1)	1	Screw terminals Spade terminals
(2)	3	Without terminal cover With terminal cover
(3)	i	Gold-nickel contacts

Micro switches

Offset roller lever 8 R

- Plastic roller
- Roller 6.4 mm wide

The roller lever cannot be dismantled. On versions with slow action contacts, a minimum play of 0.5 mm is provided between the plunger and operating lever to allow for possible contact wear.

Approvals

Ordering details C

M 687-11-(1)-(2)-8 R-(3)
No. Replace
Description

(1)	1	Screw terminals Spade terminals
(2)	3	Without terminal cover With terminal cover
(3)	iuNi	Gold-nickel contacts

System components

Terminal cover

M/T 697

- Thermoplastic enclosure
- Flat design
- Very long life
- Snap action, change-over contact with double break
- Slow action, 1 NC with double break, positive break Θ
- Temperature resistant up to $+120^{\circ} \mathrm{C}$
- Screw or spade terminals

Iechnical data

Standards:
IEC/EN 60947-5-1
Enclosure: body: pressure-setting plastic cover: glass-fibre reinforced thermoplastic
Actuator:
Protection class:

Degree of pollution:
Contact material:
Contact type: thermoplastic

IP 40,
terminals IP 00 to EN 60529
silver
M 697:
change-over contact, double break, type Za T 697:
1 positive break NC contact, double break, type Y M 697: snap action T 697: slow action,
positive break NC contact Θ
Termination:
Cable section: screw or spade terminals max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)

$$
4 \mathrm{kV}
$$

$\begin{array}{lr}\mathrm{U}_{\mathrm{i}}: & 250 \mathrm{~V} \\ \mathrm{I}_{\text {tha }}: & 6 \mathrm{~A}\end{array}$
the:
Utilisation category:
AC-15
Te/Ue: $\quad 2.5 \mathrm{~A} / 230 \mathrm{VAC}$
Max. fuse rating: $\quad 10 \mathrm{~A}$ gL/gG D-fuse
Actuating force: approx. 4 N
Ejection force: M 697: min. 1,3 N T 697: -
Contact opening: $2 \times 0.5 \mathrm{~mm}$
Switchover time:
M 697: $\leq 10 \mathrm{~ms}$ (with actuating speed of $10 \mathrm{~mm} / \mathrm{min}$ at plunger)
T 697: -

Bounce duration:

Ambient temperature: Mechanical life: Switching frequency:
Actuating speed: \quad M 697: min. $10 \mathrm{~mm} / \mathrm{min}$ T 697: min. $60 \mathrm{~mm} / \mathrm{min}$
Repeat accuracy
of switching points:

Contact variants

1 NC contact

Change-over contact with double break

Offset roller lever 8 R

Approvals

(ϵ
 Ordering details

(1) 697-(2)-(3)-(4)

No. Replace		Description
(1)	M	Snap action (2)
	T	Slow action Change-over contact with double break
		01

Micro switches

Offset roller lever 8 R

- Plastic roller
- Roller 6.4 mm wide

The roller lever cannot be dismantled. On versions with slow action contacts, a minimum play of 0.5 mm is provided between the plunger and operating lever to allow for possible contact wear.

Approvals

Ordering details C
(1) 697-(2)-(3)-8 R-4

No. Replace
Description

(1)	M	Snap action
(2)	11	Slow action Change-over contact with double break
(3)	01	1 NC contact (only for T) Screw terminals
(4)	3	Spade terminals Without terminal cover With terminal cover

System components

Terminal cover

$$
2
$$

Z/T 6881

- Thermoplastic enclosure
- Long life
- 2 contacts
- Snap action, change-over contact with double break, positive break Θ
- Slow action, change over with double break, positive break Θ
- Galvanically separated contact bridges
- Large contact break
- Highly resistant to vibration
- Constant contact pressure up to switching point
- Short contact-bounce duration
- Screw terminals

Approvals

(c.)
(ϵ

Ordering details

(1) 6881-11-1-(2)-(3)

No. Replace	Description	
(1)	Z	Snap action Slow action Without plunger extended 4 mm With plunger extended 4 mm Without terminal cover With terminal cover

Technical data

Standards:
Enclosure:
IEC/EN 60947-5-1
glass-fibre reinforced thermoplastic
Actuator: thermoplastic
Protection class: IP 40, terminals: IP 00, finger guard to VDE 0106-100, ordering suffix i: IP 20 to EN 60529
Degree of pollution:
Contact material:
silver, contact
bridges gold-plated
Contact type:

Switching system:
change-over contact, double break, galvanically separated contact bridges slow or snap action, positive break NC contacts Θ
Cable section:
U_{im} :
$\mathrm{U}_{\mathrm{i}}:$
$\mathrm{I}_{\text {the }}:$
Utilisation category:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
screw terminals
max. $2 \times 1.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules) 4 kV 250 V 10 A
AC-15, DC-13 2,5 A/230 VAC

6 A/24 VDC
at min. $600 \mathrm{~mm} / \mathrm{min}$

6 A gL/gG D-fuse Z 6881-11-1: 20 N, Z 6881-11-1-80R: 12 N T 6881-11-1: 7 N , T 6881-11-1-80R: 4 N Z 6881: $2 \times 1.25 \mathrm{~mm}$ immediately beyond switching point, $2 \times 3.0 \mathrm{~mm}$ at full travel T 6881:2 $\times 3.3 \mathrm{~mm}$ at full travel Switchover time: \quad Z 6881: $\leq 5 \mathrm{~ms}$

T 6881: Z 6881: $S_{3 \mathrm{~ms}}$ T 6881: -$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ million operations million operations Z 6881: 10000/h T 6881: 3000/h
Actuating speed: \quad Z 6881: $\mathrm{min} .1 \mathrm{~mm} / \mathrm{min}$ T 6881: min. $60 \mathrm{~mm} / \mathrm{min}$
Repeat accuracy
of switching points: $\pm 0.02 \mathrm{~mm}$ at plunger Switching of low voltages: $\quad 5 \mathrm{~mA} / 24 \mathrm{VDC}$
Max. fuse rating:
Actuating force:

Contact opening:

Contact variants

Plunger

Offset roller lever 80 R
Snap action

Micro switches

Offset roller lever 80 R

- Plastic roller
- Roller 6.4 mm wide

Approvals

Ordering details C€
(1) 6881-11-1-80 R-(2)

No. Replace		Description
(1)	Z	Snap action
	T	Slow action
(2)		Without terminal cover
	i	With terminal cover

Ordering details

Terminal cover ordering suffix -i

- Prevents contact with live parts
- Hand and finger guard to

VDE 0106-100

- Clips into position

Z/T 232

- Thermoplastic enclosure
- 2 contacts
- Snap action, change-over contact with double break, positive break Θ
- Slow action, change over with double break, positive break Θ
- Galvanically separated contact bridges
- Screw terminal

Technical data

Standards:
Enclosure:

Actuator:

Protection class:

Degree of pollution:
Contact material:
Contact type:

Switching system:

Termination:
Cable section:
U

1
1
1
1
U_{i} :
Ithe:
Utilisation category:
l_{e} / U_{e} :

Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:

Bounce duration:

Ambient temperature.
Mechanical life:
Switching frequency:
Actuating speed:

Approvals

Repeat accuracy
of switching points:

Contact variants

Slow action
1 NO / 1 NC

2 NC

2 NO

1 NC

1 NO
 (incl. conductor ferrules)

6 kV
500 V
10 A
AC-15
4 A / 230 V 2.5 A / 400 V

1 A/500 V 6 A gG D-fuse 9 N

Z $232=2 \times 2 \mathrm{~mm}$ T $232=2 \times 3.5 \mathrm{~mm}$ Z 232: $\leq_{5 \mathrm{~ms}}$ T232:Z 232: $S_{3 \mathrm{~ms}}$ T 232: -
≥ 20 million operations max. 5000/h
Z 232: $10 \mathrm{~mm} / \mathrm{min}$ T 232: min. $60 \mathrm{~mm} / \mathrm{min}$

Ordering details

(1)S 232-(2)

No. Replace		Description
(1)	Z	Snap action (only for -11)
	T	Slow action
(2)	11	1 NO /1 NC
	01	1 NC
	02	2 NC
	10	1 NO
	20	2 NO

M 660-11-2-y

- Rubber enclosure (perbunan)
- Change-over contact, single break
- Snap action with self-cleaning contacts
- $-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ temperature resistant
- Protection class IP 65

Technical data

Standards:
Enclosure:
IEC/EN 60947-5-1 rubber
Actuator:
Protection class:
Degree of pollution:
Contact material:
Contact type:
Switching system:

Termination:

Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
the:
Jtilisation category
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:
Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:
$-30^{\circ} \mathrm{C} \ldots+120^{\circ} \mathrm{C}$
≥ 3 million operations
10000/h
$\min .1 \mathrm{~mm} / \mathrm{min}$

Contact variants

Change-over contact with single break

Approvals

Ordering details C€

M 660-11-2-y

Note

Version with metal casing, cable and various actuators, see page 1-34.

M 689

- Thermoplastic enclosure
- Change-over contact, double break
- Snap action with self-cleaning contacts
- Galvanically separated contact bridges
- Screw terminal
- Suitable for low actuating speeds

Technical data

Standards:	IEC/EN 60947-5-1 plastic, anti-tracking
Enclosure:	thermoplastic
Actuator:	IP 40, terminals IP 00
Protection class:	to EN 60529
	2
Degree of pollution:	silver
Contact material:	

Contact type: change-over contact,
double break with 2 separate contact bridges, same potential
Switching system:
Termination:
Cable section:
$\mathrm{U}_{\text {imp }}$:
U_{i} :
$\left.\right|_{\text {the: }}$
Utilisation category:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
Max. fuse rating:
Actuating force:
Ejection force:
Contact opening:
Switchover time:

Bounce duration:
Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points: $\pm 0.02 \mathrm{~mm}$ at plunger

Contact variants

Plunger and actuator 8 B 9

Actuator 8 A

Actuator 8 E and 8 F

Actuator 8 M

Actuator 8 V

Approvals

Ordering details

M 689-11-1-(1)

No. Replace	Description
(1)	
	i

Plunger P4

- Plunger with setting screw
- Actuating force approx. 4 N

Plunger P5

- Actuator flush with housing
- Actuating force approx. 4 N

Actuator 8 A

- Actuating force approx. 0.9 N

Approvals

C
Ordering details
M 689-11-1-P4-(1)

No. Replace	Description
(1)	
	i

Approvals

Ordering details

M 689-11-1-P5-(1)

No. Replace	Description	
(1)		Without terminal cover
	i	With terminal cover

Approvals

C ϵ

Ordering details

M 689-11-1-8 A-(1)
No. Replace Description
(1)

Without terminal cover With terminal cover

Micro switches

Actuator 8 E

- Actuating force approx. 0.95 N

Actuator 8 F

- Actuating force approx. 0.95 N
- Adjustable actuator

Actuator 8 M

- Actuating force approx. 2.4 N

Approvals

C ϵ
Ordering details
M 689-11-1-8 E-(1)

No. Replace	Description
(1)	
	i

Approvals

Ordering details

M 689-11-1-8 F-(1)

No. Replace	Description
(1)	
	i

Approvals

(ϵ

Ordering details

M 689-11-1-8 M-1

No. Replace
(1)

Micro switches

Actuator 8 V

- Actuating force approx. 4 N

Actuator 8 B 9

- Actuating force approx. 4 N
- Actuator head with captive metal ball actuator
- Ball Ø 9 mm

Approvals

C
(ϵ

Ordering details

M 689-11-1-8 V- ${ }^{(1)}$

No. Replace	Description
(1)	
	i

Ordering details

M 689-11-1-8 B 9-1

No. Replace	Description
(1)	
	i

C 50

- Thermoplastic enclosure
- Change-over contact, double break Θ
- Galvanically separated contact bridges
- Temperature range $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
- Protection class IP 30
- Available for top mounting with $2 \times \mathrm{M} 3$ tapped holes

Iechnical data

Standards:
Enclosure:
Actuator:
Protection class:
Degree of pollution:
Contact material:
Contact type:

Switching system:

Termination:
Cable section:
$\mathrm{U}_{\mathrm{imp}}$:
U_{i} :
$I_{\text {the }}$:
Utilisation category:
${ }_{e} / U_{e}$:
Max. fuse rating:
Contact opening:
Switchover time:

Bounce duration:

Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:

Contact variants

Change-over contact with double break

Approvals

(UL) (14)
(ϵ

Ordering details

C 50 (1) 10̈/1S
No. Replace Description
For the appropriate actuator: see page 1-183 and following

IEC/EN 60947-5-1
thermoplastic plunger: brass IP 30 to EN 60529
silver
change-over contact with double break, type Zb slow action, positive break NC contacts Θ screw terminal max. $1.5 \mathrm{~mm}^{2}$ 4 kV
400 V
4 A
AC-15
4 A / 400 VAC
4 A gL/gG D-fuse $2 \times 4 \mathrm{~mm}$ at full travel in accordance with actuating speed in accordance with actuating speed $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ >1 million operations max. 1800/h $\pm 0.05 \mathrm{~mm}$ at plunger

Micro switches

Plunger

$\alpha=$	20°	10°	5°	-
$\beta=$	20°	10°	5°	-

Legend

v: actuating speed
α : angle for actuation from right
β : angle for actuation from left

Plunger ST

- Plunger with knurled-head setting screw
- Actuating speed $5 \mathrm{~m} / \mathrm{s}$ at 0° to plunger axis
- Projection of plunger adjustable for fine setting of switching point

Plunger K

- Adjustable plunger with plastic cap
- Large actuating surface
- Safe switching even with imprecise actuation

$v[m / s]$	$\mathbf{0 , 5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$
$\alpha=$	20°	10°	5°	-
$\beta=$	20°	10°	5°	-

Legend

v: actuating speed
α : angle for actuation from right
β : angle for actuation from left

Approvals

Approvals

C

Ordering details

C 50 10̈/1S
(II) (\$1)
(11) (1)

C 50 ST 1Ö/1S

Ordering details

Approvals

CE
(1i) (\$1)
C
Ordering details
C 50 K 10̈/1S

Micro switches

Roller plunger R

- Available with roller plunger turned 90°

$\mathbf{v}[\mathrm{m} / \mathrm{s}]$	$\mathbf{0 , 5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$
$\alpha=$	30°	20°	10°	5°
$\beta=$	30°	20°	10°	5°
Legend				
: actuating speed				
$\alpha:$ angle for actuation from right				
$\beta:$ angle for actuation from left				

Approvals

(1i) (\$1
(ϵ

Ordering details

C 50 R 10̈/1S

Up to Date

The latest product information and news at: www.schmersal.com

C 500

- Thermoplastic enclosure
- Change-over contact, double break Θ
- Galvanically separated contact bridges
- Temperature range $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
- Protection class IP 30
- Available for top mounting with $2 \times \mathrm{M} 3$ tapped holes

Iechnical data

Standards:
Enclosure:
Actuator:
Protection class:
Degree of pollution:
Contact material:
Contact type:

Switching system:

Termination:
Cable section:
$U_{\text {imp }}$:
U_{i} :
$I_{\text {the }}$:
Utilisation category:
${ }_{e} / U_{e}$:
Max. fuse rating:
Contact opening:
Switchover time:

Bounce duration:

Ambient temperature:
Mechanical life:
Switching frequency:
Actuating speed:
Repeat accuracy
of switching points:

Contact variants

Change-over contact with double break

Approvals

(11) (51)
(ϵ

Ordering details

C 500 (1) 10̈/1S
No. Replace Description

For the appropriate actuator: see page 1-187

IEC/EN 60947-5-1
thermoplastic plunger: brass IP 30 to EN 60529
silver
change-over contact with double break, type Zb slow action, positive break NC contacts Θ screw terminal max. $1.5 \mathrm{~mm}^{2}$ 4 kV
400 V
4 A
AC-15
4 A / 400 VAC
4 A gL/gG D-fuse $2 \times 4 \mathrm{~mm}$ at full travel in accordance with actuating speed in accordance with actuating speed $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ >1 million operations max. 1800/h $\pm 0.05 \mathrm{~mm}$ at plunger

Micro switches

Plunger

$\alpha=$	20°	10°	5°	-
$\beta=$	20°	10°	5°	-

Legend

v: actuating speed
α : angle for actuation from right
β : angle for actuation from left

Plunger ST

- Plunger with knurled-head setting screw
- Actuating speed $5 \mathrm{~m} / \mathrm{s}$ at 0° to plunger axis
- Projection of plunger adjustable for fine setting of switching point

Roller plunger R

Legend

v : actuating speed
α : angle for actuation from right
β : angle for actuation from left

Approvals

Approvals

C
(11) (5)

Ordering details
C 500 ST 10̈/1S

Approvals

CE
(1i) (\$1)
$C \in$
Ordering details
C 500 R 10̈/1S

SES press-on position switches with safety function

The mounting size complies with EN 50047. These position switches have a plastic housing and are equipped with a push-on spade in accordance with EN 46224 (AMP).

Several switching travel and actuating elements as well as snap action or slow action contacts available.

More information can be found in the "S-IP" List from Elan

Position switches for series wiring to DIN 43697

The position switches for series wiring can be supplied with 2 to 16 roller or ball plungers with an intermediate distance of 12 or 16 mm .

Depending on the application, the user can choose between snap action and slow action contacts.

An extensive range of accessories such as mounting rails and cams with T blocking in accordance with DIN 69638 is available.

More information can be found in the "R", "N-NT" and "NT-R" Lists from Elan

EEx 335 series: Safety switches with ATEX certification

The robust die-cast zinc enclosure of the switch resists to mechanical loads and is, amongst others, suitable for safety applications in the lift industry, conveying technology and general machine and installation assembly.

More information can be found in the catalogue "EEx switching components" from steute

Automation technology
 Sensors

The field of application of non-contacting
sensors of the Schmersal Group ranges from
precision mechanics to heavy-duty machinery. precision mechanics to heavy-duty machinery.

Magnetic reed switches and inductive, optical and capacitive proximity switches all are non-contacting switches

Selection table 2-2
Inductive proximity switches 2-3
Capacitive proximity switches 2-60
Optical proximity switches 2-64
Accessories for proximity switches 2-66
Selection table 2-70
Magnetic reed switches 2-72
Operating principle of sensors see appendix

Selection tables: Inductive proximity switches
Models and voltage variants

Cylindrical models	Dimensions [mm]	Reference	2-wire AC	2-wire DC	3-wire DC	4-wire DC	AC/DC	
41	$\varnothing 4$	IFL(-N-) ...-4-...			Page 2-19			
9\\|	$\varnothing 6.5$	IFL(-N-) ...-6,5-...			Page 2-20			
4.	$\varnothing 20$	IFL ...-200-...	Page 2-3			Page 2-50		
प\| I	$\varnothing 40$	IFL ...-400-...	Page 2-3			Page 2-51		

Threaded models	Dimensions [mm]	Reference	2-wire AC	2-wire DC	3-wire DC	4-wire DC	AC/DC		
	M 8	IFL(-N-) ...-8-...			Page 2-22				
q\|imeminilil	M 12	IFL(-N-) ...-12(0)-...	Page 2-4		Page 2-25				
q\|		M 18	IFL(-N-) ...-18(0)-...	Page 2-7	Page 2-16	Page 2-36	Page 2-52	Page 2-59	
(1) Min \|ix			M 30	IFL ...-30(0)-...	Page 2-10	Page 2-16	Page 2-44	Page 2-54	

Rectangular models	Dimensions [mm]	Reference	2-wire AC	2-wire DC	3-wire DC	4-wire DC	AC/DC
\square	$40 \times 25 \times 12$	IFL ...-250-...	Page 2-12	Page 2-17	Page 2-48		
\square	$40 \times 26 \times 26$	IFL ...-255-...				Page 2-55	
$\square 1$	$88 \times 25 \times 13$	IFL ...-310-...	Page 2-13				
(6)	$36.5 \times 36.5 \times 36.5$	IFL ...-333E-...	Page 2-13			Page 2-56	
-	$112 \times 40 \times 40$	IFL ...- 333-...	Page 2-14	Page 2-17		Page 2-56	Page 2-59
	$120 \times 55 \times 40$	IFL ...-384-...	Page 2-14	Page 2-18		Page 2-57	
	$135 \times 80 \times 40$	IFL ...-385-...	Page 2-15			Page 2-57	

Sensors with increased temperature resistance

Models	Dimensions [mm]	Reference	2-wire AC	2-wire DC	3-wire DC	4-wire DC	AC/DC	
प\|		M 18	IFL ...-18L-...-2130			Page 2-41		
ก1ा\|	M 30	IFL 15-30L-...-2130			Page 2-46			
ताए\|	M 30	IFL ...-30L-...-1766				Page 2-54		
	M 30	IFL ...-30-...T-1310	Page 2-11					
	$135 \times 80 \times 40$	IFL 50-385-...-2130				Page 2-58		

IFL $\varnothing 20$ mm

- Thermoplastic enclosure
- Design Ø 20 mm
- Cable
- AC 2-wire
- Clamp H 20 is included in delivery, see accessories

IFL $\varnothing 40$ mm

- Thermoplastic enclosure
- Design Ø 40 mm
- Cable with strain relief
- AC 2-wire
- Clamp H 40 is included in delivery, see accessories

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or

Switching output:
U_{b} :
Rated supply frequency:
l_{e} :
I_{m} :
U_{d} :
Protection circuit:
$U_{i m p}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
Connection:

B: normally closed contact
housing and clamp H 20 :
thermoplastic
cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$,
IEC/EN 60947-5-2 VDE 0660-208
10 mm , non-embeddable F: 2-wire AC 15 ... 250 VAC $45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA 1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
approx. 10 Hz IP 67 to EN 60529

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output
U_{b} :
Rated supply frequency:
I_{e} :
I_{m}
I_{r} :
U_{d} :
Protection circuit:

Contact variants

IFL 10-200-10

IFL 10-200-01

Contact variants

IFL 20-400-10T

IFL 20-400-01T

IFL $\varnothing 40$ mm

- Thermoplastic enclosure
- Design $\varnothing 40$ mm
- Wiring compartment
- AC 2-wire
- Clamp H 40 is included in delivery, see accessories

Programmable by repositioning the plug-in jumper at the terminal screws

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- AC 2-wire

Technical data

Standards:
S_{n} :
Switching element
function:
EC/EN 60947-5-2
VDE 0660-208
20 mm , non-embeddable

P: normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
U_{b} :
Rated supply frequency:
l_{e} :
I_{m} :
U_{d} :
Protection circuit:
F: 2-wire AC
15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
500 mA
10 mA
1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection, on request: Short-circuit and overload-proof (ordering suffix -1522) le = max. 150 mA , $\mathrm{Ud}=$ approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$
$\mathrm{U}_{\text {imp }}$:
4 kV
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
Protection class:
Protection class:
Material:
approx. 10 Hz IP 65 to EN 60529 II, 回
housing and clamp H 40 : thermoplastic
Connection: Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$,
with cable entry M16 $\times 1.5$

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 2-...: 2 mm , embeddable
IFL 4-...: 4 mm, non-embeddable
Switching element
function: A
A: normally open contact or B: normally closed contact
Switching output:
F: 2-wire AC
U_{b} :
Rated supply frequency:
I_{e} :
I_{m} :
$I_{r}:$
U_{d} :
Protection circuit:
$\mathrm{U}_{\mathrm{imp}}$:
15... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
200 mA
8 mA
1 mA
approx. 3.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
Tightening torque
for nuts:

* in the shell core area: max. 500 Ncm

Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 20-400-10/01

Contact variants

IFL 2-12-01

IFL 2-12-10

IFL 4-12-01

IFL 4-12-10

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable with strain relief
- AC 2-wire

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- AC 2-wire
- High switching distance
- Quasi-embeddable (steel: $x \geq 2.4 \mathrm{~mm}$ other metal: $x \geq 1.2 \mathrm{~mm}$)

Iechnical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 2-...: 2 mm, embeddable IFL 4-...: 4 mm , non-embeddable
Switching element
$\begin{array}{lr}\text { function: } & \text { A: normally open contact or } \\ & \text { B: normally closed contact } \\ \text { Switching output: } & \text { F: 2-wire AC }\end{array}$
U_{b} :
Rated supply frequency:
l_{e} :
I_{m} :
$I_{r}:$
U_{d} :

Protection circuit
$\mathrm{U}_{\text {imp }}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Tightening torque
for nuts:

* in the shell core area: max. 500 Ncm

Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m , with strain relief
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
EC/EN 60947-5-2
VDE 0660-208
S_{n} :
4 mm, quasi-embeddable
(steel: $x \geq 2.4 \mathrm{~mm}$
other metal: $x \geq 1.2 \mathrm{~mm}$)
Switching element
function: A: normally open contact or B : normally closed contact
Switching output:
F: 2-wire AC
U_{b} :
Rated supply frequency:
l_{e} :
I_{m} :
\cup_{d} :
Protection circuit
$J_{\text {imp }}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Tightening torque
for nuts:
Connection:
A/F 17 max. 1500 Ncm cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 2-12-01T

IFL 4-12-01T

Contact variants

IFL 4B-12-01

IFL 4B-12-10

IFL M 12

- Thermoplastic enclosure
- Design M 12×1
- Cable
- AC 2-wire

Technical data

Contact variants

IFL 4-120-01

IFL 4-120-10

IFL M 12

- Thermoplastic enclosure
- Design M 12×1
- Cable with strain relief
- AC 2-wire

Standards:
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output:
U_{b} :

$$
15 \ldots 250 \text { VAC }
$$

Rated supply frequency:
l_{e} :
I_{m} :
U_{d} :
Protection circuit:
$\mathrm{U}_{\text {imp }}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
housing and nuts:
washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
IEC/EN 60947-5-2
VDE 0660-208
4 mm, non-embeddable
F: 2-wire AC

45 ... 65 Hz 200 mA 8 mA 1 mA
approx. 3.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
approx. 10 Hz
IP 67 to EN 60529 II, 回

$$
\begin{array}{lr}
\text { for nuts: } & \text { A/F } 17 \mathrm{max} .90 \mathrm{Ncm} \\
\text { Connection: } & \text { cable HO3VV-F } 2 \times 0.5 \mathrm{~mm}^{2}, \\
\text { length } 2 \mathrm{~m}
\end{array}, \begin{aligned}
& \text { Instead of nuts, a mounting clamp } \\
& \text { Note: } \\
& \\
& \\
& \text { can be provided (see accessories). }
\end{aligned}
$$

Technical data

Standards:

S_{n} :
Switching element
function:
Switching output:
U_{b} :
B: normally closed contact

> F: 2-wire AC

15 ... 250 VAC
Rated supply frequency:
$I_{\mathrm{e}}:$
$\mathrm{I}_{\mathrm{m}}:$
$\mathrm{I}_{\mathrm{r}}:$
$\mathrm{U}_{\mathrm{d}}:$ 200 mA 8 mA
1 mA
approx. 3.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$)
Protection circuit:
$\mathrm{J}_{\text {imp }}$: protection 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
IEC/EN 60947-5-2
VDE 0660-208
4 mm , non-embeddable

$$
45 \ldots 65 \mathrm{~Hz}
$$ inductive interference

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 10 Hz IP 67 to EN 60529 II, 回

Material: housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 17 max. 90 Ncm
Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m , with strain relief
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-120-01T

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- AC 2-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 5-...: 5 mm, embeddable IFL 8-...: 8 mm , non-embeddable
Switching element
function: \quad A: normally open contact or
B: normally closed contact
Switching output:
F: 2-wire AC
U_{b} :
15 ... 250 VAC
Rated supply frequency:
I_{e} :
I_{m} :
$\mathrm{I}_{\mathrm{r}}:$
$\mathrm{U}_{\mathrm{d}}:$

Protection circuit:
$U_{\text {imp }}$:
$45 \quad 65 \mathrm{~Hz}$
500 mA
10 mA
1 mA
approx. 4.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}:$
IFL 5-...: 5 mm , embeddable
IFL 8-...: 8 mm , non-embeddable
Switching element
function: A: normally open contact or B: normally closed contact

Switching output:

U_{b} :
Rated supply frequency:
I_{e} :
I_{m} :
$I_{r}:$
U_{d} :
Protection circuit:
$\mathrm{U}_{\mathrm{imp}}$:
F: 2-wire AC
15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
500 mA
10 mA
1 mA
approx. 4.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Tightening torque
for nuts:
Connection:
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Gontact variants
IFL 5-18-01

IFL 5-18-10

IFL 8-18-01

IFL 8-18-10

Contact variants

IFL 5-18-01ST

IFL 5-18-10ST

IFL 8-18-01ST

IFL 8-18-10ST

Inductive proximity switches / AC 2-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws
 NO

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Cable
- AC 2-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 5-...: 5 mm, embeddable
IFL 8-...: 8 mm , non-embeddable
Switching element
function: $\quad P$: normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws) Switching output:

F: 2-wire AC
U_{b} :
Rated supply frequency:
I_{e} :
I_{m} :
I_{r} :
15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA
1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$)
Protection circuit: inductive interference protection
$\mathrm{U}_{\mathrm{imp}}$: 4 kV
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
Protection class:
Protection class:
approx. 10 Hz IP 67 to EN 60529

Material:
housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm
Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 $\times 1.5$ Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
S_{n}.
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:

Rated supply frequency: l_{e} :
I_{m} :
$\mathrm{I}_{\mathrm{r}}:$
$I_{r}:$
U_{d} :
F: 2-wire AC 15 ... 250 VAC 45 ... 65 Hz 500 mA 10 mA 1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$)
Protection circuit: inductive interference protection
$\mathrm{U}_{\mathrm{imp}}$: 4 kV
Ambient temperature:
Switching frequency f:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
approx. 10 Hz
IP 67 to EN 60529
Protection class:
Material:
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F $24 \max .300 \mathrm{Ncm}$
cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$,
length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18-10/01

IFL 8-18-10/01

Contact variants

IFL 10-180-01

IFL 10-180-10

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Plug-in connector
- AC 2-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
U_{b} :
Rated supply frequency: I_{e} :
I_{m}
$I_{r}:$
:
U_{d} :
Protection circuit:
Uimp:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
housing and nuts:
thermoplastic (PBTP + PA 12)
washer: rubber (perbunan)
Tightening torque
for nuts:

$$
\text { A/F } 24 \text { max. } 300 \text { Ncm }
$$

Connection: plug-in connector M18 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
10 mm , non-embeddable

P: normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
U_{b} :
Rated supply frequency:
I_{e} :
$\mathrm{I}_{\mathrm{m}}:$
$\mathrm{I}_{\mathrm{r}}:$
$I_{r}:$
$U_{d}:$
Protection circuit:
$\mathrm{U}_{\text {imp: }}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

> F: 2-wire AC

15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
500 mA
10 mA
1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection 4 kV
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
approx. 10 Hz IP 67 to EN 60529 housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:

- Thermoplastic enclosure
- Design M 18×1
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- AC 2-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element
$\begin{array}{lr}\text { function: } & \text { A: normally open contact or } \\ & \text { B: normally closed contact } \\ \text { Switching output: } & \text { F: 2-wire AC }\end{array}$
U_{b} :
Rated supply frequency:
1 e :
I_{m} :
$I_{r}:$
$U_{d}:$
U_{d} :

Protection circuit:
15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
500 mA
10 mA
1 mA
approx. 4.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$)
inductive interference protection, on request:
Short-circuit and overload-proof (ordering suffix -1522) $l e=$ max. 150 mA , $\mathrm{Ud}=$ approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$ $\mathrm{U}_{\text {imp }}$: 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 10 Hz
IP 67 to EN 60529
II, 回
Material:
housing and nuts: nickel plated brass
Tightening torque
for nuts: A/F 36 max. 3000 Ncm Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element
function:
P: normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws) Switching output:

F: 2-wire AC
U_{b} :
Rated supply frequency:
I_{e} :
$\mathrm{I}_{\mathrm{m}}:$
U_{d} :

Protection circuit
15 ... 250 VAC

- Metal enclosure
- Design M 30×1.5
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

Contact variants

IFL 10-30-01T

IFL 10-30-10T

IFL 15-30-01T

IFL 15-30-10T

Contact variants

IFL 10-30-10/01

IFL 15-30-10/01

Inductive proximity switches / AC 2-wire

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- AC 2-wire
- Max. $+110^{\circ} \mathrm{C}\left(230{ }^{\circ} \mathrm{F}\right)$

LED may become defective when operated above $90^{\circ} \mathrm{C}$. Operation of the switch, however, is not affected.

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Cable with strain relief
- AC 2-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n:} \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element

function:	A: normally open contact or
B: normally closed contact	

Switching output
B: normally closed contact
U_{b} :
F: 2-wire AC
Rated supply frequency:
90 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$ l_{e} :
$I_{r}:$
$U_{d}:$
Protection circuit: $\begin{aligned} \leq & 70^{\circ} \mathrm{C} \text { : max. } 200 \mathrm{~mA} \\ & >70^{\circ} \mathrm{C} \text { : max. } 50 \mathrm{~mA}\end{aligned}$ $5 \mathrm{~mA}(220 \mathrm{~V})$ approx. 8 V inductive interference protection
$\mathrm{U}_{\mathrm{imp}}$:
4 kV
Ambient temperature:
$0^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}$
(dry heat)
approx. 10 Hz
Switching frequency f:
Protection class:
Protection class: P 67 to EN 60529

Material:
Tightening torque
for nuts:
Connection:
A/F 36 max. 3000 Ncm silicone cable $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
15 mm , non-embeddable
S_{n} :
Switching element
function: A: normally open contact or B : normally closed contact
Switching output:
U_{b} :
Rated supply frequency:
I_{e} :
$I_{m}:$
$I_{r}:$
U_{d} :

> F: 2-wire AC 15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA 1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$)
Protection circuit: inductive interference protection, on request:
Short-circuit and overload-proof (ordering suffix -1522) le = max. 150 mA , Ud = approx. 7.5 V (150 mA) $U_{\text {imp }}$:

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

approx. 10 Hz
Switching frequency f:
Protection class:
Protection class: P 67 to EN 60529
II, 回

Material:
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m , with strain relief
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 10-30-01T-1310

IFL 10-30-10T-1310

IFL 15-30-01T-1310

IFL 15-30-10T-1310

Contact variants

IFL 15-300-01T

IFL 15-300-10T

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFL $40 \times 25 \times 12 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 250 ($40 \times 25 \times 12 \mathrm{~mm}$)
- Cable
- AC 2-wire

1) Switches can be mounted adjacent to each other without interference.

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
15 mm , non-embeddable
Switching element function: P: normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:

F: 2-wire AC
U_{b} :
Rated supply frequency:
I_{e} :
I_{m} :
$I_{r}:$
U_{d}

Protection circuit: 15 ... 250 VAC $45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA
1 mA
approx. 4.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$)
inductive interference protection, on request: Short-circuit and overload-proof (ordering suffix-1522) le $=$ max. 150 mA , Ud = approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$ $\mathrm{U}_{\text {imp }}$: 4 kV
Ambient temperature:
Switching frequency f :
Protection class:

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 10 Hz IP 67 to EN 60529

Protection class:
Material:
housing and nuts:
thermoplastic (PBTP + PA 12)
washer: rubber (perbunan)
Tightening torque
for nuts: A/F 36 max. 400 Ncm
Connection: Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
$S_{n}: \quad$ IFL 2-...: 2 mm , embeddable IFL 4-...: 4 mm , non-embeddable

Switching element

function: A: normally open contact or Switching output: B: normally closed contact
U_{b} :
F: 2-wire AC
15 ... 250 VAC
Rated supply frequency:
I_{e} :
Im:
$I_{r}:$
$U_{d}:$
Protection circuit:
$\mathrm{U}_{\mathrm{imp}}$:
$45 \ldots 65 \mathrm{~Hz}$
200 mA
8 mA
1 mA
approx. 3.5 V
($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection 4 kV
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
25 ... $+70^{\circ} \mathrm{C}$ P 67 to EN 60529

Material housing: II, 回
housing: thermoplastic (PBTP), with 2 screws M3 $\times 6$ for rear mounting
Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 15-300-10/01

Contact variants

IFL 2-250-01 ${ }^{1)}$

IFL 2-250-10 ${ }^{1)}$

IFL 4-250-01

IFL 4-250-10

IFL $88 \times 25 \times 13 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 310 ($88 \times 25 \times 13 \mathrm{~mm}$)
- Cable
- AC 2-wire

IFL $36.5 \times 36.5 \times 36.5 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333E ($36.5 \times 36.5 \times 36.5 \mathrm{~mm}$)
- Cable
- AC 2-wire
- Mounting bracket HWE-1 to simplify mounting available

Technical data

Standards:
S_{n} :
Switching element
Sw
function: A: normally open contact or B: normally closed contact
Switching output:
U_{b} :
Rated supply frequency:
l_{e} :

I_{m}
$\mathrm{I}_{\mathrm{r}}:$

U_{d} :
Protection circuit:
$\mathrm{U}_{\text {imp }}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material: housing: thermoplastic (Noryl) Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 4-310-01

IFL 4-310-10

Contact variants

IFL 15-333E-01

IFL 15-333E-10

IFL 20-333E-01

IFL 20-333E-10

Inductive proximity switches / AC 2-wire

IFL $112 \times 40 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333
($112 \times 40 \times 40 \mathrm{~mm}$)
- Wiring compartment
- AC 2-wire

By repositioning the switch five different actuating directions can be selected. The selected actuating direction can be marked with a sticker.

IFL $120 \times 55 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 384 ($120 \times 55 \times 40 \mathrm{~mm}$)
- Wiring compartment
- AC 2-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 15-...: 15 mm , embeddable IFL 20-...: 20 mm , non-embeddable
Switching element
function:
P : normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws) Switching output:

F: 2-wire AC
U_{b} :
Rated supply frequency:
I_{e} :
I_{m} :
$I_{r}:$
15 ... 250 VAC
45 ... 65 Hz 500 mA 10 mA
1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$)
Protection circuit: inductive interference protection, on request:
Short-circuit and overload-proof (ordering suffix -1522) le = max. 150 mA , $\mathrm{Ud}=$ approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$
$\mathrm{U}_{\text {imp }}$:

$$
4 \mathrm{kV}
$$

Ambient temperature:
Switching frequency f:
Protection class:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 10 Hz
IP 65 to EN 60529
Protection class:
II, 回
Material: housing: thermoplastic (PBTP) cover: Luran
Connection:

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
P. normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
U_{b} :
U_{b} :
Rated supply frequency:
I_{e} :
$I_{\mathrm{m}}:$
$\mathrm{I}_{\mathrm{r}}:$
$\mathrm{U}_{\mathrm{d}}:$
U_{d} :
Protection circuit:

F: 2-wire AC 15 ... 250 VAC $45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA 1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection, on request: Short-circuit and overload-proof (ordering suffix -1522) le = max. 150 mA , $\mathrm{Ud}=$ approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$
$\mathrm{U}_{\mathrm{imp}}$:
Switching frequency f:
Protection class:
Protection class:
Connection:

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

$$
\text { approx. } 10 \text { Hz }
$$

Material: housing: thermoplastic (Noryl)

$$
\text { IP } 67 \text { to EN } 60529
$$ Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entries $3 \times \mathrm{M} 20 \times 1.5$

(break-out)

Contact variants

IFL 15-333-10/01

IFL 20-333-10/01

Programmable by reposi-
$\begin{array}{l}\text { tioning the plug-in jumper } \\ \text { at the terminal screws }\end{array}$
\square

Contact variants

IFL 30-384-10/01

Programmable by repositioning the plug-in jumper at the terminal screws

NO

IFL $135 \times 80 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 385 ($135 \times 80 \times 40 \mathrm{~mm}$)
- Wiring compartment
- AC 2-wire
- Mounting bracket HW 385-1 to simplify mounting available

Technical data

Standards:
S_{n} :
Switching element
function:
\qquad
P: normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws)
Switching output:
$U_{b}:$
Rated supply frequency:
$I_{\mathrm{e}}:$
$I_{\mathrm{m}}:$
$I_{\mathrm{r}}:$
$U_{\mathrm{d}}:$

Protection circuit:
F: 2-wire AC
15 ... 250 VAC
$45 \ldots 65 \mathrm{~Hz}$
500 mA 10 mA 1 mA
approx. 4.5 V ($250 \mathrm{~V} / 200 \mathrm{~mA}$) inductive interference protection, on request:
Short-circuit and overload-proof (ordering suffix -1522) le = max. 150 mA , $\mathrm{Ud}=$ approx. $7.5 \mathrm{~V}(150 \mathrm{~mA})$
$\mathrm{U}_{\mathrm{imp}}$:
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
housing: thermoplastic (Noryl)
Connection:

IEC/EN 60947-5-2
VDE 0660-208
50 mm, non-embeddable

$\begin{array}{l}\text { Programmable by reposi- } \\ \text { tioning the plug-in jumper } \\ \text { at the terminal screws }\end{array}, \square \square$

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 2-wire

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- DC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

Technical data

Standards:
EC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
l_{e} :
I_{m} :
$I_{r}:$
U_{d} :
Protection circuit:

Ambient temperature
Switching frequency f:
Protection class:
Material:

Tightening torque
for nuts:
Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

A: normally open contact D: 2-wire DC 10 ... 40 VDC 200 mA

5 mA
approx. 0.5 mA
$\leq 6 \mathrm{~V}(200 \mathrm{~mA})$ $\leq 5.5 \mathrm{~V}(100 \mathrm{~mA})$ wrong polarity, inductive interference,
industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 500 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass

A/F 24 max. 1800 Ncm

Contact variants

IFL 5-18L-10D
 can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
15 mm , non-embeddable

P: normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
D: 2-wire DC
U_{b} :
$I_{e}:$
$I_{m}:$
$I_{r}:$
$U_{d}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
housing and nuts:
washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:

Note:

A/F 36 max. 400 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5 Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 15-300-10/01D

IFL $40 \times 25 \times 12 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design $250(40 \times 25 \times 12 \mathrm{~mm})$
- Cable
- DC 2-wire

IFL $112 \times 40 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333 (112 x $40 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 2-wire

By repositioning the switch five different actuating directions can be selected. The selected actuating direction can be marked with a sticker.

Iechnical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
I_{m} :
I_{r} :
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material: housing: thermoplastic (PBTP), with 2 screws M3 $\times 6$ for rear mounting
Connection:
IEC/EN 60947-5-2
VDE 0660-208
4 mm, non-embeddable

A: normally open contact D: 2-wire DC 10 ... 40 VDC 200 mA 5 mA approx. 0.5 mA $\leq 6 \mathrm{~V}(200 \mathrm{~mA})$ $\leq 5.5 \mathrm{~V}(100 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 1 kHz IP 67 to EN 60529 II, 回 cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
20 mm, non-embeddable
Switching element
function:
Switching output:
U_{b} :
I_{e} :
I_{m} :
$\mathrm{I}_{\mathrm{r}}:$
U_{d} :

Protection circuit:
A: normally open contact
D: 2-wire DC
15 ... 150 VDC
200 mA 5 mA
approx. 1 mA approx. 8.5 V
(200 mA)
wrong polarity and inductive interference protection
Ambient temperature:
Switching frequency f:
Protection class:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 40 Hz Protection class: IP 65 to EN 60529

Material: housing: thermoplastic (PBTP)
housing: thermoplastic (PBTP)
cover: Luran
Connection: self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entry M20 x 1.5

Contact variants

IFL 4-250-10D

Contact variants

IFL 20-333-10D

IFL $135 \times 80 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 385 ($135 \times 80 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 2-wire
- Mounting bracket HW 385-1 to simplify mounting available

Programmable by repositioning the plug-in jumper at the terminal screws

Technical data

Standards:
S_{n} :
Switching element
function:

IEC/EN 60947-5-2
VDE 0660-208
50 mm , non-embeddable

P : normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
U_{b} :
I_{e} :
I_{m} :
$\mathrm{I}_{\mathrm{r}}:$
U_{d} :

Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material: housing: thermoplastic (Noryl)
Connection:

D: 2-wire DC
10 ... 40 VDC
200 mA
5 mA
approx. 0.5 mA
$\leq 6 \mathrm{~V}(200 \mathrm{~mA})$ $\leq 5.5 \mathrm{~V}(100 \mathrm{~mA})$ wrong polarity,
inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 50 Hz IP 67 to EN 60529 II, 回 Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entries $3 \times \mathrm{M} 20 \times 1.5$
(break-out)

IFL Ø 4 mm

- Metal enclosure
- Design $\varnothing 4$ mm
- Cable
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:
A: normally open contact P: 3-wire DC 10 ... 30 VDC 200 mA $<10 \mathrm{~mA}$
approx. 2 V (200 mA)
suppressed switch-on
fault impulse, wrong polarity,
inductive interference,
industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:
Connection:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
5000 Hz
IP 67 to EN 60529 stainless steel
cable PUR $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL-N-0,8-4-10P

IFL Ø 4 mm

- Metal enclosure
- Design Ø 4 mm
- Cable
- DC 3-wire
- Clamp H 4 is included in delivery, see accessories

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :

Protection circuit:
0.8 mm , embeddable

A: normally open contact P: 3-wire DC 7 ... 35 VDC

100 mA
$<2.5 \mathrm{~mA}$ $\leq 2 \mathrm{~V}(100 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection (pulsed) Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: Protection class:
Material:

Connection:
approx. 1 kHz IP 65 to EN 60529 housing: stainless steel and clamp H 4: thermoplastic cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 0,8-4-10P

IFL Ø 4 mm

- Metal enclosure
- Design Ø 4 mm
- Plug-in connector
- DC 3-wire
- Clamp H 4 is included in delivery, see accessories

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit:
A: normally open contact P: 3-wire DC 7 ... 35 VDC

100 mA
$<2.5 \mathrm{~mA}$ $\leq 2 \mathrm{~V}(100 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection (pulsed) Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f:
Protection class:
Material:

Connection: housing: stainless steel and clamp H 4: thermoplastic
plug-in connector
$\mathrm{M} 8 \times 1, \varnothing=6.5 \mathrm{~mm}$

IFL $\varnothing 6.5$ mm

- Metal enclosure
- Design Ø 6.5 mm
- Cable
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
$U_{b}:$
$I_{e}:$
$1_{0}:$
U_{d} :
Protection circuit:

Technical data

IFL $\varnothing 6.5 \mathrm{~mm}$

- Metal enclosure
- Design Ø 6.5 mm
- Cable
- DC 3-wire
- Clamp H 6.5 is included in delivery, see accessories

Standards:
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output:
$U_{b}:$
$I_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:

IFL Ø 6.5 mm

- Metal enclosure
- Design Ø 6.5 mm
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
$U_{b}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

IEC/EN 60947-5-2
VDE 0660-208
1.5 mm , embeddable

A: normally open contact P: 3-wire DC N: 3-wire DC 15 ... 34 VDC
200 mA (up to $50^{\circ} \mathrm{C}$) 150 mA (up to $85^{\circ} \mathrm{C}$) $\leq 17 \mathrm{~mA}(24 \mathrm{VDC})$ $\leq 30 \mathrm{~mA}$ (34 VDC) approx. 2.5 V
suppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ approx. 1500 Hz IP 67 to EN 60529 stainless steel
plug-in connector $\mathrm{M} 8 \times 1, \varnothing=6.5 \mathrm{~mm}$

Contact variants

IFL 2-6,5M-01N

IFL 2-6,5M-10N

IFL 2-6,5M-01P

IFL 2-6,5M-10P

Contact variants

IFL-N-2-6,5M-10ST2N

IFL-N-2-6,5M-10ST2P

IFL $\varnothing 6.5 \mathrm{~mm}$

- Metal enclosure
- Design Ø 6.5 mm
- Plug-in connector
- DC 3-wire
- Clamp H 6.5 is included in delivery, see accessories

IFL M 8

- Metal enclosure
- Design M 8×1
- Cable
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output:
$U_{b}:$
$I_{e}:$
$I_{0}:$
$U_{d}:$
Protection circuit:
approx. $1.2 \mathrm{~V}(200 \mathrm{~mA})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 3 kHz IP 67 to EN 60529
Ambient temperature:
Switching frequency f:
Protection class:
Material:

Connection:
housing: nickel plated brass clamp H 6.5: thermoplastic plug-in connector $\mathrm{M} 8 \times 1, \varnothing=6.5 \mathrm{~mm}$

Technical data

$$
\begin{aligned}
& \text { Stan } \\
& \mathrm{S}_{\mathrm{n}}: \\
& \text { Swit } \\
& \text { func } \\
& \text { Swit } \\
& \mathrm{U}_{\mathrm{b}} \text { : } \\
& \mathrm{I}_{\mathrm{e}}: \\
& \mathrm{I}_{\mathrm{n}}:
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}} \text { : } \\
& \text { Switching element }
\end{aligned}
$$

function: A: normally open contact or B: normally closed contact
Switching outpu

$$
\begin{aligned}
& \mathrm{I}_{0}: \\
& \mathrm{U}_{\mathrm{d}}
\end{aligned}
$$

Protection circuit:

Contact variants

IFL 2-6,5M-01ST2N

IFL 2-6,5M-01ST2P

IFL 2-6,5M-10ST2N

IFL 2-6,5M-10ST2P

Contact variants

IFL-N-2-8M-01N

IFL-N-2-8M-01P

IFL-N-2-8M-10N

IFL-N-2-8M-10P

IFL M 8

- Metal enclosure
- Design M 8×1
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output:
$U_{b}:$
$I_{e}:$
$I_{0}:$
$U_{d}:$
Protection circuit: approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 3 kHz IP 67 to EN 60529 housing and nuts: nickel plated brass

A/F 13 max. 600 Ncm * May not be charged in this area! cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$,
length 2 m

Contact variants

IFL 2-8M-01N

IFL 2-8M-01P

IFL 2-8M-10N

IFL 2-8M-10P

IFL M 8

- Metal enclosure
- Design M 8×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:

S_{n} :
Switching element
function:
Switching output
$I_{\mathrm{e}}: \quad 200 \mathrm{~mA}\left(\right.$ up to $50^{\circ} \mathrm{C}$)
$\leq 30 \mathrm{~mA}(34 \mathrm{VDC})$
approx. 2.5 V
suppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:
Connection:
$\mathrm{U}_{\mathrm{b}}: \quad 15 \ldots 34 \mathrm{VDC}$
150 mA (up to $85^{\circ} \mathrm{C}$)
$\leq 17 \mathrm{~mA}(24 \mathrm{VDC})$
IEC/EN 60947-5-2
VDE 0660-208
2 mm , embeddable

A: normally open contact or B: normally closed contact P: 3-wire DC

IFL-N-2-8M-10ST2P

IFL M 8

- Metal enclosure
- Design M 8×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output
$U_{b}:$
$I_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:
approx. 1.2 V (200 mA) approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 3 kHz
Switching frequency f:
Protection class: IP 67 to EN 60529 (only with
screw-on plug)
Material:
Tightening torque
for nuts:
housing and nuts: nickel plated brass

A/F 13 max. 600 Ncm

* May not be charged in this area!
plug-in connector
$\mathrm{M} 8 \times 1, \varnothing=6.5 \mathrm{~mm}$

Contact variants

IFL 2-8M-01ST2N

IFL 2-8M-01ST2P

IFL 2-8M-10ST2N

IFL 2-8M-10ST2P

IFL M 8

- Metal enclosure
- Design M 8×1
- Cable
- DC 3-wire
- High switching distance
- Quasi-embeddable ($\mathrm{x}=0.6 \mathrm{~mm}$)

Technical data

Standards:

IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f :
Protection class:
Material:

Tightening torque
for nuts:
Connection:
AF 13 max. 600 Ncm * May not be charged in this area! cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$,
length 2 m

Contact variants

IFL 3B-8M-10P

IFL M 8

- Metal enclosure
- Design M 8×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
$U_{b}:$
$I_{e}:$
$I_{0}:$
$U_{d}:$
Protection circuit:
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Material:

Tightening torque
for nuts:
Connection:

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
IFL 2-...: 2 mm , embeddable
IFL 4-...: 4 mm , non-embeddable
Switching element
function:
A: normally open contact or B: normally closed contact
Switching output:
$\mathrm{U}_{\mathrm{b}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:

P: 3-wire DC
N: 3-wire DC
$10 \ldots 30 \mathrm{VDC}$
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f : $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz , N: approx. 800 Hz (embeddable); P: approx. 500 Hz , N : approx. 330 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Material:
Tightening torque
for nuts:
A/F 17 max. 1500 Ncm

* in the shell core area: max. 500 Ncm Connection: cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 2-8-01STN

IFL 2-8-01STP

IFL 2-8-10STN

IFL 2-8-10STP

Contact variants

IFL 2-12M-01N
IFL 4-12M-01N

IFL 2-12M-01P IFL 4-12M-01P

IFL 2-12M-10N
IFL 4-12M-10N

IFL 2-12M-10P
IFL 4-12M-10P

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

- Thermoplastic enclosure
- Design M 12×1
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}:$
IFL 2-...: 2 mm , embeddable IFL 4-...: 4 mm , non-embeddable
Switching element
function:
A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC N: 3-wire DC
U_{b} :
I_{e} :
$10:$
$U_{d}:$
10... 30 VDC

200 mA

Protection circuit
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
P: approx. 1 kHz , N: approx. 800 Hz (embeddable); P: approx. 500 Hz , N : approx. 330 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Material:
Tightening torque
for nuts:
A/F 17 max. 1500 Ncm

* in the shell core area: max. 500 Ncm Connection: Plug-in connector M12 x 1 Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
S_{n}.
Switching element
function: A: normally open contact or B: normally closed contact
Switching output
P: 3-wire DC
N: 3-wire DC

10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:

$$
\text { P: approx. } 1 \text { kHz, }
$$

Protection class:
Protection class:
Material:
$U_{b}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

N: approx. 800 Hz
IP 67 to EN 60529
housing and n
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 17 max. 90 Ncm cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 2-12M-01STN
IFL 4-12M-01STN

IFL 2-12M-01STP IFL 4-12M-01STP

IFL 2-12M-10STN
IFL 4-12M-10STN

IFL 2-12M-10STP IFL 4-12M-10STP

Contact variants

IFL 4-120M-01N

IFL 4-120M-01P

IFL 4-120M-10N

IFL 4-120M-10P

IFL M 12

- Thermoplastic enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:

Protection class:
Protection class:
Material:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz ,
N: approx. 800 Hz
IP 67 to EN 60529
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 17 max. 90 Ncm
Connection: Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
IFL 2-...: 2 mm, embeddable IFL 4-...: 4 mm, non-embeddable IFL 4 function:

A: normally open contact or B: normally closed contact
Switching output:
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

> P: 3-wire DC
> N: 3-wire DC
> $10 \ldots 30$ VDC

200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz , N : approx. 800 Hz (embeddable); P: approx. 500 Hz , N: approx. 330 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Material:
Tightening torque
for nuts:
A/F 17 max. 1500 Ncm

* in the shell core area: max. 500 Ncm Connection: cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m

Contact variants
IFL 4-120M-01STN

IFL 4-120M-01STP

IFL 4-120M-10STN

IFL 4-120M-10STP

Contact variants

IFL 2-12-01N
IFL 4-12-01N

IFL 2-12-01P
IFL 4-12-01P

IFL 2-12-10N
IFL 4-12-10N

IFL 2-12-10P
IFL 4-12-10P

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- DC 3-wire

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208

$S_{n}: \quad$| IFL 2-...: 2 mm, embeddable |
| ---: |\quad IFL 4-...: 4 mm , non-embeddable

Switching element
function:
A: normally open contact or B: normally closed contact

Switching output:	P: 3-wire DC
	N: 3-wire DC
$U_{b}:$	$15 \ldots 34 \mathrm{VDC}$

$I_{e}: \quad 200 \mathrm{~mA}\left(\right.$ up to $50^{\circ} \mathrm{C}$)
150 mA (up to $85^{\circ} \mathrm{C}$)
$\leq 17 \mathrm{~mA}(24 \mathrm{VDC})$
$\leq 30 \mathrm{~mA}$ (34 VDC) approx. 2.5 V
U_{d} : suppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ approx. 1200 Hz (embeddable) approx. 800 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass cable PUR $3 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Technical data

Standards:

IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
2 mm, embeddable
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz, N: approx. 800 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 17 max. 1500 Ncm
\quad Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants
IFL-N-2-12-01N
IFL-N-4-12-01N

IFL-N-2-12-01P
IFL-N-4-12-01P

IFL-N-2-12-10N
IFL-N-4-12-10N

IFL-N-2-12-10P
IFL-N-4-12-10P

Contact variants

IFL 2-12-01STN

IFL 2-12-01STP

IFL 2-12-10STN

IFL 2-12-10STP

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
U_{b}
I_{e} :
I_{0} :

Protection circuit: . polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:

Protection class:
Material:
Tightening torque
for nuts:

* in the shell core area: max. 500 Ncm

Connection: Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-12-01STN

IFL 4-12-01STP

IFL 4-12-10STN

IFL 4-12-10STP

Contact variants

IFL-N-2-12-01STN IFL-N-4-12-01STN

IFL-N-2-12-01STP IFL-N-4-12-01STP

IFL-N-2-12-10STN IFL-N-4-12-10STN

IFL-N-2-12-10STP IFL-N-4-12-10STP

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire
- Stainless steel

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire
- Stainless steel

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Material:

Tightening torque
for nuts:
Connection:
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Material:

Tightening torque
for nuts:
*in Connection:
Note:

IEC/EN 60947-5-2
VDE 0660-208 4 mm , non-embeddable

A: normally open contact P: 3-wire DC 10 ... 30 VDC 200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 500 Hz IP 67 to EN 60529 housing and nuts: stainless steel

A/F 17 max. 1500 Ncm core area: max. 500 Ncm Plug-in connector M12 $\times 1$ Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 2-12-10STP-2033

Contact variants

IFL 4-12-10STP-2033

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- DC 3-wire
- High switching distance
- Quasi-embeddable
(steel: $x \geq 2.4 \mathrm{~mm}$ other metal: $x \geq 1.2 \mathrm{~mm}$)

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- DC 3-wire
- High switching distance

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :

Swiching element
function: A: normally open contact or
B: normally closed contact

Switching output:	P: 3-wire DC
$U_{\mathrm{b}}:$	$5 \ldots 40 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}}:$	200 mA

$I_{\mathrm{e}}: \quad$ approx. $0.5 \mathrm{~mA}(24 \mathrm{~V})$
U_{d} :
Protection circuit
approx. $1.3 \mathrm{~V}(200 \mathrm{~mA})$
wrong polarity,
inductive interference, industrial transients and short-circuit protection (pulsed)
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
approx. 600 Hz
(NO contact)
approx. 550 Hz
(NC contact)
Protection class:
Material:

Tightening torque
for nuts: A/F 17 max. 1500 Ncm

* in the shell core area: max. 500 Ncm Connection: cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:

S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:
switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:

Connection: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ approx. 800 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass cable PUR $3 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 4B-12-01PK1

IFL 4B-12-10PK1

Contact variants

IFL-N-4B-12-10PK1

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire
- High switching distance
- Quasi-embeddable (steel: $x \geq 2.4 \mathrm{~mm}$ other metal: $x \geq 1.2 \mathrm{~mm}$)

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire
- High switching distance

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
ching element
function:

Switching output:
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit

Contact variants

IFL 4B-12-01STPK1

IFL 4B-12-10STPK1

approx. $0.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.3 \mathrm{~V}(200 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection (pulsed) Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 600 Hz (NO contact)
approx. 550 Hz
(NC contact)
Protection class:
Material:
Tightening torque
for nuts: A/F 17 max. 1500 Ncm * in the shell core area: max. 500 Ncm Connection: Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:

S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:
uppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:
Connection: $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$ approx. 800 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass Plug-in connector M12 x 1

Contact variants

IFL-N-4B-12-10STPK1

Technical data

IFL M 12

- Thermoplastic enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire
re

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:
IEC/EN 60947-5-2
VDE 0660-208
4 mm, non-embeddable

A: normally open contact
P: 3-wire DC
N: 3-wire DC 10 ... 30 VDC

200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 700 Hz , N: approx. 440 Hz IP 67 to EN 60529 II, 回 housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 17 max. 90 Ncm
Connection: Plug-in connector M12 $\times 1$
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-120-10STN

IFL 4-120-10STP

Contact variants

- Metal enclosure
- Design M 12×1
- Cable
- DC 3-wire

IFL 2-12L-01N

IFL 2-12L-01P

IFL 2-12L-10N

IFL 2-12L-10P

Technical data

Standards:

S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz , N: approx. 800 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:

Instead of nuts, a mounting can be provided (see accessories).

IEC/EN 60947-5-2
VDE 0660-208
2 mm, embeddable
rer

A/F 17 max. 1500 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note:
t

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable
- DC 3-wire

Technical data

IFL M 12

- Metal enclosure
- Design M 12×1
- Cable with strain relief
- DC 3-wire

Standards:
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
Switching output:
$U_{b}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit: 1

IEC/EN 60947-5-2
VDE 0660-208
4 mm, non-embeddable

Switching output:	P: 3-wire DC
	$\mathrm{N}: 3$-wire DC
$\mathrm{U}_{\mathrm{b}}:$	$10 \ldots 30 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{a}}:$	200 mA

200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

Ambient temperature:
Switching frequency f:
Protection class:
Material:
Tightening torque
for nuts:

* in the shell core

Connection: cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:

S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

P: approx. 500 Hz ,
N: approx. 330 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 17 max. 1500 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m , with strain relief
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-12L-01N

IFL 4-12L-01P

IFL 4-12L-10N

IFL 4-12L-10P

Contact variants

IFL 4-12L-01TN

IFL 4-12L-01TP

IFL 4-12L-10TN

IFL 4-12L-10TP

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact Switching output

P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz , N: approx. 800 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
ightening torque
for nuts:
Connection:
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 2-12L-01STN

IFL 2-12L-01STP

IFL 2-12L-10STN

IFL 2-12L-10STP

IFL M 12

- Metal enclosure
- Design M 12×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

P: approx. 500 Hz ,
N: approx. 330 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:

* in the shell core area: max. 500 Ncm

Connection: Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-12L-01STN

IFL 4-12L-01STP

IFL 4-12L-10STN

IFL 4-12L-10STP

IFL M 12

- Thermoplastic enclosure
- Design M 12×1
- Cable
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output:
$U_{b}:$
$I_{e}:$
$I_{0}:$
$U_{d}:$
Protection circuit:
Ambient temperature:

Protection class:
Protection class:
Material:

Tightening torque
for nuts:
Connection:
Note: length 2 m Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 4-120L-01N

IFL 4-120L-01P

IFL 4-120L-10N

IFL 4-120L-10P

Contact variants

IFL 5-18M-01N

IFL 8-18M-01N

IFL 5-18M-01P IFL 8-18M-01P

IFL 5-18M-10N
IFL 8-18M-10N

IFL 5-18M-10P
IFL 8-18M-10P

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad \begin{array}{r}\text { IFL } 5-\ldots: 5 \mathrm{~mm}, \text { embeddable } \\ \end{array} \quad$ IFL $8-\ldots: 8 \mathrm{~mm}$, non-embeddable
Switching element
function:
A: normally open contact or B: normally closed contact

Switching output:	P: 3-wire DC
	$\mathrm{N}: 3$-wire DC
$\mathrm{U}_{\mathrm{b}}:$	$10 \ldots 30$ VDC

approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 700 Hz (embeddable)
approx. 400 Hz
(non-embeddable)
Protection class:
Material:

Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm
Plug-in connector M12 x 1 Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Gontact variants
IFL 5-18M-01STN
IFL 8-18M-01STN

IFL 5-18M-01STP
IFL 8-18M-01STP

IFL 5-18M-10STN
IFL 8-18M-10STN

IFL 5-18M-10STP IFL 8-18M-10STP

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
$U_{b}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:
8 mm , non-embeddable

A: normally open contact P: 3-wire DC N: 3-wire DC 10 ... 30 VDC 200 mA approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 400 Hz IP 67 to EN 60529 II, 回

housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 24 max. 300 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 8-180M-10N

IFL 8-180M-10P

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
A: normally open contact P: 3-wire DC 10 ... 30 VDC 200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 400 Hz IP 67 to EN 60529 II, 回

housing and nuts:

Contact variants

IFL 8-180M-10STP
 thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 24 max. 300 Ncm
Connection:
Plug-in connector M18 $\times 1$
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208

$$
S_{n}:
$$

IFL 5-...: 5 mm , embeddable
IFL 8-...: 8 mm , non-embeddable
Switching element

function:

A: normally open contact or B: normally closed contact

Switching output:	P: 3-wire DC
	$\mathrm{N}: 3$-wire DC
$U_{\mathrm{b}}:$	$10 \ldots 30 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}}:$	200 mA

approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:
Tightening torque
for nuts:
Connection:
C
A/F cable LiYY $3 \times 0.14 \mathrm{~mm}^{2}$,
length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18-01N IFL 8-18-01N

IFL 5-18-01P IFL 8-18-01P

IFL 5-18-10N
IFL 8-18-10N

IFL 5-18-10P
IFL 8-18-10P

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 3-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208

$S_{n}: \quad$| IFL 5-...: 5 mm, embeddable |
| ---: |\quad IFL 8-...: 8 mm , non-embeddable

Switching element
function:
A: normally open contact or B: normally closed contact

Switching output:	P: 3-wire DC
	$\mathrm{N}: 3$-wire DC
$U_{\mathrm{b}}:$	$15 \ldots 34 \mathrm{VDC}$

$I_{e}: \quad 200 \mathrm{~mA}\left(\right.$ up to $50^{\circ} \mathrm{C}$)
150 mA (up to $85^{\circ} \mathrm{C}$)
$\mathrm{I}_{0}:$
U_{d} :
$\leq 17 \mathrm{~mA}(24 \mathrm{VDC})$
$\leq 30 \mathrm{~mA}(34 \mathrm{VDC})$ approx. 2.5 V
Protection circuit: suppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Ambient temperature: approx. 800 Hz (embeddable) approx. 500 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass cable PUR $3 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208

$$
S_{n}:
$$

IFL 5-...: 5 mm , embeddable
IFL 8-...: 8 mm , non-embeddable
Switching element
function:
A: normally open contact or B: normally closed contact
Switching output:
$\mathrm{U}_{\mathrm{b}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:

N: 3 wir DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Material:
Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm
Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL-N-5-18-01N
IFL-N-8-18-01N

IFL-N-5-18-01P IFL-N-8-18-01P

IFL-N-5-18-10N
IFL-N-8-18-10N

IFL-N-5-18-10P IFL-N-8-18-10P

Contact variants

IFL 5-18-01STN
IFL 8-18-01STN

IFL 5-18-01STP IFL 8-18-01STP

IFL 5-18-10STN
IFL 8-18-10STN

IFL 5-18-10STP
IFL 8-18-10STP

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire
- Stainless steel

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208

$S_{n}: \quad$| IFL 5-...: 5 mm, embeddable |
| ---: |\quad IFL 8-...: 8 mm , non-embeddable

Switching element

function:
A: normally open contact or B: normally closed contact
Switching output: P:3-wire DC

15 ... 34 VDC
200 mA (up to $50^{\circ} \mathrm{C}$)
150 mA (up to $85^{\circ} \mathrm{C}$)
$\leq 17 \mathrm{~mA}(24 \mathrm{VDC})$
$\leq 30 \mathrm{~mA}(34 \mathrm{VDC})$
approx. 2.5 V
suppressed switch-on fault impulse, wire-breakage monitoring, wrong polarity, inductive interference, industrial transients and short-circuit protection

Ambient temperature:

 $-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$Switching frequency f: approx. 800 Hz (embeddable) approx. 500 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass Plug-in connector M12 x 1
Connection:

Contact variants

IFL-N-5-18-01STP IFL-N-8-18-01STP

IFL-N-5-18-10STP
IFL-N-8-18-10STP

Contact variants

IFL 5-18-10STP-2033

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 3-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable with strain relief
- DC 3-wire
- Max. $+130^{\circ} \mathrm{C}$
- Without LED
- Clamp H 18 is included in delivery, see accessories

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function: A: normally open contact or
B: normally closed contact
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 400 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18L-01N

IFL 5-18L-01P

IFL 5-18L-10N

IFL 5-18L-10P

Contact variants

IFL 5-18L-10TP-2130

IFL 8-18L-10TP-2130

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
5 mm , embeddable
Switching element
function: A: normally open contact or B: normally closed contact Switching output
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit: approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 400 Hz IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 24 max. 1800 Ncm Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18L-01STN

IFL 5-18L-01STP

IFL 5-18L-10STN

IFL 5-18L-10STP

Contact variants

IFL 5-18L-10/01N

IFL 5-18L-10/01P

IFL 8-18L-10/01N

IFL 8-18L-10/01P

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Cable
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
IEC/EN 60947-5-2
VDE 0660-208
8 mm , non-embeddable

A: normally open contact
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity,
inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ approx. 400 Hz

IP 67 to EN 60529
II, 回
housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 24 max. 300 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Plug-in connector
- DC 3-wire

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:
IEC/EN 60947-5-2
VDE 0660-208
8 mm , non-embeddable

A: normally open contact
P: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

approx. 400 Hz
IP 67 to EN 60529
II, 回
housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 24 max. 300 Ncm
Plug-in connector M18 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 8-180L-10N

IFL 8-180L-10P

Contact variants

IFL 8-180L-10STP

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws
 NO

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
S_{n} :
Switching element
function:
\qquad
P: normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
P: 3-wire DC
N: 3-wire DC
10 ... 60 VDC
400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$
wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$, $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 350 Hz Protection class:
Protection class:
Material:

$$
\text { IP } 67 \text { to EN } 60529
$$

II, 回
Vaterial: housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 24 max. 300 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5 Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element
function:
Switching output:
$\mathrm{U}_{\mathrm{b}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:
A: normally open contact P: 3-wire DC N: 3-wire DC 10 ... 30 VDC 200 mA approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 200 Hz (embeddable) approx. 100 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 36 max. 3000 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 10-180L-10/01N

IFL 10-180L-10/01P

Contact variants

IFL 10-30M-10N

IFL 10-30M-10P

IFL 15-30M-10P

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Plug-in connector
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element
function:
A: normally open contact
Switching output:
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:
approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 200 Hz (embeddable) approx. 100 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 36 max. 3000 Ncm
Plug-in connector M12 x 1
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 10-30M-10ST1P

IFL 15-30M-10ST1P

Contact variants

IFL 15-300M-10N

IFL 15-300M-10P

- Thermoplastic enclosure
- Design M 30×1.5
- Cable
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 15 mm , non-embeddable

A: normally open contact P: 3-wire DC N : 3-wire DC 10 ... 30 VDC 200 mA approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 100 Hz
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
IP 67 to EN 60529
housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection: cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 3-wire

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 3-wire
- Max. $+130^{\circ} \mathrm{C}$
- Without LED
- Clamp H 30 is included in delivery, see accessories

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable
Switching element
function:
A: normally open contact
Switching output:
N : 3-wire DC
10 ... 30 VDC
200 mA
approx. $3.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 200 Hz (embeddable) approx. 100 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 36 max. 3000 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 15 mm, non-embeddable
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:

Ambient temperature:

$$
-25^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}
$$

(dry heat)
Index -2130-1: with silicon
cable for humid environments
Switching frequency f: approx. 60 Hz Protection class: IP 67 to EN 60529
Material: housing: nickel plated brass clamp H 30: thermoplastic
Tightening torque
for nuts: A/F 36 max. 3000 Ncm Connection: silicone cable $1553 \times 0.34 \mathrm{~mm}^{2}$, length 2 m , with strain relief

Note:

Normally supplied with clamp (version with nuts: ordering suffix -2130-2).

Contact variants

IFL 10-30L-10TN

IFL 10-30L-10TP

IFL 15-30L-10TN

IFL 15-30L-10TP

Contact variants

IFL 15-30L-10TP-2130

Inductive proximity switches / DC 3-wire

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable Switching element
function:
P : normally open contact or normally closed contact (Programmable by repositioning the plug-in jumper at the terminal screws) Switching output: P: 3-wire DC, N: 3-wire DC $U_{b}: \quad 10 \ldots 60$ VDC I_{e} : I_{0} : U_{d} : Protection circuit: approx. 1.5 V (400 mA) wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$, $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 200 Hz (embeddable) approx. 100 Hz (non-embeddable) IP 65 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts: A/F 36 max. 3000 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 $\times 1.5$ Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
15 mm, non-embeddable
Switching element
function: A: normally open contact or B: normally closed contact
Switching output
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 100 Hz IP 67 to EN 60529
II, 回
housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 36 max. 400 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m , with strain relief
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Switching frequency f:
Protection class:
Protection class:
Material:

Contact variants

IFL 10-30L-10/01N

IFL 10-30L-10/01P

IFL 15-30L-10/01N

IFL 15-30L-10/01P

Contact variants

IFL 15-300L-01TP

IFL 15-300L-10TN

IFL 15-300L-10TP

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFL $40 \times 25 \times 12 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design $250(40 \times 25 \times 12 \mathrm{~mm})$
- Cable
- DC 3-wire

Switches can be mounted adjacent to each other without interference.

Technical data

Standards:
S_{n} :
Switching element
function:
IEC/EN 60947-5-2
VDE 0660-208
15 mm , non-embeddable

P : normally open contact or normally closed contact
(Programmable by repositioning the plug-in jumper at the terminal screws)

Switching output:
P: 3-wire DC
N : 3-wire DC
10 ... 60 VDC
400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$
wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$, $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 100 Hz Protection class:
Protection class: Material:

IP 67 to EN 60529
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 36 max. 400 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5 Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 2-...: 2 mm , embeddable
IFL 4-...: 4 mm, non-embeddable
Switching element
function: A: normally open contact (on request: normally closed contact (-01) is available)

Switching output:
$\mathrm{U}_{\mathrm{b}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f :
Protection class:
Protection class:
P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC
200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz, N: approx. 800 Hz IP 67 to EN 60529

Material: housing: thermoplastic (PBTP), with 2 screws M3 $\times 6$ for rear mounting
Connection:
Note:
length 2 m * maximum screwing depth: 6 mm

Contact variants

IFL 15-300L-10/01N

IFL 15-300L-10/01P

Contact variants

IFL 2-250-10N

IFL 2-250-10P

IFL 4-250-10N

IFL 4-250-10P

IFL $40 \times 25 \times 12 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design $250(40 \times 25 \times 12 \mathrm{~mm})$
- Cable (sidewards)
- DC 3-wire

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208 $S_{n}: \quad \begin{array}{r}\text { IFL 2-...: } 2 \mathrm{~mm}, \text { embeddable } \\ \end{array} \quad$ IFL 4-...: 4 mm , non-embeddable $S_{n}: \quad \begin{array}{r}\text { IFL 2-...: } 2 \mathrm{~mm}, \text { embeddable } \\ \end{array} \quad$ IFL 4-...: 4 mm , non-embeddable Switching element
function:
Switching output:
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Connection:

Note:

A: normally open contact (on request: normally closed contact (-01) is available) P: 3-wire DC
N: 3-wire DC
10 ... 30 VDC 200 mA
approx. $3 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ P: approx. 1 kHz, N: approx. 800 Hz IP 67 to EN 60529 II, 回 housing: thermoplastic (PBTP), with 2 screws M3 $\times 6$ for rear mounting cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m * maximum screwing depth: 6 mm

Contact variants

IFL 2-250-10N-1716

IFL 2-250-10P-1716

IFL 4-250-10N-1716

IFL 4-250-10P-1716

IFL $\varnothing 20$ mm

- Thermoplastic enclosure
- Design Ø 20 mm
- Cable
- DC 4-wire
- Clamp H 20 is included in delivery, see accessories

IFL Ø 20 mm

- Thermoplastic enclosure
- Design Ø 20 mm
- Plug-in connector
- DC 4-wire
- Clamp H 20 is included in delivery, see accessories

Technical data

Standards:
S_{n} :
Switching element
function:
A: normally open contact and B : normally closed contact (antivalent)

Switching output:

U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit:
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
wrong polarity and inductive interference
protection, on request:
short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$,
$\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f: approx. 350 Hz
Protection class:
Protection class:
IP 67 to EN 60529
II, 回
housing and clamp H 20:
thermoplastic
Connection:
cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 10-200L-11P

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
A: normally open contact and B: normally closed contact (antivalent)

Switching output:	$\mathrm{P}: 4$-wire DC
$U_{\mathrm{b}}:$	$10 \ldots 60 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}}:$	400 mA

$\begin{array}{lr}\mathrm{I}_{0}: & \text { approx. } 5.5 \mathrm{~mA}(24 \mathrm{~V}) \\ \mathrm{U}_{\mathrm{d}}: & \text { approx. } 1.5 \mathrm{~V}(400 \mathrm{~mA})\end{array}$
Protection circuit:
wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$,
$\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
Protection class:
Protection class: approx. 350 Hz
IP 67 to EN 60529
Material:
Connection:
housing and clamp H20: thermoplastic
Plug-in connector M18 x 1

Contact variants

IFL 10-200L-11STP

IFL $\varnothing 40$ mm

- Thermoplastic enclosure
- Design Ø 40 mm
- Cable
- DC 4-wire
- Clamp H 40 is included in delivery, see accessories

IFL $\varnothing 40$ mm

- Thermoplastic enclosure
- Design Ø 40 mm
- Wiring compartment
- DC 4-wire
- Clamp H 40 is included in delivery, see accessories

Technical data

Standards:
S_{n} :
Switching element
function:

IEC/EN 60947-5-2
VDE 0660-208
20 mm , non-embeddable

A: normally open contact and B : normally closed contact
(antivalent)
Switching output:
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
approx. 1.5 V (400 mA)
wrong polarity and
inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$, $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 100 Hz Protection class: Protection class: Material:

Connection:

$$
\text { IP } 67 \text { to EN } 60529
$$

housing and clamp H 40 :
thermoplastic
cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Contact variants

IFL 20-400-11TN

IFL 20-400-11TP

Technical data

Standards:
S_{n} :
Switching element
function:

IEC/EN 60947-5-2 VDE 0660-208
20 mm, non-embeddable

A: normally open contact and B : normally closed contact (antivalent)

Switching output:

U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$

:
U_{d} :
Protection circuit:
P: 4-wire DC
N : 4-wire DC
10 ... 60 VDC
400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$
wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le = 300 mA , $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$

Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Connection:

$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 100 Hz
IP 65 to EN 60529
housing and clamp H 40 :
thermoplastic
Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5

Contact variants

IFL 20-400-11N

IFL 20-400-11P

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 4-wire

IFL M 18

- Metal enclosure
- Design M 18×1
- Plug-in connector
- DC 4-wire

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
IFL 5-...: 5 mm, embeddable IFL 8-...: 8 mm , non-embeddable
Switching element
function:
A: normally open contact and B: normally closed contact (antivalent), on request also available as NO contact (-10) or NC contact (-01).
Switching output: P: 4-wire DC, N: 4-wire DC
10 ... 60 VDC 400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$ wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$, Ud = approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Switching frequency f:

Protection class: Material:

Tightening torque
for nuts:
Connection:
approx. 500 Hz (embeddable) approx. 350 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass

Note: instead of nuts, mounting clamp Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 5-...: 5 mm , embeddable
IFL 8-...: 8 mm , non-embeddable
Switching element
function:
A: normally open contact and B: normally closed contact (antivalent), on request also available as NO contact (-10) or NC contact (-01).
Switching output: P: 4-wire DC, N: 4-wire DC U_{b} :

10 ... 60 VDC 400 mA
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$ approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
U_{d} :
approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$
Protection circuit: wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$, Ud = approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Switching frequency f:
approx. 500 Hz (embeddable) approx. 350 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
Protection class: Material:

Tightening torque
for nuts:
A/F 24 max. 1800 Ncm
Connection:
Plug-in connector M12 $\times 1$
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18L-11N

IFL 5-18L-11P

IFL 8-18L-11N

IFL 8-18L-11P

Contact variants

IFL 5-18L-11STN

IFL 5-18L-11STP

IFL 8-18L-11STN

IFL 8-18L-11STP

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Cable
- DC 4-wire

Iechnical data

Standards:
S_{n} :
Switching element
function:

IEC/EN 60947-5-2 VDE 0660-208
10 mm , non-embeddable

A: normally open contact and B: normally closed contact (antivalent)
Switching output
U_{b} :
$I_{e}:$
$I_{0}:$
\cup_{d} :
U_{d} :
Protection circuit
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
approx. 1.5 V (400 mA)
wrong polarity and
inductive interference protection, on request: short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$,

Ud = approx. 1 V (300 mA)
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
Protection class:
approx. 350 Hz

Protection class: IP 67 to EN 60529

Material:
housing and nuts:
thermoplastic (PBTP + PA 12)
washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 24 max. 300 Ncm cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

IFL M 18

- Thermoplastic enclosure
- Design M 18×1
- Plug-in connector
- DC 4-wire

Contact variants

IFL 10-180L-11N

IFL 10-180L-11P

Contact variants

IFL 10-180L-11STP

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 4-wire

IFL M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 4-wire
- Max. $+110^{\circ} \mathrm{C}\left(230{ }^{\circ} \mathrm{F}\right)$

LED may become defective when operated above $90^{\circ} \mathrm{C}$. Operation of the switch, however, is not affected.

Iechnical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable Switching element
function:
A: normally open contact and B: normally closed contact (antivalent) P: 4-wire DC N : 4-wire DC 10 ... 60 VDC 400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.5 V (400 mA) wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$,
$\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f: approx. 200 Hz
(embeddable)
approx. 100 Hz (non-embeddable) IP 67 to EN 60529
housing and nuts: nickel plated brass
Material:
Tightening torque
for nuts: A/F 36 max. 3000 Ncm Connection: cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 10-...: 10 mm , embeddable IFL 15-...: 15 mm , non-embeddable Switching element
function: $\quad \mathrm{A}$: normally open contact and B: normally closed contact (antivalent) $\begin{array}{lr}\text { Switching output: } & P: 4 \text {-wire DC } \\ U_{b}: & 10 \ldots 60 \text { VDC }\end{array}$
$\mathrm{I}_{\mathrm{e}}:$
I_{0} :
U_{d} :
Protection circuit
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1 \mathrm{~V}(200 \mathrm{~mA})$ wrong polarity and
inductive interference protection
Ambient temperature:
$0^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}$
(dry heat)
Switching frequency f:
approx. 150 Hz (embeddable) approx. 50 Hz (non-embeddable) IP 67 to EN 60529 housing and nuts: nickel plated brass
ightening torque
for nuts:
A/F 36 max. 3000 Ncm
Connection: \quad silicone cable $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 10-30L-11TN

IFL 10-30L-11TP

IFL 15-30L-11TN

IFL 15-30L-11TP

Contact variants

IFL 10-30L-11TP-1766

IFL 15-30L-11TP-1766

IFL M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 4-wire

IFL $40 \times 26 \times 26 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design $255(40 \times 26 \times 26 \mathrm{~mm})$
- Plug-in connector
- DC 4-wire

Technical data

Standards:
S_{n} :
Switching element
function:

IEC/EN 60947-5-2
VDE 0660-208
15 mm , non-embeddable

A: normally open contact and B: normally closed contact
(antivalent)
Switching output
U_{b} :
$I_{e}:$
$I_{0}:$
\cup_{d} :
U_{d} :
Protection circuit
tind on request: short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$,

Ud = approx. $1 \mathrm{~V}(300 \mathrm{~mA})$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Switching frequency f:
Protection class:
approx. 100 Hz

Protection class:
P 67 to EN 60529
Material:
housing and nuts:
thermoplastic (PBTP + PA 12)
washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:
A/F 36 max. 400 Ncm cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 $\mathrm{S}_{\mathrm{n}}: \quad 2 \times 4 \mathrm{~mm}$, non-embeddable Switching element
function: A1: normally open contact and A2: normally open contact

Switching output
$U_{b}: \quad 10 \ldots 40$ VDC
$l_{e}: \quad 200 \mathrm{~mA}$ per output approx. $2.7 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.2 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Ambient temperature:
Switching frequency f:
Protection class:
Protection class:
Material:

Connection:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 650 Hz IP 67 to EN 60529 II, 回
housing: thermoplastic (Noryl), with 2 screws M5 x ... for mounting Plug-in connector M12 $\times 1$

Contact variants

IFL 15-300L-11TN

IFL 15-300L-11TP

Contact variants

IFL 4/4-255-20STP

IFL $36.5 \times 36.5 \times 36.5 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333E
($36.5 \times 36.5 \times 36.5 \mathrm{~mm}$)
- Cable
- DC 4-wire
- Mounting bracket HWE-1 to simplify mounting available

IFL $112 \times 40 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333 (112 x $40 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 4-wire

By repositioning the switch five different actuating directions can be selected. The selected actuating direction can be marked with a sticker.

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208
$\mathrm{S}_{\mathrm{n}:} \quad$ IFL 15-...: 15 mm , embeddable IFL 20-...: 21.5 mm , non-embeddable
(36.5 x 36.5 mm opening)

Switching element
function:
A: normally open contact and B : normally closed contact
(antivalent)

	(antivalent)
Switching output:	$\mathrm{P}: 4$-wire DC
	$\mathrm{N}: 4$-wire DC
$\mathrm{U}_{\mathrm{b}}:$	$10 \ldots 60 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}}:$	400 mA

approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$ wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le = 300 mA , $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 100 Hz Protection class:
Protection class:
IP 67 to EN 60529
Material: housing: thermoplastic (PBTP) Connection: cable LiYY $4 \times 0.25 \mathrm{~mm}^{2}$, length 2 m

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
$S_{n}: \quad$ IFL 15-...: 15 mm , embeddable IFL 20-...: 20 mm , non-embeddable Switching element
function: $\quad \mathrm{A}$: normally open contact and B: normally closed contact (antivalent)
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{\mathrm{e}}:$
$\mathrm{I}_{0}:$

:
U_{d} :
Protection circuit:
P: 4-wire DC
N : 4-wire DC
10 ... 60 VDC
400 mA
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. $1.5 \mathrm{~V}(400 \mathrm{~mA})$ wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index-1665-1) le $=300 \mathrm{~mA}$, Ud = approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

Switching frequency f:
Protection class:
Protection class:
Material: housing: thermoplastic (PBTP) cover: Luran
Connection: Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entry M20 x 1.5

Contact variants

IFL 15-333E-11N

IFL 15-333E-11P

IFL 20-333E-11N

IFL 20-333E-11P

Contact variants

IFL 15-333-11N

IFL 15-333-11P

IFL 20-333-11N

IFL 20-333-11P

IFL $120 \times 55 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 384 ($120 \times 55 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 4-wire

Technical data

Standards:

S_{n} :
Switching element
function:

IEC/EN 60947-5-2 VDE 0660-208
30 mm, non-embeddable

A: normally open contact and B: normally closed contact
(antivalent)
Switching output
U_{b} :
I_{e} :
U_{d} :
Protection circuit:
approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$
approx. 1.5 V (400 mA)
wrong polarity and
inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le = 300 mA , $\mathrm{Ud}=$ approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 25 Hz Protection class:

IP 67 to EN 60529
Protection class:
Material: housing: thermoplastic (Noryl) Connection: Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entries $3 \times \mathrm{M} 20 \times 1.5$ (break-out)

IFL $135 \times 80 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 385 ($135 \times 80 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 4-wire
- Mounting bracket HW 385-1 to simplify mounting available

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 50 mm , non-embeddable (on request: switching distance 70 mm) Switching element
function:
A: normally open contact and B: normally closed contact (antivalent) P: 4-wire DC N : 4-wire DC 10 ... 60 VDC 400 mA approx. $5.5 \mathrm{~mA}(24 \mathrm{~V})$ approx. 1.5 V (400 mA) wrong polarity and inductive interference protection, on request: short-circuit and overload proof (Index -1665-1) le $=300 \mathrm{~mA}$, Ud = approx. $1 \mathrm{~V}(300 \mathrm{~mA})$ Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Switching frequency f: approx. 25 Hz
Protection class:
Protection class:
IP 67 to EN 60529
Material: housing: thermoplastic (Noryl)
Connection:
Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entries $3 \times \mathrm{M} 20 \times 1.5$ (break-out)

Contact variants

IFL 30-384-11N

IFL 30-384-11P

Contact variants

IFL 50-385-11ZNG

IFL 50-385-11ZPG

IFL $135 \times 80 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 385 ($135 \times 80 \times 40 \mathrm{~mm}$)
- Wiring compartment
- DC 4-wire
- Max. + $130^{\circ} \mathrm{C}$
- Without LED
- Mounting bracket HW 385-1 to simplify mounting available

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
Switching element
function:
A: normally open contact and B: normally closed contact (antivalent)
Switching output: $\quad P: 4$-wire DC
U_{b} :
l_{e} :
$\mathrm{I}_{0}:$
$\cup_{\mathrm{d}}:$
approx.
approx. 1.5 V (200 mA)

Protection circuit:
wrong polarity and inductive interference protection
Ambient temperature:
Switching frequency f :
Protection class: $-25^{\circ} \mathrm{C} \ldots+130^{\circ} \mathrm{C}$ approx. 50 Hz IP 67 to EN 60529
Protection class: II, 回
Material: housing: thermoplastic (Noryl)
Connection:

Contact variants

IFL 50-385-11P-2130

IFL M 18

- Metal enclosure
- Design M 18×1
- Cable
- AC/DC 2-wire

IFL $112 \times 40 \times 40 \mathrm{~mm}$

- Thermoplastic enclosure
- Rectangular design 333 (112 x $40 \times 40 \mathrm{~mm}$)
- Wiring compartment
- AC/DC 2-wire

By repositioning the switch five different actuating directions can be selected. The selected actuating direction can be marked with a sticker.

Technical data

Standards:
IEC/EN 60947-5-2
VDE 0660-208
S_{n} :
5 mm , embeddable
Switching element
function: A: normally open contact or B: normally closed contact

Switching output:	U: 2-wire AC/DC
U $_{\mathrm{b}}:$	$15 \ldots 250$ VAC/DC

$\mathrm{I}_{\mathrm{e}}: \quad 300 \mathrm{~mA}$
$\mathrm{I}_{0}: \quad$ approx. $0.3 \mathrm{~mA}(24 \mathrm{~V})$
U_{d} :
Protection circuit:
approx. $0.5 \mathrm{~mA}(220 \mathrm{~V})$ approx. $4 \mathrm{~V}(300 \mathrm{~mA})$ wrong polarity and inductive interference protection $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ approx. 15 Hz
Ambient temperature:
Switching frequency f :
Protection class:
Material:
IP 67 to EN 60529
housing and nuts:
nickel plated brass
Tightening torque
for nuts: A/F 24 max. 1800 Ncm Connection: cable H03VV-F $2 \times 0.5 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFL 5-18-01A

IFL 5-18-10A

Contact variants

IFL 15-333-10/01A

Programmable by repositioning the plug-in jumper at the terminal screws

Protection class: Material: housing: thermoplastic (PBTP) cover: Luran
Connection:
Terminal screws with self-lifting pressure clamps for max. $2 \times 1.5 \mathrm{~mm}^{2}$, with cable entry M20 x 1.5

Switching output
U_{b} :
$\mathrm{I}_{\mathrm{e}}:$
U_{d} :
Protection circuit:

Ambient temperature:
Switching frequency f:
Protection class:
EC/EN 60947-5-2
VDE 0660-208
15 mm , embeddable

P: normally open contact or normally closed contact
Programmable by repositioning the plug-in jumper at the terminal screws)

Technical data

Standards:

U: 2-wire AC/DC
15 ... 250 VAC/DC
300 mA
approx. $0.3 \mathrm{~mA}(24 \mathrm{~V})$ approx. $4 \mathrm{~V}(300 \mathrm{~mA})$ wrong polarity and inductive interference protection

$$
-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

$$
\text { approx. } 15 \text { Hz }
$$

P 65 to EN 60529

5CHmERSAL

IFC M 30

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- AC 2-wire
- Specified for dielectricity (D)
- Without LED

IFC M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- AC 2-wire
- Also suitable for liquids (L)

Iechnical data

Standards:
S_{n} :
Switching element
function: A: normally open contact or B: normally closed contact
Switching output
U_{b} :
Rated supply frequency:
90 ... 250 VAC
48 ... 62 Hz e: $\quad \min .40 \mathrm{~mA}, \max .300 \mathrm{~mA}$ I_{r} :
Pull-in power: Protection circuit

EC/EN 60947-5-2
VDE 0660-208
15 mm, embeddable
approx. $6 \mathrm{~mA}(230 \mathrm{~V})$ approx. $8 \mathrm{~V}(100 \mathrm{~mA})$ max. 120 VA inductive inductive interference protection
Effective operating distance s_{r} : adjustable, depending on the material (The adjustable real switching distance s_{r} should be 75% of the effective switching distance s_{n} with high temperature differences.) Usable operating distance s_{u} :

$$
\mathrm{s}_{\mathrm{r}} \pm 15 \%
$$

at $0{ }^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Ambient temperature
Protection class:
Material: $\ldots+65^{\circ} \mathrm{C}$ IP 65 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
A/F 36 max. 3000 Ncm
Connection: cable H03VV-F3G $3 \times 0.75 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

$$
\begin{aligned}
& \mathrm{Sta} \\
& \mathrm{~S}_{\mathrm{p}}
\end{aligned}
$$

Standards:
EC/EN 60947-5-2 VDE 0660-208 15 mm, non-embeddable
S_{n} :

Switching element

function: A: normally open contact or B: normally closed contact
Switching output
F: 2-wire AC
U_{b} :
90 ... 250 VAC
$48 \ldots 62 \mathrm{~Hz}$
Rated supply frequency: $\min .40 \mathrm{~mA}$, max. 300 mA approx. $6 \mathrm{~mA}(230 \mathrm{~V})$ approx. $8 \mathrm{~V}(100 \mathrm{~mA})$
U_{d} : max. 120 VA inductive inductive interference inductive interference
protection Protection circuit:

Effective operating distance s_{r} : adjustable, depending on the material (The adjustable real switching distance s_{r} should be 75% of the effective switching distance s_{n} with high temperature differences.) Usable operating distance s_{u} :

$$
\mathrm{s}_{\mathrm{r}} \pm 15 \%
$$

at $0{ }^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Protection class: IP 65 to EN 60529
Protection class:
Material:
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 36 max. 400 Ncm
Connection: Terminal screws with self-lifting pressure clamps for max. $1.5 \mathrm{~mm}^{2}$
Note:

Contact variants

IFC 15-30-01YTD

IFC 15-30-10YTD

Contact variants

IFC 15-300-01YLD

IFC 15-300-10YLD

IFC M 18

- Metal enclosure
- Design M 18×1
- Cable
- DC 3-wire
- Specified for dielectricity (D)

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit:

IEC/EN 60947-5-2
VDE 0660-208
8 mm , embeddable

A: normally open contact P: 3-wire DC 12 ... 48 VDC

300 mA approx. 6 mA approx. $2 \mathrm{~V}(300 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection Effective operating distance s_{r} : adjustable, depending on the material (The adjustable real switching distance s_{r} should be 75% of the effective switching distance s_{n} with high temperature differences.) Usable operating distance $s_{u}: \quad s_{r}+20 \%$ at $+20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Protection class:
Material:

Tightening torque
for nuts:
Connection: IP 67 to EN 60529 housing and nuts: nickel plated brass
,
A/F 24 max. 1800 Ncm cable LiYY $3 \times 0.34 \mathrm{~mm}^{2}$, length 2 m
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 15 mm , embeddable
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
$\mathrm{I}_{0}:$
$\mathrm{U}_{\mathrm{d}}:$
Protection circuit: approx. $3.5 \mathrm{~V}(200 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection (approx. 5 min) Effective operating distance s_{r} : adjustable, depending on the material (The adjustable real switching distance s_{r} should be 75% of the effective switching distance s_{n} with high temperature differences.) Usable operating distance s_{u} :

$$
\mathrm{s}_{\mathrm{r}} \pm 15 \%
$$

at $0^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Ambient temperature:
Protection class:
Material: IP 65 to EN 60529 housing and nuts: nickel plated brass
Tightening torque
for nuts:
A/F 36 max. 3000 Ncm
Connection: cable H03VV-F3G $3 \times 0.75 \mathrm{~mm}^{2}$, length 2 m , with strain relief Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFC 8-18-10PD

- Metal enclosure
- Design M 30×1.5
- Cable with strain relief
- DC 3-wire
- Specified for dielectricity (D)
- Without LED

Capacitive proximity switches

IFC M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- DC 3-wire
- Also suitable for liquids (L)
- Without LED

Technical data

Standards:
S_{n} :
Switching element
function:
Switching output:
U_{b} :
I_{e} :
10 :
U_{d} :
Protection circuit:
dection circuit:

IEC/EN 60947-5-2
VDE 0660-208
15 mm, non-embeddable

A: normally open contact
P: 3-wire DC
10 ... 48 VDC
300 mA
approx. $10 \mathrm{~mA}(24 \mathrm{~V})$ approx. 3.5 V (200 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection (approx. 5 min) Effective operating distance s_{r} : adjustable, depending on the material
(The adjustable real switching distance s_{r} should be 75% of the effective switching distance s_{n} with high temperature differences.) Usable operating distance s_{u} : $\mathrm{s}_{\mathrm{r}} \pm 15 \%$
at $0^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Protection class:
Protection class:
Material: IP 65 to EN 60529 II, 回 housing and nuts: thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
A/F 36 max. 400 Ncm
Connection: Terminal screws with self-lifting pressure clamps for max. $1.5 \mathrm{~mm}^{2}$
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Contact variants

IFC 15-300-10YPL

Download now

IFO M 30

- Metal enclosure
- Design M 30×1.5
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFO M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- AC 2-wire

Programmable by repositioning the plug-in jumper at the terminal screws

Technical data

Standards:

IEC/EN 60947-5-2
VDE 0660-208
Sd: max. 800 mm
Switching element function: P: Programmable
NO contact (Load switched with reflection / light-operated) or NC contact (Load not switched with reflection / dark-operated)

Switching output
U_{b} :
Rated supply frequency:
l_{e} :
I_{m} :
I_{r} :
\cup_{d} :
Protection circuit

+ prox. $7 \mathrm{~V}(250 \mathrm{~V} / 500 \mathrm{~mA})$ inductive interference protection
$\mathrm{U}_{\text {imp }}: \quad \max .10 \mathrm{kV}$ at $\mathrm{Ri}=10 \mathrm{~K}$ bis 10 ms Effective operating distance s_{r} : adjustable,
depending on the material Switching frequency f:
$\max .5 \mathrm{~Hz}$
Ambient temperature:
Protection class:
Protection class:
$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ IP 65 to EN 60529

Material:
housing and nuts: nickel plated brass
Tightening torque
for nuts:
Connection:
A/F 36 max. 3000 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 $\times 1.5$ Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
Sd:
Switching element function: P: Programmable
NO contact (Load switched with reflection / light-operated) or NC contact (Load not switched with reflection / dark-operated)

Switching output:
U_{b} :
Rated supply frequency:
I_{e} :
Im:
I_{r} :
U_{d} :
Protection circuit:
approx. $7 \mathrm{~V}(250 \mathrm{~V} / 500 \mathrm{~mA})$ protection
$\mathrm{U}_{\text {imp: }} \quad \max .10 \mathrm{kV}$ at $\mathrm{Ri}=10 \mathrm{~K}$ bis 10 ms Effective operating distance s_{r} : adjustable,
depending on the material
Switching frequency f: $\max .5 \mathrm{~Hz}$
Ambient temperature:
Protection class:

$$
0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$ IP 65 to EN 60529

Protection class:
Material:
housing and nuts:
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)

Tightening torque

for nuts:
Connection:
A/F 36 max. 400 Ncm Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 $\times 1.5$
Note:

IEC/EN 60947-5-2 VDE 0660-208 max. 800 mm inductive interference

F: 2-wire AC 15 ... 250 VAC $45 \ldots 65 \mathrm{~Hz}$ 500 mA 10 mA
approx 3 mA

Contact variants

IFO 8-300-10/01

IFO M 30

- Metal enclosure
- Design M 30×1.5
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws

IFO M 30

- Thermoplastic enclosure
- Design M 30×1.5
- Wiring compartment
- DC 3-wire

Programmable by repositioning the plug-in jumper at the terminal screws

Technical data

Standards:

IEC/EN 60947-5-2 VDE 0660-208
Sd: up to 1000 mm
Switching element function: P: Programmable
NO contact (Load switched with reflection / light-operated) or NC contact (Load not switched with reflection / dark-operated)

Switching output:	P: 3-wire DC
$U_{\mathrm{b}}:$	$10 \ldots 60 \mathrm{VDC}$
$\mathrm{I}_{\mathrm{e}}:$	400 mA

approx. $2.4 \mathrm{~mA}(24 \mathrm{~V})$
U_{d} : approx. $2 \mathrm{~V}(400 \mathrm{~mA})$ wrong polarity, inductive interference, industrial transients and short-circuit protection
Switching frequency f: approx. 100 Hz Effective operating distance s_{r} : adjustable, depending on the material Ambient temperature: $\quad 0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Protection class:
IP 65 to EN 60529
Protection class:
Material:

Tightening torque
for nuts: A/F 36 max. 3000 Ncm
Connection:
housing and nuts: nickel plated brass Terminal screws for max. $1.5 \mathrm{~mm}^{2}$, with cable entry M16 x 1.5
Note: Instead of nuts, a mounting clamp can be provided (see accessories).

Technical data

Standards:
IEC/EN 60947-5-2 VDE 0660-208 up to 1000 mm
Sd:
Switching element function: P: Programmable
NO contact (Load switched with reflection / light-operated) or NC contact (Load not switched with reflection / dark-operated)

Switching output
U_{b} :
I_{e} :
I_{0} :
U_{d} :
Protection circuit: Ambient temperature: $\quad 0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Protection class:
Protection class:
Material: P: 3-wire DC 10 ... 60 VDC 400 mA
approx. $2.4 \mathrm{~mA}(24 \mathrm{~V})$ approx. 2 V (400 mA) wrong polarity, inductive interference, industrial transients and short-circuit protection
Switching frequency f: approx. 100 Hz Effective operating distance s_{r} : adjustable, depending on the material

IP 65 to EN 60529
thermoplastic (PBTP + PA 12) washer: rubber (perbunan)
Tightening torque
for nuts:
Connection:

Contact variants

IFO 10-30-10/01P

Contact variants

IFO 10-300-10/01P

Accessories for proximity switches

Mounting bracket HW 385-1

- For easy installation of inductive proximity switches (design 385)
- Steel, zinc-plated

Mounting clamp H 6.5

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 6.5 mm
- Material: thermoplastic

Mounting clamp H 12

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 12 mm or thread M12
- Material: thermoplastic

Mounting clamp H 20

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 20 mm
- Material: thermoplastic

Mounting bracket HWE-1

- For easy installation of inductive proximity switches (design 333E)
- Steel, zinc-plated

Mounting clamp H 4

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 4 mm
- Material: thermoplastic

Mounting clamp H 18

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 18 mm or thread M18
- Material: thermoplastic

Mounting clamp H 30

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 30 mm or thread M30
- Material: thermoplastic

Mounting clamp H 40

- For a smooth fitting of the proximity switches with cylindric shape
- For diameter 40 mm
- Material: thermoplastic

Accessories for proximity switches

Reflectors

- For IFO
- Material: thermoplastic

Type	ø A	ø B	ø C	D	E
R 101	17.5	21	-	2.5	5.5
R 102	22.5	26	-	2.5	5.5
R 103	32	35.5	-	2.5	5.5
R 104	40.5	47	-	3.5	8.0

Filter VF 30

- For IFO
- Filter disc of plastic for climiniation of dead zone and reduction of operating distance.
- AC; diffuse; Effective operating distance s_{r} : 130 mm (Poti = max.)
Detection range with $\mathrm{s}_{\mathrm{r}}: 0 \ldots 130 \mathrm{~mm}$
- Standard target: $100 \times 100 \mathrm{~mm}$ 90\% reflectivity
(all other data same as for standard unit)

Filter VS 30

- For IFO
- Filter disc of plastic for climiniation of dead zone and reduction of operating distance.
- DC; clear; Effective operating distance s_{r} : 150 mm (Poti = max.)
Detection range with s_{r} : 0 ... 150 mm
- Standard target: $100 \times 100 \mathrm{~mm}$ 90\% reflectivity (all other data same as for standard unit)

Connector plug Ø 6.5

RKM 3-06/2m

Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
60 VAC / 75 VDC 3 A

Connector plug Ø 6.5

VLPR3-025-EB-M

(Woodhead)
Number of poles: 65
Rated operating voltage:
10... 30 VDC

Special feature:
2 LEDs

Connector plug Ø 6.5

RKMW/LED A 3-62/2m pnp

Number of poles:
(Lumberg)

Enclosure protection class:
Rated operating voltage:
Rated operating current:
Special feature: with LED

Connector plug M 8

RKM 4-07/5m

(Lumberg)
Number of poles: 4

IP 65 Enclosure protection class: IP 65
10... 30 VDC Rated operating voltage: $\quad 60$ VAC / 75 VDC

4 A Rated operating current: 3 A

Connector plug Ø 6.5

VLFS3-025-EB-M

Number of poles: Enclosure protection class:
Rated operating voltage:
Rated operating current:

Connector plug M 8

RKMV 3-06/2m

(Lumberg)
Number of poles:
3

Rated operating voltage: 60 VAC / 75 VDC 67

Rated operating current:
3 A

Accessories for proximity switches

Connector plug M 8

RKMV 4-225/2m

Number of poles: Enclosure protection class:
Rated operating voltage: Rated operating current:

(Lumberg)

4
IP 67
60 VAC / 75 VDC

Connector plug M 12

Serie 713 gerade (A coding)

Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
(Binder)
4
IP 67
Enclosure protection class:
250 V Rated operating voltage:
4 A Rated operating current:

Serie 713 Winkel (B coding)

Number of poles:

Connector plug M 12

(Binder)
4
IP 67
IP 67
250 V
4 A

Connector plug M 12

Serie 763 shielded

(Binder)

Number of poles: 4

IP 67 Enclosure protection class: IP 68
250 V Rated operating voltage: 250 V
Rated operating current: 4 A

Connector plug M 12

Serie 766 B 4x

(Binder)
Number of poles: 4
Enclosure protection class: IP 68
Rated operating voltage: 250 V
Rated operating current:
4 A

Connector plug M 12

Serie 715 gerade (B coding)

Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
(Binder)
4
IP 67
125 V

Connector plug M 12

(Binder)

Connector plug M 12

ELWIKA-KV 4312PS

(Hirschmann)
Number of poles:
Enclosure protection class: IP 68
Rated operating voltage:
10... 30 VDC

4 A
with LED

Accessories for proximity switches

Connector plug M 12

ELWIKA 412 PSU

Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
Special feature:
(Hirschmann)
3
10... 24 V

4 A
with LED

Connector plug M 12

RKT 4-3-06/2m

Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
(Lumberg)
3
IP 68
250 VAC / 300 VDC
4 A

Connector plug M 12

RKWT/LED A 4-3-06/2m PVC

(Lumberg)
Number of poles:
Enclosure protection class:
Rated operating voltage:
Rated operating current:
IP 68
10... 30 VDC

Connector plug M 18

Serie 714 Winkel

Number of poles:
(Binder)
IP 67
250 V
4 A Rated operating current: 16 A

Connector plug M 12

Connector plug M 12

RKWT/LED A 4-3-224/2m PUR (Lumberg)
Number of poles: 3
Enclosure protection class: IP 68
Rated operating voltage:
10... 30 VDC

4 A

RKWT 4-3-06/2m
Number of poles:
Enclosure protection class:
Rated operating voltage: 250 VAC / 300 VD
Rated operating current:
(Lumberg)
3
IP 68
D

Connector plug M 18

Serie 714 gerade

(Binder)
Number of poles:
Enclosure protection class: IP 67
Rated operating voltage:
250 V
Rated operating current: 16 A

Selection table: Magnetic reed switches
Actuating distances

| Actuating
 magnets | BN 80-10z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BN 32-r BN 32-11r	BN 325-r	$\begin{aligned} & \text { BN 65-10z } \\ & \text { BN 65-10z/1 } \\ & \text { BN 65-01z } \end{aligned}$	BN 65-rz	BN 65-10z/V BN 65-01z/V BN 65-112/V BN 65-11z/1V	BN 65-rz/V BN 65-11rz/V	BN 20-10z BN 20-20z BN 20-01z BN 20-02z BN 20-11z	BN 20-rz BN 20-2rz BN 20-11rz
Page 2-77	Page 2-78	Page 2-80	Page 2-80	Page 2-81	Page 2-81	Page 2-82	Page 2-82
		5					
10	10		15				5
10	10		15	5			5
		17			3	12	
15	15		20				10
15	15		20	10			10
		6					
12	12		17				7
12	12		17	6			7
		17					
		17				12	
17	17		22				15
17	17		22				15
		15-20			15		
10-25	10-25		15-30				10-25
10-25	10-25		15-30	20			10-25
		20			10	15	
5-20	5-20		25				15
5-20	5-20		25	15			15
		20			10	15	
5-20	5-20		25				15
5-20	5-20		25	15			15
		20			15	15	
10	10		15				5
10	10		15	5			5
20	20		25				15
20	20		25	15			15
		10-30			20	25	
15	15		20				10
15	15		20	10			10
10-25	10-25		10-30				5-2
10-25	10-25		10-30	25			5-20
		25-50			45		
15-40	15-40		15-45			20-45	10-35
15-40	15-40		15-45	30			10-35
20-55	20-55		20-60				15-50
20-55	20-55		20-60	20-55			15-50
				25			
					35		
				15-55			
	20				10	15	
15	15		20				10
15	15		20	6			10

Magnetic reed switches

BN 80

- Thermoplastic enclosure
- Flat design
- Long life
- Non-contacting principle
- 1 Reed contact
- Actuating distance up to 60 mm depending on actuating magnet and version
- Actuating surface marked by protrusion
- Pre-wired cable available,
cable length 1 m
- Protection class IP 67

Technical data

Standards:
Design:
Enclosure:

Protection class:
Termination:
Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature:
Mechanical life:
Electrical life:

Resistance to shock:

Resistance to vibration:

IEC/EN 60947-5-1 rectangular glass-fibre reinforced thermoplastic IP 67 to EN 60529 cable LiYY $2 \times 0.25 \mathrm{~mm}^{2}$, length 1 m magnetic
max. 250 VAC max. 0.5 A
max. $10 \mathrm{VA}, 8 \mathrm{~W}$ >450 VAC $(50 \mathrm{~Hz})$ max. 2 ms $\max .0 .07 \mathrm{~ms}$ max. 0.5 ms $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ 1 billion operations 5 million operations, depending on load 15 g on sine wave oscillation 15 g on sine wave oscillation

Contact variants

1 NC contact BN 80-01z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 NO contact BN 80-10z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 bistable contact BN 80-rz with S actuating magnet

Approvals

(ϵ

Ordering details

BN 80-1) \mathbf{z}
No. Replace
Description

01	1 NC contact
10	1 NO contact
r	1 bistable contact

Note

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

[^3]
Magnetic reed switches

BN 85

- Thermoplastic enclosure
- Long life
- Non-contacting principle
- Mounting with clamping feet and screw clamp
- Reed-contact to clip-in, on-location assembly
- Adjustment by loosening the central mounting screw
- Actuating distance up to 40 mm depending on actuating magnet and version
- Two individual wires LiYY $0.75 \mathrm{~mm}^{2}$
- Protection class IP 40

Approvals

\square
Ordering details
BN 85-(1)-(2)

No. Replace		Description
(1)	r	1 bistable contact Mounting with clamping brackets + 2 single wires Mounting on C DIN rail and 2 single wires without screws
$1831-1$	like above with screws 1831-2	Mounting on C DIN rail and sheathed cable without screws like above with screws Mounting with clamping brackets and sheathed cable
$1824-2$		

C

Iechnical data

Standards:
Design:
Enclosure:

Protection class:
Termination:

Mode of operation:

Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature:
Mechanical life:
Electrical life:
Resistance to shock:

Resistance to vibration:

IEC/EN 60947-5-1
rectangular
glass-fibre reinforced
thermoplastic IP 40 to EN 60529 2 individual wires LiY $0.75 \mathrm{~mm}^{2}$, length 1 m magnetic max. $60 \mathrm{VAC} / \mathrm{DC}$ max. 1 A
max. 30 VA/W 400 VDC max. 2 ms max. 0.07 ms max. 0.2 ms $0^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ 1 billion operations 500 million operations, depending on load 60 g on sine wave oscillation 60 g on sine wave oscillation

Contact variants

1 bistable contact BN 85-rz with S actuating magnet

Switching capacity:

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

BN 85-5

- Thermoplastic enclosure
- Long life
- Non-contacting principle
- For triggering of relays
- 5 reed-contacts to clip-on
- Reciprocal switch function through rotating the individual switching elements by 180°
- LEDs to indicate the switching condition
- Unused plugs can be filled with blank elements
- With 10-pole plug-in connection
- Protection class IP 30

Technical data

Standards:
Design:
Enclosure:

Protection class:
Termination:
Mode of operation:
Switching conditions indicator
Actuating magnet:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching time "Close":
Switching time "Open":
Ambient temperature:
Mechanical life:
Electrical life:

Resistance to shock:

Resistance to vibration:
Actuating distances:
With mounting on ferromagnetic material
average max. actuating distance s:
14 mm
max. actuating distance under
unfavourable conditions $\mathrm{s}_{\text {max }}$: min. actuating distance $\mathrm{s}_{\text {min }}$:
effective actuating distance $\mathrm{s}_{\text {nenn }}$:
11 mm
1 mm

With mounting on non-ferrous material (e.g. plastic rail):
actuating distance s: $0 \ldots 9 \mathrm{~mm}$
effective actuating distance $s_{\text {nenn }}$: 5 mm LED BP 7
$12 \ldots 60$ VDC
max. 1 A
max. 30 W
400 VDC
max. 2 ms
max. 0.07 ms
$-10^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
1 billion operations 500 million operations, depending on load 60 g on sine wave oscillation
60 g on sine wave oscillation

Contact variants

BN 85-5

1 bistable contact

Approvals

Ordering details

BN 85-5-(1)

No. Replace	Description	
(1)		1 bistable contact activation of relays 1 bistable contact for connection to control units
		Suitable switch insert BN 85-re must be

Note

Included in delivery:

- 2 blank inserts
- Unit without switch inserts

The LED is illuminated when the switch is open. The LED is illuminated when the switch is closed. (ordering suffix -2031)

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-84.

Download now

Data sheets, mounting and wiring instructions, declarations of conformity and other information at: www.schmersal.com

BN 310

- Thermoplastic enclosure
- Flat design
- Long life
- Non-contacting principle
- 1 Reed contact
- Actuating distance up to 60 mm depending on actuating magnet and version
- Actuating surface and direction of actuation marked by switch symbol
- Pre-wired cable available,
cable length 1 m
- Protection class IP 67

Technical data

Standards:
Design:
Enclosure:

Protection class: Termination:

Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching speed:
Switching frequency:
Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature:
Mechanical life:
Electrical life:

Resistance to shock:
Resistance to vibration:
Resistance to vibration:

Switching point accuracy:

IEC/EN 60947-5-1 rectangular glass-fibre reinforced thermoplastic
IP 67 to EN 60529 cable H03VV-F $2 \times 0.75 \mathrm{~mm}^{2}$, length 1 m
magnetic
max. 250 VAC
max. 3 A
max. 120 VA/W >600 VAC $(50 \mathrm{~Hz})$ max. $18 \mathrm{~m} / \mathrm{s}$ max. 300/s for BN 310-01z, -10z $0.3 \mathrm{~ms}-1.5 \mathrm{~ms}$ max. 0.5 ms $0.3 \ldots 0.6 \mathrm{~ms}$ $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ 1 billion operations 1 million - 1 billion operations, depending on load $30 \mathrm{~g} / 11 \mathrm{~ms}$ $30 \mathrm{~g} / 11 \mathrm{~ms}$ $10 \ldots 55 \mathrm{~Hz}$, amplitude 1 mm $\pm 0.25 \mathrm{~mm}$, $\mathrm{T}=$ constant

Contact variants

1 NC contact BN 310-01z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 NO contact BN 310-10z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 bistable contact BN 310-rz with N actuating magnet

1 bistable contact BN 310-rz with S actuating magnet

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

When the switches and actuators come together, the colours must coincide: Red (S) to red (S) and green (N) to green (N) This does not apply to the bistable contact.

The switch is to be mounted on iron with a non-magnetic layer of at least 20 mm .

Magnetic reed switches

BN 32

- Thermoplastic enclosure
- Long life
- Non-contacting principle
- 1 Reed contact
- Actuating distance up to 55 mm depending on actuating magnet and version
- Actuating surface and direction of actuation marked by switch symbol
- Mounting with two threaded bolts
- Spade connector 4.8 mm
- Protection class IP 67

Iechnical data

Standards:
Design:
Enclosure:

Protection class: Termination:

Mode of operation:
Switching voltage:

Switching current:

Switching capacity:

Dielectric strength:

Switching speed:
Switching frequency:

Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature:
Mechanical life:
Electrical life:

Resistance to shock:
Resistance to vibration:

Resistance to vibration
Switching point accuracy:

IEC/EN 60947-5-1 rectangular glass-fibre reinforced thermoplastic IP 00 ... IP 67 to EN 60529 spade connector 4.8 mm spade connector 6.3 mm (ordering suffix -1389)
magnetic
max. 250 VAC BN 32-11, -11r: max. 220 VAC, 150 VDC max. 3 A BN 32-11, -11r: max. 1 A max. 120 VA/W BN 32-11, -11r: max. 60 VA/W >600 VAC $(50 \mathrm{~Hz})$ BN 32-11, -11r: > 350 VAC $(50 \mathrm{~Hz})$ max. $18 \mathrm{~m} / \mathrm{s}$ max. 300/s BN 32-11, -11r: max. 200/s $0.3 \mathrm{~ms}-1.5 \mathrm{~ms}$ max. 0.5 ms $0.3 \ldots 0.6 \mathrm{~ms}$ $-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 billion operations 1 million - 1 billion operations, depending on load 15 g on sine wave oscillation
$\pm 0.25 \mathrm{~mm}$, $\mathrm{T}=$ constant

Contact variants

1 NO contact BN 32-10
1 NC contact BN 32-01
1 change-over contact BN 32-11
with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 bistable contact BN 32-r
1 bistable change-over contact BN 32-11r with N actuating magnet

1 bistable contact BN 32-r
1 bistable change-over contact BN 32-11r with S actuating magnet

Approvals

\square
Ordering details
BN 32- ${ }^{-1}$

No. Replace		Description
(1)	01	1 NC contact
	10	1 NO contact
	11	1 change-over contact
	r	1 bistable contact
	$11 r$	1 bistable change-over

Switching capacity:
NC, NO, bistable contact
The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

Note

Switching capacity:
change-over, bistable change-over contact
The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

Magnetic reed switches

BN 325

- Thermoplastic enclosure
- Long life
- Non-contacting principle
- 1 Reed contact
- Actuating surface and direction of actuation marked by switch symbol
- Mounting with two threaded bolts
- Spade connector 4.8 mm
- Protection class IP 40

Technical data

Standards:
Design:
Enclosure:

Protection class:

Termination:

Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching speed:
Switching frequency:
Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature
Mechanical life:
Electrical life:

Resistance to shock:
Resistance to vibration:

Resistance to vibration:

Switching point accuracy:

IEC/EN 60947-5-1 rectangular
glass-fibre reinforced thermoplastic IP 00
P 40 with insulated plug IP 67 with cable output and additional shielding plate (ordering suffix -1279 and -1297-2) to EN 60529 spade connector 4.8 mm (ordering suffix -1239) spade connector 6.3 mm (ordering suffix -1389) cable output (ordering suffix -1279 and -1279-2) magnetic
max. 250 VAC max. 3 A max. 120 VA $>600 \mathrm{VAC}(50 \mathrm{~Hz})$ max. $18 \mathrm{~m} / \mathrm{s}$ max. 300/s max. 1.5 ms max. 0.5 ms $0.3 \ldots 0.6 \mathrm{~ms}$ $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ 1 billion operations 1 million-1 billion operations, depending on load $50 \mathrm{~g} / 11 \mathrm{~ms}$ 30 g on sine wave oscillation
$10 \ldots 55 \mathrm{~Hz}$, amplitude 1 mm $\pm 0.25 \mathrm{~mm}$, $\mathrm{T}=$ constant

Contact variants

1 bistable contact BN 325-r with N actuating magnet

Approvals

Ordering details CE

BN 325-r-1

No. Replace		Description
(1)		Spade terminal 4.8 mm and 1 shielding plate
1239	Spade terminal 4.8 mm and 2 shielding plates	
1289	Spade terminal 6.3 mm and 2 shielding plates Cable output left and 2 shielding plates Cable output right and 2 shielding plates	
$1279-2$		

Note

Switching capacity:

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

Magnetic reed switches

BN 325 special versions

- additional shielding plate and cable output left or right (ordering suffix -1279 and -1279-2)

Approvals

C

Ordering details

see left

Magnetic reed switches

BN 65

- Actuation from side
- Thermoplastic enclosure
- Central mounting
- Long life
- Non-contacting principle
- Pre-wired cable available, cable length 1 m
- Protection class IP 67

When the switches and actuators come together, the colours must coincide: Red (S) to red (S) and green (N) to green (N).

This does not apply to the bistable contact

Technical data

Standards:
Design:
Enclosure:

Protection class:
Termination:

Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching speed:
Switching frequency:
Switching time "Close":
Switching time "Open":
Bounce duration:

Ambient temperature:
Mechanical life:
Electrical life:

Resistance to shock:

Resistance to vibration:

Resistance to vibration:

Switching point accuracy:

IEC/EN 60947-5-1
cylindrical
glass-fibre reinforced
thermoplastic
tightening force on nut 22 mm A/F max. 300 Ncm IP 67 to EN 60529 cable H03VV-F $2 \times 0.75 \mathrm{~mm}^{2}$, length 1 m magnetic
max. 250 VAC max. 3 A
max. 120 VA/W >600 VAC $(50 \mathrm{~Hz})$ max. $18 \mathrm{~m} / \mathrm{s}$ max. 300/s
$0.3 \mathrm{~ms}-1.5 \mathrm{~ms}$ max. 0.5 ms $0.3 \ldots 0.6 \mathrm{~ms}$ max. 3 ms
$-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ 1 billion operations 1 million - 1 billion operations, depending on load 30 g on sine wave oscillation 30 g on sine wave oscillation $10 \ldots 55 \mathrm{~Hz}$, amplitude 1 mm $\pm 0.25 \mathrm{~mm}$, $\mathrm{T}=$ constant

Contact variants

1 NO contact BN 65-10z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 NC contact BN 65-01z with $\mathrm{N}-\mathrm{S}$ actuating magnet

1 bistable contact BN 65-rz with N actuating magnet

1 bistable contact BN 65-rz with S actuating magnet

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

BN 65/V

- Actuation from front
- Thermoplastic enclosure
- Central mounting
- Long life
- Non-contacting principle
- Pre-wired cable available, cable length 1 m
- Protection class IP 67

When the switches and actuators come together, the colours must coincide: Red (S) to red (S) and green (N) to green (N).

This does not apply to the bistable contact.

Technical data

Approvals

(II)

C

Ordering details

BN 65-(1)z/(2)V

No. Replace	Description	
(1)	01	1 NC contact
	10	1 NO contact
	r	1 bistable contact
(2)		With bias magnet Without bias magnet
	$/ 1$	Wen

Switching capacity

Contact variants

1 NO contact BN 65-10z/V with S actuating magnet

1 NC contact BN 65-01z/V with S actuating magnet

1 bistable contact BN 65-rz/V with $\mathrm{N}-\mathrm{S}$ actuating magnet

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

Magnetic reed switches

BN 20

- Aluminium enlosure
- Long life
- Non-contacting principle
- 1 Reed contact
- Particularly resistant to vibration
- Available for actuation from front or side
- Actuating distance up to 50 mm depending on actuating magnet and version
- Screw terminal
- Protection class IP 67

When the switches and actuators come together, the colours must coincide: Red (S) to red (S) and green (N) to green (N).

Technical data

Standards:
 Design:
 Enclosure:

Protection class:
Termination:
Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Dielectric strength:
Switching speed:
Switching frequency:
Switching time "Close":
Switching time "Open":
Bounce duration:
Ambient temperature:
Mechanical life:
Electrical life:

Resistance to vibration:

Switching point accuracy:
IEC/EN 60947-5-1 rectangular
Al Si12 die-casting,
painted
IP 67 to EN 60529 screw terminals magnetic max. 250 VAC max. 3 A
max. 120 VA/W
$>600 \mathrm{VAC}(50 \mathrm{~Hz})$ max. $18 \mathrm{~m} / \mathrm{s}$ max. 300/s
$0.3 \mathrm{~ms}-1.5 \mathrm{~ms}$ max. 0.5 ms $0.3 \ldots 0.6 \mathrm{~ms}$ $-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$ 1 billion operations 1 million-1 billion operations, depending on load 50 g on sine wave oscillation $\pm 0.25 \mathrm{~mm}$, $\mathrm{T}=$ constant

Contact variants

1 NO contact BN 20-10z

 1 NC contact BN 20-01z with N -S actuating magnet

1 bistable contact BN 20-rz with \mathbf{N} actuating magnet

1 bistable contact BN 20-rz with S actuating magnet

Approvals

Ordering details

BN 20-(1)z

No. Replace		Description
(1)	01	1 NC contact
	02	2 NC contacts
	10	1 NO contact
	20	2 NO contacts
	11	1 change-over contact
	r	1 bistable contact
	$2 r$	2 bistable contacts
	$11 r$	
		contact

Note

Switching capacity:

Note

The opening and closing functions depend on the direction of actuation, the actuating magnets and the polarity of the actuating magnets.

The actuating magnets are not included in delivery.

To choose the appropriate actuating magnets, please use the tables on page 2-70.

Magnetic reed switches

BN 75

- Float switch
- Thermoplastic enclosure
- Long life
- Non-contacting principle
- 1 Reed contact
- Available with plug-in connetor or pre-wired cable
- Protection class IP 68

Depending on how the floater is assembled, either a NO contact or a NC contact is possible.

The switching function is reversed accordingly, if the floater in a change-over contact element is turned upside-down.

The operating points listed, apply for water

Technical data

Standards:
Enclosure:
Protection class:

Termination:

Mode of operation:
Switching voltage:
Switching current:
Switching capacity:
Hysteresis:
Dielectric strength:

Bounce duration:

Ambient temperature:
Mechanical life:
Electrical life:

EC/EN 60947-5-1 glass-fibre reinforced thermoplastic IP 68 plug connection IP 65 IP 67 cable connection (ordering suffix -1391) to EN 60529
plug-in connetor or pre-wired cable
magnetic
max. 220 VAC max. 1 A max. 60 VA/W ca. 3 mm > $600 \mathrm{VAC}(50 \mathrm{~Hz})$ BN 75-11y:
>350 VAC (50 Hz) $0.3 \ldots 0.6 \mathrm{~ms}$ BN 75-11y: $\max .0 .2 / 0.5 \mathrm{~ms}$ $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ 1 billion operations 1 million - 1 billion operations, depending on load

1 change-over contact BN 75-11y

Note

Switching capacity:
change-over, bistable change-over contact

Magnetic reed switches

System components

Ordering details

Actuating magnet Unenclosed, N-S Unenclosed, N-S Unenclosed, N-S Unenclosed, N-S

System components

BP 20

System components

BP 20 N / BP 20 S

BP 31

BP 31 N / BP 31 S

BP 11

Ordering details

Actuating magnet

Actuating magnet
BP 6 thermoplastic enclosure, $\mathrm{N}-\mathrm{S}$
BP 7 Unenclosed, N-S
BP 8 thermoplastic enclosure, $\mathrm{N}-\mathrm{S}$
BP 10 metal enclosure, N-S

Ordering details

BP 34 thermoplastic enclosure, N-S
BP 20 thermoplastic enclosure, N

Magnetic reed switches

System components

2x BP 11 N/2x BP 11 S

System components

2x BP 12 N / 2x BP 12 S

BP 21

Ordering details

Actuating magnet metal enclosure Al, $2 x \mathrm{~N}$ metal enclosure AI, $2 \times \mathrm{S}$ metal enclosure AI, N-S metal enclosure AI, N metal enclosure AI, S metal enclosure AI, $2 \times \mathrm{N}$
metal enclosure AI, $2 \times \mathrm{S}$

BP 11 N
BP 11 S
2x BP 11 N
2x BP 11 S
BP 12
BP 12 N
BP 12 S

Ordering details

Actuating magnet metal enclosure Al, N metal enclosure AI, S metal enclosure AI, $2 x \mathrm{~N}$ metal enclosure AI, $2 \times \mathrm{S}$ metal enclosure AI, N-S metal enclosure AI, N metal enclosure AI, S

BP 21 N / BP 21 S

2x BP 21 N/2x BP 21 S

System components

BP 22 N / BP 22 S

2x BP $22 \mathrm{~N} / 2 \mathrm{x}$ BP 22 S

Ordering details

Actuating magnet
2x BP 12 N
2x BP 12 S
BP 21
BP 21 N
BP 21 S
2x BP 21 N
2x BP 21 S
metal enclosure Zn, N-S
BP 22
metal enclosure Zn , N
metal enclosure Zn , S
metal enclosure $\mathrm{Zn}, 2 \mathrm{x} \mathrm{N}$
metal enclosure $\mathrm{Zn}, 2 \times \mathrm{S}$
Electromagnet, thermo-
plastic enclosure

Magnetic reed switches

Spacer BN 31/33

- To mount the magnetic safety sensor and actuator on ferromagnetic material

Holder H1/1

- For BN 65
- Metal holder with 2 elastic bearings
- Provides high resistance to vibration

Terminal mounting H 15

- For BN 65
- Material: thermoplastic

Compensating coil KS 1

- Temperature range $-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$
- For cable lengths up to 100 m
- Cable H05V-K 1 mm², cable length 100 mm
- The bucking coil is to be wired in series with the reed contact
- Version for high temperature $-25^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$, ordering suffix -T

Compensating coil KS 2

- Temperature range $-25^{\circ} \mathrm{C} \ldots+90^{\circ} \mathrm{C}$
- For cable lengths up to 200 m or $2 \times 100 \mathrm{~m}$
- Cable H05V-K $1 \mathrm{~mm}^{2}$, cable length 100 mm
- The bucking coil is to be wired in series with the reed contact

Automation technology

Command and signalling devices

For the man-machine interface, Schmersal offers command devices, such as foot switches and pull-wire switches as well as signalling devices.	Pull-wire switches	$3-2$
	Foot switches	$3-7$
	Prock lights	$3-14$
		$3-18$

ES/EM 41 Z

- Metal enclosure
- Slow action: 2 contacts
- Snap action: 2 contacts
- 3 cable entries M16 x 1.5
- Available with external watertight collar
- Protection class IP 65
- Plastic cover available
- Available in various spring pressure (actuating force) variants
- Execution with mounting angle for ceiling fitting available

Technical data

Standards:
Enclosure:
Cover:
Protection class:
Contact material:
Contact type:
EC/EN 60947-5-1
light-alloy diecast, paint finish
steel, painted
IP 65 to EN 60529
silver
change-over contact,
double break with
2 separate contact bridges, positive break NC contacts Θ
Switching system: slow or s screw terminals M 3.5

$$
\max .2 .5 \mathrm{~mm}^{2}
$$

(incl. conductor ferrules)
$3 \times \mathrm{M} 16 \times 1.5$
4 kV
400 V
10 A
6 A / 400 V
AC-15
$6 \mathrm{AgL} / \mathrm{gG}$ D-fuse $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ > 1 million operations 3600/h
the:
${ }_{e} / U_{e}$:
Utilisation category:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:

Contact variants

Snap action

 1 NO / 1 NC

Slow action

 1 NO / 1 NC

2 NO

Approvals

Ordering details C

E(1) 41 (2)Z (3)

No.	Replace	Description
(1)	M	Snap action
	S	Slow action
(2)		Without watertight collar
	W	With watertight collar
(3)	10̈/1S	$1 \mathrm{NO} / 1 \mathrm{NC}$
	2S	2 NO (only for slow action)

Note

Collar to protect against the entry of foreign bodies

ES 51 Z

- Metal enclosure
- Slow action: 2 contacts
- Small body
- 1 cable entry M16 x 1.5
- Available with external watertight collar
- Available in various spring pressure (actuating force) variants

Contact variants

Slow action

 1 NO / 1 NC

Approvals

(ϵ
 Ordering details

ES 51 (1) Z

No.	Replace	Description
(1)		Without watertight collar
	W	With watertight collar

,

Note

Collar to protect against the entry of foreign bodies

Technical data

Standards:
Enclosure:

Cover:
Protection class:
Contact material:
Contact type:

IEC/EN 60947-5-1 light-alloy diecast, paint finish
steel, painted IP 65 to EN 60529 silver
change-over contact,
double break with
2 separate contact bridges, positive break NC contacts Θ
Switching system:
Termination:
Cable section:

Cable entry:
U_{i} :
Ithe:
I_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:
slow action with self-cleaning contacts screw terminals M 3
max. $2.5 \mathrm{~mm}^{2}$ (incl. conductor ferrules)
$1 \times \mathrm{M} 16 \times 1.5$ 400 V 10 A
4 A / 400 VAC AC-15
4 A gL/gG D-fuse $-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ >1 million operations 3600/h

ES/EM 61 Z

- Metal enclosure
- Slow action: 2 contacts
- Snap action: 2 contacts
- 3 cable entries M16 x 1.5
- Available with external watertight collar
- Protection class IP 65
- Available in various spring pressure (actuating force) variants
- Execution with mounting angle for ceiling fitting available
- EEx version available

Technical data

Standards:
Enclosure:

Cover:
Protection class:
Contact material:
Switching system:
Contact type:

Termination:
Cable section:
Cable entry:
$\mathrm{U}_{\mathrm{imp}}:$
$\mathrm{U}_{\mathrm{i}}:$
$\mathrm{I}_{\text {the }}:$
Utilisation category:
$\mathrm{I}_{\mathrm{e}} / \mathrm{U}_{\mathrm{e}}$:
I_{e} / U_{e} :

Max. fuse rating:

Ambient temperature
Mechanical life:
Switching frequency:

Contact variants

Slow action 1 NO / 1 NC

2 NO

Approvals

Ordering details \quad C

E(1) 61 (2)Z (3)

No.	Replace	Description
(1)	M	Snap action
	S	Slow action
(2)		Without watertight collar
	W	With watertight collar
(3)	10̈/1S	1 NO/1 NC
	2S	$2 \text { NO (only }$

Collar to protect against the entry of foreign bodies

TQ 441

- Metal enclosure
- 2 contacts
- 2 cable entries
- Wire up to 25 m long
- Reset by push button or key possible
- Available for various actuating forces

Approvals

C

Ordering details

TQ 441-01/01 ${ }^{(1)}$

No.	Replace	Description
(1)	yü	Without latching, protection class IP 65
yür	Push button reset, protection class IP 65 Key reset,	
protection class IP 54		

Push button rese

Ordering suffix r

Contact variants

Standards:
Enclosure:
Cover:
Protection class:

Contact material:
Contact type:

IEC/EN 60947-5-1 light-alloy diecast, paint finish steel, painted IP 65 key reset: IP 54 to EN 60529 silver change-over contact,
double break with
2 separate contact bridges, positive break NC contacts Θ
Switching system:
positive break NC contacts Θ
Termination:
Cable section:
$\mathrm{U}_{\text {imp }}$:
U_{i} :
the:
l_{e} / U_{e} :
Utilisation category:
Max. fuse rating:
Ambient temperature:
Mechanical life:
Switching frequency:

Slow action
1 NO / 1 NC

ZS 71 RE

- Wire pull function with latching force
- Metal enclosure
- 2 contacts
- Small body
- 2 cable entries M20 x 1.5
- Twisting not possible
- Available with external watertight collar
- Signalling lamp available on request for various voltage

Technical data

Standards:
Enclosure:
Cover:
Protection class:
Contact material:
Contact type:

Switching system:

Termination
Cable section:

Cable entry:
$\mathrm{U}_{\text {imp: }}$:
U_{i} :
${ }^{\text {the: }}$
Utilisation category:
${ }_{\mathrm{l}}^{\mathrm{e}}$ / U_{e} :
Max. fuse rating:
Ambient temperature:
Mechanical life:
Indicator lamp:
IEC/EN 60947-5-1
cast aluminium, enamel finish thermoplastic ultramid IP 65 to EN 60529 silver
change-over contact with double break \ominus IEC 60947-5-1
slow action, NC contacts with positive break screw terminals max. $1.5 \mathrm{~mm}^{2}$
(incl. conductor ferrules) $2 \times \mathrm{M} 20 \times 1.5$ 4 kV 400 V 4 A AC-15
4 A / 400 VAC $4 \mathrm{~A} \mathrm{gL} / \mathrm{gG}$ D-fuse $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ >1 million operations on request

Contact variants

Slow action

 1 NO / 1 NC

Approvals

(ϵ
 Ordering details

ZS 71 (1) 1Ö/1S RE

No.	Replace	Description
(1)		Without watertight collar
	W	With watertight collar

Note

Collar to protect against the entry of foreign bodies

GFI and GFSI

- 4 contacts
- Metal enclosure
- With or without protective shield
- High level of stability
- Low pedal height
- Ergonomic pedal shape
- Wiring compartment
- Cable entry M20 x 1.5
- Ex version available
- Available with mechanical interlock
(only for slow action S)
- Available with special finish
in RAL colour tones
- Also available as safety foot switch

Technical data

Standards:
IEC/EN 60947-5-1
Enclosure:
pressure die cast Al alloy, paint finish RAL 5011
Pedal:
Protective shield:

Termination:
pressure die cast Al alloy, paint finish RAL 5011

GFI: -
GFSI: cast aluminium, paint finish, RAL 2004
screw terminals for max. $2.5 \mathrm{~mm}^{2}$ cables (including conductor ferrules) $1 \times \mathrm{M} 20 \times 1.5$ silver
Cable entry:
Contact material:
Protection class: slow action, double break, positive break NC contacts Θ 1 NC / 1 NO 2 NC / 2 NO
Potentiometer output (-Poti): $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ Analog output (-HS):
0... 10 VDC, $0 . . .20 \mathrm{~mA}$ DC, $4 \ldots 20 \mathrm{~mA}$ DC 2-level switching (1ÖS D 1ÖS):

1 NC / 1NO
pressure point $1 \mathrm{NC} / 1 \mathrm{NO}$ latching (-RE):
1 NC / 1 NO with latching
Utilisation category:
AC-15
I_{e} / U_{e} :
slow action:
ES 60 GF:
16 A / 400 VAC snap action:
insert ZS 232:
4 A / 230 VAC
2.5 A / 400 VAC

1 A / 500 VAC max. 400 VAC
Switching voltage:
Max. fuse rating:
insert ES 60 GF: 16 A (slow blow) insert ZS 232:
4 A (slow blow)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Ambient temperature
Mechanical life: $\quad>1$ million operations

Contact variants

1 NO / 1 NC
$\frac{11 \quad 12}{23}$

2 NO / 2 NC
$11 \quad 12 \quad 11 \quad 12$
$23 \quad 24 \overline{23} \quad 24$

Approvals

Ordering details \quad C

GF(1)(2) (3)

No.	Replace	Description
(1)		Without protective shield With protective shield
(2)	S	Slow action
	M	Snap action per pedal:
(3)	$1 \mathrm{O} / 1 \mathrm{~S}$	$1 \mathrm{NO} / 1 \mathrm{NC}$
	$2 \mathrm{O} / 2 \mathrm{~S}$	$2 \mathrm{NO} / 2 \mathrm{NC}$

GF and GFS

- Max. 4 contacts
- Metal enclosure
- With or without protective shield
- High level of stability
- Wide opening in shield
- Low pedal height
- Cable entry M20 x 1.5
- Ex version available
- Available with mechanical interlock
(only for slow action S)
- Available with special finish in RAL colour tones
- Special versions, see page 3-9
- Also available as safety foot switch

Technical data

Standards:
IEC/EN 60947-5-1
VDE 0113 part 1
Enclosure:

Cover:

Pedal:

Protective shield:

Cable entry:

Protection class:
Switching system: Utilisation category: I_{e} / U_{e} :

Max. fuse rating:

Ambient temperature:
Mechanical life:

Contact variants

1 NO / 1 NC

$\frac{11 \quad 12}{23}$

2 NO / 2 NC

$11 \quad 12$
$11 \quad 12$

$\begin{array}{lll}23 & 24 & \overline{23} \quad 24\end{array}$

Approvals

(6G) (UL) (SH)

C

Ordering details

GF(1)(2) (3)

No.	Replace	Description
(1)	S	Without protective shield
		With protective shield
(2)		Slow action
	M	Snap action
(3)		per pedal:
	1Ö/1S	$1 \mathrm{NO} / 1 \mathrm{NC}$
	2Ö/2S	$2 \mathrm{NO} / 2 \mathrm{NC}$

Note

Other contact configurations avaiable on request (Max. 4 contacts per pedal).

GF 2 and GFS 2

GF 3 and GFS 3

- Triple-pedal types
- Max. 4 contacts per pedal
- Various pedal function available
- 2 cable entries M25 x 1.5

Approvals

(11) (51)

Ordering details

GF(1)(2) 2 (3) / (4)

No.	Replace	Description
(1)	S	Without protective shield
		With protective shield
(2)		Slow action
	M	Snap action
(3)		Left pedal:
	1ÖS	$1 \mathrm{NO} / 1 \mathrm{NC}$
	2ÖS	$2 \mathrm{NO} / 2 \mathrm{NC}$
(4)		Right pedal:
	1ÖS	1 NO/1 NC
	2ÖS	$2 \mathrm{NO} / 2 \mathrm{NC}$

C ϵ

Approvals

Ordering details

GF(1)(2) 3 (3) / (4) / (5)

No.	Replace	Description
(1)	S	Without protective shield
		With protective shield
(2)		Slow action
	M	Snap action
(3)		Left pedal:
	1ÖS	$1 \mathrm{NO} / 1 \mathrm{NC}$
	2ÖS	2 NO/2 NC
(4)		Central pedal:
	1ÖS	1 NO/1 NC
	2ÖS	2 NO/2 NC
(5)		Right pedal:
	1ÖS	1 NO/1 NC
	2ÖS	$2 \mathrm{NO} / 2 \mathrm{NC}$

System components

Carrying handle TST

c

Ordering details

Pressure point	ordering suffix D ordering suffix K
Pedal cover	FST
Foot rest	TST
Carrying handle	
Only FST foot support can be retro-fitted.	

LKF

- Thermoplastic enclosure
- Small flat design
- Micro-break switches for switching currents up to 5 A
- 1 or 2 pole change-over contact
- With or without pre-wired cable available
- Pre-wired cable available, cable length 2 m

Technical data

Standards:

Enclosure:
Pedal:
Termination:

Protection class:

Switching system:
Max. fuse rating:
Switching voltage:
Max. making current:

IEC/EN 60947-5-1 VDE 0113 part 1
shockproof thermoplastic shockproof thermoplastic Customer-specific wiring with appropriate cable (with 1 PW: dmax. $=6.5 \mathrm{~mm}$, with 2 PW: dmax. $=8.5 \mathrm{~mm}$)

Ordering suffix -2m: permanent die-cast wiring cable, $3 \times 0.5 \mathrm{~mm}^{2}$ or $6 \times 0.5 \mathrm{~mm}^{2}$, 2 m long IP 65 with cable, IP 43 without cable to EN 60529 snap action 5 A (slow blow) 250 VAC/DC micro-break switches:

5 A
Max. switching capacity: micro-break switches: 1250 VA
Ambient temperature
Mechanical life:

$$
-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}
$$

>1 million operations

Contact variants

1-pole change-over contact

4 BN

2-pole change-over contact

Approvals

Ordering details

LKF (1)-(2)

No.	Replace	Description
(1)	1PW	1-pole change-over contact
2-pole change-over		
(2)	2 PW	contact
Without cable		

KF and KFS

- 2 contacts
- Thermoplastic enclosure
- Protective metal shield
- Small flat design
- With or without protective shield
- Reed contacts for low switching currents from 1 mA to 1 A
- Micro-break switches for switching currents up to 5 A
- Pre-wired cable available, cable length 2 m
- Hall sensors available giving analogue output signal proportional to pedal deflection
- Execution with pressure point (2-stage switch) possible
- Plug-in connection possible
- Other cable types/lengths possible
- Available with special finish in RAL colour tones

Approvals

B6 (UL) (SA

(ϵ

Ordering details

$\mathbf{K F}{ }^{(1)}$ (2)

No.	Replace	Description
(1)	S	Without protective shield
		With protective shield
(2)		Reed contacts:
	1S	1 NO contact
	2S	2 NO contacts
	1W	1 change-over contact
		Micro switches:
	1PW	1 change-over contact
	1S PNP	1 PNP NO contact
	1 SNPN	1 NPN NO contact

Technical data

Standards:
IEC/EN 60947-5-1 VDE 0113 part 1 nylon 66, glass-fibre reinforced, self-extinguishing glass-fibre reinforced thermoplastic (Nylon 66) KF: -
KFS: stainless-steel casing, enamelled

Termination:

Cable section:
Protection class:
Switching system:

Switching voltage:
Max. making current:

Max. switching capacity:
Max. switching capacity: reed contacts: 30 VA
micro-break switches: 1250 VA
Ambient temperature:
Mechanical life:
cable H03W-F, length 2 m $0.5 \mathrm{~mm}^{2}$ IP 65 to EN 60529 reed contacts or snap action, change-over contact reed contacts:
12 ... 250 VAC/DC
reed contacts:
1 A
micro-break switches:

5 A

Change-over contact
$\stackrel{2 B U}{\overline{B N}-\stackrel{B}{3 B K}}$

1 NO PNP

1 NO NPN

KF 2

- Max. 2 contacts per pedal
- Thermoplastic enclosure
- Small flat design
- Reed contacts for low switching currents from 1 mA to 1 A
- Micro-break switches for switching currents up to 5 A
- Pre-wired cable available, cable length 2 m
- Hall sensors available giving analogue output signal proportional to pedal deflection
- Available without pre-wired cable
- Plug-in connection possible
- Other cable types/lengths possible
- Available with special finish in RAL colour tones

Approvals

(SH) (1i)
(ϵ

Ordering details

KF 2 (1) / (2)

No.	Replace	Description
(1)		Left pedal:
		Reed contacts:
	1S	1 NO contact
	2S	2 NO contacts
	1W	1 change-over contact
		Micro switches:
	1PW	1 change-over contact
(2)		Right pedal:
		Reed contacts:
	1S	1 NO contact
	2S	2 NO contacts
	1W	1 change-over contact
		Micro switches:
	1PW	1 change-over contact

Technical data

Standards:

Enclosure:

Pedal:

Termination:

Cable section:
Protection class:
Switching system:

Switching voltage:

Max. making current:
Max. making current

Max. switching capacity: 30 VA
micro-break switches:
micro-break switches:
1250 VA
$-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Ambient temperature:
Mechanical life:
EC/EN 60947-5-1
VDE 0113 part 1 nylon 66, glass-fibre reinforced, self-extinguishing glass-fibre reinforced thermoplastic (Nylon 66) cable H03VV-F, 2 m long or bell-mouth cable gland Pg 7
$0.5 \mathrm{~mm}^{2}$
IP 65 to EN 60529 reed contacts or snap action, change-over contact reed contacts:
12 ... 250 VAC/DC reed contacts: 1 A micro-break switches: 5 A
million operations

Contact variants

1 NO
$6 \mathrm{BN}+5 \mathrm{BU} 4 \mathrm{BK} \mathrm{R}^{\mathrm{L}} 3 \mathrm{BK}$

2 NO

Change-over contact (Reed contacts)

Change-over contact (Micro switches)

| 7 GN | 8 YE | 2 BK |
| :--- | :--- | :--- | :--- |
| 5 BH | 4 BU | 3 BN |

KF 3, KF 4 and KF 5

- Max. 2 contacts per pedal
- Thermoplastic enclosure
- Small flat design
- Reed contacts for low switching currents from 1 mA to 1 A
- Micro-break switches for switching currents up to 5 A
- Pre-wired cable available, cable length 2 m
- Hall sensors available giving analogue output signal proportional to pedal deflection
- Available without pre-wired cable
- Available with plug-in connection
- Other cable types/lengths possible
- Other contact configurations available on request
- Available with special finish in RAL colour tones

Approvals

(ϵ

Ordering details
$\mathbf{K F}$ (1) (2) / (2) / (2) / (2) / (2)

No.	Replace	Description
(1)	3	triple-pedal types four-pedal type quintuple-pedal types per pedal:
	Reed contacts:	
		1S 1WO contact 1 change-over contact Micro switches: 1 change-over contact

Technical data

Standards:
IEC/EN 60947-5-1
VDE 0113 part 1
Enclosure: nylon 66, glass-fibre reinforced, self-extinguishing anodized aluminium glass-fibre reinforced thermoplastic (Nylon 66) cable H03W-F, length 2 m $0.5 \mathrm{~mm}^{2}$ IP 65 with cable, IP 30 without cable to EN 60529

Switching system:

reed contacts or snap action, change-over contact reed contacts: 12 ... 250 VAC/DC reed contacts: 1 A
micro-break switches: 5 A
Max. switching capacity: reed contacts: 30 VA
micro-break switches: 1250 VA
Ambient temperature: $-10^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Mechanical life: $\quad>1$ million operations

Contact variants

1 NO

Change-over contact (Reed contacts)

Change-over contact (Micro switches)

Operating principle of sensors

Explanations

Inductive and capacitive proximity switches A-6
Photoelectric
proximity switches A-12
Symbol legend, back cover

Magnetic reed switches

General information

Magnetic reed switches

Along with the mechanically operated limit switches, magnetic reed switches (magnetically operated) have been constantly gaining increased importance. They can be regarded as a complement to the plunger, roller and turret head operated limit switches and as an important addition to electronic proximity switches.

Magnetically operated reed switches are used preferably where mechanically operated limit switches can no longer function satisfactorily as a result of unfavourable operating conditions such as:

- high or low approach speeds,
- high operating frequency,
- influences from dust and dirt,
- high humidity,
- chemical atmosphere,
- considerable variations in actuating distance.

One type of non-contact proximity switches are the magnetic reed switches (further types: inductive, capacitive and optical
proximity switches, see chapter I).

However, in order to be able to make the correct choice, it is necessary to be familiar with the general construction, function and the advantages and disadvantages of reed switches. The BN 2., BN 3., BN 6., and BN 8. series consist of of two pieces, the switch itself and the magnet actuator.

For all switch types, a standard reed tube filled with a protective gas mixture (nitrogen/ hydrogen) is used. The iron-nickel alloy reed contacts are melted into the glass body and are rhodium plated at the contacts. The air gap between the reed contact is only $0.2-0.3 \mathrm{~mm}$, so that the magnetic force required for switching is extremely low. The contacts are protected from dust, dampness and corrosion by the hermetically sealed glass body. As a result, reed switches possess an extremely high degree of contact reliability.

The type of contact is determined primarily by the kind of assembly required and exact adjustment of the bias magnet:
normally open contact,
normally closed contact,

change-over contact,
bistable contact,
bistable change-over contact.

In addition, the bias magnets are set, so that the exact central position of the switch contact points is ensured.
This adjustment is factory set to the same distance with selected test magnets so that interchangeability of identical switch elements is guaranteed. After adjustment, reed tube and bias magnet are fixed to each other, and are then flexibly embedded in a sealing compound.

Permanent magnets, with and without casing, as well as electromagnets are used to actuate the switches. The corresponding actuating magnet has to be selected according to switch type. With normally closed and normally open contacts, a north-south pole switching magnet is used and with a bistable contact, a north or south pole magnet is required.

The permanent magnets are made from a material which is resistant to aging and does not lose its magnetism even as a result of stray magnetic fields. Its temperature coefficient of $0.2 \% /{ }^{\circ} \mathrm{C}$ should how-ever be taken into account for switching point accuracy. The magnetic force decreases with rising temperatures and increases when the temperature drops. No permanent change takes place, in the range between $-30^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

Magnetic field from a N-S magnet

Magnetic field from a N or S magnet

General information

Function

NO contact (normally open)

If the reed contacts are magnetized by an approaching magnet (permanent or electromagnet) and thus having an effect on them, the contacts will close after exceeding a certain "pull-in" force. As a result of the air gap diminishing during closure, the magnetic force increases following a square law, so that the contact closes by snap action. Opening takes place in the same way after falling below a certain "drop-out" value. The relatively small air gap of approximately 0.25 mm and the low masses result in extremely favourable values for switching and bounce times.

Depending on magnetic force, the "make" and "break" times are approximately 0.3 ... 1.5 ms and the bounce time is less than 0.6 ms .

The bias magnet used for the NO contacts, prevents double switching even by the smallest switching distances, up to the magnet types which have a maximum switching distance of 25 mm . The bias magnets require however, a clearly defined positioning of the magnet actuators relative to the switch, exactly according to specification: colour symbols red on red and green on green.

Combined effects of magnetic field lines using a NO contact and a N-S magnet.

NC contact (normally closed)

The built-in bias magnet for this switch type is so strong, that the contacts remain closed. Due to the polarity of the bias magnet being opposite to that of the actuating magnet, the approaching magnet causes the contacts to open.

From this simple relationship, it is quite clear that the actuating magnet and switch must

Combined effects of magnetic field lines using a NC contact and a N-S magnet.
also be located in the correct position relative to one another (red on red and green on green).

The field line diagrams for the two types of switches NO and NC contact, show that an actuation is possible from all three directions, and even a 90° change of direction will provide a flawless function of the switch.

Change-over contact

By certain switch types, change-over reed tubes can be used. The general design of such tubes corresponds to that of the standard tubes. However, there is a difference, in that the air gap between the reed contacts is slightly smaller (0.2 mm) than that of the standard tubes. Therefore, there is a reduction in vibration resistance and in the dielectric strength.

Magnetically, the function of the change-over contact is the same as the NO contact, since the reed of the NC contact is made of a non-magnetic material. For function, see NO contact.

Combined effects of magnetic field lines using a change-over contact and a N-S magnet.

Latch or bistable contact

This type of switch is determined by the exact dimensioning of the bias magnets. The force of these magnets is matched to the switching tube, so that its magnitude falls between the pull-in and drop-out values of the tube. To improve matching, and to obtain a safe switching action, selected reed tubes with considerable difference between pull-in and drop-out values are used. The contact will remain open or closed without the action of the magnet actuator. Before mounting, the required contact function - NC or NO - has to be established by actuation with a magnet.

Actuation (closing or opening of the reed contacts) is effected by the magnet being moved past the switch only longitudinally. If for example, the magnet (N pole) is slid longitudinally past the switch from left to right, it will finally reach a position (see fig. below), where the magnetic fields of the magnet and bias magnets amplify each other (field lines are arranged in the same direction in the area of the reed contacts). By this field amplication, the pull-in value of the reed tube is exceeded, the reed contacts attract each other and make the contact.

Combined effects of magnetic field lines using a bistable contact and a N magnet.

When sliding further in the same direction, the magnetic field of the magnet becomes weaker and is no longer effective for the switch. However, the force of the bias magnet is still larger than that of the drop-out value of the reed tube, and therefore the contact remains closed. If the magnet actuator is moved back again, until its centre has passed over the switch, into a position where the magnetic fields of the magnet actuator and bias magnets weaken (magnetic field lines are arranged opposed to each other), the dropout value of the reed tube is passed and the contact opens. The bias magnets alone are not able to close the reed contacts, if the magnet has been moved out of the active range of the switch, as their forces are below the pull-in value of the reed tube. The contact remains open. Once again it should be emphasized that satisfactory performance with this type of switch is only achieved by lateral passage of the north or south actuating magnets. No switching function takes place at right angles to the axis of the switch or on approach.

A reversed switching function (right = open, left $=$ closed) is achieved for this switch using a magnet having reversed polarity (for S pole, see figure below).

Combined effects of magnetic field lines using a bistable contact and a S magnet.

General information

Bistable change-over contact

The mode of operation for this contact type is the same as for the standard bistable contact (see above).

For the sake of simplicity, the following description will only be applicable with the con-tact-making side of the change-over contact.

The magnetic field lines of the magnet actuator and those of the bias magnet are added together, when the actuating magnet is moved in the longitudinal direction past the switch. This addition will cause the pull-in value of the reed tube to be exceeded, the reed contacts attract each other, and close the contact.

The field will no longer have an effect on the switch, if the actuating magnet continues to move in the same direction. However, the switch will remain closed, as the force of the bias magnet is larger than the drop-out value of the reed tube.

The magnetic field lines work opposite to those of the bias magnet, if the actuating magnet is moved in the opposite direction passing over the centre of the switch. The resulting field strength will be less than the drop-out value of the reed tube and the contacts will open again. The magnetic field on the switch will become ineffective, if the magnet continues to move in this direction. The switch will remain open, due to the force of the bias magnet being lower than the pull-in value of the reed tube.

The function described above shows that the bistable and bistable change-over reed switches can only be actuated, when the actuating magnet is moved past the switch in a longitudinal direction. The N or S poles of the

Interaction of the magnetic field lines on the bistable change-over contact by contact making

Interaction of the magnetic field lines on the bistable change-over contact by contact breaking
magnets are selected according to the direction of motion and the desired switching function. There will be no switching action, if the actuating magnet is moved at right angle to the longitudinal axis of the switch

Front actuation

The BN 6. series switches can be actuated sideways as previously described, or from the front (index "V").

Front actuation

Switches with NO, NC and change-over type contacts, also use the N-S magnets for sideways actuation. All the switches are colourcoded to indicate the correct pairing and travel direction of the magnets.

The rule applied here is the same: red on red and green on green.

Front actuation for the NO, NC and changeover contacts can only be achieved by using the S pole magnet. For this reason a red label with arrows showing the direction, is printed on the front cap.

Switches with bistable and bistable changeover contacts must be actuated sideways with the N or S pole of the magnet, depending on function. The colour coded symbols (including the travel direction) are also shown on these switches.

Front actuating for the bistable and bistable change-over contacts can only be accomplished with a N-S magnet in the direction indicated on the coding label. The bistability is reversed, if the N-S magnet (magnet axis) is rotated by 180°.

Vibration protection

Although the factory adjustment of the bistable switches requires considerable accuracy compared to the NO and NC switches, these units have a high resistance to vibration. By embedding the switching tube receptacles in foam rubber, resistance to vibration is further increased. If the switch is under the influence of the actuating magnets, the switching condition will not be altered even by considerable vibrations. However, caution must be observed in the case of heavy shock loads. With these types of loads, it is possible
that the reed switches - irrespective of contact type - may become inoperable.

Operating life

When mounting and testing, it must be observed that the precise setting of the equipment is not damaged by overload.

Reed switch contacts tend to stick, when the maximum specified current is exceeded. After separation of the contacts, they will continue to operate, but with reduced accuracy. It is also possible that the NC contact has now changed into a NO contact. If incandescent lamps or AC magnets are switched on, the inrush current peak can be as large as ten to twelve times at the rated current. When switching off inductivities, overvoltage occurs, resulting in the destruction of the switches over a short period of time. In such cases, suitable measures should be taken to provide arc suppression. To reduce the overvoltage to a permissible level, VDR resistors can be connected in parallel to the inductivity.
n the case of the usual arc suppression by means of capacitors, a field discharge resistor should also be provided in any case, as otherwise welding will take place as a result of the discharge current surge of the capacitor. The optimum values of the arc extinguishing means (RC combination) can only be determined by testing, for each individual case. It cannot be denied however, that incorrect matching can be more harmful than none at all. In a DC circuit we recommend connecting a diode, parallel to the inductivity, to protect the contact.

If magnetic reed switches are protected from overload, as recommended, an electrical contact life can be expected, which will far exceed that of the units to be controlled. Reed switches which are actuated with a minimum of force, are subjected to no form of wear and therefore have virtually an indefinite operating life.

Switching hysteresis (differential travel)

Reed switches, like electromechanical snap action switches, are also subject to switching hysteresis, which means that their operating and release points do not coincide. This property, which is sometimes disadvantageous for the user, results from the difference between the pull-in and drop-out excitations of the reed tubes. This difference is simultaneously a measure for the contact force and thus contact reliability. Therefore, an ideal value of zero (operating and release position, at one and the same point) cannot be achieved.

Fields of application

Magnetically operated reed switches have found their way into virtually all fields of control circuits. Due to their special properties, they are in many cases superior to mechanically operated limit switches. To name just a few examples:

General information

1. High switching speed and switching frequency: application in counting circuits;
2. safe contact even in the presence of corrosive media, as the contact area is hermetically sealed in a protective tube: use in electroplating plants;
3. no mechanical drive components, low actuating force: use with stop and start monitors;
4. silent operation: use in lift construction;
5. actuation without physical contact; action through non-magnetic materials: use as pressure monitor and float switch.

In order to provide a comprehensive supplement to the mechanically operated limit switches, the following types of switches have been developed:

BN 85 Series

Reed switch with thermoplastic housing, rail mounting with changeable switch inserts, IP 40 BN 85-5 Series
Multiple reed switch, thermoplastic housing with five changeable switch inserts,
plug-type connection

BN 310 Series

Reed switch with thermoplastic housing
a) with spade connectors, IP 00 (IP 67)
b) with cable connection, Index -1279

BN 32 and BN 325 Series

Reed switch with thermoplastic housing, one shield plate
a) with spade connectors, IP 00
b) with cable connection, two shielding plates, Index-1279

BN 65 Series

Reed switch with cylindrical design, encased thermoplastic housing and cable connection, Pg 9 single-hole centre mounting, IP 67

BN 2. Series

Reed switch with aluminum die-cast housing, screw connection, IP 67
a) BN 20-... maximum two reed tubes
b) sBN 20-... explosion-proof version (see catalogue Ex)

BN 75 Series

Magnetically operated float switch
(thermoplastic), IP 68 (IP 65 - IP 00)
Due to the different switch types available and the possibility to combine various switches, it is possible to cover all switching functions which may arise in industrial applications.

Mounting instructions

Since magnetic reed switches operate on the principle of magnetism, it should be noted that the presence of steel in the vicinity of the switches could influence their function. A non-magnetic intermediate plate of not less than 20 mm should be used when mounting the BN 31 and BN 65 switches onto steel surfaces.

The BN 32, BN 6. reed switches with $\mathrm{H} 1 / 1$ and H 2 brackets, and the BN 85 switches can be mounted to steel surfaces without difficulty.

Power lines running parallel to the switches could also have the same effect, as men-
tioned above. A minimum distance of 50 mm should be maintained. When several switches are located side by side, adequate spacing should be provided. Depending on the size of the magnets used, an unwanted actuation of the adjacent switch is possible. An effective solution can be provided by using shielding plates mounted between the switches. It should be noted that the steel plates absorb parts of the magnetic field lines, reducing the maximum actuating distance.

Contact sticking due to overload or capacitor discharge has already been mentioned previously in this chapter. Sticking also occurs, when longer cables are used. Due to the widely differing cable capacity, determined by the construction and the cross section, it is not possible to provide any detailed information. Actually with a cable length of 25 m a brief discharge current already causes sticking of the contacts. To prevent this type of sticking, bucking coils have been designed for various cable lengths.

Type KS 1, 1 coil (single pole), up to 100 m cable length;
Type KS 2, 2 coils (twin pole), up to 100 m cable length or with two coils connected in series, up to 200 m cable length;

These bucking coils are connected in series with the reed tubes.

Bucking coil connected in series with the switch tube

Magnet actuators

Suitable magnets have been designed for the various actuating distances and mounting methods.

Type BP 6

Without housing, S-pole side of magnet countersunk to provide for a M 3 flathead mounting screw. To be used as a N-S magnet and mounted on iron with a minimum distance of 10 mm .

Type BP 7

without housing, both sides of magnet countersunk to provide for a M 4 flathead mounting screw. S-pole marked red. To be used as a N-S magnet and mounted on iron with a minimum distance of 10 mm .

Type BP 8

actuating distances up to 8 mm , without housing. As N or S magnet, mounting on iron possible. Used as a N-S magnet, mounting on iron only and with a minimum distance of 10 mm .

Type BP 10
actuating distance up to 15 mm , without housing. As N or S magnet, mounting on iron possible. Used as a N-S magnet, mounting on iron only and with a minimum distance of approx. 15 mm . N -pole is countersunk.

Type BP 11

actuating distance up to 20 mm , aluminium housing, mounting on iron possible.
Type BP 12
actuating distance up to 30 mm , aluminium housing, mounting on iron possible.

Type BP 15

actuating distance up to 18 mm , thermoplastic housing. As N or S magnet, mounting on iron possible. Used as $\mathrm{N}-\mathrm{S}$ magnet, mounting on iron only with a minimum distance of approx. 18 mm .

Type BP 15/2

actuating distance up to 18 mm , without housing. As N or S magnet, mounting on iron possible. Used as N-S magnet, mounting on iron only with a minimum distance of approx. 18 mm .
Type BP 20
actuating distance up to 25 mm , aluminium housing, mounting on iron only with a minimum distance of approx. 20 mm .

Type BP 21

actuating distance 15-60 mm, aluminium housing, mounting on iron possible.

Type BP 22

actuating distance 15-45 mm, zinc housing, mounting on iron possible.
Type BP 22/1 (actuating distance up to 25 mm)
Type BP 22/2 (actuating distance up to 22 mm) Type BP 31
actuating distance up to 25 mm , thermoplastic housing, mounting on iron only with a minimum distance of approx. 20 mm .

Type BP 34

actuating distance up to 25 mm , thermoplastic housing. As N or S magnet, mounting on iron possible. Used as $\mathrm{N}-\mathrm{S}$ magnet, mounting on iron only with a minimum distance of approx. 25 mm .

Type BE 20

actuating distance up to 20 mm , electromagnet for DC only, thermoplastic housing, mounting on iron only with a minimum distance of approx. 25 mm .

The permissible switching distances for each proximity switch is listed in the technical data. To avoid actuation errors in combination with the magnetic reed switches and the respective actuating magnets, most switches are colour coded. The rule to be observed here is as follows: When mounting, the colours on the switch and magnet have to match (red on red and green on green).

In addition, all colour symbols indicate the possible directions of actuation.

Nearly all switches, magnets, and mounting brackets are provided with slotted holes so that an exact setting of the operating distances and switching points is possible.

Schmersal's proximity switches conform to current standards and guidelines.

You will find the CE marking

- on the product
- on the packing or
- in the mounting and wiring instructions.

Declarations of conformity are held as part of Schmersal's internal product documentation and are available for examination when requested by a test authority.

The CE-marking is applied according to the following European directives:

- Low Voltage Directive

- EMC-Directive

The EC directives are addressed to the countries of the European community. These transform the directives into national laws.

Low Voltage Directive

Electrical devices must be designed in such a way, and in accordance with the current state of art, so that people and animals are not endangered during operation provided that installation, maintenance and application are correct.

The most important safety aims:

1. General conditions

- The essential conditions required for correct and safe use are affixed on the electrical device; or if this is not possible, are provided in the instructions.
- The producer's label or brandmark must be affixed to the electrical device, or if this is not possible, on the packaging.
- The electrical devices must be designed in such a way that connection and installation can be carried out safely and correctly.
- The electrical devices must be designed and manufactured in such a way, that correct use and maintenance exclude the hazards described in 2 and 3.

2. Protection against hazards originating from electrical devices.
Measures should be taken to ensure that:

- people and animals are protected to an appropriate level against injury or other damages, which can occur from direct or indirect contact with the device.
- no hazardous temperatures, arcing or radiation can occur.
- people, animals and property are protected from non-electrical hazards caused by the electrical device.
- the insulation is suitable for its intended use and environment.

3. Protection against hazards created by external influences on electrical devices. Measures should be taken to ensure that:

- the device withstands the applied mechanical stress, and that neither people, animals nor property are endangered.
- under the predicted environmental conditions, the non-mechanical influences do not endanger people, animals or property.
- the device does not endanger people, animals or property under overload conditions.

Electrical devices that meet the safety requirements of the harmonised standards also conform to the Low Voltage Directive.

The Directive relating to electromagnetic compatibility (EMC)

- was legalised in November 1992 and
- is law since the beginning of 1996

It is valid for devices:

- which can generate electromagnetic interference or
- whose function can be affected by external interference

and defines the conditions for

- installation
- exhibition and
- use.

This means that devices that do not conform to the EMC-Directive can only be used in locations which are sufficiently shielded.

As defined in the EMC, Electromagnetic

 compatibility is:- the ability of a device,
- to operate as intended
- in its electromagnetic environment.

Practically all the essential requirements are defined in the appropriate standards relating to electromagnetic environmental conditions.

Schmersal's proximity switches have the appropriate resistance to external interferences. Electromagnetic emissions are suppressed to the extent that the operation of approved radio and telecommunication systems is guaranteed.

The standards listed in the table below define these requirements:

In addition to extensive tests in our own laboratories, representative proximity switch types have been tested and approved by German national authorities (BG, TÜV).

The surrounding electromagnetic environment is of prime importance for interferencefree operation. This is defined in detail in the international standard IEC 60947-5-2.

A poor electromagnetic environment can lead to the malfunctioning of proximity switches. If the local conditions are above the limits defined in the standards, this can lead to problems, even with CE marked products:

The defined limits for electromagnetic emissions are intended for proximity switches used in an industrial environment. In other environments proximity switches can interfere with radio and TV reception, unless suitably shielded by the user.

Radiophones often have strong electromagnetic emissions which can, to a degree, be tolerated by Schmersal proximity switches. If high-power radiophones are to be used in the immediate vicinity of proximity switches, additional measures or precautions should be taken.

Proximity switches

CE marking of proximity switches

Standards for proximity switches

International standard EC standard	German standard	Title	
IEC 60947-1	EN 60947-1	VDE 0660 part 100	Low-voltage switchgear and controlgear part 1: General rules
IEC 60947-5-1	EN 60947-5-1	VDE 0660 part 200	Low-voltage switchgear and controlgear part 5-1: Control circuit devices and switching elements; electromechanical control cicuit devices
IEC 60947-5-2	DIN EN 60947-5-2	VDE 0660 part 208	Low-voltage switchgear and controlgear part 5-2: Control circuit device and switching elements; proximity switches
IEC 60664-1	HD 625.1S1	DIN VDE 0110 part 1	Insulation coordination for equipment within low-voltage systems part 1: Principles, requirements and tests
IEC 60204-1	EN 60204-1	VDE 0113 part 1	Electrical equipment of machines part 1: General requirements
IEC 60529	EN 60529	DIN VDE 0470 part 1	Degrees of protection provided by enclosures (IP code)
IEC 61000-6-4	EN 61000-6-4	VDE 0839-6-4	EMC standard, emission
IEC 61000-6-2	EN 61000-6-2	VDE 0839-6-2	EMC standard, immunity
CISPR 60011	EN 55011	VDE 0875 part 11	Limits and methods of measurement of radio disturbance of (ISM) radio-frequency equipment)
IEC 61000-4-2	EN 61000-4-2	VDE 0847 part 4-2	EMC-Testing and measurement techniques; electrostatic discharge immunity test
IEC 61000-4-3 61000-4-4	EN 61000-4-3	VDE 0847 part 4-3	EMC-Testing and measurement techniques; radiated, radio-frequency electromagnetic field immunity test

A proximity switch is a device which causes a switching action without physical contact. SCHMERSAL proximity switches respond to targets that come within the active range of their generated sensing fields. These units are completely self-contained, and house a field generator, amplifier, and other necessary circuitry to accomplish electronic switching. The units are all solid state and have no moving parts that can wear out. The electronic switches are not susceptible to contact contamination, contact erosion, or material transfer as are mechanical switches.

Their service life, within their specified ratings, is virtually unlimited. The switching is insensitive to vibration, and is positive (full step function) without chatter, regardles of how slowly the target approaches or recedes from the sensor.

In general, proximity switches should be considered in the following applications and situations:

- when contact difficulties due to environmental conditions, or an extremely low switching current is to be expected
- when no actuating forces are present
- when contact difficulties due to environmental conditions, or an extremely low switching current is to be expected
- when no actuating forces are present
- when high switching frequencies are required
- when a long life expectancy is necessary
- when extreme vibrations are present
- when a control unit is switched
- when by DC switching, contact bounce must be avoided
- where the switch must switch without any retaining force (retaining force of mechanical limit switches, magnetic force of magnetic reed switches).

When selecting a proximity switch type and application, the following factors must be considered:

- it makes a difference, if $A C$ or $D C$ has to be switched
- a direct or indirect supply voltage is required
- the switching distance varies, when the actuating surface is made of different materials as well as with different kind of surfaces.
- ambient temperatures have a slight influence on the switching distance
- embedding or non-embedding mounting must be considered
- a minimum mounting distance between two switches has to be observed
- especially with high actuating speeds, the length and the distance between the next actuating surface plays a role
- inductive proximity switches react only to metal surfaces
- humidity affects more or less the switching distances of capacitive sensors when using certain materials

Non-embeddable mounting of rectangular inductive proximity switches

Fig. 1 b

General information

- when choosing a capacitive proximity switch, consideration has to be taken, if direct contact with fluids is given
- dust can alter the switching distances of photoelectric proximity switches.

These factors will be discussed in further details on the following pages.

Mounting

(Embeddable and non-embeddable)

The sensing field of the active surface is not only emitted in a vertical direction but also to the side where it can be influenced. This type of the proximity switch is only suited for nonembeddable mounting. When mounting, care must be taken that no materials are in the vicinity which could influence the operation of the switch. The minimum mounting distances stated in figures 1a-1c and those in the specifications, have to be observed. By shorter mounting distances, the switching distance will also change causing unwanted dampening of the oscillator.

For embeddable-mounted proximity switches, a preventive measure has been implemented so that a side-ways spreading of the sensing field is avoided. The inductive proximity switches, for example, include a metal shielding ring around the coil which prevents the switch from being influenced from the side. On the other hand, the switch is pre-dampened and has a shorter switching distance as with a non-embeddable mounted proximity switch.

Proximity switches can influence each other, and therefore it is important that there is sufficient clearance when mounting the switches.

IFL Inductive proximity switches

The oscillator resonant circuit, located in the proximity switch, uses an open core coil to help produce a concentrated high frequency electromagnetic (RF) field, which emerges from the active surface of the sensor. If a electroconductive target (e.g. metal) enters this field, eddy currents are induced. The floating induced eddy current draws energy from the LC circuit (L: coil, C: capacitor) The load on the oscillator circuit evokes a decrease in the oscillating amplitude. The oscillator is attenuated (Fig. 2).
The decrease of the oscillating amplitude is converted into an electrical signal by the electronic circuit, which leads to a change of switching state of the proximity switch. When the electroconductive material is removed from the inductive field, the pulse amplitude increases and via the electronic circuit the original switching position is recreated. The oscillator is unattenuated.

Fig. 2

IFC Capacitive proximity switches

Capacitive proximity switches operate using an RC resonant circuit (resistor-capacitor), where the capacity is affected. To achieve this, the electrodes of the capacitor are separated. One electrode is located in the proximity switch on the active surface. The second electrode is either the target with earth or ground as return line, or ground itself, whereby the target causes a change in the dielectric medium (Fig. 3).

When this medium approaches the active surface and thus the capacitor electrode in the sensor, capacitance increases to the extent where, with the resistor, the value for tripping the resonant circuit is reached and the oscillator starts oscillating.

When the actuating target is removed from the active surface, the opposite occurs, and the oscillator stops oscillating. Commencement and ceasing of oscillation, evaluated by the connected electronic circuitry, produces a change in the switching state of the proximity switch. A built-in potentiometer permits fine adjustment of the actuating distance within the field. The sensor responds to all solid and liquid media, such as water, glass, wood, paper, metal, plastic, foodstuffs, etc.

Since air forms the dielectric medium of a capacitor, it should be taken into account that a

pronounced change in air humidity will cause a change in the operating distance, which in turn, can lead to unwanted switching operations as in the case of delicately adjusted proximity switches.

The model "D" capacitive sensors listed in this catalog are particularly suitable for such dielectric media as, e.g. plastics, ceramics, glass, wood, foodstuffs, etc. The active surface should not, however, remain wet as otherwise the sensor will remain actuated.

For such cases, our type "L" sensor is specially suited for electroconductive solid and liquid media, as it is deactuated, as soon as the wetting film breaks down.

Operating distance "s" of the inductive

 and capacitive proximity switchesRated operating (switching) distance S_{n} is included in the order code of the proximity switch (IFL XX-.../IFC XX-...). The effective operating distance S_{r}, for any given switch, at room temperature and design voltage, will be within $\pm 10 \%$ of S_{n}. It is determined by using square test targets of carbon steel, 1 mm thick (by axial approach to the active surface) (Fig. 4).

$$
S_{r}=S_{n} \pm 10 \%
$$

Usable operating distance S_{u}, will not vary from S_{r} by more than $\pm 10 \%$ over the voltage and temperature limits listed in the technical data.

$$
S_{u}=S_{n} \pm 10 \%
$$

For problem-free switching the proximity switch must, like a mechanical limit switch with snap action, have a switching hysterisis. This hysterisis (H) of the proximity switches is dependent on the effective operating distance and listed in the technical data of each proximity switch.

All mentioned operating distances refer to a 1 mm thick standard target consisting of carbon steel St 37. Other materials have different distance, values are given in the following diagram (Fig. 5).

Standard test plate

The switching distances S_{n} featuring in the technical data were calculated using a standard test plate. This square, single-surface test plate is made of 1 mm thick steel ST 37 (FE 360).

For capacitive proximity switches, this standard test plate is earthed. This standard test plate represents the optimal actuator for the proximity switches.
Deviations from these dimensions and from the material composition will lead to a reduced switching distance.

The standard test plate size (side length) is calculated as follows:

- Switching distance $S_{n} \times 3$ or
- Internal circle diameter of the active surface

The highest value is always applicable! For a proximity switch with a switching distance of 5 mm , the actuator should have the following dimensions: $15 \times 15 \times 1 \mathrm{~mm}$. For rated operating voltages Ue of over 50 VAC and 120 VDC, switches that are not doubleinsulated require a protective wire connection or protective measures against direct or indirect contact.

AC proximity switches (2-wire)

The AC inductive, capacitive and optical proximity switches listed in this catalogue are designed for two conductor connections and operate using alternating voltage. Similar to mechanical position switches, AC proximity switches are wired in series with the load (Fig. 6). The proximity switch receives its supply voltage through the load, making it operable.

Fig. 6
Since the switch requires power in order to operate, even when the switch is in the "off" state, a small current flows through the switch and its load. The "off-state current" is stated in the technical data for each switch. Care must be taken in the application of AC proximity switches to ensure that the "drop-out" currents of relays or other minimum required loads are greater than the off-state currents of the proximity switches. When the proximity switches are "on" (carrying load current), there will be a voltage drop of approximately three to eight volts according to each switch.

All AC proximity switches in this catalogue are internally protected against transient voltage peaks.

DC proximity switches (2-wire)

2-wire DC inductive, capacitive and optical proximity switches are switched in series with the load. This enables them to switch either from the supply voltage load or from the ground load, and are therefore capable of replacing NPN and PNP sensors (Fig. 8 and Fig. 9).

DC proximity switches (3- and 4-wire)

3 - and 4 -wire DC proximity switches have a separate power supply circuit and therefore an additional wire. These switches have a no load supply current in the barred state which does not flow through the load.

The 3-wire proximity switches either work as NO or NC contact and the 4-wire proximity switches have an antivalent output and can be used as change-over contact.

When selecting the proximity switch the output type must be considered:

P-type proximity switches (PNP) switch the positive potential to the load (Fig. 10).

N-type proximity switches (NPN) switch the negative potential to the load (Fig. 10).

Fig. 10

The DC proximity switches are all equipped with wrong polarity protection circuits. The proximity switch will not be destroyed by exchanging the + and - connection. No switching function will occur. A built-in by-pass diode protects the switch from inductive voltage peaks. A built-in offset resistor prevents the transistor output from receiving floating potential caused by spurious pulses when actuating an electronic circuit. Additionally, all optical proximity switches and the majority of the inductive proximity switches are equipped with short-circuit and industrial transients protection.

UC proximity switches

(AC and DC)/(2-wire)
The UC proximity switches which are listed can operate with AC and DC voltages, within the specified limits. They are constructed according to the 2 -wire system and are connected, as with the AC proximity switches, in series with the load.

When operating with 24 VDC, it should be verified that the load is properly operated with the specified voltage drop and off-state current.

Parallel switching

In principle, it is possible to connect proximity switches in series or parallel. However, the special features of each sensor type must be taken into consideration.

Parallel switching for

AC proximity switches

It must be observed that the sum of the residual currents from each proximity switch is not too large, causing the connected contactor to always remain energized. Specifications for the residual currents are shown in the technical data specifications.

Parallel switching is not a problem, when proximity switches are alternately switched. However, if two proximity switches are connected to a contactor and switched alternately, the switch which is attenuated first, will switch, causing a voltage drop across the load and depriving the second switch of sufficient operating voltage. Power is restored to the second switch once the target has passed the first switch, causing it to de-energize. The second switch detects its target and re-energizes the load. The result is a momentary opening of the load circuit by targets which overlap in their time span. A contactor circuit with self-hold is only conditionally possible (Fig. 12). This also applies, if a mechanical limit switch takes the place of one of the sensors.

Parallel switching for DC proximity switches

Since each DC switch receives a separate supply voltage, an almost unlimited amount of switches can be wired in parallel (Fig. 13). If proximity switches with built-in function indicators (LED) are wired in parallel, their outputs must be fitted with isolating diodes. This prevents the other LEDs from lighting up, if one switch is activated.

Series switching

Series switching for AC proximity switches Also with series switching, the voltage drop for each proximity switch and user must be taken into consideration. For this reason, only two, or at the most three sensors having a voltage drop of 8 V , can be connected in series (Fig. 14). A maximum of four switches can be connected in series when the voltage drop does not exceed 4.5 V.

Fig. 15

Series switching for DC proximity switches
With series switching, the breaking capacity of the first switch has to be taken into consideration. The "b1" proximity switch not only carries the full load currrent but also the sum of the no-load currents of all the other switches in series (Fig. 15).

IFO photoelectric proximity switches

Not all applications for proximity switches can be handled by inductive or capacitive types. Inductive proximity switches only react to metal material up to an operating distance of approximately 50 mm . Capacitive switches can also detect insulating materials, but only over relatively short operating distances. For this reason we are offering a third type of switch in our program, the IFO photoelectric switch series. With this series it is possible to widen the range of applications considerably. Additionally, it was also a very important aspect that the optical design of the switches complement each other, and that the construction of the internal switching circuitry corresponds to those of the inductive and capacitive switches listed in our program.

The IFO photoelectric switches are non-contact switches which are suitable for use as a diffuse-reflective sensor (without reflector) or as a retro-reflective sensor (with reflector). Light emitter, receiver, electronic evaluation circuitry and amplifier for AC or DC are all in one common housing (self-contained type). No additional power supply, switching units or amplifiers are necessary. The operating principle is based on modulated light, which is emitted through the front lens of the switch directly to the object or reflector which is to be detected. The reflected light reaches the receiver through a second lens, and is processed electronically, causing a change in the output condition of the switch. Removal of the object from the detection zone causes the switch to return to its original switching position. Due to the synchronization of emitter and receiver circuitry, the photoelectric switch is insensitive against interference and external light.

Photoelectric switches can only detect objects which reflect sufficient light. Therefore, the operating distance depends a lot on the surface condition (reflectivity) of the object to be detected. A smooth white surface allows for a much larger operating distance compared to a dull black surface finish. With some models, the optimum operating distance for each application can be set, using the built-in potentiometer. In this way, undesired background reflections are eliminated. The provided LED is also helpful when setting the sensing distance, as it shows switching condition and is used as a function indicator. It is further possible to choose between light operation (ON with reflection, corresponding to NO contact) and dark operation (OFF with reflection, corresponding to NC contact) by repositioning a small jumper at the terminal screws.

Applications for IFO photoelectric proximity switches

Basically, the photoelectric proximity switch can be used in two different modes:

- as diffuse reflective sensor (proximity switch) (Fig. 16)
- as retro-reflective sensor (with reflector)
(Fig. 17)

When operating as a diffuse reflective sensor, the emitted light from the sensor is diffuse reflected from the object to be detected. Part of this reflection enters the receiving lens of the sensor and causes a switching function.

When operating as a retro-reflective sensor, the emitted infrared light is reflected back to the receiver by a reflector (e.g. retro-reflector

RC 110). An interruption of this light beam by an object will cause a switching function.

Operation as a diffuse reflective sensor is preferred, when

- objects are to be detected at short distances
- the objects reflect sufficient light
- objects in the background do not cause interference, or if the interference can be eliminated by setting the potentiometer to reduced sensitivity
- limited space does not allow for the mounting of a reflector.

Operation as a retro-reflective sensor is

 preferred, when- long sensing ranges are required
- there are no interfering objects at close range, which could reflect the emitted light directly back to the receiver
- the mounting of a reflector is possible
- the sensing distance must be independent from the distance of object to sensor.

Mounting the IFO photoelectric proximity switch

All photoelectric switches can be embeddably mounted, but for a reliable function the following conditions have to be considered:

Diffuse reflective senor

With this type of operating system, where background reflections may cause interference, the setting of the potentiometer (if available) can in most cases eliminate this interference. To do this, the object is brought into the active range of the sensor, and the sensitivity is slowly lowered at the potentiometer (turning with screwdriver counterclockwise), until the LED indicator changes (potentiometer setting "object"). Now the object is completely removed from the active range and the sensitvity is slowly increased (turning clockwise) until the LED indicator changes again (potentiometer setting "background"). The final setting of sensitivity is now adjusted to the middle between the two limits (half number of turns between "object" and "background"). In order to obtain a stable function for the IFO 30/300 models there should be a minimum of six turns between the two settings "object" and "background" (i.e. optimum setting three turns in either direction). If there are less than six turns between the two settings or if the LED does not change when removing the object, it may be necessary to remove strong reflecting materials from the active sensing area or to cover them with dull black surfaces.

It must also be taken into consideration that due to the emitting and receiving angles of the double lens system, that for some models it is possible that an object cannot be detected at close range. From the determined minimum distance, all objects will be detected up to their maximum sensing range.

The minimum distance is dependent on the surface characteristics of the object and the sensitivity setting.

A special filter (VF 30), which can be mounted at the front of the IFO 30/300, reduces the sensing range and also allows for detection at close range, from 0 to 150 mm .

Proximity switches

General information

Retro-reflective sensor

With this operating method, where the light cannot be seen (infrared), the adjustment is not quite as simple as with barriers that operate with visible light. For easy adjustment and mounting, triple reflectors should be used instead of plane mirrors, where the adjustment has to be precise A simple method of adjustment, is to follow the infrared beam by holding the reflector and moving it. The reception of the reflected signal is indicated by the LED indicator.

The triple reflector allows for an angular misalignment of approximately $+15^{\circ}$ (Fig. 18).

When operating at close range, and depending on surface condition of the target and the settings of the potentiometer, all objects located within the sensing range should be removed as the direct reflection of these objects could cause interference.

Operating distance of the photoelectric proximity switch IFO

As a diffuse reflective sensor, the IFO has an operating range which depends on the surface condition (reflectivity) of the object, as well as on its size and the amount of pollution in the air.

The graph shows the response curve of the IFO 30/300, measured at varying distances from the sensor and with different settings of the potentiometer. The test object was a piece of white dull paper, 200 by 200 mm , with 90% refectivity, and a pollution-free environment was also given (Fig. 19).

Objects other than white dull paper with 90% reflectivity require correction factors. The following table shows approximate factors for some materials:

In addition to its surface structure, the size of an object plays an important role with regards to the operating range. Generally, the smaller an object is, the shorter the sensing range is. By increasing the object size, the operating range will also grow but will not continue to grow once a certain object size has been exceeded.

The size of the reflector, as well as the amount of air pollution, is an important factor for the operation of the retro-reflective sensor. Fog, mist, dust and smoke, shorten the maximum sensing range. With our RC 110 reflector and a pollution-free environment, the sensing range is approximately seven times that of a diffuse-reflective sensor using white dull paper, 200 by 200 mm . With our smaller R 101 to R 104 reflectors, the sensing range is correspondingly shorter.

Material	correction factor (approx.)
metal, shining	$1.2 \ldots 1.6$
aluminium, black	$1.1 \ldots 1.8$
styropor, white	1.0
PVC, grey	0.5
wood, raw	0.4
cardboard, dull black	0.1

Proximity switches

General information

Connection and wiring identification according to IEC 60947-5-2

Type	Function	Wire colour	Terminal number
2 terminals AC and	NO (make)	Any colour ${ }^{1)}$ except yellow, green	$\begin{aligned} & 3 \\ & 4 \end{aligned}$
2 terminals DC unpolarized	NC (break)	or green-and-yellow	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
2 terminals DC polarized	NO (make)	+ brown - blue	$\begin{aligned} & 1 \\ & 4 \end{aligned}$
	NC (break)	+ brown - blue	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
3 terminals DC polarized	NO output	+ brown - blue black	$\begin{aligned} & 1 \\ & 3 \\ & 4 \end{aligned}$
	NC output	+ brown - blue black	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$
4 terminals DC polarized	change-over (make/break) NO output NC output	+ brown - blue black white	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$

1) It is recommended that both wires are of same colour.

Note

The contact configuration of the NC contact types for all DC switches with plug-in connector does not conform to the IEC 60947-5-2.

The appropriate contact configuration is given on the corresponding catalogue page.

For rated operating voltages Ue of over 50 VAC and 120 VDC, switches that are not doubleinsulated require a protective wire connection or protective measures against direct or indirect contact.

Authorised tightening forces for proximity switches with threaded pipes

Model	Messing	Plastic	Note
M $8 \times 1 \mathrm{~mm}$	600 Ncm	-	
	0 Ncm		The core coil area may not be loaded!
M $12 \times 1 \mathrm{~mm}$	1500 Ncm	90 Ncm	
	500 Ncm		The core coil area may be subjected to small loads!
M $18 \times 1 \mathrm{~mm}$	1800 Ncm	300 Ncm	
M $30 \times 1.5 \mathrm{~mm}$	3000 Ncm	400 Ncm	

(P.) Personenschutzfunktion
(P) Positive break travel/angle
(L) Latching point
(H8) Lever actuation point

* Wire breakage monitoring
- Pull-wire monitoring
(1) Actuated
(4) Not actuated
(I) A / F
(1) Inductive proximity switch
[\downarrow Magnetic safety sensor, non-contact safety sensor
I_{0} No-load current
I_{e} Rated operating current
I_{m} Minimum operating current
I_{r} Leakage current
$I_{\text {the }}$ Thermal test current
\mathbf{U}_{d} Voltage drop
\mathbf{U}_{e} Rated operating voltage
$\mathbf{U}_{\mathbf{i}}$ Rated insulation voltage
$\mathbf{U}_{\mathrm{imp}}$ Rated impulse withstand voltage
$\mathbf{U}_{\mathbf{S}}$ Rated supply voltage
\mathbf{S}_{n} Rated switching distance
(1) SA approval, Sweden
(1L) UL approval, USA
(IUL) Us UL/CSA approval, USA
(51) CSA approval, Canada
${ }^{\text {© } \$_{\text {Us }}}$ CSA/UL approval, Canada
TUV TÜV approved
椸 BG approved
(\in Compliance with directives, see declaration of conformity
K.A. Schmersal GmbH

Safety control systems

Möddinghofe 30
D-42279 Wuppertal
Postfach 240263
D-42232 Wuppertal
Phone: +49-(0) 2 02-64 74-0
Fax: $+49-(0) 2$ 02-64 74-100
E-Mail: info@schmersal.de
Internet: www .schmersal.com

[^0]: * These actuators are only suitable for positioning tasks!

[^1]:

[^2]: For the appropriate actuator: see page 1-146

 | 12 | $1 \mathrm{NO} / 2 \mathrm{NC}$ |
 | :--- | :--- |
 | 21 | $2 \mathrm{NO} / 1 \mathrm{NC}$ |
 | 30 | 3 NO |
 | 22 | $2 \mathrm{NO} / 2 \mathrm{NC}$ |
 | 31 | $3 \mathrm{NO} / 1 \mathrm{NC}$ |
 | 40 | 4 NO |
 | r | Position latching $2 \times 45^{\circ}$ |

[^3]: Switching capacity:

