Selection diagram

Code structure

Housing	
FR	technopolymer, one conduit entry
FM	metal, one conduit entry
FX	technopolymer, two conduit entries
FZ	metal, two conduit entries
	Contact blocks
$\mathbf{5}$	1NO+1NC, snap action
$\mathbf{6}$	1NO+1NC, slow action
$\mathbf{9}$	2NC, slow action
$\mathbf{1 8}$	1NO+1NC, slow action
$\mathbf{2 0}$	1NO+2NC, slow action
$\mathbf{2 1}$	3NC, slow action
$\mathbf{2 2}$	2NO+1NC, slow action
$\mathbf{3 3}$	1NO+1NC, slow action
$\mathbf{3 4}$	2NC, slow action
$\mathbf{6 6}$	1NC, slow action

Actuators

C1 slotted hole lever at the right
C2 straight slotted hole lever
C3 slotted hole lever at the left
C4 slotted hole lever at the right (without bend)
C5 straight slotted hole lever (without bend)

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors
no cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$

K70 M12 plastic connector, 4-pole

For the complete list of possible combinations please contact our technical department.

Threaded conduit entry		
M2	M20×1.5	(standard)
M1	M16x1.5 (FR-FX housing only)	
	PG 13.5	
A	PG 11 (FR-FX housing only)	

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating
G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact blocks 20, 21, 22, 33, 34)
FK 33C1-GM1K24

Housing

FK technopolymer, one conduit entry

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands no cable gland (standard)
K24 cable gland for cables $\varnothing 5 \ldots 10^{\circ} \mathrm{mm}$
K28 cable gland for cables $\emptyset 3 \ldots 7^{\circ} \mathrm{mm}$

Threaded conduit entry

M1 M16×1.5 (standard)
PG 11

Contact type

silver contacts (standard)

G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Main features

- Metal housing or technopolymer housing, from one to two conduit entries
- Protection degree IP67
- 10 contact blocks available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:	EG610
UL approval:	E131787
CCC approval:	2007010305230013
EAC approval:	RU C-IT.YT03.B.00035/19

Technical data

Housing

FR, FX and FK series housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FM and FZ series: metal housing, baked powder coating.
FR, FM series: one threaded conduit entry: M20×1.5 (standard)
FK series: one threaded conduit entry: M16x1.5 (standard)
FX series: two knock-out threaded conduit entries:
FZ series: two threaded conduit entries:
Protection degree:
M20×1.5 (standard)
M20×1.5 (standard)
IP67 acc. to EN 60529 with
cable gland of equal or
higher protection degree

General data

SIL (SIL CL) up to:
Performance Level (PL) up to:
Mechanical interlock, not coded:
Safety parameters:
$\mathrm{B}_{10 \mathrm{D}}$:
Mission time:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
Wire cross-sections and
wire stripping lengths:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119
2,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (T6 option)
3600 operating cycles/hour
1 million operating cycles
180%
2%
see page 341
see page 357

In compliance with standards:

IEC 60947-5-1, IEC 60947-1, IEC 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 50581, UL 508, CSA 22.2 No. 14

Approvals:

EN 60947-5-1, UL 508, CSA 22.2 No.14, GB/T14048.5-2017.

Compliance with the requirements of:
Machinery Directive 2006/42/EC, EMC Directive 2014/30/EU,
RoHS Directive 2011/65/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
. If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 337 to 350.

Electrical data			Utilization category
	Thermal current ($\left.\right\|_{\text {th }}$): Rated insulation voltage (U_{i}): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ $U_{e}(\mathrm{~V})$ 250 400 500 $\mathrm{I}_{e}(\mathrm{~A})$ 6 4 1 Direct current: DC13 $U_{e}(\mathrm{~V})$ 24 125 250 $\mathrm{I}_{e}(\mathrm{~A})$ 3 0.55 0.3
	Thermal current $\left(l_{\text {th }}\right)$: Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	
	Thermal current $\left(l_{\text {th }}\right)$: Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ $U_{e}(V) \quad 24$ $I_{e}(A) \quad 2$ Direct current: DC13 $U_{e}(V) \quad 24$ $I_{e}(A) \quad 2$

Description

These safety switches are used to control gates or guards with hinges protecting dangerous parts of machines without inertia. Easy to install, they do not need the interaction with the hinge of the guard. They are very sensitive, open the contacts after few degrees of rotation and immediately send the stop signal.

Head with variable orientation

For all switches, the head can be adjusted in 90° steps after removing the four fastening screws. This allows you to use the same switch on both right- and left-facing door fronts.

Application examples

Safety switch with slotted hole lever, mounting inside the safety guard

Safety switch with slotted hole lever,
mounting on guards which open up to 180°

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Features approved by IMO

Rated insulation voltage (U_{i}): 500 Vac	
	400 Vac (for contact blocks 20, 21, 22, 33, 34)
Conventional free air thermal current ($l_{\text {th }}$): 10 A	
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage (6 kV 4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	3
Utilization category:	AC15
Operating voltage (U_{e}):	$400 \mathrm{Vac}(50 \mathrm{~Hz}$)
Operating current (I_{e}):	3 A
Forms of the contact element: $\mathrm{Zb}, \mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$	
Positive opening contacts on con In compliance with standards requirements of the Low Voltage	blocks 5, 7, 9, 18, 20, 21, 22, 33, 34, 66 60947-1, EN 60947-5-1, fundamental tive 2014/35/EU.

[^0]
Features approved by UL

Electrical Ratings:

Q300 pilot duty ($69 \mathrm{VA}, 125-250 \mathrm{~V}$ dc) A600 pilot duty ($720 \mathrm{VA}, 120-600 \mathrm{~V}$ ac)
Environmental Ratings: Types 1, 4X, 12, 13
Use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size range 12, 14 AWG, stranded or solid. The terminal tightening torque of 7.1 lb in (0.8 Nm).
For FR, FX, FK series: the hub is to be connected to the conduit before the hub is connected to the enclosure.

Please contact our technical department for the list of approved products.

	Technopolymer housing	Technopolymer housing	Technopolymer housing
Contact type: $\begin{array}{ll} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L A} & =\text { slow action } \\ \text { close } \end{array}$			
5 R	FR 5C1-M2 Θ 1NO+1NC	FR 5C2-M2 $\quad \Theta$ 1NO+1NC	FR 5C3-M2 $\quad \Theta$ 1NO+1NC
6 L	FR 6C1-M2 Θ 1NO+1NC	FR 6C2-M2 Θ 1NO+1NC	FR 6C3-M2 Θ 1NO+1NC
9 L	FR 9C1-M2 Θ 2NC	FR 9C2-M2 Θ 2NC	FR 9C3-M2 Θ 2NC
18 LA	FR 18C1-M2 Θ 1NO+1NC	FR 18C2-M2 Θ 1NO+1NC	FR 18C3-M2 Θ 1NO+1NC
20 L	FR 20C1-M2 Θ 1NO+2NC	FR 20C2-M2 Θ 1NO+2NC	FR 20C3-M2 Θ 1NO+2NC
21 L	FR 21C1-M2 Θ 3NC	FR 21C2-M2 Θ 3NC	FR 21C3-M2 Θ 3NC
22 L	FR 22C1-M2 Θ 2NO+1NC	FR 22C2-M2 Θ 2NO+1NC	FR 22C3-M2 Θ 2NO+1NC
33 L	FR 33C1-M2 Θ 1NO+1NC	FR 33C2-M2 Θ 1NO+1NC	FR 33C3-M2 Θ 1NO+1NC
34 L	FR 34C1-M2 Θ 2NC	FR 34C2-M2 Θ 2NC	FR 34C3-M2 Θ 2NC
66 L	FR 66C1-M2 Θ 1NC	FR 66C2-M2 Θ 1NC	FR 66C3-M2 Θ 1NC
Actuating force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 344 - group 10	page 344 - group 11	page 344 - group 10

	Technopolymer housing	Technopolymer housing	Technopolymer housing
Contact type: $\begin{aligned} & \hline \mathbf{R}=\text { snap action } \\ & \hline \hline \mathbf{L}=\text { slow action } \\ & \hline \mathbf{L A}=\text { slow action } \\ & \text { close } \end{aligned}$			
5 R	FX 5C1-M2 $\quad \Theta$ 1NO+1NC	FX 5C2-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FX 5C3-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$
6 L	FX 6C1-M2 Θ 1NO+1NC	FX 6C2-M2 \quad - 1NO+1NC	FX 6C3-M2 Θ 1NO+1NC
9 L	FX 9C1-M2 Θ 2NC	FX 9C2-M2 Θ 2NC	FX 9C3-M2 Θ 2NC
18 LA	FX 18C1-M2 Θ 1NO+1NC	FX 18C2-M2 Θ 1NO+1NC	FX 18C3-M2 Θ 1NO+1NC
20 L	FX 20C1-M2 Θ 1NO+2NC	FX 20C2-M2 Θ 1NO+2NC	FX 20C3-M2 Θ 1NO+2NC
21 L	FX 21C1-M2 Θ 3NC	FX 21C2-M2 Θ 3NC	FX 21C3-M2 Θ 3NC
22 L	FX 22C1-M2 Θ 2NO+1NC	FX 22C2-M2 Θ 2NO+1NC	FX 22C3-M2 Θ 2NO+1NC
33 L	FX 33C1-M2 Θ 1NO+1NC	FX 33C2-M2 Θ 1NO+1NC	FX 33C3-M2 Θ 1NO+1NC
34 L	FX 34C1-M2 Θ 2NC	FX 34C2-M2 Θ 2NC	FX 34C3-M2 Θ 2NC
66 L	FX 66C1-M2 Θ 1NC	FX 66C2-M2 Θ 1NC	FX 66C3-M2 Θ 1NC
Actuating force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 344 - group 10	page 344 - group 11	page 344 - group 10

Contact type:
$\mathbf{R}=$ snap action $\mathbf{l}=$ slow action $\mathbf{L A}=$ slow action close

	Metal housing	Metal housing	Metal housing
Contact type: $\begin{aligned} \hline \mathbf{R} & =\text { snap action } \\ \hline \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L A} & =\text { slow action } \\ & \text { close } \end{aligned}$ Contact blocks			
5 R	FZ 5C1-M2 $\quad \Theta$ 1NO+1NC	FZ 5C2-M2 $\quad \Theta$ 1NO+1NC	FZ 5C3-M2 \quad 1 ${ }^{\text {a }}$ (NO+1NC
6 L	FZ 6C1-M2 Θ 1NO+1NC	FZ 6C2-M2 Θ 1NO+1NC	FZ 6C3-M2 Θ 1NO+1NC
9 L	FZ 9C1-M2 Θ 2NC	FZ 9C2-M2 Θ 2NC	FZ 9C3-M2 Θ 2NC
18 LA	FZ 18C1-M2 Θ 1NO+1NC	FZ 18C2-M2 Θ 1NO+1NC	FZ 18C3-M2 Θ 1NO+1NC
20 L	FZ 20C1-M2 Θ 1NO+2NC	FZ 20C2-M2 Θ 1NO+2NC	FZ 20C3-M2 Θ 1NO+2NC
21 L	FZ 21C1-M2 Θ 3NC	FZ 21C2-M2 Θ 3NC	FZ 21C3-M2 Θ 3NC
22 L	FZ 22C1-M2 Θ 2NO+1NC	FZ 22C2-M2 Θ 2NO+1NC	FZ 22C3-M2 Θ 2NO+1NC
33 L	FZ 33C1-M2 Θ 1NO+1NC	FZ 33C2-M2 Θ 1NO+1NC	FZ 33C3-M2 Θ 1NO+1NC
34 L	FZ 34C1-M2 Θ 2NC	FZ 34C2-M2 Θ 2NC	FZ 34C3-M2 Θ 2NC
66 L	FZ 66C1-M2 Θ 1NC	FZ 66C2-M2 Θ 1NC	FZ 66C3-M2 Θ 1NC
Actuating force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 344 - group 10	page 344 - group 11	page 344 - group 10

\begin{tabular}{|c|c|c|c|}
\hline \& Technopolymer housing \& Technopolymer housing \& Technopolymer housing

\hline Contact type:
$\begin{aligned} & \text { L }=\text { slow action }\end{aligned}$

Contact blocks \& \& \&

\hline 33 L \& FK 33C1-M1 Θ 1NO+1NC \& FK 33C2-M1 Θ 1NO+1NC \& FK 33C3-M1 Θ 1NO+1NC

\hline 34 L \& FK 34C1-M1 Θ 2NC \& FK 34C2-M1 Θ 2NC \& FK 34C3-M1 Θ 2NC

\hline Actuating force \& $0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$ \& $0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$ \& $0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$

\hline Travel diagrams \& page 344 - group 10 \& page 344 - group 11 \& page 344 - group 10

\hline
\end{tabular}

	Technopolymer housing	Technopolymer housing
Contact type: \square = slow action		
33 L	FK 33C4-M1 $\quad \rightarrow$ 1NO+1NC	FK 33C5-M1 $\quad \rightarrow$ 1NO+1NC
34 L	FK 34C4-M1 Θ 2NC	FK 34C5-M1 Θ 2NC
Actuating force	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$	$0.11 \mathrm{Nm}(0.15 \mathrm{Nm} \Theta)$
Travel diagrams	page 344-group 10	page 344-group 11

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Please contact our technical department for the list of approved products.

