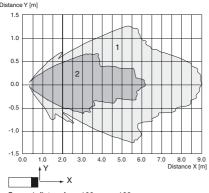


Model Number

UB6000-30GM-E5-V15


Single head system

Features

- · Switch output
- 5 different output functions can be set
- Program input
- · Synchronization options
- · Deactivation option
- Temperature compensation
- Insensitive to compressed air

Diagrams

Characteristic response curve

Curve 1: flat surface 100 mm x 100 mm Curve 2: round bar, Ø 25 mm

Technical data

General specifications	ing range 350 6000 mm	
Sensing range	350 6000 mm	
Adjustment range	400 6000 mm	
Dead band	0 350 mm	
Standard target plate	100 mm x 100 mm	
Transducer frequency	approx. 65 kHz	
Response delay	approx. 650 ms	

Indicators/operating means

LED green solid: Power-on

flashing: program function object detected solid: switching state switch output flashing: program function

LED red normal operation: "fault" program function: no object detected

Electrical specifications

Operating voltage U_B 10 ... 30 V DC , ripple 10 %_{SS}

No-load supply current $I_0 \le 50 \text{ mA}$

Input/Output
Synchronization bi-directional

0 level -U_B...+1 V 1 level: +4 V...+U_B

input impedance: > 12 KOhm

synchronization pulse: $\geq 100~\mu s,$ synchronization interpulse

period: ≥ 2 ms

Synchronization frequency
Common mode operation

Multiplex operation \leq 7 Hz / n , n = number of sensors , n \leq 5

Input Input type 1 prog

put type 1 program input, operating range 1: -U_B ... +1 V, operating range 2: +4 V ...

U_B

input impedance: > 4.7 k Ω ; program pulse: \geq 1 s

Output

< 7 Hz

Output type 1 switch output PNP , Normally open/closed , programmable Rated operating current I_e 200 mA , short-circuit/overload protected

Voltage drop U_d $\leq 2.5 \text{ V}$

Repeat accuracy $\leq 0.5\%$ of switching point

Switching frequency f $\leq 0.8 \text{ Hz}$

Range hysteresis H 1 % of the set operating distance

Temperature influence <2 % of far switch point Ambient conditions

Ambient temperature -25 ... 70 °C (-13 ... 158 °F)

Storage temperature -40 ... 85 °C (-40 ... 185 °F)

Mechanical specifications

Connection type Connector M12 x 1 , 5-pin
Degree of protection IP65

Degree of protection IP

Housing nickel plated brass; plastic components: PBT

Transducer epoxy resin/hollow glass sphere mixture; polyurethane foam

Mass 250 g

Factory settings
Output Switch point A1: 880 mm

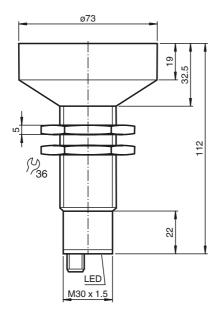
Switch point A1: 880 mm Switch point A2: 6300 mm output function: Window mode

output behavior: NO contact

Compliance with standards and directives

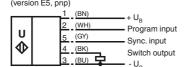
Standard conformity

Standards EN 60947-5-2:2007 + A1:2012 IEC 60947-5-2:2007 + A1:2012


Approvals and certificates

UL approval cULus Listed, General Purpose
CSA approval cCSAus Listed, General Purpose

CCC approval / marking not required for products rated ≤36 V


www.pepperl-fuchs.com

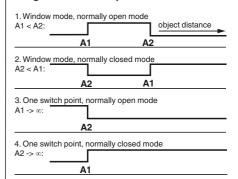
Dimensions

Electrical Connection

Standard symbol/Connections: (version E5, pnp)

Wire colors in accordance with EN 60947-5-2.

Pinout



Wire colors in accordance with EN 60947-5-2

1	BN	(brown)
2	WH	(white)
3	BU	(blue)
4	BK	(black)
5	GY	(gray)

Additional Information

Programmable output modes

5. A1 -> ∞ , A2 -> ∞ : Object presence detection mode Object detected: Switch output closed No object detected: Switch output open

FPEPPERL+FUCHS

Accessories

BF 30

Mounting flange, 30 mm

Universal mounting bracket for cylindrical sensors with a diameter of 5 ... 30 mm

UB-PROG2

Programming unit

V15-G-2M-PVC

Female cordset, M12, 5-pin, PVC cable

Description of Sensor Functions

Programming procedure

The sensor features a programmable switch output with two programmable switch points. Programming the switch points and the operating mode is done by applying the supply voltage -UB or +UB to the Teach-In input. The supply voltage must be applied to the Teach-In input for at least 1 s. LEDs indicate whether the sensor has recognized the target during the programming procedure.

If a programming adapter UB-PROG2 is used for the programming procedure, button A1 is assigned to -UB and button A2 is assigned to +UB.

Programming of the switch output

Window Modes

Normally open (NO) output

- 1. Place the target at the near end of the desired switch window
- 2. Program the window boundary by applying -U_B to the Teach-In input (yellow and green LEDs flash)
- 3. Disconnect the Teach-In input from -U_B to save the window boundary
- 4. Place the target at the far end of the desired switch window
- 5. Program the window boundary by applying $+U_B$ to the Teach-In input (yellow and green LEDs flash)
- 6. Disconnect the Teach-In input from +U_B to save the window boundary

Normally closed (NC) output

- 1. Place the target at the near end of the desired switch window
- 2. Program the window boundary by applying +UB to the Teach-In input (yellow and green LEDs flash)
- 3. Disconnect the Teach-In input from $+U_B$ to save the window boundary
- 4. Place the target at the far end of the desired switch window
- 5. Program the window boundary by applying -U_B to the Teach-In input (yellow and green LEDs flash)
- 6. Disconnect the Teach-In input from -UB to save the window boundary

Switch Point Modes

Normally open (NO) output

- 1. Place the target at the desired switch point position
- 2. Program the switch point by applying +UB to the Teach-In input (yellow and green LEDs flash)
- 3. Disconnect the Teach-In input from $+U_B$ to save the switch point
- 4. Cover the sensor face with hand or remove all objects from sensing range
- 5. Program the switch point by applying -U_B to the Teach-In input (red and yellow LEDs flash)
- 6. Disconnect the Teach-In input from -U_B to save the switch point

Normally closed (NC) output

- 1. Place the target at the desired switch point position
- 2. Program the switch point by applying -U_B to the Teach-In input (yellow and green LEDs flash)
- 3. Disconnect the Teach-In input from -UB to save the switch point
- 4. Cover the sensor face with hand or remove all objects from sensing range
- 5. Program the switch point by applying $+U_B$ to the Teach-In input (red and yellow LEDs flash)
- 6. Disconnect the Teach-In input from +U_B to save the switch point

Object Detection Mode

- 1. Cover the sensor face with hand or remove all objects from sensing range
- 2. Apply -U_B to the Teach-In input (red and yellow LEDs flash)
- 3. Disconnect the Teach-In input from $+U_B$ to save the setting
- 4. Apply +UB to the Teach-In input (red and yellow LEDs flash)
- 5. Disconnect the Teach-In input from +U_B to save the setting

Factory settings

See technical data.

Display

097974_eng.xml

Date of issue: 2016-04-25

date: 2016-04-25 09:39

The sensor provides LEDs to indicate various conditions.

	Green LED	Red LED	Yellow LED
During Normal operation			
Proper operation	On	Off	Switching state
Interference (e.g. compressed air)	Off	Flashing	Previous state
During sensor programming			
Object detected	Flashing	Off	Flashing
No object detected	Off	Flashing	Flashing
Object uncertain (programming invalid)	Off	Flashing	Flashing

This sensor features a synchronization input for suppressing ultrasonic mutual interference ("cross talk"). If this input is not connected, the sensor

will operate using internally generated clock pulses. It can be synchronized by applying an external square wave. The pulse duration must be \geq 100 μ s. Each falling edge of the synchronization pulse triggers transmission of a single ultrasonic pulse. If the synchronization signal remains low for \geq 1 second, the sensor will revert to normal operating mode. Normal operating mode can also be activated by opening the signal connection to the synchronization input (see note below).

If the synchronization input goes to a high level for > 1 second, the sensor will switch to standby mode, indicated by the green LED. In this mode, the outputs will remain in the last valid output state.

Note:

If the option for synchronization is not used, the synchronization input has to be connected to ground (0 V) or the sensor must be operated via a V1 cordset (4-pin).

The synchronization function cannot be activated during programming mode and vice versa.

The following synchronization modes are possible:

- 1. Several sensors (max. number see technical data) can be synchronized together by interconnecting their respective synchronization inputs. In this case, each sensor alternately transmits ultrasonic pulses in a self multiplexing mode. No two sensors will transmit pulses at the same time (see note below).
- 2. Multiple sensors can be controlled by the same external synchronization signal. In this mode the sensors are triggered in parallel and are synchronized by a common external synchronization pulse.
- 3. A separate synchronization pulse can be sent to each individual sensor. In this mode the sensors operate in external multiplex mode (see note below).
- 4. A high level $(+U_B)$ on the synchronization input switches the sensor to standby mode.

Note:

Sensor response times will increase proportionally to the number of sensors that are in the synchronization string. This is a result of the multiplexing of the ultrasonic transmit and receive signal and the resulting increase in the measurement cycle time.

Installation conditions

If the sensor is installed in an environment where the temperature can fall below 0 °C, one of these mounting flanges must be used for mounting: BF30, BF30-F, or BF 5-30.

If the sensor is mounted in a through hole using the included steel nuts, it must be mounted at the middle of the threaded housing. If it must be mounted at the front end of the threaded housing, plastic nuts with centering ring (optional accessories) must be used.