4 Steps for selecting the appropriate proximity switch

The purpose of this selection process is to determine which switch type is best suited to the application. This depends on the material properties of the target to be detected.

If the object is made of metal, then an inductive proximity switch should be used.

If the object is made of plastic or paper or if it is a liquid (oil or water), granulate or powder, then a capacitive proximity switch should be applied

A magnetic field sensor is suitable for objects capable of carrying magnets.

Additional information on the functions of these proximity switches can be found at the beginning of the respective sections.

To find the best proximity switch for your application, proceed according to the following 4 steps:

Step
1

2

Step

3

Step
4

Step Sensing range (mm)
Housing design

Electrical data and connections

General specifications

Step Housing design

Housing material

The standard housing materials are:

- Stainless steel V2A,
- Nickel-plated or Teflon-coated brass,
- Crastin ${ }^{\circledR}$ (PBT)
- Ryton ${ }^{\circledR}$ (PPS)
- Polyamide (PA)

Crastin ${ }^{\circledR}$ is a semi-crystalline polybutyleneterephthalate (PBT) which is reinforced with fibreglass. It retains its shape extremely well, is resistant to abrasion, heat and cold, and resists hydrocarbons (for example trichloroethylene), acids (for example 28% sulphuric acid), sea water, hot water ($70^{\circ} \mathrm{C}$), etc.
Pepperl+Fuchs uses Ryton ${ }^{\circledR}$, a crystalline polyphenylene sulphide (PPS) for temperatures up to $150^{\circ} \mathrm{C}$. The material is designed to withstand temperatures up to $200{ }^{\circ} \mathrm{C}$. The electronics are resin-potted within a vacuum

Cable material

- PVC (Polyvinylchloride):

Standard quality of the electronic industry medium-resistant to all oils and greases and highly resistant to abrasion.

- PUR (Polyurethane):

Resistant to all oils, greases and solvents, non-brittle, highly resistant to abrasion.

- Silicone:

Ideal for extreme temperatures $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+180^{\circ} \mathrm{C}\right)$, medium-resistant to abrasion, oils, greases, and solvents.

	Temperature range for	
	PVC leads	PUR leads
Moving	$-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$
Not moving	$-30^{\circ} \mathrm{C} \ldots 80^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C} \ldots 100^{\circ} \mathrm{C}$

Rectangular proximity switches

This housing design, introduced by Pepperl+Fuchs under the brand name VariKont and VariKont M, has a mounting hole configuration (IC30 and IC40 design) according to the EN 60947 European standard. This configuration is the same as for mechanical proximity switches. The VariKont consists of a robust base enclosure (PBT or metal) which is screwed onto the mounting surface and contains the terminal connections. The top part, which is made of PBT, is sealed against the base enclosure with neoprene and carries the encoded connector. The top part contains the switch amplifier. The sensor head is convertible in five directions, i.e. the active surface can be directed forward, right, left, up or down.
The main difference between the VariKont and VariKont M types is their dimensions. In addition to terminal connections, this product line is also available with V1 plug connectors. The VariKont line has recently been enlarged by the addition of the VariKont L. This design has no terminal compartment and is therefore more compact. Moreover, it can be mounted using only a screwdriver and the active face is adjustable at increments of 15° within two planes. The connection is made with a cable or V1 plug connector.

Type	Dimensions (face size) mm	Adjustments (head)
VariKont	40×40 or 55×55	Adjustable to 90°
VariKont M	30×30	Adjustable to 90° in 15° increments
VariKont L	40×40	Adjustable to 90° in 15° increments

Surface switches (FP)

These block-shaped proximity switches have a large face ($80 \mathrm{~mm} \times 80 \mathrm{~mm}$) and a correspondingly large sensing range. They consist of two components: the base contains the terminal compartment and the top part the connector pins, sensor element and vacuum resin-potted electronics. The top part is always made of PBT and the bottom part either PBT or cast metal. The mounting hole configuration (ID80 design) conforms to the European standard EN 60947.

Cylindrical proximity switches

The active sensing zone of these switches is at the tip of the switch, perpendicular to the switch axis. They are available in diameters from 3 mm (without threading) or 4 mm (with threading) to 30 mm (with threading) or 40 mm plain (with terminal housing).

Slot type inductive proximity switches

These have a U-shaped housing made of PBT. The alternating electromagnetic field is generated between two coils which are mounted opposite each other in the shanks of the U-shape. The switching function is activated when the object (metal target) passes through the zone between the coils.

Ring type inductive proximity switches

These proximity switches are arranged in the form of a ring within which the alternating electromagnetic field is concentrated. The switching function is activated when a metallic object passes through the ring.
The housing material is made of PBT.

Screw mounted proximity switches

These small proximity switches are mounted on a designated surface with screws. Versions are available with the active sensing zone facing upwards or forwards.
The housing is normally made of PBT.

Pepperl+Fuchs produces among others the following models:

Housing	Dimensions $\mathbf{(W \times H \times D} \mathbf{~ m m ~}$
F1	$26 \times 12 \times 40$
F9	$16 \times 16.5 \times 38.5$
F10	$25 \times 25.5 \times 38.5$
F11	$30 \times 30.5 \times 52.5$
F17	$50 \times 30 \times 7$
F29	$27 \times 10 \times 7.2$
F33	$50 \times 25 \times 10$
F33M	$50 \times 50 \times 7.2$
F79	$16 \times 8 \times 4.7$

Step Sensing range (mm)
 2

The sensing range is the most important parameter of a proximity switch. It is primarily dependent on the diameter of the sensor (coil or capacitor). Other influencing factors are the dimensions and the material composition of the target as well as the ambient temperature. With magnetic proximity sensors, the alignment and field intensity of the relevant magnet must also be considered.

Definition of the sensing range

EN 60947-5-2 defines the sensing range for all types of proximity switches apart from slot and ring types.

There are two ways of operating a proximity switch:

- axially approaching objects
- radially approaching objects

The following definitions apply only to axial operation.

Nominal sensing range $\mathbf{s}_{\boldsymbol{n}}$

The nominal sensing range (according to EN 60947-2-5 "Rated Sensing Range") is a standard value for determining the operating distance. It does not take into account process tolerances or changes due to outside influences such as voltage and temperature.

Standard measuring plate

The following sensing ranges are determined with a standard target. This target is square in shape with a thickness of 1 mm and is made of steel, for example type FE 360 (ST37) with a smoothed surface.

Its profile is either

- $1 x$ the inner circular diameter of the active surface or
- $3 \times \mathrm{s}_{\mathrm{n}}$.

The greater of the values applies in each case. The standard target must be grounded when using capacitive proximity switches.

Example 1:

Proximity switch M18
Sensing range 5 mm
$3 \times$ sensing range $=15 \mathrm{~mm}<$ diameter
Therefore, the target must be $(18 \times 18 \times 1) \mathrm{mm}$ in size

Example 2:

Proximity switch M18
Sensing range 8 mm
$3 x$ sensing range $=24 \mathrm{~mm}$
Therefore, the target must be ($24 \times 24 \times 1$) mm in size
This standard measuring plate is designed to ensure optimal performance!
The use of different dimensions or materials will reduce the sensing range!

Effective sensing range $\mathbf{s}_{\mathbf{r}}$

Sensing range of an individual proximity switch measured at an ambient temperature of $(23 \pm 5)^{\circ} \mathrm{C}$, based on the operating voltage range and the specified installation conditions:

$$
0.9 \cdot \mathrm{~s}_{\mathrm{n}} \leq \mathrm{s}_{\mathrm{r}} \leq 1.1 \cdot \mathrm{~s}_{\mathrm{n}}
$$

Useful sensing range s_{u}

The sensing range of an individual proximity switch measured at an ambient temperature range between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$, at a supply voltage between 85% and 110% of the rated operating voltage:

$$
0.9 \cdot s_{r} \leq s_{u} \leq 1.1 \cdot s_{r}
$$

Assured sensing range \mathbf{s}_{a}

The distance from the active sensor face in which the operation of the proximity switch is guaranteed based on established conditions:

$$
0 \leq \mathrm{s}_{\mathrm{a}} \leq 0.81 \cdot \mathrm{~s}_{\mathrm{n}}
$$

Repeat accuracy R

The variation of the actual sensing range s_{r}, measured over a period of eight hours with a housing temperature of $(23 \pm 5){ }^{\circ} \mathrm{C}$, an unspecified relative humidity and a supply voltage of $\mathrm{U}_{\mathrm{e}} \pm 5 \%$ or an unspecified voltage of $\pm 5 \%$ within the rated operating voltage range:

$$
R \leq 0.1 \cdot s_{r}
$$

Hysteresis H

Distance between the switching points at which the target approaches and moves away from the proximity switch. This value is specified in relation to the effective sensing range $\mathrm{s}<\mathrm{F} 8>\mathrm{r}<\mathrm{FO}$ > measured at an ambient temperature of $(23 \pm 5){ }^{\circ} \mathrm{C}$ and the rated operating voltage:

$$
\mathrm{H} \leq 0.2 \cdot \mathrm{~s}_{\mathrm{r}} .
$$

Switched off with certainty

A proximity switch is switched off with certainty when the distance from the target to the active sensor face is at least three times the nominal sensing range s_{n}.

Lateral approximation

So far, we have only discussed the axial approach of the standard target. If the target is moved laterally through the active zone, however, a different sensing range (s) is obtained depending on the axial distance. This relationship is described by the response curve.

Influences on the sensing range

Besides its dimensions, the material composition of the target also plays an important role. This is described by the reduction factor. The reduction factor is the factor by which the sensing range is reduced based on different materials compared to steel FE 360 (St37) as a reference material for inductive proximity switches and a grounded plate for capacitive proximity switches. The smaller the reduction factor, the smaller the sensing range for the specific material. This reduction factor can vary depending on the housing and shielding material, among other criteria. For this reason, the customer should refer to the value in the relevant data sheet.

For inductive proximity switches, the conductivity/permeability quotient of the target is the parameter for the reduction factor. The following table contains some typical values for the reduction factor:

Material	Reduction factor
Steel	1
Aluminium foils	1
Stainless steel	0.85
Aluminium	0.4
Brass	0.4
Copper	0.3

In capacitive proximity switches, the relative permittivity is the parameter for the reduction factor. The following table contains some typical values for the reduction factor:

Material	Reduction factor
Grounded plate	1
Water	1
Alcohol	0.75
Ceramic	0.6
Glass	0.5
PVC	0.45
Ice	0.3
Oil	0.28

Response curves for proximity switches

Standard response curve for capacitive proximity switch

Standard response curve for inductive proximity switch

Condition for installation

Cylindrical proximity switches

Devices with the same diameter can have different sensing ranges. The following table shows some typical examples:

Diameter $[\mathrm{mm}]$	Sensing range (mm)		
	Embed.	Non-embeddable	Increased sensing range
$\mathbf{6 . 5}$	1.5	2	-
$\mathbf{8}$	1.5	2	3
$\mathbf{1 2}$	2	4	6
$\mathbf{1 8}$	5	8	12
$\mathbf{3 0}$	10	15	22

Non-embeddable proximity switches

Non-embeddable proximity switches have the greatest sensing range (based on the diameter). As noted earlier, coils are used to generate electromagnetic fields in inductive proximity switches. These coils are placed in a pot core in order to produce a directed field. A portion of this field is still radiated laterally, however. A lateral effect can also be observed in capacitive proximity switches.
In order to prevent these high-range products from being damped by their environment, a space must be left around the sensor element. This space must conform to the minimum requirements shown in the following table.

Model	Dimensions [mm]				
	\mathbf{A}		\mathbf{B}		F
Ind.	$2 \times \mathrm{S}_{\mathrm{n}}$		$3 \times \mathrm{D}$		Embed. F = D Non-embeddable F = 3 x D
cap.	Plastics	Metal	Plastics	Metal	
CJ1	5	15	15	30	60
CJ4	20	35	80	120	60
CJ2	15	50	30	60	100
CJ6	40	50	80	160	100

Embeddable proximity switches

Embeddable inductive and capacitive proximity switches can be installed without leaving a space ($A=0$). The advantage is that they are better mechanically protected and less prone to errors than non-embeddable types. The necessary reduction of the lateral radiation of the field is obtained by special internal shielding. This entails a loss of range. These proximity switches only achieve about 60% of the sensing range of nonembeddable models.

The switching characteristics of magnetic field sensors are practically unaffected by the mounting conditions, as long as the surrounding material is non-magnetisable.

Mutual interference

The minimum distances F listed in the above table must be maintained in order to prevent mutual interference. Proximity switches with altered frequencies are also available on request in case these distances cause application-related problems. They can be mounted directly adjacent to each other.
In case of doubt, please contact us.

Non-embeddable proximity switch F must be 3 times the housing diameter

Embeddable proximity switch F must be equal to the housing diameter

Rectangular type proximity switch (Varikont)

(active surface facing forward)

Model	Mounting		A = Any	$A=A n y$			
	Dimension [mm]	X	Y	Y	B	Y	X
NJ15+U1+...	Embed.	≥ 0	≥ 0	≥ 0	45	≥ 50	≥ 0
NCB15+U1...	Embed.	≥ 0	≥ 0	≥ 0	45	≥ 60	≥ 0
NJ20+U1... (AC)	Non-embeddable	≥ 20	-	-	60	≥ 60	≥ 5
NJ20+U1... (DC)	Embed.	≥ 0	≥ 0	≥ 0	60	≥ 40	≥ 0
NCN20+U1+...	Non-embeddable	≥ 25	-	-	60	≥ 120	≥ 10
NJ30+U1+...	Non-embeddable	≥ 35	-	-	90	≥ 120	≥ 20
NCN30+U1+...	Non-embeddable	≥ 30	-	-	90	≥ 100	≥ 20
$\begin{aligned} & \begin{array}{l} \mathrm{NJ} 40+\mathrm{U} 1+\ldots \\ \text { (head } 55 \times 55 \mathrm{~mm} \text {) } \end{array} \end{aligned}$	Non-embeddable	-	-	-	120	≥ 160	≥ 25
NCN40+U1+...(AC) (head $55 \times 55 \mathrm{~mm}$)	Non-embeddable	-	-	-	120	≥ 240	≥ 25
NCN40+U1+...(DC) (head $40 \times 40 \mathrm{~mm}$)	Non-embeddable	-	-	-	120	≥ 160	≥ 25

(active surface facing up)

Model	Mounting	x	$\leq 40 \mathrm{~A}$					
	Dimension [mm]		Y	Y	X	Y	X	Y
NJ15+U1+...	Embed.	≥ 0						
NCB15+U1...	Embed.	≥ 0						
NJ20+U1... (AC)	Non-embeddable	≥ 0	-	-	≥ 30	≥ 5	≥ 30	≥ 5
					≥ 40	≥ 0	≥ 40	≥ 0
NJ20+U1... (DC)	Embed.	≥ 0	≥ 0	≥ 5	≥ 0	≥ 0	≥ 0	≥ 0
NCN20+U1+...	Non-embeddable	≥ 0	≥ 10	≥ 20	≥ 0	≥ 10	≥ 0	≥ 20
NJ30+U1+...	Non-embeddable	≥ 15	-	-	≥ 40	≥ 15	≥ 40	≥ 20
NCN30+U1+...	Non-embeddable	≥ 0	-	-	≥ 30	≥ 5	≥ 30	≥ 10
					≥ 40	≥ 0	≥ 40	≥ 5
NJ40+U1+... (head $55 \times 55 \mathrm{~mm}$)	Non-embeddable	≥ 0	-	-	≥ 45	≥ 0	≥ 55	≥ 0
NCN40+U1+...(AC) (head $55 \times 55 \mathrm{~mm}$)	Non-embeddable	≥ 0	-	-	≥ 50	≥ 0	≥ 55	≥ 0
NCN40+U1+...(DC) (head $40 \times 40 \mathrm{~mm}$)	Non-embeddable	≥ 30	-	-	≥ 40	≥ 15	≥ 40	≥ 20

[^0]| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| X | Y | X | Y | X |
| ≥ 0 | ≥ 0 | ≥ 0 | ≥ 0 | ≥ 50 |
| ≥ 0 | ≥ 0 | ≥ 0 | ≥ 0 | ≥ 80 |
| ≥ 10 | ≥ 5 | ≥ 10 | ≥ 15 | ≥ 60 |
| ≥ 20 | ≥ 0 | ≥ 20 | ≥ 0 | |
| ≥ 0 | ≥ 0 | ≥ 0 | ≥ 0 | ≥ 50 |
| ≥ 20 | ≥ 0 | ≥ 20 | ≥ 0 | ≥ 120 |
| ≥ 30 | ≥ 0 | ≥ 30 | ≥ 10 | ≥ 160 |
| | | ≥ 40 | ≥ 0 | |
| ≥ 30 | ≥ 10 | ≥ 40 | ≥ 0 | ≥ 100 |
| ≥ 40 | ≥ 0 | | | |
| ≥ 30 | ≥ 0 | ≥ 30 | ≥ 20 | ≥ 180 |
| | | ≥ 40 | ≥ 0 | |
| ≥ 30 | ≥ 0 | ≥ 40 | ≥ 0 | ≥ 300 |
| ≥ 30 | ≥ 10 | ≥ 30 | ≥ 15 | ≥ 300 |
| ≥ 40 | ≥ 0 | ≥ 40 | ≥ 0 | |

(active lateral surface)

	Model
X	
≥ 0	NJ15+U1+...
≥ 0	NCB15+U1...
≥ 20	NJ20+U1... (AC)
≥ 0	NJ20+U1... (DC)
≥ 25	NCN20+U1+...
≥ 30	NJ30+U1+...
≥ 30	NCN30+U1+...
≥ 45	NJ40+U1+... (head $55 \times 55 \mathrm{~mm}$)
≥ 45	NCN40+U1+...(AC) (head $55 \times 55 \mathrm{~mm}$)
-	NCN40+U1+...(DC) (head $40 \times 40 \mathrm{~mm}$)

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Rectangular type proximity switch (Varikont-L)

(active surface facing forward)

Model	Mounting			$A=A n y$			
	Dimension [mm]	X	Y	Y	B	Y	X
NBB20-L2...	Embed.	≥ 0	≥ 0	≥ 0	60	≥ 80	≥ 0
NBN30-L2...	Non-embeddable	≥ 35	-	-	90	≥ 160	≥ 20
NBN40-L2...	Non-embeddable	40	-	-	120	≥ 160	≥ 20

(active surface facing up)

Model	Mounting		$\leq 40 \mathrm{~A}$					
	Dimension [mm]	X	Y	Y	X	Y	X	Y
NBB20-L2...	Embed.	≥ 0						
NBN30-L2...	Non-embeddable	≥ 25	-	-	≥ 30	≥ 20	≥ 30	≥ 30
					≥ 40	≥ 10	≥ 40	≥ 20
NBN40-L2...	Non-embeddable	≥ 0	≥ 28	≥ 35	≥ 0	≥ 28	≥ 0	≥ 35

Surface switches (FP)

Model	Mounting		$\leq 40 \mathrm{~A}$	$\leq 40 \mathrm{~A}$			
	Dimension [mm]	X	Y	Y	B	Y	Y
NCB40-FP...	Embed.	≥ 0	≥ 0	≥ 0	120	≥ 225	≥ 0
NCN50-FP...	Non-embeddable	≥ 25	≥ 20	≥ 30	150	≥ 450	≥ 45
NCB50-FP...	Embed.	≥ 5	≥ 0	≥ 0	150	≥ 120	≥ 10
NJ40-FP...	Non-embeddable	≥ 40	≥ 0	≥ 0	120	≥ 150	≥ 20
NJ40-FP_B1...	Embed.	≥ 0	≥ 0	≥ 0	120	≥ 100	≥ 0
NJ50-FP...	Non-embeddable	≥ 40	≥ 0	≥ 0	150	≥ 240	≥ 45

[^1](active lateral surface)

	$A=A n y$		$A=\text { Any }$	
X	Y	X	Y	X
≥ 0	≥ 0	≥ 0	≥ 0	≥ 70
≥ 30	≥ 10	≥ 30	≥ 10	≥ 140
≥ 40	≥ 0	≥ 40	≥ 0	
≥ 30	≥ 10	≥ 30	≥ 15	≥ 300
≥ 40	≥ 0	≥ 40	≥ 0	

≥ 0	Model
x	NBB20-L2...
-	NBN30-L2...
-	NBN40-L2...

Step 2
Screw mounted proximity switches

Model	Mounting	Distance [mm]						
		A	\mathbf{B}	\mathbf{C}	\mathbf{D}	E	F	G
NJ2-F1-	Embed.	0	0	6	0	0	12	16
NBB2-V3-	Embed.	0	0	6	0	0	0	10
NJ4-F1	Non-embeddable	0	12	12	18	24	24	32
NBB5-F9-...	Embed.	0	0	15	0	0	16	20
NBN5-F7-...	Non-embeddable	0	0	15	0	0	17	20
NJ6-F-...	Embed.	0	0	18	0	0	22	25
NBB7-F10-...	Embed.	0	0	20	0	0	25	30
NBN10-F10-...	Non-embeddable	0	0	30	0	5	25	40
NCB10-F17...	Embed.	7.5	0	30	0	0	40	40
NBN15-F11-...	Non-embeddable	0	0	45	0	10	30	60

Note:

Non-embeddable proximity switches must not be surrounded on all sides by metal.

Mutual interference

As already stated, the minimum distances F listed in the above table must be maintained in order to prevent mutual interference.

Proximity switches with shifted frequencies are available upon request in case these ranges cause application related problems. They can be mounted directly adjacent to each other.

Target

Proximity switches with increased sensing range

These extremely high-range sensors are not fully embeddable. They are known as "semi-embeddable" sensors.

Model	Distance [mm]				
	(steel, non-fer- rous metal)	A (stainless steel)	\mathbf{B}	\mathbf{C}	F
NEB 3-8...	1.0	0	3	9	8
NEB 6-12...	2.0	1.0	6	18	18
NEB 12-18...	4.0	1.5	12	36	26
NEB 22-30...	6.0	1.5	22	66	50
NEN 6-8...	8	8	8	18	20
NEN 10-12...	12	12	12	30	30
NEN 20-18...	22	22	22	60	60
NEN 40-30...	40	40	40	120	120

Mutual interference

As already stated, the minimum distances F listed in the adjacent table must be maintained in order to prevent mutual interference. Proximity switches with shifted frequencies are available upon request in case these ranges cause application related problems. They can be mounted directly adjacent to each other.

In case of doubt, please contact us.

Electrical data and
 Step connections

Pepperl+Fuchs supplies proximity switches which can be operated using an AC and/or DC voltage supply.
The following list provides an exemplary overview.

DC proximity switches, two-wire, model Z

These are operated in series with the load. Most are reversepolarity tolerant (capable of functioning regardless of the connection polarity) and in most cases short-circuit proof; others are reverse-polarity protected (functions only with the correct polarity, otherwise the proximity switch remains in the high-impedance state) and short-circuit proof. In the OFF state, a low residual current is present. In the ON state, a small voltage drop passes across the switch. These switches are available in the following versions:

- Normally open contact (NO) (Z/Z0, Z3, Z4),
- Normally closed contact (NC) (Z1, Z5),
- Connection-programmable (Z2).

DC proximity switches, three-wire, model E

These switches have separate connections for load and power supply. They are overload, short-circuit and reverse-polarity protected. The residual current is negligible. These switches are available in the following versions:

- NO, current sinking npn (E or EO),
- NC, current sinking npn (E1),
- NO, current sourcing pnp (E2),
- NC, current sourcing pnp (E3),
- NO/NC switchable, current sinking npn (E4)
- NO/NC switchable, current sourcing pnp (E5)
- NO, dual channel (E8),

DC proximity switches, four-wire, model A

These proximity switches correspond to the E-models, but are equipped with NC and NO outputs:

- NC and NO, current sinking npn (A or AO).
- NC and NO, current sourcing pnp (A2)

AC proximity switches, two-wire, model W

These are operated in series with the load. In the closed state, a low residual current is present and a voltage drop occurs at the conductive switch. These switches are available in the following versions:

- NC (WO),
- NO (WS),
- NC or NO (W) (connection-programmable).

Universal current proximity switches, two-wire, model U

These are operated in series with the load. They can be connected to DC as well as AC power supplies. They are overload and short-circuit proof. In the closed state, a low residual current is present and a voltage drop occurs at the conductive switch. These switches are available in the following versions:

- NC (UÖ),
- NO (US),
- NC or NO (U) (connection-programmable).

NAMUR proximity sensors, two-wire, N

NAMUR proximity switches (Normenarbeitsgemeinschaft für Mess- und Regelungstechnik der chemischen Industrie = Standards Working Group for Control and Instrumentation in the Chemical Industry) according to EN 60947-5-6 (VDE 0660 Part 212) are two-wire sensors which have a constant or nonconstant current path characteristic. These switches are available in the following versions:

- $\mathrm{NC}(\mathrm{N} / \mathrm{N} 0)$,
- NO (1 N),
- NC dual-channel (N4).

NAMUR sensors are connected to external switch amplifiers which convert the current change to a binary output signal. Pepperl+Fuchs GmbH offers a wide range of switch amplifiers for applications in hazardous and non-hazardous areas.

Proximity sensors for use in safety-related applications, two-wire, SN

These proximity sensors correspond to the N model sensors, but with a special function: in case of a fault in the sensor/control interface/common connection system, the output of the control interface automatically switches to the safe "Off" state.
The proximity sensors are available in the following versions:

- NC (SN) and
- NO (S1N).

AS-Interface proximity switches

This type of proximity switch is connected directly to the ASInterface bus. The communication capacity of these devices allows an increased range of functions:

- Pre-fault indicator
- Lead monitoring
- Oscillator monitoring
- Parameterisation (NO/NC)
- On/Off delay

Step 3

Parallel and series connection

Proximity sensors can be connected in parallel or series in order to perform AND, OR, NAND and NOR functions. For this purpose, the following must be taken into account:

Series connection of proximity switches

Two-wire and three-wire proximity switches can be operated in series with the exception of NAMUR sensors (EN 60947-5-6).
The maximum number of proximity switches which can be connected in series in a given application depends on the following parameters:

- the function-specific voltage drop at the switch
- the necessary operating voltage of the load
- the applied supply voltage

Interconnecting mechanical and electronic switches

Three-wire proximity switches can be operated without difficulty in parallel with mechanical switches. In all other cases, the time delay before availability results in an increased reaction time. The parallel operation of two-wire proximity switches with mechanical switches can lead to a brief deactivation of the load.

The built-in time delay before availability can lead to an increased reaction time in the case of three-wire proximity switches.

Parallel operation of proximity switches

In the case of two-wire switches, the sum of all residual currents flows through the load and can prevent the deactivation of the load under certain circumstances. This limits the maximum number of two-wire proximity switches that can be operated in parallel.

In the case of three-wire switches, parallel operation is noncritical.

			$\begin{aligned} & \hline \text { N B } \\ & < \\ & \vdots \\ & \text { N } \\ & 0 \\ & < \end{aligned}$				$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\circ} \mathrm{O} \\ & < \\ & \vdots \\ & 8 \\ & < \end{aligned}$	
		¢- ¢	$\sum_{\perp} \sum \sum_{0} \sum_{\infty}$					$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$
1								
					Data as for type A/A2			

Core colours and connector assignment
(EN 60947-5-2)

Model	Function	Connection	Wire colour	Pin number ${ }^{2}$)	Connector
2 terminals AC	NO (make)		Any colour ${ }^{1)}$ except yellow/ green	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	
2 terminals DC unpolarised	NC (break)			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	V1 or V13 or
2 terminals DC polarised	NO (make)	+	Brown (BN) Blue (BU)	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	
	NC (break)	+	Brown (BN) Blue (BU)	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	V1
3 terminals DC Polarised	NO (make)	Output	Brown (BN) Blue (BU) Black (BK)	$\begin{aligned} & 1 \\ & 3 \\ & 4 \end{aligned}$	
	NC	Output	Brown (BN) Blue (BU) Black (BK)	$\begin{aligned} & 1 \\ & 3 \\ & 2 \end{aligned}$	

${ }^{1)}$ It is advisable to use two wires of the same colour.
${ }^{2)}$ The terminal numbers (except in the case of AC proximity switches and 3-pin 8 mm connectors) must coincide with the integral connector pin numbers.

Proximity switches without class II insulation require a protective earthing connection for voltages above 50 V AC or 120 V DC.

Core colours and connector assignment (EN 60947-5-2)

Model	Function	Connection	Wire colour	Pin number	Connector
4 terminals DC polarised	Change over (make/ break)	$+$ NO (make) -Output NC (break) -Output	Brown (BN) Blue (BU) Black (BK) White (WH)	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$	
2 terminals DC and NAMUR polarised	NO (make) and NC (break)	Channel 1+ Channel 1- Channel 2+ Channel 2- Valve + Valve -	Brown (BN) Blue (BU) White (WH) Black (BK) Red (RD) Yellow (YE)	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	
3 terminals DC polarised	NO (make) and NC (break)	Supply + Supply - Output Channel 1 Output Channel 2	Brown (BN) Blue (BU) Black (BK) White (WH)	$\begin{aligned} & 1 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$	

Step General specifications
 4

The no-load current I_{0} indicates the current consumption of the proximity switch. It is measured without a load.

The operating current I_{L} (rated operating current I_{e} acc. to EN 60947-5-2) indicates the maximum load current for continuous operation.

The short-term current l_{K} is the current that may occur on activation without destroying the proximity switch.

The residual current I_{R} is the current which flows over the load when the proximity switch is closed.

The operating voltage U_{B} is indicated by the maximum and minimum values of the supply voltage. Safe operation of the proximity switch is guaranteed within this range. In the case of NAMUR proximity sensors, the nominal voltage is indicated.
The voltage drop U_{d} is measured over the activated proximity switch or output.
The switching frequency f is the maximum number of changes from the damped state to the undamped state expressed in Hertz (Hz). See the diagram based on EN 60947-5-2.
Measurement a is the greater value of the diameter or the edge length and 3 times the rated sensing range.

Measuring flag for determining the maximum switching frequency.

The ripple voltage is the alternating voltage (peak-peak) overlapping the operating voltage and is expressed as a per-

Admissible noise peaks

Short-term voltage peaks on the supply lines can destroy unprotected proximity switches. Transient protection for all Pepperl+Fuchs switches suppresses noise in accordance with EN 60947-5-2.

The time delay before availability t_{v} is the time required for the proximity switch to become operational after the operating voltage is applied. Pepperl+Fuchs proximity switches conform to EN 60947-5-2 with a max. value of 300 ms .

Start-up signal suppression

This function, which is a feature of most proximity switches, suppresses false signals from the output on application of the operating voltage within the period t_{v}.

Short-circuit protection

With switched short-circuit protection, which is a feature of most Pepperl+Fuchs GmbH proximity switches, the output stage is switched "on" and "off" periodically when the current limit is exceeded until the short-circuit is eliminated.

The admissible ambient temperature is the temperature range within which the proximity switch functions correctly. The following values apply to the standard Pepperl+Fuchs series:
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ or $\quad 248 \mathrm{~K} \ldots 343 \mathrm{~K}$.

The following values apply to special designs:

| $-25^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}$ or | $248 \mathrm{~K} \ldots 373 \mathrm{~K}$ |
| ---: | :--- | :--- |
| $-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}$ or | $233 \mathrm{~K} \ldots 423 \mathrm{~K}$ |
| $0^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$ or | $273 \mathrm{~K} \ldots 473 \mathrm{~K}$ |
| $0^{\circ} \mathrm{C} \ldots+250^{\circ} \mathrm{C}$ or | $273 \mathrm{~K} \ldots 523 \mathrm{~K}$ |

Degree of protection

Pepperl+Fuchs GmbH proximity switches conform to the protection classes IP65, IP67 or IP68
(EN 60529) depending on the design (see page 318).
Admissible shock and vibrational stress
The shock test is conducted at 30 times gravitational acceleration for a duration of 11 ms . The vibration test is performed with a resonant frequency between 10 Hz and 55 Hz and an amplitude of 1 mm (IEC 60068-2-6).
Admissible mounting torque [Nm]

	Stainless steel	Brass	PBT	PPS
M5 $\times 0.5$	3.0	-	-	-
M8 $\times 1$	10.0	3.0	-	-
M12 $\times 1$	15.0	10.0	0.75	-
M18 $\times 1$	30.0	30.0	1.5	5
M30 $\times 1.5$	30.0	30.0	3.0	10

Type codes of inductive, capacitive and magnetic field sensors

Connection Elements

V1 - M12 x 1 device connector for DC proximity switches
V3 - M8 device connector for DC proximity switches
V5 - Faston connector
V13 - M12 x 1 device connector for AC proximity switches
V16 - Rd24 x 1/8 device connector for dual sensors in F31 housing

[^0]: Deviations caused by specific scattering patterns are possible in individual cases

[^1]: Deviations caused by specific scattering patterns are possible in individual cases

