The right choice for the ultimate yield!

LS ELECTRIC strives to maximize your profits in gratitude for choosing us as your partner.

AC Variable Speed Drive

Safety Instructions

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for Quick reference.

About This Manual

This manual discusses the specifications, features, installation, operation, and maintenance of the iS7 Web Control. This manual is designed for users who already have a basic understanding of inverters.

Please read this manual before using your inverter to fully understand the performance, functionality, installation, and operation of this product. In addition to this, please ensure that the end user and maintenance manager have read this manual.

Safety Precautions

Safety Precautions help you prevent accidents and use this product properly. Make sure you adhere to all Safety Precautions outlined in this manual.

There are two types of symbols used in this manual: Warning symbols and Caution symbols. These symbols indicate the following.

Precaution		Definition
$\mathbf{!}$	Warning	This symbol indicates the possibility of electric shock.
\mathbf{n}	Caution	This symbol indicates a protective conductor terminal.

The symbols displayed on the inverter and in the manual indicate the following.

Note
Failure to adhere to caution information may result in serious consequences, depending on the situation.

The symbols displayed on the inverter and in the manual indicate the following.

Symbol	Definition
4	This symbol indicates a potential danger.
4	This symbol indicates the possibility of electric shock.
4	

After reading this manual, please store it in a location where it can be easily found.

Please read this manual carefully to ensure the safe and effective use of the iS7 Web Control.

A Waming

- Do not open the cover while the power is on or at any time during operation. Doing so may result in an electric shock.
- Do not operate the inverter while the cover is open.

Exposing the high voltage terminal or charging area to the external environment may result in an electric shock.

- Do not open the cover even when the power supply has been switched off. This excludes necessary maintenance or regular inspection.
Opening the cover may result in an electric shock even if the power supply is off. The inverter may hold a charge long after the power supply has been switched off.
- Do not conduct maintenance or inspection without first ensuring that the DC voltage of the inverter has been fully discharged. To ensure this, use a voltage tester at least ten minutes after the power supply has been cut off.
Doing so may result in an electric shock. (DC 30 V or less)
- Do not operate switches on the inverter with wet hands.

Doing so may result in an electric shock.

- Do not use the inverter if the cable has been damaged.

Doing so may result in an electric shock.

- Do not place heavy objects on the cable.

Placing heavy objects on the cable could damage its sheath and may result in an electric shock.

\triangle Caution

- Do not install the product near any flammable materials.

Mounting the inverter on or near flammable materials may start a fire.

- Switch off the power supply to a faulty inverter.

Failure to switch off the power supply to a faulty inverter may start a fire.

- Do not touch the inverter while the power supply is on or within ten minutes of switching the power supply off.
Touching the inverter during this period may result in a burn due to the high operating temperatures of this product.
- Do not supply power to a faulty inverter even after it has been installed.

Doing so may result in an electric shock.

- Make sure that foreign substances, such as screws, metal, water, and oil, do not enter the inverter.
Introducing foreign substances to the inverter may start a fire.

Usage Precautions

- Transportation and Installation

- Transport the product in a manner appropriate for its weight.
- Install the product according to the procedures described in this manual.
- Do not open the access panel during transport.
- Do not place heavy objects on the product.
- Install the product in the direction specified by this manual.
- This inverter is a precision instrument. Do not drop it or expose it to hard impact.
- The inverter requires a special Class 3 grounding construction.
- Immediately place any detached PCB on a protective conductor if you must remove it for installation or repair. The inverter can be damaged by static electricity.
- Do not expose the inverter to snow, rain, mist or dust.
- Do not obstruct the vents for the cooling fan. This could result in the inverter overheating.
- Make sure that power to the inverter is turned off before installation.
- Ensure that all cables are in good condition. This will minimize the risk of fire or electric shock. Do not use poor quality cables or extend the length of the existing cable.

Only operate the inverter under the following conditions.

Item		Details
Environment	Temperature	$-10^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (Provided no ice or frost has formed.)
	Humidity	$90 \% \mathrm{RH}$ or less (Provided no condensation has formed.)
	Storage temperature	$-20-65^{\circ} \mathrm{C}$
	Environment	There should be no corrosive or flammable gas, oil residue, dust, etc.
	Altitude/Vibrations	Altitude of $1,000 \mathrm{~m}$ or lower/vibrations of $5.9 \mathrm{~m} / \mathrm{sec}^{2}(=0.6 \mathrm{~g})$ or less
	Ambient pressure	$70-106 \mathrm{kPa}$

Wiring

- Do not install a phase advance capacitor, surge filter, or radio noise filter on the output of the inverter.
- Connect the output side terminals $(R, S$ and $T)$ in the correct order.
- The inverter may be damaged if these terminals are incorrectly connected.
- Be careful. Connecting the input side (terminals DCP, DCN) into the output side (terminals R, S, T) incorrectly may damage the inverter.

\lfloor Caution
Wiring or inspection must be performed by a qualified technician.

- Fully install the inverter before wiring.

- Starting the Inverter

- Do not supply a voltage to any terminal if it exceeds the range outlined in the manual. Excess voltage may damage the inverter.

Usage

- Do not modify the interior workings of the inverter.

Disposal

- Dispose of the inverter according to your local regulations regarding the disposal of industrial waste.
- Recycle all recyclable components contained in this inverter to preserve energy and resources.
- The packing materials and metal components of this product are recyclable in most areas. Plastic parts are recyclable or may be burned in a controlled environment, depending on local regulations.

Cleaning

- Turn off the inverter prior to cleaning. Clean the inverter with a dry cloth. Never use water or a wet cloth to clean the inverter.

Long-term Storage

If you are not planning on using the inverter for a long period of time, store it under the following conditions:

- Store the inverter in an area which complies with the recommended storage environment guidelines. (See page vi.)
- If the storage period exceeds three months, store the inverter at a temperature of between -10 and $30^{\circ} \mathrm{C}$ to prevent thermal degradation of the electrolytic capacitor.
- Package the inverter to prevent moisture from accumulating inside it. Ensure that the inverter is stored with a relative humidity of less than 70\% by placing a desiccant (silica gel) packet inside the packaging.
- If the inverter is exposed to humidity or dust (e.g. if it is installed on construction equipment), detach it from the equipment before storing it under the conditions set forth on page vi.

\triangle Caution

If the inverter is not supplied with electricity for a long period of time, the electrolytic condenser may suffer from thermal degradation. To prevent this from happening, connect the power supply to the inverter for 30-60 minutes at least once a year. Do not perform any wiring or other operation on the output (secondary) side of the inverter.

Table of Contents

ABOUT THIS MANUAL III
SAFETY PRECAUTIONS IV
USAGE PRECAUTIONS VI
TABLE OF CONTENTS IX

1. PRECAUTIONS 1-1
1.1 Product Overview 1-1
1.2 Products with a Built-in Braking Resistor (capacity = less than 3.7 kW) 1-2
2. WINDER/UNWINDER OPERATION 2-1
2.1 Overview 2-1
2.2 General Configuration 2-3
2.3 Main Speed Command Section 2-8
2.4 Tension Command Section 2-11
2.5 Web PID Controller Section 2-16
2.6 Diameter Computation Section 2-25
2.7 Final Speed Computation Section 2-33
2.8 Analog Output Section 2-40
2.9 Final Tension Computation Section 2-41
2.10 Web Break Detection Section 2-42
2.11 Torque Limit Computation Section. 2-44
2.12 Web Function without Diameter Computation Section 2-47
3. CAPSTAN OPERATION 3-1
3.1 Overview 3-1
3.2 General Configuration 3-3
3.3 Main Speed Command Section 3-4
3.4 Web PID Controller Section 3-4
3.5 Analog Output Section 3-4
3.6 Web Break Detection Section 3-4
3.7 Material Thickness Computation Section. 3-5
3.8 Final Speed Computation Section 3-11
4. OTHER FUNCTIONS 4-1
4.1 Stall Level Control Using the Analog Input 4-1
4.2 Automated Speed-torque Switching 4-2
4.3 External PID Controller 4-4
4.4 Speed Controller P Gain Profile (Inertia Compensation) 4-13
5. APPLIED FUNCTIONS 5-1
5.1 Setting the Override Frequency Using the Aux Frequency Command 5-1
5.2 Jog Operation (Jog-operating the Inverter) 5-5
5.3 Up - Down Operation 5-9
5.4 Wire Operation (Operating the Inverter with the Push Button or Equivalent) 5-11
5.5 Safe Operation Mode (Using the Terminal Input to Limit Operation) 5-12
5.6 Dwell Operation (Operating the Inverter in Dwell Mode) 5-14
5.7 Slip Compensation Operation 5-16
5.8 PID Control 5-18
5.9 Auto-tuning 5-25
5.10 V/F Operation Using the Speed Sensor 5-31
5.11 Sensorless (I) Vector Control. 5-32
5.12 Sensorless (II) Vector Control 5-34
5.13 Vector Control 5-38
5.14 Torque Control (Controlling the Torque) 5-45
5.15 Droop Control 5-47
5.16 Speed/Torque Switchover 5-47
5.17 Kinetic Energy Buffering 5-48
5.18 Energy Saving Operation 5-49
5.19 Speed Search Operation 5-50
5.20 Automatic Restart Operation 5-54
5.21 Operation Sound Selection 5-56
5.22 Second Motor Operation (with One Inverter) 5-58
5.23 Bypass Operation 5-60
5.24 Cooling Fan Control 5-61
5.25 Input Power Frequency Selection 5-62
5.26 Inverter Input Voltage Selection 5-62
5.27 Reading, Writing, and Saving Parameters 5-62
5.28 Parameter Initialization 5-63
5.29 Hide Parameter Mode and Prohibit Parameter Changes 5-64
5.30 Add User Group (USR Grp) 5-66
5.31 Add Macro Group 5-68
5.32 Easy Start. 5-69
5.33 Other Config (CNF) Mode Parameters 5-70
5.34 Timer Function 5-71
5.35 Traverse Operation Function 5-72
5.36 Brake Control 5-73
5.37 Multi-Function Output On/Off Control Function 5-76
5.38 Regeneration Evasion Function for Press 5-77
6. TABLE OF FUNCTIONS 6-1
6.1 Parameter Mode - Drive Group (\rightarrow DRV) 6-1
6.2 Parameter Mode - Basic Function Group (\rightarrow BAS) 6-4
6.3 Parameter Mode - Expanded Function Group (PAR \rightarrow ADV) 6-8
6.4 Parameter Mode - Control Function Group (\rightarrow CON) 6-13
6.5 Parameter Mode - Input Terminal Block Function Group (\rightarrow IN) 6-19
6.6 Parameter Mode - Output Terminal Block Function Group ($\boldsymbol{\rightarrow}$ OUT) 6-24
6.7 Parameter Mode - Communication Function Group (\rightarrow COM) 6-30
6.8 Parameter Mode - Application Function Group (\rightarrow APP) 6-35
6.9 Parameter Mode - Application Function Group $2(\rightarrow$ AP2) 6-41
6.10 Parameter Mode - Option Card Function Group (\rightarrow APO) 6-42
6.11 Parameter Mode - Protection Function Group (\rightarrow PRT) 6-44
6.12 Parameter Mode - 2nd Motor Function Group (\rightarrow M2) Note 50) 6-48
6.13 Trip mode (TRP Current (or Last-x)) 6-49
6.14 Config Mode (CNF) 6-50
7. IS7 COMMUNICATION COMMON AREAS 7-1
7.1 iS7 Monitoring Common Areas 7-1
7.2 Common Areas for iS7 Control 7-8
7.3 Common Areas for iS7 Dedicated Product Monitoring 7-10
7.4 Common Areas for iS7 Dedicated product control 7-11
APPENDIX A SAMPLE WEB-ONLY PARAMETER SETTINGS A-1
A. 1 Overview A-1
APPENDIX B SETTING THE PARAMETERS. B-1
B. 1 Setting Winder Parameters B-1
B. 2 Setting Unwinder Parameters B-2
B. 3 Setting Capstan Parameters B-3
Warranty
Manual Revision History

1. Precautions

1.1 Product Overview

Note 1) A Type 1 Enclosed product satisfies the requirements for adding a separate conduit option to an iS7 product. This applies to all products with capacities ranging from 0.75 to 75 kW .
Note 2) Only products with capacities below 3.7 kW come equipped with a built-in braking resistor.

1.2 Products with a Built-in Braking Resistor (capacity = less than $\mathbf{3 . 7} \mathbf{~ k W)}$

If you want a high frequency braking resistor, please use a separate braking resistor.

Voltage	Applicable inverter capacity (kW)	Usage (\%ED/Continuous operation)	100\% braking torque, 2\%ED	
			Resistance (Ω)	Watt (W)
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { product } \end{aligned}$	0.75	$2 \% / 5 \mathrm{sec}$.	200	100
	1.5	$2 \% / 5 \mathrm{sec}$.	100	100
	2.2	$2 \% / 5 \mathrm{sec}$.	60	100
	3.7	2\% / 5 sec.	40	100
400 V product	0.75	$2 \% / 5 \mathrm{sec}$.	900	100
	1.5	$2 \% / 5$ sec.	450	100
	2.2	$2 \% / 5 \mathrm{sec}$.	300	100
	3.7	$2 \% / 5 \mathrm{sec}$.	200	100

If you use a product with a built-in braking resistor (capacity = less than 3.7 kW), make sure that PRT67 [DB RES SEL] is set to "Inside" and PRT66 [DB Warn \%ED] is set to 1 or 2 percent.

If [DB Warn \%ED] is 0\%, it means that there is no limit on the use of the braking resistor. Continuously using the braking resistor in an environment that requires frequent braking may burn out the braking resistor.

Moreover, for products with a built-in braking resistor, [DB Warn \%ED] can be set to 2% to limit capacity and protect the braking resistor. For environments that require frequent braking, please select a product without a built-in braking resistor and use a separate braking resistor.
2% usage means that, if the braking operation conditions are sustained for 100 seconds, braking is activated for 2 seconds only and is deactivated for the remaining 98 seconds even under braking operation conditions.

Products with a built-in braking resistor can continuously operate the braking resistor for 5 seconds. Thus, if the braking operation conditions are maintained, braking is activated for 5 seconds but is deactivated for the next 245 seconds even under braking operation conditions. Therefore, if the braking operation is interrupted, the braking resistor is unavailable for at least 245 seconds (when set at 2\%).

2. Winder/Unwinder Operation

2.1 Overview

Winders are also called "spoolers". These components wind up web material (iron wire, iron plate, steel wire, etc) as they maintain a constant tension in the material. In contrast to this, unwinders unwind web material, as they maintain a constant tension in the material.

Basically, the winder and unwinder in an iS7 inverter use analog feedback from the tension control detectors, such as the dancer or load cell, to activate the PID controller and maintain a constant tension. This way, the winder and unwinder form a closed loop tension control system when winding and unwinding web material. In addition, the characteristics of the PID controller in the closed loop tension control system differ from existing PID controllers. That is why this system is referred to as a "Web PID controller" in this manual.

However, even open loop tension control systems that do not use a Web PID or tension control detectors like dancers and load cells can function using the winder and unwinder from an iS7 inverter.

The tension control operation of an iS7 inverter can be broadly subdivided into the winder/unwinder, closed loop/open loop, and speed/tension command operations.

$$
\text { Motor Speed }[\mathrm{rpm}]=\frac{\text { Flux }[\mathrm{mpm}]}{\text { diameter } \times \pi[\mathrm{m}]} \quad-\text { Eq.(1.1.1) }
$$

The actual diameter (m) of the winder increases during operation. As shown in Eq. 1.1.1, the motor speed (rpm) decreases as the diameter of the winder increases to maintain a constant flux (mpm). The motor speed, i.e. output frequency of the inverter, is reduced by activating the Web PID controller. In addition to this, the Web PID controller computes and estimates the increases to the diameter of the winder internally and uses the computed diameter ultimately to decrease the output frequency of the inverter.

In contrast to the winder, the actual diameter (m) of the unwinder decreases during operation. As shown in Eq. 1.1.1, the motor speed (rpm) increases as the diameter of the winder decreases to maintain a constant flux (mpm). In a closed loop tension control system, this motor speed, i.e. the output frequency of the inverter, is increased by activating the Web PID controller. In addition to this, the Web PID controller computes and estimates the decreases to the diameter of the winder internally and uses the computed diameter ultimately to increase the output frequency of the inverter.

This system offers more consistent control over the winder tension than conventional PID controllers. Since the internally computed diameter compensates for the inverter's output frequency once again, the Web PID controller uses significantly less of the inverter's output frequency. Therefore, the

Web PID controller does not risk saturating the output, which is effective in significantly reducing the oscillation of the I controller output.

The Web PID controller also offers the following functions:

- Eliminates the transient phenomenon that occurs with the dancer or load cell at start up (related code: APP51).
- Compensates for the inertia of the winder (related code: APP56-57).
- Maintains the tension and, if necessary, performs an emergency stop (related code: APP82).
- Detects potential ruptures in the web material in advance (related code: APP76-80).

You must comply with the following settings to ensure that the iS7 properly uses the winder (spooler) or unwinder, or applies them to the closed or open loop system.

Group	Code number	Function	Name		Setting
APP	01	App Mode	Application selection		Tension Ctrl
APP	02	Tnsn Ctrl Mode	Tension control operation mode selection	0	W_Spd Close
				1	UW_Spd Close
				3	W_Tens Close
				4	UW_Tens Close
				5	W_Spd Open
				6	UW_Spd Open
				7	W_Tens Open
				8	UW_Tens Open

2.2 General Configuration

(1) Closed Loop Speed Control Mode

The following table outlines the inputs and outputs for each section.

Functional section	Input		Output	
Main speed command section	-		Out1	Main speed (\%)
Tension command section	-		Out1	Tension command (\%)
Web PID controller section	In1	Diameter (\%)	Out1	Error change compensation frequency (Hz)
			Out2	PID Out (\%)
	In2	Tension command (\%)	Out3	PID feedback (\%)
Diameter computation section	$\ln 1$	Current output frequency (Hz)	Out1	Diameter (\%)
	In2	Main speed (\%)		
	In3	Web brake event (0/1)		
Final speed computation	In1	Error change compensation frequency (Hz)	Out1	Final speed command (Hz)

Functional section	Input		Output		
section	In2	Diameter (\%)			
	In3	Main speed (\%)	Out2	Main speed + PID (\%)	
	In4	PID output (\%)			
	$\ln 5$	Compensation gain (\%)			
Analog output section	$\ln 1$	Main speed + PID (\%)	-		
	In2	Main speed (\%)			
Open circuit detection section	In1	PID feedback (\%)	Out1	Web brake event (0/1)	
Web function without diameter computation section	$\ln 1$	PID output (\%)	Out1	Compensation gain (\%)	
	In2	Current output frequency (Hz)			

(2) Closed Loop Tension Control Mode

The following table outlines the inputs and outputs for each section.

Functional section	Input		Output		
Main speed command section			Out1	Main speed (\%)	
Tension command section			Out1	Tension command (\%)	
Web PID controller section	$\ln 1$	Diameter (\%)	Out1	PID Out (\%)	
	In2	Tension command (\%)	Out2	PID feedback (\%)	
Diameter computation section	$\ln 1$	Current frequency (Hz)	Out1	Diameter (\%)	
	In2	Main speed (\%)			
	In3	Web brake event (0/1)			
Final tension computation section	$\ln 1$	Diameter (\%)	-		
	In2	PID output (\%)			
	In3	Tension command (\%)			
Open circuit detection section	$\ln 1$	PID feedback (\%)	Out1	Web brake event (0/1)	

(3) Open Loop Speed Control Mode

The following table outlines the inputs and outputs for each section.

Functional section		Input	Output	
Main speed command section		-	Out1	Main speed (\%)
Tension command section		-	Out1	Tension command (\%)
Torque limit computation section	In1	Diameter (\%)	Out1	Torque limit (\%)
	In2	Tension command (\%)		
	In3	Current output frequency (Hz)		
Diameter computation section	In1	Current output frequency (Hz)	Out1	Diameter (\%)
	In2	Main speed (\%)		
	In3	Web brake event (0/1)		
Final speed computation section	In1	Diameter (\%)	Out1	Final speed command (Hz)
	In2	Main speed (\%)		
Analog output section	In1	Main speed (\%)	-	
Open circuit detection section	In1	Torque limit (\%)	Out1	Web brake event (0/1)

(4) Open Loop Tension Control Mode

The following table outlines the inputs and outputs for each section.

Functional section	Input		Output	
Main speed command section		-	Out1	Main speed (\%)
Tension command section	-		Out1	Tension command (\%)
Torque limit computation section	In1	Current frequency (Hz)	Out1	Friction loss (\%)
Diameter computation section	ln1	Current frequency (Hz)	Out1	Diameter (\%)
	In2	Main speed (\%)		
	In3	Web brake event (0/1)		
Final tension computation section	$\ln 1$	Friction loss (\%)	Out1	Final torque command (\%)
	In2	Diameter (\%)		
	In3	Tension command (\%)		
Open circuit detection section	In1	Final torque command (\%)	Out1	Web brake event (0/1)

2.3 Main Speed Command Section

The main speed command is computed as a percentage (\%) and is conceptually identical to the flux (mpm). For example, if you want to reduce the max flux from 800 mpm to 400 mpm , you just need to set the main speed command to 50% $(=400 / 800 \times 100[\%])$. The main speed command may be issued through a keypad, analog input, communication, etc.

(1) Main Speed Command

Group	Code number	Function	Name	Factory default	Range	
APP	03	Main Spd Disp	Main speed command display	Read Only (\%)		
APP	04 ${ }^{\text {(Note 1) }}$	Main Spd Set	Main speed keypad setting	0.00\%	0.00-100.00\%	
APP	05	Main Spd Src	Main speed command method	V1	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	Int. 485
					6	Encoder
					7	Fieldbus
					8	PLC
APP	06	Main XcelT En	Main speed accel/decel selection	No	0	No
					1	Yes
APP	07 ${ }^{\text {(Nole } 2)}$	Main Spd AccT	Main speed accel time	10.0 sec	0.0-300.0 sec	

Group	Code number	Function	Name	Factory default	Range
APP	$14^{\text {(Note 2) }}$	Main Spd DecT	Main speed decel time	20.0 sec	$0.0-300.0 \mathrm{sec}$

(Note 1): This code appears when "Keypad" is selected in APP05 (Main Spd Src).
(Note 2): This code appears when "Yes" is selected in APP06 (Main XceIT En).
APP03 (Main Spd Disp): Displays the main speed (\%). Displays the target main speed (\%) when the inverter stops operating. Displays the ramp time for the main speed when the inverter is operating.

APP04 (Main Spd Set): When you select "Keypad" in APP05 (Main Spd Src), the main speed command input in this code activates the inverter.

APP05 (Main Spd Src): You can select how to issue the main speed command. Select "Keypad" to activate the inverter using the main speed (\%) input in APP04 (Main Spd Set).

When you select "V1" or "I1," you can issue the main speed command using the analog input of the basic I/O board. Here, you can adjust the filter, gain, and offset of the analog input in IN07-11 (V1 Filter/Gain/Offset) and IN22-26 (I1 Filter/Gain/Offset). When you select "V2" or "I2", you can issue the main speed command using the analog input of the extended I/O option board. Here, you can adjust the filter, gain, and offset of the analog input in IN37-41 (V2
Filter/Gain/Offset) and IN52-56 (I2 Filter/Gain/Offset).
If an encoder option board is installed, you can also issue the main speed command using the pulse input of the "Encoder".
"Int.485" can issue the main speed command via the RS485 communication (Modbus-RTU, LS Inv 485) built in to the basic I/O board. "Fieldbus" and "PLC" can issue the same command via the COM option card and PLC option card, respectively. Here, "Int. 485 " (RS485 communication built in to the basic I/O board), "Fieldbus" (COM option card), and "PLC" (PLC option card) are valid up to one decimal place for the main speed (\%) command. For example, to issue a main speed command of 60.0%, you must enter " 600 " for the common area address and "Oh0396" for the built-in 485 communication, COM option card, or PLC option card.

APP06 (Main XceIT En): This code sets the accel and decel time for the main speed setting. When you select "Yes" in this code, the ramp time for the main speed increases/decreases based on the accel/decel time input in APP07 (Main Spd AccT) and APP14 (Main Spd DecT). The factory default setting for this code is "No". With this setting, you must ensure that the ramp time for the main speed increases/decreases according to the external upper controller. Otherwise, the main speed command is entered during each step and the system may function unstably.

APP07 (Main Spd AccT), APP14 (Main Spd DecT): These codes appear when "Yes" is selected in APP06 (Main XcelT En). This code sets the accel and decel times for the main speed setting. The accel/decel time is based on the main
speed equal to 100%. For example, when APP07 (Main Spd AccT) is set to 10 sec , i.e. the factory default setting, it takes $5 \mathrm{sec}(=10 \mathrm{sec} * 50 \%$ / 100\%) to accelerate the main speed from 0% to 50%.

(2) Emergency Stop (Quick Stop)

If an emergency occurs in a closed loop tension control system that uses a dancer or load cell, you can use the Quick Stop to maintain the tension and quickly stop system operation.

This function stops inverter operation for the time specified in APP82 (Q Stop Dec T) when the multi-function input set as "Web Quick Stop" turns ON. The deceleration time remains constant regardless of the current output frequency of the inverter.

For example, if inverter 1,2 , and 3 are interlocked and operating within a system in which their current output frequency is $25 \mathrm{~Hz}, 40 \mathrm{~Hz}$, and 60 Hz respectively, these inverters all take the same decel time of 3 sec to decelerate, which is the factory default for APP82 (Q Stop Dec T), when the multi-function input "Web Quick Stop" turns ON.

Here, the output of the Web PID controller is effective, so the inverter output remains uninterrupted and the tension remains constant.

Group	Code number	Function	Name	Factory default	Range
In	$65-72$	Px Define	Multi-function input setting	$50:$ Web Quick Stop	-
APP	82	Q Stop Dec T	Emergency stop decel time	3.0 sec	$0.1-300.0 \mathrm{sec}$

APP82 (Quick Stop DecT): Maintains a constant tension during inverter operation in a closed loop tension control system that uses a dancer or load cell and specifies the deceleration time for emergency stops.

\triangle Caution

Even when the "Web Quick Stop" terminal block input turns ON and emergency stop is enabled, the inverter output remains uninterrupted. After an emergency stop, make sure that the inverter operation command turns OFF to ensure that the inverter output is interrupted.

2.4 Tension Command Section

The tension command is computed as a percentage (\%) and is conceptually identical to the force (kgf). For example, if you want to maintain a constant force (load) of 10 kgf in a system where the load cell's maximum capacity to measure force (load) is less than 20 kgf , you just need to set the tension command to 50% (=10 / 20 * 100\%).

For open loop systems, the tension command is conceptually identical to the torque (\%) and is based on the output torque value of the minimum diameter. For example, if an output torque value of 10% is required to maintain the desired tension at the minimum diameter, you should set the tension command to 10% to ensure that the same tension can be maintained at the maximum diameter.

The tension command may be issued through a keypad, analog input, communication, etc.

(1) Tension Command

Group	Code number	Function	Name	Factory default	Range	
APP	17	PID Ref Value	PID reference monitor	Read Only (\%)		
APP	$19^{\text {(Nole 1) }}$	PID Ref Set	PID reference setting (keypad)	50.00\%	-100-100\%	
APP	20	PID Ref Src	PID reference selection	0 : Keypad	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	Int. 485
					6	Encoder
					7	Fieldbus
					8	PLC

(Note 1): This code appears when "Keypad" is selected in APP20 (PID Ref Source).
APP17 (PID Ref Value): This code indicates the current PID reference (as a percentage).

APP19 (PID Ref Set): You can set the reference for the PID controller using the keypad. This code appears when "Keypad" is selected in APP20 (PID Ref Src).

APP20 (PID Ref Src): This code allows you to select from a variety of methods to input the PID controller reference information (keypad, analog, internal COM, external COM, and PLC option).

(2) Tapering

Group	Code number	Function	Name	Factory default	Range	
IN	65-72	Px Define	Multi-function input setting	58: Web Taper Dis	-	
APP	58	Taper Sel	Tapering function selection	0 : None	0	None
					1	Linear
					2	Hyperbolic
APP	59	Taper SetPt	Taper keypad setting value	0.00\%	-100.00-100.00\%	
APP	60	Taper Source	Taper value setting method	0: Keypad	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	XV1
					6	XI1
					7	XV2
					8	XI2
					9	XV3
					10	XI3
					11	XV4
					12	XI4
APP	81	Taper Spt Val	Taper setting value monitor	Read Only (\%)		

In the center wind application, the largest diameter produces the more stress towards the center of the winder. The desired tension is the tension as a tangential direction. This tension is caused by stress, so the sum of these two vectors is the total tension. Thus, tapering can maintain the desired tension. In other words, this function reduces the PID reference by the computed diameter and compensates for the size of the vector caused by stress. Fig. 1.4.1 provides a detailed conceptual diagram and the related equations.

In terms of the tension sensor, tapering is applied based on the load on the load cell (weight sensor) rather than the dancer (position sensor).

Hyperbolic Taper:
Tension Demand $=$ Tension Spt $\times\left(100 \%-\right.$ Taper Spt $\left.\times\left(1-\frac{\text { Core Size }}{\text { Diameter }}\right)\right)$

Linear Taper:

Tension Demand $=$ Tension Spt $\times(100 \%-$ Taper Spt $\times($ Diameter - Core Size $))$

Fig. 1.4.1 Tension variation trend based on the concept and taper setting

(3) Tension Boost/Down

The following table outlines the boost/down setting ranges for the tension (PID Reference).

Group	Code number	Function	Name	Factory default		Range
IN	65-72	Px Define	Multi-function input setting	59: Web Boost		-
IN	65-72	Px Define	Multi-function input setting	60: Web Down		-
APP	94	Tns Boost In	Tension boost setting	0.00\%		-50.00\%
			boo		0	Fixed
					1	Proportional
APP	96	Tns Down In	Tension down setting	0.00\%	0.00-50.00\%	
APP	97	Tns Down Type	Tension down type	0 : Fixed	0	Fixed
					1	Proportional

(4) Tension Command Ramp

Ramp may increase during the specified time tapering is applied or the final tension command is boosted/downed.

You can send the final tension command, with the tension command ramp applied, to the analog output (AO1: 0-10 V voltage, AO2: 0-20 mA current). In this case, however, the maximum value for the final tension command is 300.00%. Thus, the AO1 Gain or AO2 Gain must be set to 300.0%.

Group	Code number	Function	Name	Factory default	Range
APP	49	PID Ref RampT	Tension command ramp time	0.0 sec	$0.0-300.0 \mathrm{sec}$
OUT	01,07	AO1, AO2 Mode	Analog output 1,2	Tension Ref	-

APP49 (PID Ref RampT): You can increase the ramp time when setting the time for the final tension command. Slope of the set time is set based on the 100% tension command. When initial start-up or tension command is changed during operation, it prevent PID output is saturated due to the difference of the command value and feedback value. In the open-loop system, it is used for a gentle start of initial.

2.5 Web PID Controller Section

In a closed loop tension control system, the analog quantity feedback from tension detectors, such as the dancer or load cell, determine the PID controller output. A PID controller optimized for tension control systems is referred to as a Web PID controller.

The Web PID controller also features the following major additional functions.

1) Improves the initial transient phenomenon of the dancer or load cell by increasing the PID output when the inverter starts during ramp up (APP51: PID Start Ramp), 2) Compensates for inertia by using the diameter (\%) estimated for that section in the diameter computation to change the P gain of the PID controller (APP56: Profile P Mode, APP57: Profile P Gain), and 3) Compensates for any disturbances (APP86-88) that may occur during operation (APP86-88).

(1) PID Controller

Group	Code number	Function	Name	Factory default	Range
IN	65-72	Px Define	Multi-function input setting	$\begin{gathered} \text { 49: Web Dis } \\ \text { PID } \\ \hline \end{gathered}$	-
APP	15	Web PID En	Tension PID control selection	1: Yes	0 No
					1 Yes
APP	16	PID Output	PID output monitor	Read Only (\%)	
APP	18	PID Fdb Value	PID feedback monitor	Read Only (\%)	
APP	21	PID F/B Src	PID feedback selection	1: 11	0 V1
					$1{ }^{1}$
					2 V 2
					3 l
					4 Int. 485
					5 Encoder
					6 Fieldbus
					7 PLC
APP	22	PID P-Gain	PID controller proportional gain	50.0\%	0.0-1000.0\%
APP	23	PID I-Time	PID controller integral time	10.0 s	0.0-200.0 s
APP	24	PID D-Time	PID controller differentiation time	0 ms	0-1000 ms
APP	27	PID Out LPF	PID output filter	0 ms	0-10000 ms
APP	28	PID I Limit	PID I controller limit	100.0\%	0.0-100.0\%
APP	31	PID Out Inv	PID output inverse	0 : No	0 No
					1 Yes
APP	32	PID Out Scale	PID output scale	30.0\%	0.0-1000.0\%
APP	51	PID Start Ramp	PID output at start Ramp time	5.0 s	0.0-300.0 s
APP	52	PID Hi Lmt \%	PID output upper limit (\%)	100.0\%	APP53-100.0\%
APP	53	PID Lo Lmt \%	PID output lower limit (\%)	-100.0\%	-100-APP52\%
APP	98	PID Sample T	PID controller execution frequency	1 ms	1-10 ms

APP15 (Web PID En): Determines whether to use the Web PID controller. This code functions in combination with the multi-function input "Web Dis PID", as shown in Table 1.5.1.

Table 1.5.1 Selecting whether to use the Web PID controller

APP15 (Web PID En) setting	Status of the multi-function input "Web Dis PID"	Whether to use the Web PID controller
Yes	Off	O
Yes	On	X
No	Off	X
No	On	X

APP16 (PID Output): Indicates the current PID output (\%).
APP18 (PID Fdb Value): Indicates the current PID feedback (\%).
APP21 (PID F/B Src): This code allows you to select from a variety of methods to input the PID controller feedback (analog, internal COM, external COM, and PLC option).

APP22 (PID P-Gain): Indicates the P1 gain of the PID controller. If the P gain is 100% and the error is 100%, then the P controller output is 100%.

APP23 (PID I-Time): Indicates the I1 gain of the PID controller. If the I gain is 10 sec and the error is 100%, then it takes 10 seconds to saturate the I controller output to 100%.

APP24 (PID D-Time): Indicates the D gain of the PID controller. If the D gain is 10 ms and the error change is 100%, then it takes 10 ms for the D controller output to decrease from 100% to 34%.

APP27 (PID Out LPF): Sets the delay time constant of the PID controller output. In general, this code sets the delay time to 0 ms to shorten the response time of the PID controller. However, a higher value makes the PID controller less responsive but more stable.

APP28 (PID I Limit): Indicates the output limit of the I controller for anti-windup.
APP31 (PID Out Inv): Selects whether to invert the output of the PID controller. Select "Yes" to invert the PID output code before it is output. This code is useful in situations where the tension detectors, such as the dancer or load cell, are oriented oppositely.

APP32 (PID Out Scale): Adjusts the scale of the PID controller output. First, suppose that the PID controller is saturated. In such a situation, if this code is set to 100%, the PID controller output is 100%. When this code is set to 30%, the PID controller output is 30%.

APP51 (PID Start Ramp): Ramp time can be increased during the set time of PID output when the inverter initially starts. This function smoothes the output of the PID controller at initial start up and improves transient phenomena like sloshing when starting the dancer or load cell.

Fig. 1.5.1 (b) shows the output of the P controller at start up when the P gain is 100% and the PID error is 100%. The dotted line in figure (b) shows the output of the P controller when APP51 (PID Start Ramp) is "0 (sec)". The solid line in figure (b) shows that the output of the PID controller at initial start up tends to increase by the ramp time based on APP51 (PID Start Ramp). In other words, the solid line in (b) is more advantageous than the dotted line in (b) due to the transient phenomena that exists when the inverter initially starts.

Fig. 1.5.1 Activating APP51 (PID Start Ramp)
Moreover, APP51 (PID Start Ramp) is based on the PID controller output at 100%. For example, when APP51 (PID Start Ramp) is set to 5 sec , it takes 5 sec to fully saturate the output of the PID controller to 100% at initial start up. However, it takes 2.5 sec to saturate the output of the PID controller to 50% at initial start up.

APP52, 53 (PID Hi/Lo Lmt \%): Specifies the upper and lower limit of the PID controller output. In addition to this, the cumulative value of the I controller is limited to the upper and lower value specified in this code.

APP98 (PID Sample T): Changes the execution frequency of the Web PID controller.

(2) Inertia Compensation

Group	Code number	Function	Name	Factory default	Range	
APP	56	Profile P Mode	P Gain profile selection	0 : None	1	Linear
					None	
APP	$57^{\text {(Note 1) }}$	Profile P Gain	Profile gain	1.00%	$0.01-10.00 \%$	

(Note 1): This code appears when you select "Linear" or "Square" in APP56 (Profile P Mode).
The winder develops a larger diameter and produces more inertia over time, so it requires more positive (+) inertia compensation. In contrast to this, the unwinder develops a smaller diameter and produces less inertia over time, so it requires more negative (-) inertia compensation.

For this inertia compensation, P gain should increase as the diameter increases. It is expressed in the following equation. Fig. 1.5 .2 shows how the P gain varies depending on the diameter.

"None":

Inertiacompensation P Gain $=P$ Gain

"Linear":

Innertia compensation P Gain $=$ P Gain $\times\left\{1+\right.$ Pr ofile P Gain(APP57) $\left.\times\left[\frac{\text { Diameter }}{\text { Full Diameter }}-\frac{\text { Bobbin Diameter }}{\text { Full Diameter }}\right]\right\}$

"Square":

InnertiacompensationP Gain $=$
$P G a i n \times\left\{1+\right.$ profile P Gain $\left.\times\left[\frac{\text { Diameter }^{2}}{\text { Full Diameter }^{2}}-\frac{\text { Bobbin Diameter }^{2}}{\text { Full Diameter }^{2}}\right]\right\}$

Fig. 1.5.2 The \mathbf{P} gain trend varies depending on the APP56 settings (Profile \mathbf{P} Mode)

(3) P, I gain Switching (changing the gain during multifunction input and operation)

During inverter operation, system response may become unstable if the P / I gain switches over momentarily without switching the ramp time when the multifunction input "Web PI Gain2" changes. This may also occur if you manually change the APP22 (PID P-Gain) and APP23 (PID I-Time) settings. In order to avoid this risk, make sure the P/l gain switching changes slowly along with the proper setting in APP50 (PI Gain Ramp).

Group	Code number	Function	Name	Factory default	Range
IN	$65-72$	Px Define	Multi-function input setting	$55:$ Web PI Gain2	-
APP	22	PID P-Gain	PID controller proportional gain	50.0%	$0.0-1000.0 \%$
APP	23	PID I-Time	PID controller integral time	10.0 s	$0.0-200.0 \mathrm{~s}$
APP	45	PID P2-Gain	PID controller proportional gain 2	100.0%	$0.0-1000.0 \%$
APP	46	PID I2-Time	PID controller integral time 2	20.0 s	$0.0-200.0 \mathrm{~s}$
APP	50	PI Gain Ramp	PI gain switching ramp time	30.0 sec	$0.0-300.0 \mathrm{sec}$

APP50 (PI Gain Ramp): This code is the ramp time applicable when P / I gain switching occurs due to a change in the multi-function input "Web PI Gain2" during inverter operation. In addition to this, this code also applies when you use the loader to change the P / I gain during inverter operation. Ramp time switching is based on 1000% for the P gain and 200 sec for the I gain. For example, it takes $3 \sec (=30 * 100 / 1000)$ to change the P gain from 100% to 200% when APP50 (PI Gain Ramp) is set to 30 sec .

Table 1.5.2 Selecting the P/I gain depending on the multi-function input "Web PI Gain2"

Status of the multi-function input "Web PI Gain2"	P/I gain selected
Off	APP22 (PID P-Gain), APP23 (PID I-Time)
On	APP45 (PID P2-Gain), APP46 (PID I2-Time)

(4) P, I gain Switching (switching by speed)

The ramp time can change the PI gain value based on variations in the inverter operation speed, as shown in Fig. 1.5.3.

Fig. 1.5.3 Switching the PI gain depending on speed

Group	Code number	Function	Name	Factory default	Range
APP	22	PID P-Gain	PID controller proportional gain	50.0%	$0.0-1000.0 \%$
APP	23	PID I-Time	PID controller integral time	10.0 s	$0.0-200.0 \mathrm{~s}$
APP	45	PID P2-Gain	PID controller proportional gain 2	100.0%	$0.0-1000.0 \%$
APP	46	PID I2-Time	PID controller integral time 2	20.0 s	$0.0-200.0 \mathrm{~s}$
APP	47	PI Change Spd1	Main speed to start gain switching	0.00%	$0.00-\mathrm{PI}$ Change Spd2 (\%)
APP	48	PI Change Spd2	Main speed to complete gain switching	0.00%	PI Change Spd1 $-100.00(\%)$

(5) Disturbance Compensation

Group	Code number	Function	Name	Factory default	Range
APP	86	W Noise Band	Disturbance detection band	0.0%	$0.0-100.0 \%$
APP	87	W Noise P Gain	Disturbance compensation P gain	0.0%	$0.0-100.0 \%$
APP	88	W Noise P Ramp	Disturbance compensation accel/decel time	0.0 sec	$0.0-100.0 \mathrm{sec}$

If an error occurs in the position of the dancer or load cell with an abnormal band set at APP86 (W Noise Band) due to external causes, you can use the P gain set in APP87 (W Noise P Gain) to effectively stabilize the dancer or load cell.

The APP88 (W Noise P Ramp) code sets the time constant for disturbance compensation.

2.6 Diameter Computation Section

In a tension control system, the winder/unwinder flux, motor speed, and diameter are correlated, as shown in Eq. 1.6.1.

> Flux $[\mathrm{mpm}]=$
> Motor speed $[\mathrm{rpm}] \times($ diameter $\times \pi)[\mathrm{m}]=$ Constan $t \quad-E q(1.6 .1)$

Let's take a look at one example of a winder in a closed loop tension control system. Unless you adjust the flux, the flux (mpm) remains constant as the actual diameter (m) of the winder increases over time. Thus, as shown in Eq. 1.6.1, a flux increase exerts more tension on the dancer or load cell. This causes the output of the Web PID controller to become negative $(-)$ and the actual speed
of the motor (rpm) to decrease, which decreases the flux in Eq. 1.6.1 so that it remains constant.

As shown below, Eq. 1.6.2 allows you to use the winder flux (mpm), which is always constant, and the actual speed of the motor (lower rpm) to estimate the diameter computation. This equation assumes that the estimated diameter increases over time.

$$
\text { Estimated diamete } x \pi[\mathrm{~m}]=\frac{\text { Flux }[\mathrm{mpm}]}{\text { Motor speed }[\mathrm{rpm}]} \quad-\text { Eq. }(1.62)
$$

Next, let's take a look at an example of an unwinder. With unwinders, unless you adjust the flux, the flux (mpm) remains constant as the actual diameter (m) of the unwinder decreases over time. Thus, like the winder, the unwinder increases the tension on the dancer or load cell as the flux decreases to maintain a constant flux, as shown in Eq. 1.6.1. However, unlike the winder, the unwinder internally inverts the output signals from the Web PID controller internally. Thus, unlike the winder, the output from the Web PID controller becomes positive (+) and the actual speed of the motor (rpm) increases. Once again, the flux in Eq. 1.6.1 increases to maintain its constant speed. As shown above, Eq. 1.6.2 allows you to use the unwinder flux (mpm), which is always constant, and the actual speed of the motor (higher rpm) to estimate the diameter computation. This equation assumes that the estimated diameter decreases over time.

(1) Bobbin Selection and Diameter Initialization

Group	Code number	Function	Name	Factory default	Range
IN	$65-72$	Px Define	Multi-function input setting	52: Web Preset	-
IN	$65-72$	Px Define	Multi-function input setting	$53:$ Web Bobbin-L	-
IN	$65-72$	Px Define	Multi-function input setting	$54:$ Web Bobbin-H	-
APP	62	Curr Bobbin	Current bobbin display	Read Only	
APP	63	Bobbin1 Diamtr	Bobbin 1 diameter (\%)	10.0%	APP67-100.0\%
APP	64	Bobbin2 Diamtr	Bobbin 2 diameter (\%)	15.0%	APP67-100.0\%
APP	65	Bobbin3 Diamtr	Bobbin 3 diameter (\%)	20.0%	APP67-100.0\%
APP	66	Bobbin4 Diamtr	Bobbin 4 diameter (\%)	25.0%	APP67-100.0\%

APP62 (Curr Bobbin): Indicates the number of bobbins currently selected (1-4).
APP63-66 (Bobbin \# Diamtr): As shown below, you must use a combination of multi-function input "Web Bobbin-L" and "Web Bobbin-H" to specify the bobbin diameter. After selecting a bobbin, switch multi-function input "Web Preset" from $\mathrm{On} \rightarrow \mathrm{Off}$ and initialize it to the diameter of the bobbin selected.

Multi-function input "Web Bobbin-H"	Multi-function input "Web Bobbin-L"	Bobbin selected
Off	Off	Bobbin1 (APP63)
Off	On	Bobbin2 (APP64)
On	Off	Bobbin3 (APP65)
On	On	Bobbin4 (APP66)

For example, suppose that there are 4 kinds of bobbin, as shown in the following figure. For these bobbins, you must enter the computed values, i.e. 14.2\%, $28.5 \%, 35.7 \%$ and 50.0\%, in APP63-66 (Bobbin \# Diamtr) respectively. You must also enter 14.2\%, i.e. the \%diameter of Bobbin1, in APP67 (Min Diameter), since it is the smallest bobbin.

Select the currently installed bobbin using a combination of multi-function input "Web Bobbin-L" and "Web Bobbin-H," and then switch multi-function input "Web Preset" from On \rightarrow Off to initialize it.

Fig. 1.6.1 Various bobbin sizes

\triangle Caution

When you replace a bobbin, always switch multi-function input "Web Preset" from On \rightarrow Off. You cannot compute the new diameter if multi-function input "Web Preset" remains ON.

(2) Diameter Computation

Group	Code number	Function	Name	Factory default	Range	
APP	61	Curr Diameter	Current diameter display (\%)	Read Only		
APP	67	Min Diameter	Keypad value of minimum bobbin diameter	10.0\%	5.0-100.0\%	
APP	68	Diameter LPF	Diameter computation filter	30.0 sec	0.0-300.0 sec	
APP	70	MinDia Source	Selection of the minimum bobbin diameter input	0: Keypad	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	XV1
					6	XI1
					7	XV2
					8	XI2
					9	XV3
					10	XI3
					11	XV4
					12	XI4
APP	75	MinDia Value	Minimum bobbin diameter monitor	Read Only (\%)		
APP	92	Max Main Spd	Main speed 100% frequency	60.0 Hz	0.0 - DRV20 (Hz)	

You can convert Eq. 1.6.2 to percentages and reorganize it into Eq. 1.6.3.
Estimated diameter $[\%]=$
$\frac{\text { Main speed }[\%]}{\frac{\text { Current output frequency }[\mathrm{Hz}]}{A P P-92(\text { MaxMainSpd })} \times 100[\%]} \times A P P-67($ Min Diameter $)-E q(1.6 .3)$

The following description of the winder operating mechanism explains Eq. 1.6.3.
Unless you change the "main speed (\%)," it remains at the constant commanded and the actual diameter of the bobbin for the winder increases over time. At the same time, the tension on the dancer and load cell gradually increases. Thus, the Web PID controller produces a negative (-) output and the "current output frequency (Hz) " of the inverter decreases. Then by Eq. 1.6.3, the "estimated diameter (\%)" increases. This "estimated diameter (\%)" is internally restricted by the upper limit 100\% and lower limit APP67 (Min Diameter). By setting APP68 (Diameter LPF), you can use the time constant of the "estimated diameter (\%)" to control the computed speed at that diameter (\%).

This "estimated diameter (\%)" is crucial in determining the final speed command (Hz) of the inverter. For more details, please see the section 1.7 concerning final speed computations.

APP61 (Curr Diameter): Indicates the diameter of the current bobbin (\%). After switching multi-function input "Web Preset" from On \rightarrow Off, the diameter (\%) of the selected bobbin appears. The diameter (\%) computed in Eq. 1.6.3 is updated during operation.

APP67 (Min Diameter): When selecting the input value of APP70 with the Keypad, enter the ratio (\%) of the empty bobbin diameter to the bobbin diameter when fully wrapped with material. If there are a variety of bobbins available, as shown in Fig. 1.6.1, enter the ratio (\%) of the minimum diameter of the smallest bobbin to the maximum diameter of the largest bobbin. In cases such as the one shown in Fig. 1.6.1, enter 14.2\% in APP67 (Min Diameter).

APP68 (Diameter LPF): Selects the delay time constant of the diameter (\%) computation. Usually set as traverse reciprocating time.

APP70 (MinDia Source): This code allows you to select from a variety of methods to enter the minimum bobbin diameter value (e.g. keypad, analog, extended analog input).

APP75 (MinDia Value): Indicates the minimum bobbin diameter value (\%).
APP92 (Max Main Spd): When the main diameter command is 100\%, enter the maximum speed (Hz) for the empty diameter of the smallest bobbin. In this example, the empty diameter of the smallest bobbin is $0.1 \mathrm{~m}(=100 \mathrm{~mm})$, as shown in Fig. 1.6.1. Suppose that the maximum flux of this system is 350 (mpm) and the belt ratio of the 4 -pole motor (faster motor) is 2.3/1. In this situation, you use Eq. 1.6.4 to compute the value to enter in APP92 (Max Main Spd) in the following way.

$$
\begin{aligned}
& \text { APP }-92(\text { Max MainSpd })= \\
& \frac{350[\mathrm{mpm}]}{0.10[\mathrm{~m}] \times \pi} \times 2.3(\text { Belt ratio }) \times \frac{4(\text { poles })}{120}=85.46[\mathrm{~Hz}] \quad-E q(1.6 .4)
\end{aligned}
$$

(3) Interruption of Diameter Computation

Group	Code number	Function	Name	Factory default	Range
IN	$65-72$	Px Define	Multi-function input setting	Web Hold	-
APP	69	Web Hold Freq	Interruption frequency of diameter computation	5.00 Hz	$0.00-30.00 \mathrm{~Hz}$
APP	90	Min Main Spd	Minimum main speed	3.0%	$0.0-100.0 \%$

Do not compute the diameter when one of the following requirements is met: the multi-function input "Web Hold" is ON, during jog operation, when the Web PID is prohibited, low speeds below the limits of APP69 (Web Hold Freq) and APP90 (Min Main Spd), in Web Break status, and in an emergency stop zone initiated by multi-function input "Web Quick Stop". Diameter computation is only meaningful under normal operating conditions.

Stop computing the diameter in the following conditions:

- Multi-function input "Web Hold" is On, or
- Main speed command (\%) < APP90 (Min Main Spd), or
- Output frequency (Hz) < APP69 (Web Hold Freq), or
- Emergency stop by multi-function input "Web Quick Stop" is On, or
- Web break detected, or
- Multi-function input "Web Dis PID" is On, or
- APP15 (Web PID En) is 'Yes,' or
- During Jog Operation.

(4) Web Function without Diameter Computation

Group	Code number	Function	Name	Factory default	Range	
AP2	80	Dia Dis Mode	Selection of web without diameter computation	0: No	0	No
	1	Yes				

Select this option to enable tension control operation without entering a diameter value. If you select "Yes" for AP2 80, the current diameter becomes the minimum diameter regardless of the diameter computation, and the value of diameter has no practical effects on tension control.

For more details on web function without diameter computation, please see section 2.12, "Web Function without Diameter Computation".

2.7 Final Speed Computation Section

Fig. 1.7.1 Final speed computation section

The final speed computation section determines the final speed command (Hz) of the inverter. It uses the main speed computed in the main speed command section (In3: main speed[\%]), the PID output computed in the Web PID controller section (In4: PID output[\%]), the error change compensation frequency (ln1), and the diameter computed in the diameter computation section (In2: Diameter [\%]).

(1) PID Output Method (Fixed/non-fixed PID controller)

Group	Code number	Function	Name	Factory default	Range	
APP	54	Fixed PID En	Fixed PID controller selection	$0:$ No	0	No
	APP	$55^{\text {(Note 1) }}$	Min Fixed PID	Minimum value of the fixed PID controller	10.0%	Yes

(Note 1): This code appears when "No" is selected in APP54 (Fixed PID En).
When you select "Yes" in APP54 (Fixed PID En), the PID output(\%) - an output of the Web PID controller, as shown in Eq. 1.7.1 - remains constant regardless of the main speed (\%).

$$
\text { Final PID output }[\%]=\text { PID output }[\%] \quad-E q(1.7 .1)
$$

When you select "No" as the factory default for APP54 (Fixed PID En), the PID output (\%) - an output of the Web PID controller, as shown in Eq. 1.7.2 - is proportional to the main speed (\%). In other words, it means that the ratio of the PID output (\%) to the main speed remains constant. According to this principle, lower main speeds (\%) produce less PID output (\%), whereas higher main speeds (\%) produce higher PID output (\%).

> Final PID output $[\%]=$
> PID output $[\%] \times \frac{\text { Main speed command }[\%]}{100.0[\%]} \quad-E q(1.7 .2)$

However, when you select "No" as the factory default in APP54 (Fixed PID En) and receive a command to lower the main speed (\%) below the value specified in APP55 (Min Fixed PID), the inverter functions according to the equation shown in Eq. 1.7.3. By functioning according to the equation in Eq. 1.7.3, the inverter prevents the output of the Web PID controller from decreasing the low main speed command (\%) below the value specified in APP55 (Min Fixed PID).

Final PID output [\%] =
PID output $[\%] \times \frac{A P P-55(\text { Min Fixed PID })[\%]}{100.0[\%]} \quad-E q(1.7 .3)$
Table 1.7.1 shows the final PID output (\%) based on the APP54 (Fixed PID En) setting when you set APP32 (PID Out Scale) to 20\% and APP55 (Min Fixed PID)
to the factory default 10\%. This table assumes that the PID output is now saturated at 20%.
(Note 1) of Table 1.7.1 shows that the main speed is 2% or 8% below the factory default of APP55 (Min Fixed PID), i.e. 10\%, so you can determine it using Eq. 1.7.3. (Note 2) shows that main speed is 20% or 80% over the factory default of APP55 (Min Fixed PID), i.e. 10\%, so you can determine it using Eq. 1.7.2.

Table 1.7.1 Comparison of PID outputs by PID controller types (APP54: Fixed PID En)

Main speed command (\%)	APP54 (Fixed PID En): PID output (\%), if Yes	APP54 (Fixed PID En): PID output (\%), if No
2.0	20.0	$2.0{ }^{\text {(Note 1) }}$
8.0	20.0	$2.0{ }^{\text {(Note 1) }}$
20.0	20.0	$4.0{ }^{\text {(Note } 2)}$
80.0	20.0	$16.0^{\text {(Note 2) }}$

(2) Final Speed (Hz) Computation

In Fig. 1.6.1, U1 (\%) equals "main speed command (\%) + PID output (\%)," and is converted to Hertz (Hz) units as shown in Eq. 1.7.4.

$$
\begin{aligned}
& \text { Main speed }+ \text { PID output }[\mathrm{Hz}]= \\
& \frac{\text { Main speed }+ \text { PID output }[\%]}{100.0[\%]} \times A P P 92(\text { Max Main Spd })[H z] \quad-E q(1.7 .4)
\end{aligned}
$$

Now, you can convert Eq. 1.6.1 of section 1.6 into Eq. 1.7.5. Eq. 1.7.5 allows you to compute the final speed (Hz) of the inverter.

Final speed $[\mathrm{Hz}]=\frac{\text { Wire speed }[\mathrm{mpm}]}{(\text { Diameter } \times \pi)[\mathrm{m}]}=$
$\frac{\text { Main speed }+ \text { PID output }[H z]}{\text { Estimated diameter }[\%]} \times A P P 67($ Min Diameter $)[\%] \quad-E q(1.7 .5)$

Group	Code number	Function	Name	Factory default	Range
APP	89	Compen Xcel \%	Rate of compensation reflected by diameter computation in the final speed	20%	$0 \sim 100[\%]$

APP89 (Compen Xcel \%): As shown in Eq. 1.7.5, the estimated diameter (\%) compensates for the final output frequency of the inverter. Here, you can set the rate and response speed where the variations in the output frequency induced by the estimated diameter (\%) would otherwise be reflected in the actual output frequency of the inverter.

The lower value of APP89 (Compen Xcel \%) values (c.a. 50\% or less) leads to the lower rate of output frequency variations due to the estimated diameter of the actual output frequency of the inverter, and also leads to the lower speed of said variations reflected in the actual output frequency.

In order to ensure that the inverter operates reliably at a constant speed, we recommend setting APP89 (Compen Xcel \%) to a value of less than ca. 50\%.

(3) Web Function without Diameter Computation

Group	Code number	Function	Name	Factory default	Range	
AP2	80	Dia Dis Mode	Selection of web without diameter computation.	$0:$ No	0	No
		1	Yes			

Select this option to compute the final speed command without using the diameter value. If you select "Yes" in AP2 80, you can compute the speed command using the main speed, compensation gain, and PID output value. For more details, please see Eq. 1.7.6.

Final speed $(\%)=($ Main speed \times compensation gain $)+$ PID Output [\%] $\quad-$ Eq. (1.7.6)
The web function without diameter computation is only valid in closed loop speed control mode (APP02: W_Spd Close/U_Spd Close).

For more details on the web function without diameter computation, please see section 2.12, "Web Function without Diameter Computation".

\triangle Caution

The final speed (Hz) is the final value of Eq. 1.7 .5 , which is regularly computed in the final speed computation section, so acceleration and deceleration occur frequently. Here, the accel and decel time is specified in DRV03 (Acc Time) and DRV04 (Dec Time), respectively.
Moreover, selecting " 5 : Tension Ctrl" in APP01 (App Mode) automatically sets both DRV03 (Acc Time) and DRV04 (Dec Time) to " 0.5 sec ". You can set different values for DRV03 (Acc Time) and DRV04 (Dec Time), but they must be less than 2.0 sec in order to rapidly reflect the final speed.

(4) Reverse Tension

Group	Code number	Function	Name	Factory default	Range	
APP	84	Rev Tension En	Reverse tension selection	$0:$ No	0	No
	1	Yes				

APP84 (Rev Tension En): In Fig. 1.7.1, suppose that the sign for U1 (\%), i.e. "main speed command (\%) + PID output (\%)," is negative (-). Under these circumstances, if you select "Yes" for this code and issue a forward (Fwd) operation command, then the inverter can operate in the reverse direction. However, if you select "No" as the factory default for this code and issue a forward (Fwd) operation command, then the inverter cannot operate in reverse and the output frequency is limited to $0(\mathrm{~Hz})$.

Select "1: Yes" for this function. If the PID output (\%) is negative (-) when the main speed command is 0%, operate the inverter in reverse until it reaches the absolute value of the PID output (\%) to maintain the tension on the material in the closed loop tension control system.

(5) Splicing

Group	Code number	Function	Name	Factory default	Range
$\mathbb{I N}$	$65-72$	Px Define	Multi-function input setting	Web Splice	-
APP	93	Splice Level	Splicing level	0.0%	$0.0-100.0 \%$

A splicing system consists of 2 inverters that can control each motor, which allows you to replace bobbins during operation. When replacing the bobbin, be sure not to change the flux. When the multi-function input specified in " 57 : Web Splice" of the inverter turns ON, it interrupts the output of the Web PID controller and the final speed command of the inverter is determined only by Eq. 1.7.6-Eq. 1.7.8, which is a combination of the main speed command (\%) and APP93 (Splice Level).

The following explains why we add the second term to the right side of Eq. 1.7.6. As soon as the material is wound onto the new bobbin, you may face abrupt load variations and material deflection. In order to avoid this phenomenon, you must increase the speed to the level of APP93 (Splice Level) when the new bobbin begins to wind material. For example, if you set APP93 (Splice Level) to 20\% and the main speed command is 50%, the main speed command (\%) becomes $60 \% ~(=50 \%+50 \% \times 20 \% / 100 \%)$ when the multi-function input specified in " 57 : Web Splice" turns ON.

Main speed command $[\%]=$
Main speed $[\%]+$ Main speed $[\%] \times \frac{A P P-93(\text { Splice Level })[\%]}{100[\%]}-E q(1.7 .6)$
You can use Eq. 1.7.7 to convert this equation into frequency (Hz).

```
Main speed command \([\mathrm{Hz}]=\)
\(\frac{\text { Final main speed command }[\%]}{100.0[\%]} \times A P P-92(\) Max Main Spd \()[H z] \quad-E q(1.7 .7)\)
```

Finally, Eq. 1.7 .7 is processed using Eq. 1.7.8 to output the final speed command of the inverter. As shown in Eq. 1.7.8, "initial diameter (\%)" appears in the denominator of the right-hand side, because the diameter of bobbin is initialized to a diameter specified in APP63-66 (Bobbin \# Diamtr) when the multi-function input specified in " 57 : Web Splice" turns ON.

Final speed command $[\mathrm{Hz}]=$
$\frac{\text { Main speed command }[\mathrm{Hz}]}{\text { Initial diameter }[\%]} \times A P P-67($ MinDiameter $)[\%]-E q(1.7 .8)$

Fig. 1.7.2 Conceptual diagram of splicing
Fig, 1.7.2 illustrates the usual structure of winder splicing systems. The operation sequence of the structure shown in Fig. 1.7.2 is as follows.

When Bobbin 1 is almost completely full, it sends a signal to inform the upper level controller (Fig. 1.7.2 (1)).

The upper level controller then issues an ON signal to the inverter multi-function input specified in "57: Web Splice" that controls empty Bobbin 2 (Fig. 1.7.2 (2)).

The inverter interrupts the output of the Web PID controller. In this situation, the inverter uses a combination of the main speed command (\%) and APP93 (Splice Level) as the command value, as shown in Eq. 1.7.6-Eq. 1.7.8, to activate empty Bobbin 2 (Fig. 1.7.2 (3)).

The axis between the bobbins rotates 180 degrees, so Bobbins 1 and 2 switch position (Fig. 1.7.2 (4)).

Bobbin 2 sends a signal to the upper level controller to confirm that the switch is complete (Fig. 1.7.2 (5)).

The upper level controller sends an OFF signal to the inverter's corresponding multi-function input specified in " 57 : Web Splice" to control Bobbin 2, which interrupts the splicing operation. Then, the Web PID controller resumes operation and diameter computation begins again, so the frequency of inverter is once again determined by Eq. 1.7.5 (Fig. 1.7.2 (6)).

(6) Speed Bias

Group	Code number	Function	Name	Factory default	Range
APP	91	Web Spd Bias	Speed bias setting	1.00 Hz	$0.00-60.00 \mathrm{~Hz}$

APP91 (Web Spd Bias): Add frequency value, as much as the value specified in APP91 to the command speed to output the final command speed. This value is only effective in open loop speed control mode (APP02: W_Spd Open/U_Spd Open).

Add the speed bias value and saturate speed controller in open loop speed control mode to output the torque limit value and thereby operate inverter.

2.8 Analog Output Section

Group	Code number	Function	Name	Factory default	Range
IN	$65-72$	Px Define	Multi-function input setting	Web Bypass	-
OUT	01,07	AO1, AO2 Mode	Analog output 1, 2	Web Spd Out	-
APP	83	Bypass Gain	Bypass gain	100.0%	$0.0-300.0 \%$

During normal inverter operation (multi-function input "Web Bypass" turns OFF, the inverter is operating and works without a trip), you can export the main speed + PID output (\%) to an analog output (AO1: 0-10 V voltage, AO2: 0-20 mA current).

During abnormal inverter operation (multi-function input "Web Bypass" turns ON, the inverter stops operating, or it trips), multiply the main speed (\%) by APP83 (Bypass Gain) and export the results to the analog output (AO1: $0-10 \mathrm{~V}$ voltage, AO2: 0-20 mA current).

The PID output is not available in speed control mode of an open loop system, so you can only export the main speed (\%) as an analog output.

2.9 Final Tension Computation Section

Final tension computation is available in tension control closed loop/open loop systems.

Closed loop tension systems can use the tension command, Web PID output, and diameter values to output the final torque command.

Open loop tension systems do not use the Web PID output, so it uses the tension command, diameter, and friction loss values to output the final torque command.

Group	Code number	Function	Name	Factory default	Range
APP	25	PID F-Gain	Tension scale	100.0%	$0.0-1000.0 \%$

APP25 (PID F-Gain): This gain controls the scale of the tension command value output from the tension command section.

In a closed loop tension system, you can set this code to favor rapid tension response characteristics. However, you must set this code to default, i.e. 100.0\%, in open loop tension systems.

2.10 Web Break Detection Section

Closed loop tension control systems use tension detectors, such as the dancer or load cell. When the feedback from the tension detector is shorter or longer than the time specified, the inverter determines that the web material may be ruptured. It then informs the upper level controller of the potential risk via the multi-function output contact and initiates the proper protective operation based on this setting.

Open loop tension control systems do not use tension detectors. Instead, they use the torque output value to determine web material ruptures. In a speed control open loop tension system, web break detection occurs when the torque output drops below (Web Torque Limit - APP80). The system then initiates the proper protective operation based on this setting.

Group	Code number	Function	Name	Factory default	Range	
OUT	31-33	Relay1, 2, Q1	Multi-function output contact	Web Break Web Break Hi Web Break Lo	-	
APP	76	Web Brk En	Web break detection function selection	1: Warning	0	None
					1	Warning
					2	Free-run
APP	$77^{\text {(Note 1) }}$	Web Brk St Dly	Web break detection delay time at initial startup	10.0 sec	0.0-300.0 sec	
APP	$78^{\text {(Nate 1) }}$	Web Brk Dly	Web break delay time	5.0 sec	0.0-300.0 sec	

Group	Code number	Function	Name	Factory default	Range
APP	$79^{\text {(Note 1) }}$	Web Brk Lev Hi	Web break detection upper limit	80.0%	APP80-100.0\%
APP	$80^{\text {(Note 1) }}$	Web Brk Lev Lo	Web break detection lower limit	20.0%	$0.0-$ APP79\%

(Note 1): This code appears when you select "Warning" or "Free-run" in APP76 (Web Brk En).
APP76 (Web Brk En): Select "None" to disable web break detection.
When you select "Free-run," the inverter executes a free-run stop when it detects a web break. If multi-function output contact is set to "29: Trip", the multi-function output contact turns "ON".

If you select "Warning" as the factory default and a web break is detected, the inverter does not execute a free-run stop and continues operating normally. The inverter displays a Warning on the digital loader. If the multi-function output contact is set to " 36 : Web Break," only the relevant multi-function output contact turns "ON". When you issue a stop command to the inverter to decelerate and stop it, it releases the Warning displayed on the digital loader, and the multifunction output specified in "36: Web Break" turns OFF.

APP77 (Web Brk St Dly): The Web break detection function does not work until the time period specified in this code has elapsed (from the initial start of the inverter), since web break detection is not significant during initial startup because the dancer and load cell position is unstable.

APP78 (Web Brk Dly): If the analog quantity feedback from the dancer or load cell is higher than the web break detection level maximum limit (APP79: Web Brk Lev Hi) or lower than the lower limit (APP79: Web Brk Lev Lo) for longer than the time specified in this code, the inverter considers this situation a Web Break.

APP79 (Web Brk Lev Hi): The system detects a web break when the analog quantity feedback from the dancer or load cell is higher than the value specified in this code.

APP80 (Web Brk Lev Lo): The system detects a web break when the analog quantity feedback from the dancer or load cell drops below the value specified in this code.

In open loop tension systems, the system detects a web break when the torque output falls below the torque limit (speed control) or final torque command (tension control) minus the value specified in this code.

2.11 Torque Limit Computation Section

(1) Torque Limit Computation

This feature is only available in speed control open loop tension systems. You can use the tension command, diameter, and friction loss value to compute the torque limit, as shown in Eq. 1.11.1.

$$
\text { Torque Limit }[\%]=\text { Tension command }(\%) \times \frac{\text { Current diameter }(\%)}{\operatorname{Min} . \operatorname{diameter}(\mathrm{APP67})(\%)} \pm \text { Friction loss } \quad-\text { Eq. }(1.11 .1)
$$

(2) Friction Loss Measurement

Friction occurs in every mechanical system, and is a factor that can disturb the control performance of the system and result in loss of mechanical energy. When materials are held under tension, such as in a tension control system, the friction loss that occurs on a roll may influence the tension of the material. The Web PID compensates for friction loss in closed loop tension systems, but open loop tension systems do not use a Web PID, so they measure the friction loss on a roll before system operation and compensate for it during the tension control operation.

You can set and measure the friction loss in section 20 (Auto Tuning) of the BAS group.

Group	Code number	Function	Name	Factory default	Range
BAS	20	Auto Tuning	Auto-tuning	7: Friction Loss	-
BAS	$\begin{gathered} 80,82, \ldots, \\ 98^{\text {Nole 11) }} \end{gathered}$	FricComp Spd1 -	Friction loss measurement frequency	$\begin{gathered} 6(\mathrm{~Hz}), 12 \\ (\mathrm{~Hz}), \ldots, 60 \\ (\mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 0.00-\mathrm{Max} . \\ & \text { Freq (Hz) } \end{aligned}$
BAS	$\begin{gathered} 81,83, \ldots, \\ 99^{\text {(Note 1) }} \text {) } \end{gathered}$	FricComp Trq1-	Friction loss value	0.00\%	0.00-100.0\%

(Note 1): This code appears when you select "Tension Ctrl" in APP01 (App Mode).
APP20 (Auto Tuning): In order to measure friction loss, you must select "Friction Loss" when mounting an empty bobbin without connecting any material to the corresponding roll. When you select a function, the system immediately starts to measure the friction loss.

The system measures friction loss after operating at acceleration and at constant speed for the 10 constant speed zones specified in APP80 to APP98. After the system measures the friction loss, the motor executes a free-run stop. The values measured in each zone are stored in APP81-99 after the system finishes auto-tuning.

General auto-tuning "All" does not include friction loss measurements.
APP80-98 (FricComp Spd 1-10): Specifies the friction loss measurement speed.

The default value for the 10 zones is 60 Hz . The possible value range is lower than the "Max Freq" value. You can change the measurement speed at your own discretion.

APP81-99 (FricComp Trq 1-10): After the system measures the friction loss, it saves the friction loss value (\%) for the specified speed. You can change this value at your own discretion.

The system computes the friction loss and compensates for it with the speed, as shown in the following Fig. 1.11.1.

Fig. 1.11.1 Friction loss by speed
(3) Initial Tension Boost

Group	Code number	Function	Name	Factory default	Range
APP	33	Init Tns AccT	Initial tension boost time	1.0 sec	$0.1-60.0 \mathrm{sec}$
APP	73	Init Boost Tns	Initial tension boost value	150.0%	$100.0-500.0 \%$

APP33 (Init Tns AccT): Outputs the value of the initial boosted torque limit for a set period of time. This value is only effective in open loop speed control mode (APP02: W_Spd Open/U_Spd Open).

APP73 (Init Boost Tns): This boosts the tension to the torque limit that is finally computed at initial startup. This value is only effective in open loop speed control mode (APP02: W_Spd Open/U_Spd Open).

You can use this code to boost the initial tension and get fast tension response characteristics at initial startup.

2.12 Web Function without Diameter Computation Section

(1) Compensation Gain Computation

If you do not have information concerning the diameter of the bobbin used for closed loop tension control systems, or you use more bobbins than previously specified, you can control the bobbin without compensating for the diameter computation. If you select "Yes" in AP2 80, you can compute the speed command using the main speed, compensation gain, and PID output value.

The web function without diameter computation is only valid in closed loop speed control mode (APP02: W_Spd Close/UW_Spd Close).

Before operation, you can set the compensation gain (AP2 81). Once the system starts, you can compute the compensation gain (\%) by comparing the PID output value with the reference value of AP2 83. The value of the current computed gain in use appears in AP2 82.

When the system stops, the AP2 82 value reverts to the initial AP2 81 compensation gain setting.

Group	Code number	Function	Name	Factory default	Range	
AP2	$80^{\text {(Note 1) }}$	Dia Dis Mode	Selection of web without diameter computation	$0:$ No	0	No
		1	Yes			

Group	Code number	Function	Name	Factory default	Range
AP2	$81^{\text {(Note 2) }}$	Dia Comp Set	Initial value of the diameter compensation gain	100.0%	$0.0-300.0 \%$
AP2	$82^{\text {(Note 2) }}$	Dia Comp Gain	Diameter compensation gain monitor	Read Only (\%)	
AP2	$83^{\text {(Note 2) }}$	DiaComp PIDLev	PID output value for the computation	10.00%	$0.00-100.00 \%$
AP2	$84^{\text {(Note 2) }}$	Dia Comp LPF	Diameter compensation gain filter	50.0 sec	$0.0-300.0 \mathrm{sec}$

(Note 1): This code appears when you select "W_Spd Close" or "UW_Spd Close" in APP02 (Tnsn Ctrl Mode).
(Note 2): This code appears when you select "1: Yes" in AP2 80 (Dia Dis Mode).
AP2 80 (Dia Dis Mode): Select this code to control the closed loop tension system without computing the diameter.

This code only appears when you select closed loop speed control mode (APP02: W_Spd Close/UW_Spd Close).

AP2 81 (Dia Comp Set): Sets the value of the initial diameter compensation gain.

When using various bobbins, setting the bobbin diameter to a moderate size allows you to perform the appropriately control for all of the bobbins.

AP2 82 (Dia Comp Gain): This code appears as the AP2-81 value while the system is stopped. When the system starts, the compensation gain computation value appears under the conditions of the compensation gain computation.

AP2 83 (DiaComp PIDLev): Sets the reference of PID output for computing the diameter compensation gain.

The compensation gain value increases when the PID output value exceeds the specified value. On the contrary, the compensation gain decreases when the PID output value falls below the negative $(-)$ value specified.

AP2 84 (Dia Comp LPF): Specifies the time for computing diameter compensation gain.

If you need quicker control specify a small value for AP2-84.

(2) Gain Computation Stop at Accel/Decel

When you compute the compensation gain during accel/decel, the PID output value becomes unstably transient so the system cannot properly compute the gain. On the contrary, unless you compute the compensation gain over a very long accel/decel time, the PID output value may become saturated. Thus, you need to select the appropriate value for each system.

Group	Code number	Function	Name	Factory default	Range	
AP2	$85^{\text {(Note 1) }}$	Xcel Comp En	Selection diameter compensation gain computation for accel/decel	$0:$ No	0	No
	AP2	$86^{\text {(Note 2) }}$	Steady Chk LPF	Speed filter for constant speed judgment	1.0 sec	$0.0-100.0$ sec
AP2	$87^{\text {(Note 2) }}$	Steady Chk Lev	Speed difference for constant speed judgment	1.00%	$0.00-50.00 \%$	

(Note 1): This code appears when you select "1: Yes" in AP2 80 (Dia Dis Mode). (Note 2): This code appears when you select "0: No" in AP2 85 (Xcel Comp En).

AP2 85 (Xcel Comp En): Selects computation of the diameter compensation gain for accel/decel. If you select "No," the system computes the compensation gain only in zones where constant speed is determined. If you select "Yes," the system computes the compensation gain in all accel/decel zones.

AP2 86 (Steady Chk LPF): When you only compute the diameter compensation gain in constant speed zones, this code applies the Low Pass Filter to the current output frequency so that you can determine applicable constant speed zones and compare the gain to the current output frequency.

APP87 (Steady Chk Lev): When you only compute the diameter compensation gain in constant speed zones, specify the difference between the current output frequency and the filtered output frequency to determine the constant speed zone. When the difference exceeds the value specify in AP2 87, the system considers it an accel/decel zone and does not compute the compensation gain.

3. Capstan Operation

3.1 Overview

Capstans are devices that wind up and pull heavy objects at a constant speed.
The capstan is positioned between the unwinder and winder in iron making, steel making, and steel casting processes to maintain a constant tension and enable continuous processing.

Like the winder/unwinder, the capstan in an iS7 inverter receives analog quantity feedback from tension control detectors, such as the dancer or load cell, and activates the PID controller to maintain a constant tension.

The characteristics of the PID controller in closed loop tension control systems differ from existing PID controllers. That is why this system is referred to as a 'Web PID Controller' in this manual.

Direction of movement

Fig. 2.1.1 Capstan operating mechanisms
As shown in Fig. 2.1.1, thinner web materials in a continuous process require quicker capstan rotations. Because web materials must not bias upward or deflect downward to assure continuous processing, the capstan must handle different thicknesses and lengths of web materials within the same amount of time. Web material thicknesses and lengths vary depending on the process, but, supposing that each process does not lose web materials, the volume of the web materials remains constant. Thus, the thickness (2 mm) of the web material handled by Capstan 1 is $1 / 4$ times more than that (8 mm) of the web material handled by Capstan 2, so the length (100 cm) of the web material handled by Capstan 1 is 4 times more than the length $(25 \mathrm{~cm})$ of the web material handled by Capstan 2. Therefore, the rotation speed of Capstan 1 must be 4 times faster
than that of Capstan 2 to handle for the different lengths of web materials within the same amount of time.

In the operation of capstans, we can establish Eq. 2.1.1 by this principle. This is similar to Eq. 1.1.1 for the winder/unwinder.

The Web PID controller controls the motor speed, i.e. the output frequency of the inverter. In addition to this, the system computes and estimates "current thickness of the web material" internally and uses the "current thickness of the web material" computed in Eq. 2.1.1 to determine ultimately the output frequency of the inverter.

This system offers more consistent control over the capstan tension than conventional PID controllers. Since the internally computed thickness of the web material compensates for the inverter's output frequency once again, the Web PID controller uses significantly less of the inverter's output frequency. Therefore, the Web PID controller does not risk saturating the output, which significantly reduces the oscillation of the I controller output.

> Motor speed $[\mathrm{rpm}]=$
> $\frac{\text { Wire speed }[\mathrm{mpm}]}{\text { Diameter of caps } \tan \times \pi[\mathrm{m}]} \times \frac{\text { Base thickness of materials }[\mathrm{m}]}{\text { Current thickness of materials }[\mathrm{m}]}-E q(2.1 .1)$

The Web PID controller also offers the following functions.

- Eliminates the transient phenomenon that occurs with the dancer or load cell at start up (related code: APP51).
- Maintains the tension and, if necessary, performs an emergency stop (related code: APP82).
- Detects potential ruptures in the web material in advance (related code: APP76-80).

In order to use the capstan in the iS7 system, you must apply the following settings.

Group	Code number	Function	Name	Setting
APP	01	App Mode	Application selection	5: Tension Ctrl
APP	02	Tnsn Ctrl Mode	Tension control operation mode selection	2: Capstan

3.2 General Configuration

The following table outlines the inputs and outputs for each section.

Functional section		Input	Output		
Main speed command section		-	Out1	Main speed (\%)	
Web PID Controller Section	$\ln 1$	Diameter (\%)	Out1	Error change compensation frequency (Hz)	
			Out2	PID output (\%)	
			Out3	PID feedback (\%)	
Material thickness computation section	$\ln 1$	Current output frequency (Hz)	Out1	Thickness (\%)	
	$\ln 2$	Main speed (\%)			
	In3	Web break event (0/1)			
Final speed computation section	In1	Error change compensation frequency (Hz)	Out1	Final speed command (Hz)	
	In2	Diameter (\%)			
	In3	Main speed (\%)	Out2	Main speed + PID (\%)	
	$\ln 4$	PID output (\%)			
Analog output section	$\ln 1$	Main speed + PID (\%)			
	In2	Main speed (\%)			

Functional section	Input	Output		
Web break detection section	$\ln 1$	PID feedback (\%)	Out1	Web break event (0/1)

3.3 Main Speed Command Section

This is the same as section 2.3 Main Speed Command Section, the main speed command section for the winder/unwinder. See section 2.3 Main Speed Command Section.

3.4 Web PID Controller Section

This is the same as section 2.5 Web PID Controller Section for the winder/unwinder. See section 2.5 Web PID Controller Section .

3.5 Analog Output Section

This is the same as section 2.8 Analog Output Section for the winder/unwinder. See section 2.8 Analog Output Section.

3.6 Web Break Detection Section

This is the same as section 2.10 Web Break Detection Section for the winder/unwinder. See section 2.10 Web Break Detection Section.

3.7 Material Thickness Computation Section

Fig. 2.7.1 illustrates continuous processing in a closed loop tension control system. The web material becomes thinner as the process continues. However, the volume of web material input into each capstan remains constant. Thus, as shown in Fig. 2.7.1, if we suppose that the web material thickness input into Capstan 1, 2, and 3 is $2 \mathrm{~mm}, 8 \mathrm{~mm}$, and 10 mm , respectively, then we can conclude that the web material length input into Capstan 1, 2, and 3 will be 100 $\mathrm{cm}, 25 \mathrm{~cm}$, and 20 cm . Therefore, Capstan 1 must rotate faster than Capstan 2 and 3 (Capstan $1>$ Capstan $2>$ Capstan 3) in order to handle the web material normally in a continuous process without any downward deflection or upper bias.

Direction of movement

Fig. 2.7.1 Capstan operating mechanism
Thus, in a tension control system, we can draw a correlation between the capstan flux, motor speed, and web material thickness in a continuous process, as shown in Eq. 2.7.1.

$$
\begin{aligned}
& \text { Motor speed }[\mathrm{rpm}]= \\
& \frac{\text { Wire speed }[\mathrm{mpm}]}{\text { Diameter of caps } \tan \times \pi[\mathrm{m}]} \times \frac{\text { Basethicknes of materials }[\mathrm{m}]}{\text { Current thickness of materials }[\mathrm{m}]}-E q(2.7 .1)
\end{aligned}
$$

As shown in Eq. 2.7.1, the motor speed (rpm) depends on the flux (mpm) and the current thickness of the web material (m). Therefore, make sure the system computes and estimates the current thickness (m) of web material during inverter operation. Eq. 2.7.1 can be converted into Eq. 2.7.2. You can use Eq. 2.7.2 to estimate the thickness of the web material (m).

Estimated current thickness of materials $[m]=$
$\frac{\text { Wire speed }[\mathrm{mpm}]}{\text { Motor speed }[\mathrm{rpm}] \times(\text { Diameter of caps } \tan \times \pi)[\mathrm{m}]} \times$ Base thickness of materials $[\mathrm{m}]$

- Eq(2.7.2)

(1) Initialization of Web Material Thickness

Group	Code number	Function	Name	Factory default		Range	
\mathbb{N}	$65-72$	Px Define	Multi-function input setting	Web Preset	-		
APP	71	Thickness En	Material thickness computations selection	$1:$ Yes	0	No	
	72	Curr Thickness	1	Yes			
APP	Specifies the initial thickness of the web material and displays the currently computed thickness of the web material.	100.0%	$50.0-500.0 \%$				

APP72 (Curr Thickness): Inputs the initial thickness (\%) of the web material in stop status. You cannot set this code during operation. During operation, this code displays the computed thickness (\%) of the web material.

For example, you can set this code as follows.
When you install the inverter for Capstan 1, Capstan 2, and Capstan 3, as shown in Fig. 2.7.1, you can see the "100.0\%" value input in APP72 (Curr Thickness) of each inverter when it stops. When you begin operating the inverter, the APP72 (Curr Thickness) of each inverter displays the estimated thickness that the iS7 computes for the web material. If each capstan correctly determines the main speed and gear ratio and the system computes and inputs the correct value in APP92 (Max Main Spd), then the APP72 (Curr Thickness) code for each inverter slowly changes within the range of about 100% ($\pm 5 \%$).

If the APP72 (Curr Thickness) value falls below 80\% during inverter operation, it indicates that the value input in APP92 (Max Main Spd) is excessively low. Moreover, if the APP72 (Curr Thickness) value exceeds 120\% during inverter operation, it indicates that the value input in APP92 (Max Main Spd) is excessively high.

If an incorrect value is input in APP92 (Max Main Spd), check the output frequency of the inverter when you input the main speed 100% in this code. Then, enter the output frequency in APP92 (Max Main Spd). Or, use the flux, gear ratio (or belt ratio), measured with a portable tachometer, and capstan diameter (measured with a portable tachometer) in Eq. 2.7.4 to compute the value, and then enter it in APP92 (Max Main Spd).

For details on the test operation, see the Appendices at the end of this document.

\triangle Caution

Make sure that multi-function input "Web Preset" turns OFF. If multi-function input "Web Preset" remains ON, you cannot compute the thickness of any web materials.

(2) Material Thickness Computation

Group	Code number	Function	Name	Factory default	Range	
APP	71	Thickness En	Material thickness computation selection	$1:$ Yes	0	No
		72	Curr Thickness	1	Yes	
APP	or current thickness display (during operation)	100.0%	$50.0-300.0 \%$			
APP	74	Thickness LPF	Material thickness computation filter	30.0 sec	$0.0-300.0$ sec	
APP	92	Max Main Spd	Frequency for main speed 100\%	60.0 Hz	DRV19-DRV20 (Hz)	

You can convert Eq. 2.7.2 to percentages and reorganize it into Eq. 2.7.3.

$$
\begin{aligned}
& \text { Estimated thickness of materials }[\%]= \\
& \frac{\text { Main speed input }[\%]}{\frac{\text { Current output frequency }[H z]}{A P P-92(\text { MaxMainFreq })} \times 100[\%]} \times 100[\%] \quad-E q(2.7 .3)
\end{aligned}
$$

The 100% multiplied on the right side of Eq. 2.7.3 is the reference thickness of the web material. This "estimated thickness (\%) of the material" is internally limited to the upper limit 300% and lower limit 50%. Adjust the time constant of "the estimated material thickness (\%)" using the value of APP74 (Thickness LPF) to control the computed time constant of the material thickness (\%).

We can use Eq. 2.7.3 to explain how to estimate the thickness (\%) of the material during inverter operation.

In Fig. 2.7.1, suppose that the APP73 (Thickness Set) value of Capstan 2 changes from the factory default of " 100% " to " 150% ". Thus, the inverter of Capstan 2 identifies the material thickness as " 150% ". This means that the actual thickness of the material handled in Capstan 2 is 8 mm , but the inverter of Capstan 2 identifies it as 8 * $1.5=12 \mathrm{~mm}$ internally. Since the inverter operates $1 / 1.5$ times slower than with the material thickness of " 100% ", this reduces the scale of the tension exerted on the dancer or load cell. Thus, the Web PID controller output is positive (+) and the "current output frequency (Hz)" in Eq. 2.7.3 increases. In Eq. 2.7.3, the "estimated material thickness (\%)" is inversely proportional to the "current output frequency (Hz)," so it decreases and converges on a value of almost 100% of the original thickness of the web material handled by Capstan 2.

This "estimated material diameter (\%)" is crucial in determining the final speed command (Hz) of the inverter. For more details, please see the section 2.8 concerning final speed computations.

APP71 (Thickness En): Selects whether to compute the thickness of the web material. When you select "No", the system does not compute the thickness (\%) of the material.

APP72 (Curr Thickness): Inputs the initial thickness (\%) of the web material in stop status. You cannot set this code during operation. During operation, this code displays the computed thickness (\%) of the web material.

APP74 (Thickness LPF): Selects the delay time constant of the material thickness (\%) computation.

APP92 (Max Main Spd): Inputs the output frequency of inverter when the main speed command is 100%. If you know mechanical information, such as the flux, capstan diameter, and belt ratio, you can use Eq. 2.7.4 to compute APP92 (Max Main Spd).

For example, In Fig. 2.7.1, suppose that the thickness of Capstan 1 is 0.4 m, the maximum flux of this system is 900 mpm and the belt ratio of a 4-pole motor (faster motor) is $3.2 / 1$. Here, the value entered in APP92 (Max Main Spd) is computed using Eq. 2.7.4, as follows.

$$
\begin{aligned}
& \text { APP } 92(\text { MaxMain Spd })= \\
& \frac{900[\mathrm{mpm}]}{0.40[\mathrm{~m}] \times \pi} \times 3.2(\text { Belt ratio }) \times \frac{4(\text { poles })}{120}=76.43[\mathrm{~Hz}] \quad-E q(2.7 .4)
\end{aligned}
$$

(3) Interruption of The Material Thickness Computation

Group	Code number	Function	Name	Factory default	Range
IN	$65-72$	Px Define	Multi-function input setting	Web Hold	-
APP	90	Min Main Spd	Minimum main speed	3.0%	$0.0-100.0 \%$

You cannot compute the material thickness if any of the following requirements are met: multi-function input "Web Hold" is ON, during jog operation, the Web PID is prohibited, at low speeds below APP90 (Min Main Spd), during Web Break status, and during an emergency stop initiated by the multi-function input "Web Quick Stop", because the material thickness computation is only meaningful during normal operation.

Stop computing the thickness if the following conditions occur.

- Multi-function input "Web Hold" is On, or
- Main speed command[\%] < APP90 (Min Main Spd), or
- Emergency stop by multi-function input "Web Quick Stop" is On, or
- Web break detected, or
- Multi-function input "Web Dis PID" is On, or
- APP15 (Web PID En) is 'Yes,' or
- During Jog Operation.

3.8 Final Speed Computation Section

Fig. 2.8.1 Final speed computation section (Capstan)

The final speed computation section determines the final output command (Hz) of the inverter using the main speed computed in the main speed command section (In3: main speed [\%]), the PID output computed in the Web PID controller section (In4: PID output [\%]), the error change compensation frequency (ln1), and the diameter computed in the material thickness computation section (In2: Thickness [\%]).

(1) PID Output Method (Fixed/non-fixed PID controller)

This is the same as section 2.7, "(1) PID output method (Fixed/non-fixed PID controller)". See section 2.7.

(2) Final Speed (Hz) Computation

In Fig. 2.8.1, U1 (\%) is equal to the "main speed command (\%) + PID output (\%)" and is converted into (Hz), as shown in Eq. 2.8.1.

$$
\begin{aligned}
& \text { Main speed }+ \text { PID output }[\mathrm{Hz}]= \\
& \frac{\text { Main speed }+ \text { PID output }[\%]}{100.0[\%]} \times A P P-92(\text { MaxMainSpd })[H z] \quad-E q(2.8 .1)
\end{aligned}
$$

Now, you can convert Eq. 2.7.1 of section 3.7 into Eq. 2.8.2. The 100% multiplied on the right side of Eq. 2.8.2 is the reference thickness of the web material. This value is fixed.

Eq. 2.8.2 allows you to compute the final speed (Hz) of the inverter.
Final speed $[\mathrm{Hz}]=$
$\frac{\text { Main speed }+ \text { PID output }[\mathrm{Hz}]}{\text { Estimated thickness of materials }[\%]} \times 100[\%]-E q(2.8 .2)$

Group	Code number	Function	Name	Factory default	Range
APP	89	Compen Xcel \%	The compensation rate reflected by the computation of the material thickness at the final speed	20%	$0-100 \%$

APP89 (Compen Xcel \%): As shown in Eq. 2.8.2, the final output frequency of the inverter depends on the estimated material thickness (\%). Here, you can set the rate and response speed where the variations in the output frequency induced by the estimated material thickness (\%) would otherwise be reflected in the actual output frequency of the inverter.

The lower value of APP89 (Compen Xcel \%) values (c.a. 50\% or less) leads to the lower rate of output frequency variations due to the estimated material thickness at the actual output frequency of the inverter, and also leads to the lower speed of said variations reflected in the actual output frequency.

In order to ensure that the inverter operates reliably at a constant speed, we recommend setting APP89 (Compen Xcel \%) to a value of less than ca. 50\%.

\triangle Caution

The final speed (Hz) is the final value of Eq. 2.8.2, which is regularly computed in the final speed computation section, so acceleration and deceleration occur frequently. Here, the accel and decel time is specified in DRV03 (Acc Time) and DRV04 (Dec Time), respectively.
Moreover, selecting " 5 : Tension Ctrl" in APP01 (App Mode) automatically sets both DRV03 (Acc Time) and DRV04 (Dec Time) to " 0.5 sec ". You can set different values for DRV03 (Acc Time) and DRV04 (Dec Time), but they must be less than 2.0 sec in order to rapidly reflect the final speed.

(3) Reverse Tension

This is the same as paragraph 4 of section 2.7. See paragraph 4 of section 2.7.

(4) Splicing

Capstan operation mode does not support splicing.

4. Other Functions

4.1 Stall Level Control Using the Analog Input

You can control the stall level with the analog input (V1/I1, V2/l2, Pulse) while operating the inverter.

When the web material loosens on an open loop unwinder without a tension control detector, such as a dancer or load cell, you must gradually increase the stall level using the analog input to restore the tension. However, this method does not allow for precise tension control.

Group	Code number	Function	Name	Factory default	Range	
PRT	48	Stall Src Sel	Stall level setting method	0: Keypad	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	Pulse
PRT ${ }^{\text {(Note 1) }}$	49	Stall \% Disp	Current stall level	Read Only		
PRT	50	Stall Prevent	Stall mode selection	000		- 111
PRT	52	Stall Level 1	Stall level 1	180\%		-250\%

(Note 1) PRT49 (Stall \% Disp) is enabled when PRT48 (Stall Src Sel) is not "0: Keypad".
PRT48 (Stall Src Sel): Allows you to select how to set the stall level. If you select "0: Keypad", you can use a multi-step stall level for PRT51-58.

In most cases, the open loop unwinder uses an analog input to set this code and changes the analog input to control the stall level during inverter operation and ultimately maintain the back tension.

PRT50 (Stall Prevent): Determines whether to use the stall function. An open loop unwinder only uses the stall function during acceleration and at constant speeds, so it sets this code to "011".

PRT52 (Stall Level 1): This stall level enters the maximum value (voltage: 10 V , current: 20 mA) for the analog input. For example, suppose that PRT52 (Stall Level 1) is set to 150% and PRT48 (Stall Src Sel) is set to "1: V1". If 5 V is input as the current V 1 , then the stall level of the inverter is $75 \%\left(=150 \%{ }^{*} 5 \mathrm{~V} / 10 \mathrm{~V}\right)$.

Moreover, PRT49 (Stall \% Disp) displays the result of this calculation, which is 75% in this case.

4.2 Automated Speed-torque Switching

The motor automatically starts in speed mode when set to a torque mode that uses a Sensorless-1/Sensorless-2/Sensored vector, but if the set frequency (CON86) is at an abnormal level, it reverts to torque mode.

The motor sometimes fails to start at low torque commands (c.a. less than 10\%) under certain load characteristics, particularly in the Sensorless-1/Sensorless-2 torque mode. When this occurs, you can start the motor in speed mode to take advantage of the excellent start characteristics, regardless of the load. Once the motor starts, the motor reverts to torque mode through automatic switching. This allows you to run the motor in a stable torque mode.

This switching function is useful for open loop winders/unwinders without a tension detector, such as a dancer or load cell.

(1) : Speed mode operation (starting)
(2) : Torque mode operation
(3) : Torque mode free-run stop (set CON87 Trq Exch Dec to "Torque": Factory default) : Speed mode deceleration stop (set CON87 Trq Exch Dec to "Speed")

Group	Code number	Function	Name	Factory default	Range	
CON	86	Trq Exch Freq	Automated speed- torque switching frequency when operating in torque mode	0.00 Hz	$0-30 \mathrm{~Hz}$	
CON	87	Trq Exch Dec	Deceleration method when operating in torque mode	$0:$ Torque	1	Speed
CON	88	Trq Exch Ramp	Torque variation buffer time for automatic switching	5.0 sec	$0-300 \mathrm{sec}$	

CON86 (Trq Exch Freq): When you start the motor in torque mode, this code sets the frequency at which the motor switches from speed mode to torque mode. When set to 0.00 Hz , speed-torque does not automatically switch over so the motor skips speed mode and starts in torque mode and always runs in torque mode.

For example, when you set CON86 (Trq Exch Freq) to 3.00 Hz , the motor runs in speed mode from startup until it reaches 3 Hz , and then automatically switches to torque mode once the frequency rises above 3 Hz .

	Sensorless-1	Sensorless-2	Sensored	
DRV10 (Torque Control)	Yes	Yes	Yes	No
IN65 - 75 (P \# Define): Speed/torque input	-	-	Off	On
Operation mode	Torque mode	Torque mode	Torque mode	

CON87 (Trq Exch Dec): Allows you to select how to stop the motor when it receives the stop command while operating in torque mode. The factory default setting is " 0 : Torque". Select " 0 : Torque" to free-run stop the motor in response to a stop command while operating in torque mode.

When you select "1: Speed" the motor decelerates until it stops in response to a stop command while operating in torque mode.

CON88 (Trq Exch Ramp): You can issue a torque command in torque mode through the keypad/analog input/communication (RS485, Fieldbus Opt) using the torque command source set in DRV08 (Trq Ref Src). The torque level in speed mode is computed at a very fast sampling cycle inside the inverter, so you cannot change it.

The automated speed-torque switching function causes the motor to start in speed mode and automatically switch to torque mode at a certain frequency (CON86: Trq Exch Freq). When automatically switching from speed to torque mode, you can apply a ramp time to the difference between the torque level computed in speed mode (a value that you cannot change) and the torque command in torque mode (a command you can issue via the keypad/analog input/communication). This provides a buffer against potential impacts on the load at the moment of automated speed-torque switchover.

4.3 External PID Controller

External devices can use the PID controller built in to the inverter (hereinafter called the 'External PID Controller'). In other words, you can export the output of the external PID controller as an analog output (Basic l/O: 0-10 V or 4-20 mA, Extended I/O option: -10 V-10 V or $4-20 \mathrm{~mA}$) or as communication data. This allows external devices to receive the analog output or communication data, so the PID controller can control these external devices.

In order to export the output from the external PID controller as an analog output, set the analog output to "14: PID Output" in the following way.

Group	Code number	Function	Name	Setting	Remarks
Out	01	AO1 Mode	Analog output setting	14: PID Output	$0-10 \mathrm{~V}$ (Basic I/O)
Out	07	AO2 Mode	Analog output setting	14: PID Output	$4-20 \mathrm{~mA}$ (Basic I/O)
Out	14	AO3 Mode	Analog output setting	14: PID Output	$-10-10 \mathrm{~V}$ (Extended I/O option)
Out	20	AO4 Mode	Analog output setting	14: PID Output	$4-20 \mathrm{~mA}$ (Extended. I/O option)

The following list of COM addresses corresponds to the main speed input of the external PID controller and the final output of the external PID controller.

COM address	Function	Range	R/W	Remarks
OhD85	Main speed (\%) input (Nole 1)	$0.00-100.00 \%$	W	Upper level controller \rightarrow Inverter
OhD86	Main speed (Hz) input (Note 1)	$0.00-$ DRV20 Max Freq (x.xx Hz)	W	Upper level controller \rightarrow Inverter
OhD87	Main speed (RPM) input (Note 1)	0 - DRV20 Max Freq (x RPM)	W	Upper level controller \rightarrow Inverter

COM address	Function	Range	R/W	Remarks
OhD0E	External PID controller output $(\%)$	$-100.00 \sim 100.00 \%$	R	Inverter \rightarrow Upper level controller
OhD0F	External PID controller output (Hz)	-DRV20 Max Freq-DRV20 Max Freq (x.xx Hz)	R	Inverter \rightarrow Upper level controller
OhD10	External PID controller output (RPM)	-DRV20 Max Freq-DRV20 Max Freq (x RPM)	R	Inverter \rightarrow Upper level controller

(Note 1): When APP05 (Main Spd Src) is set to Int485, Fieldbus, or PLC, you can receive the main speed command from Int485 or relevant options (Fieldbus, PLC) via the common area (0hD85-0hD87).

\triangle Caution

1. The analog output of the basic I / O is $0-10 \mathrm{~V}, 4-20 \mathrm{~mA}$, so the external PID controller always exerts a positive (+) output.
2. Extended I/O options have different analog output ranges, such as 0 $10 \mathrm{~V}, 4-20 \mathrm{~mA}$, or $-10-10 \mathrm{~V}$. Thus, the external PID controller can exert both positive (+) and negative (-) outputs.
3. As shown in the preceding table, the PID output of the external PID controller has communication addresses, such as OhD0E (\% output), OhD0F (Hz output), and OhD10 (RPM output). Moreover, negative (-) outputs are treated as a two's complement value. For example, if the current PID output is -15.23%, " 64013 " is saved in the COM address of 0 hDOE . This is because " 64013 " is a complement of 2 for " 1523 " (A value obtained after inverting all of the bits and adding one).

Group	Code number	Function	Name	Factory default		Range
IN	65-72	Px Define	Multi-function input setting	Ext Dis PID		-
IN	65-72	Px Define	Multi-function input setting	Ext PI Gain2		-
IN	65-72	Px Define	Multi-function input setting	I-Term Clear		-
APP	01	App Mode	Application selection	None	0	None
					1	Traverse
					2	Proc PID
					3	MMC
					4	Auto Seq
					5	Tension Ctrl
					6	Ext PID Ctrl
APP	16	PID Output	PID output monitor	Read Only (\%)		
APP	17	PID Ref Value	PID reference monitor	Read Only (\%)		
APP	18	PID Fdb Value	PID feedback monitor	Read Only (\%)		
APP	19	PID Ref Set	PID reference setting (Keypad)	50.00\%		00-100\%
APP	20	PID Ref Src	PID reference selection	0: Keypad	0	Keypad
					1	V1
					2	11
					3	V2
					4	12
					5	Int. 485
					6	Encoder
					7	Fieldbus
					8	PLC
APP	21	PID F/B Src	PID feedback selection	1: 11	0	V1
					1	11
					2	V2
					3	12
					4	Int. 485
					5	Encoder

Group	Code number	Function	Name	Factory default	Range	
					6	Fieldbus
					7	PLC
APP	22	PID P-Gain	PID controller proportional gain	50.0\%	0.0-1000.0\%	
APP	23	PID I-Time	PID controller integral time	10.0 s	0.0-200.0 s	
APP	24	PID D-Time	PID controller differentiation time	0 ms	$0-1000 \mathrm{~ms}$	
APP	27	PID Out LPF	PID output filter	0 ms	0-10000 ms	
APP	31	PID Out Inv	PID output inverse	0 : No	0	No
					1	Yes
APP	32	PID Out Scale	PID output scale	100.0\%	0.0-1000.0\%	
APP	45	PID P2-Gain	PID controller proportional gain 2	100.0\%	0.0-1000.0\%	
APP	46	PID I2-Time	PID controller integral time 2	20.0 s	0.0-200.0 s	
APP	50	PI Gain Ramp	PI gain switchover ramp time	30.0 sec	0.0-300.0 sec	
APP	51	PID Start Ramp	PID output at start Ramp time	0.0 s	0.0-300.0 s	
APP	52	PID Hi Lmt \%	PID output upper limit (\%)	100.0\%	APP53-100.0\%	
APP	53	PID Lo Lmt \%	PID output lower limit (\%)	-100.0\%	-100-APP52 (\%)	
APP	85	Ext PID En	External PID control selection	1: Yes	0	No
					1	Yes
APP	98	PID Sample T	PID controller execution frequency	1 ms		- 10 ms

APP01 (App Mode): Selects the Ext PID Ctrl. External devices can use the PID controller built in to the inverter (External PID Controller), regardless of whether the inverter is operating.

APP85 (Ext PID En): Determines whether to use the external PID controller. You can this code in combination with multi-function input "Ext Dis PID," as shown in Table 3.3.1.

Table 3.3.1 Selecting whether to use the External PID Controller

APP85 (Ext PID En) setting	Status of multi-function input "Ext Dis PID"	Whether to use the Ext PID Controller
Yes (Default)	Off	O
Yes (Default)	On	X
No	Off	X

APP85 (Ext PID En) setting	Status of multi-function input "Ext Dis PID"	Whether to use the Ext PID Controller
No	On	X

APP16 (PID Output): Indicates the current PID output (as a percentage).
APP17 (PID Ref Value): Indicates the current PID reference (as a percentage).
APP18 (PID Fdb Value): Indicates the current PID feedback (as a percentage).
APP19 (PID Ref Set): Sets the reference for the PID controller using the keypad.
APP20 (PID Ref Src): This code allows you to select from a variety of methods to input the PID controller reference information (keypad, analog, internal COM, external COM, and PLC option).

APP21 (PID F/B Src): Selects how to input the PID controller feedback (analog, internal COM, external COM, and PLC option).

APP22 (PID P-Gain): Indicates the P1 gain of the PID controller. If the P gain is 100% and the error is 100%, then the P controller output is 100%.

APP23 (PID I-Time): Indicates the I1 gain of the PID controller. If the I gain is 10 sec and the error is 100%, then it takes 10 seconds to saturate the I controller output to 100%.

APP24 (PID D-Time): Indicates the D gain of the PID controller. If the D gain is 10 ms and the error change is 100%, then it takes 10 ms for the D controller output to decrease from 100% to 34%.

APP27 (PID Out LPF): Sets the delay time constant of the PID controller output. In general, this code sets the delay time to 0 ms to shorten the response time of the PID controller. However, a higher value makes the PID controller less responsive but more stable.

APP31 (PID Out Inv): Selects whether to invert the output of the PID controller. Select "Yes" to invert the PID output code before it is output.

APP32 (PID Out Scale): Adjusts the scale of the PID controller output. First, suppose that the PID controller is saturated. In such a situation, if this code is set to 100%, the PID controller output is 100%. When this code is set to 30%, the PID controller output is 30%.

APP50 (PI Gain Ramp): This code is the ramp time applicable when P/I gain switching occurs due to a change in the multi-function input "Ext PI Gain2" during inverter operation. In addition to this, this code also applies when you use the loader to change the P / I gain during inverter operation. Ramp time switching is based on 1000% for the P gain and 200 sec for the I gain. For example, it takes $3 \sec (=30$ * 100 / 1000) to change the P gain from 100% to 200% when APP50 (PI Gain Ramp) is set to 30 sec .

Status of multi-function input "Ext PI Gain2"	P/I gain selected
Off	APP22 (PID P-Gain), APP23 (PID I-Time)
On	APP45 (PID P2-Gain), APP46 (PID I2-Time)

APP51 (PID Start Ramp): Increases the ramp time during the set time of PID output when the inverter initially starts. Fig. 3.3.2 (b) shows the output of the P controller at start up when the P gain is 100% and the PID error is 100%. The dotted line in figure (b) shows the output of the P controller when APP51 (PID Start Ramp) is " 0 sec". The solid line in figure (b) shows that the output of the PID controller at initial start up tends to increase by the ramp time based on the value of APP51 (PID Start Ramp). In other words, the solid line in (b) is more advantageous than the dotted line in (b) due to the transient phenomena that exists when the inverter initially starts.

Fig. 3.3.2 Activating APP51 (PID Start Ramp)
Moreover, the APP51 (PID Start Ramp) value is based on the PID controller output at 100%. For example, when APP51 (PID Start Ramp) is set to 5 sec , it takes 5 sec to fully saturate the output of the PID controller to 100% at initial start up. However, it takes 2.5 sec to saturate the output of the PID controller to 50% at initial start up.

APP52, 53 (PID Hi/Lo Lmt \%): Specifies the upper and lower limit of the PID controller output. In addition to this, the cumulative value of the I controller is limited to the upper and lower value specified in this code.

APP54 Fixed PID En/APP55 Min Fixed PID:

Group	Code number	Function	Name	Factory default	Range	
APP	54	Fixed PID En	Fixed PID controller selection	$0:$ No	0	No
	APP	55	Min Fixed PID	Minimum value of the fixed PID controller	10.0%	Yes
	$0.0-50.0 \%$					

When you select "Yes" for APP54 (Fixed PID En), the PID output (\%) - an output of the Ext PID controller, as shown in Eq. 3.3.1 - remains constant regardless of the main speed (\%).

$$
\text { Final PID output }[\%]=\text { PID output }[\%] \quad-E q(3.3 .1)
$$

When you select "No" as the factory default setting for APP54 (Fixed PID En), the PID output (\%) - an output of the Ext PID controller, as shown in Eq. 3.3.2 - is proportional to the main speed (\%). In other words, it means that the ratio of the PID output (\%) to the main speed remains constant. According to this principle, lower main speeds (\%) produce less PID output (\%), whereas higher main speeds (\%) produce more PID output (\%).

$$
\text { Final PID output }[\%]=\text { PID output }[\%] \times \frac{\text { Main speed command }[\%]}{100.0[\%]}-E q(3.3 .2)
$$

However, when you select "No" as the factory default for APP54 (Fixed PID En) and receive a command to lower the main speed (\%) below the value specified in APP55 (Min Fixed PID), the inverter functions according to the equation shown in Eq. 3.3.3. By functioning according to the equation in Eq. 3.3.3, the inverter prevents the output of the Web PID controller from decreasing the low main speed command (\%) to below the value specified in APP55 (Min Fixed PID).

$$
\text { Final PID output }[\%]=\text { PID output }[\%] \times \frac{A P P 55(\text { Min Fixed PID })[\%]}{100.0[\%]}-E q(3.3 .3)
$$

Table 3.3.1 shows the final PID output (\%) based on the APP55 (Fixed PID En) value if APP32 (PID Out Scale) is set to 20% and APP55 (Min Fixed PID) to the factory default setting of 10%. This table assumes that the PID output is now saturated at 20%.

Note 3.3.2 of Table 3.3.1 shows that the main speed is 2% or 8% below the factory default setting of APP55 (Min Fixed PID), i.e. 10\%, so you can determine it using Eq. 3.3.3. Note 3.3 .2 shows that the main speed is 20% or 80% over the factory default setting of APP55 (Min Fixed PID), i.e. 10\%, so you can determine it using Eq. 3.3.2.

Table 3.3.1 Comparison of PID outputs by PID controller types (APP54: Fixed PID En)

Main speed command (\%)	APP54 (Fixed PID En): PID output (\%), if Yes	APP54 (Fixed PID En): PID output (\%), if No
2.0	20.0	$2.0^{\text {Nole }^{\text {(N.3.2) }}}$
8.0	20.0	$2.0^{\text {(Nole 3.3.2) }}$
20.0	20.0	$4.0^{\text {(Nole 3.3.2) }}$
80.0	20.0	$16.0^{\text {(Nole 3.3.2) }}$

APP98 (PID Sample T): Changes the execution frequency of the Ext PID Controller.

4.4 Speed Controller P Gain Profile (Inertia Compensation)

The winder develops a larger diameter and produces more inertia over time, so it requires positive (+) inertia compensation. In contrast to this, the unwinder develops a smaller diameter and produces less inertia over time, so it requires negative (-) inertia compensation.

This inertia compensation is applied to the P gain of the Web PID in section 1.5, "Web PID Controller Section". For more effective inertia compensation, you can increase the ASR P gain with a larger diameter. The formulas and figures for inertia compensation are identical to those used for inertia compensation with the P gain of the Web PID. Fig. 3.4.1 shows how the P gain trends and formulas vary depending on the diameter.

Group	Code number	Function	Name	Factory default	Range	
CON	$90^{\text {(Nole 1) }}$	ASR P Pro Mode	ASR P Gain profile selection	$0:$ None	1	Linear
				0	None	
CON	$91^{\text {(Note 2) }}$	ASR P Pro Gain	ASR profile gain	1.00%	$0.01 \sim 10.00 \%$	

(Note 1): This code only appears when you set APP-02 (Tnsn Ctrl Mode) to "W_Spd Close," "UW_Spd Close," "W_Spd Open," or "UW_Spd Open".
(Note 2): This code only appears when CON-90 (ASR P Pro Mode) is set to "Linear" or "Square".

```
"None": Inetia compensation \(P\) Gain \(=P\) Gain
"Linear":
Inetia compensation \(P\) Gain \(=P\) Gain \(\times\left\{1+\right.\) Profile \(P\) Gain \((\) APP57 \(\left.) \times\left[\frac{\text { Diameter }}{\text { Full Diameter }}-\frac{\text { Bobbin Diameter }}{\text { Full Diameter }}\right]\right\}\)
```


"Square":

Inetia compensation P Gain $=P$ Gain $\times\left\{1+\operatorname{Pr}\right.$ ofile P Gain $\left.\times\left[\frac{\text { Diameter }^{2}}{\text { Full Diameter }^{2}}-\frac{\text { Bobbin Diameter }^{2}}{\text { Full Diameter }^{2}}\right]\right\}$

Fig. 1.5.2 The P gain varies depending on the CON90 (ASR P Pro Mode) setting

5. Applied Functions

5.1 Setting the Override Frequency Using the Aux Frequency Command

(If you want to set the frequency for various computing conditions using the main and auxiliary speeds, as for a Draw operation.)

Group	Code number	Function display	Functional settings		Range	Unit
DRV	07	Freq Ref Src	0	Keypad-1	$0-9$	-
BAS	01	AUX Ref Src	1	V1	$0-4$	-
BAS	02	AUX Calc Type	0	$M+G{ }^{*} A$	$0-7$	-
BAS	03	AUX Ref Gain	-	0.0	$200-200$	$\%$
IN	$65-75$	Px Define	40	Dis Aux Ref	$0-48$	-

You can use two frequency setting methods at the same time to set the operational frequency. You can use the main speed to set the main operational frequency, and you can use the aux speed setting to fine tune the main operation. For example, assume that the settings were made as in the preceding table. If you introduce a -10 to +10 V voltage to the V 1 terminal with a gain setting of 5% (variables from IN-01 to LN-16 are the initial values, and the IN-06 V1 polarity is set to Bipolar) while using Keypad-1 as the main speed and operating the inverter at 30.00 Hz , you can fine tune inverter up to $33.00-27.00 \mathrm{~Hz}$.

BAS-01 AUX Ref Src: Selects the input type to use for the aux speed.

Setting type		Function
0	None	No aux speed operation
1	V1	Selects the voltage input terminal of the control terminal block as the aux speed command.
2	I1	Selects the current input as the aux speed command.
3	V2	Selects the voltage input of the Ext IO option board as the aux speed command.
4	I2	Selects the current input of the Ext IO option board as the aux speed command.

BAS-02 Aux Calc Type: After determining the size of the aux speed with the gain (BAS-03 Aux Ref Gain), use the four primary functions of arithmetic (addition, subtraction, multiplication, and division) to set the application rate of the main speed.

	Setting type	Formula	How to calculate the final frequency command
0	$\mathrm{M}+(\mathrm{G}$ * A$)$	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}[\%]^{*} A[\mathrm{~Hz}]\right)$	Main speed command value + (BAS03 x BAS01 x IN01)
1	M * (G * A)	$\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	Main speed command value x (BAS03 x BAS01)
2	M/(G * A)	M[Hz]/(G[\%]*A[\%])	Main speed command value / (BAS03 x BAS01)
3	$\mathrm{M}+\left(\mathrm{M}^{*}\left(\mathrm{G}^{*} A\right)\right)$	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right)$	Main speed command value + (Main speed command value x (BAS03 x BAS01))
4	M $+\mathrm{G}^{*} 2^{*}(\mathrm{~A}-50)$	$\mathrm{M}[\mathrm{Hz}]+\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])[\mathrm{Hz}]$	$\begin{aligned} & \text { Main speed command value }+ \text { BAS03 x } \\ & 2 \times(\text { BAS01 }-50) \times \text { IN01 } \end{aligned}$
5	$\mathrm{M}^{*}\left(\mathrm{G}^{*} 2^{*}(\mathrm{~A}-50)\right)$	$\mathrm{M}[\mathrm{HZ}]^{*}\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	Main speed command value \times (BAS03 x 2 x (BAS01-50))
6	$\mathrm{M} /\left(\mathrm{G}^{*} 2^{*}(\mathrm{~A}-50)\right)$	M[HZ]/(G[\%]*2*(A[\%]-50[\%]))	$\begin{aligned} & \text { Main speed command value / (BAS03 x } \\ & 2 \times(\text { BAS01 }-50)) \end{aligned}$
7	$\mathrm{M}+\mathrm{M}^{*} \mathrm{G}^{*} 2^{*}(\mathrm{~A}-50)$	$\begin{gathered} \mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}]^{*} \mathrm{G}[\%]^{*} \mathrm{a}^{*}(\mathrm{~A}[\%]) \mathrm{C}[\%] \\ \hline \end{gathered}$	Main speed command value + Main speed command value \times BAS $03 \times 2 \times$ (BAS01 - 50)

\triangle Caution

If the max frequency is high, an output frequency error may occur due to an analog input error or calculation error.

M: Main speed frequency command based on the DRV-07 setting (Hz or RPM),
G: Aux speed gain (\%)
A: Aux speed frequency command (Hz or RPM) or gain (\%)
In the preceding setting types, the single-direction analog input can allow the (+) or (-) operation at least four times.

BAS-03 Aux Ref Gain: Controls the size of the input (BAS-01 Aux Ref Src) selected as the aux speed.

If you select V1 or 11 as the aux speed and specify the initial values for parameters 01-32 of the terminal block input group (IN), then the aux speed frequency operates in the following way.

IN-65-75 Px Define: When you input a terminal specified as \#40 Dis Aux Ref from the multi-function input terminals, the inverter only operates based on the main speed command and does not activate the aux speed command.

Usage example 1)

If the frequency keypad setting corresponds to the main speed and the V1 analog voltage corresponds to the aux speed.

Conditions

- Main speed (M) setting (DRV-07): Keypad (frequency set as 30 Hz)
- Max frequency (Max Freq) setting (DRV-20): 400 Hz
- Aux speed (A) setting (A: BAS-01): V1 (Expressed as an aux speed (Hz) or percentage (\%), depending on the computation conditions.)
- Aux speed gain (G) setting (BAS-03): 50\%, IN01-32: Factory default

If 6 V is inputted to V 1, the frequency for 10 V is 60 Hz and therefore aux speed A in the following table is $36 \mathrm{~Hz}(=60 \mathrm{~Hz} \times(6 \mathrm{~V} / 10 \mathrm{~V}))$ or $60 \%(=100 \% \times(6 \mathrm{~V} /$ 10 V) based on these conditions.

Setting type		Final command frequency
0	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\mathrm{~Hz}]\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 36 \mathrm{~Hz}(\mathrm{~A}))=48 \mathrm{~Hz}$
1	$\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A}))=9 \mathrm{~Hz}$
2	$\mathrm{M}[\mathrm{Hz}] /\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A}))=100 \mathrm{~Hz}$
3	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(30 \mathrm{~Hz} \times(50 \%(\mathrm{G}) \times 60 \%(\mathrm{~A})))=39 \mathrm{~Hz}$
4	$\mathrm{M}[\mathrm{Hz}]+\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])[\mathrm{Hz}]$	$30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}$ $=36 \mathrm{~Hz}$
5	$\mathrm{M}[\mathrm{HZ}]^{*}\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-50 \%))=3 \mathrm{~Hz}$
6	$\mathrm{M}[\mathrm{HZ}] /\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 2 \times(60 \%-50 \%))=300 \mathrm{~Hz}$
7	$\mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}]^{*} \mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])$	$30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 \times(60 \%(\mathrm{~A})-$ $50 \%)=33 \mathrm{~Hz}$

[^0]
Usage example 2)

- Main speed (M) setting (DRV-07): Keypad (frequency command set as 30 Hz)
- Max frequency (Max Freq) setting (DRV-20): 400 Hz
- Aux speed (A) setting (BAS-01): I1 (Expressed as an aux speed (Hz) or percentage (\%), depending on the conditions.)
- Aux speed gain (G) setting (BAS-03): 50\%, IN01-32: Factory default

Assuming that 10.4 mA is input to It , the frequency corresponding to 20 mA is 60 Hz . Therefore, aux speed A in the following table is $24 \mathrm{~Hz}(=60 \mathrm{~Hz} \times((10.4 \mathrm{~mA}$ $4 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA})$), or $40 \%(=100 \% \times((10.4 \mathrm{~mA}-4 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA}))$.

Setting type		Final command frequency
0	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\mathrm{~Hz}]\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 24 \mathrm{~Hz}(\mathrm{~A}))=42 \mathrm{~Hz}$
1	$\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=6 \mathrm{~Hz}$
2	$\mathrm{M}[\mathrm{Hz}] /\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=150 \mathrm{~Hz}$
3	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(30 \mathrm{~Hz} \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A})))=36 \mathrm{~Hz}$
4	$\mathrm{M}[\mathrm{Hz}]+\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])[\mathrm{Hz}]$	$30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}=$ 24 Hz
5	$\mathrm{M}[\mathrm{HZ}]^{*}\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%))=-3 \mathrm{~Hz}$ $(R e v e r s e ~ d i r e c t i o n)$
6	$\mathrm{M}[\mathrm{HZ}] /\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 2 \times(60 \%-40 \%))=-300 \mathrm{~Hz}$ $($ Reverse direction $)$
7	$\mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}]^{*} \mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])$	$30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-$ $50 \%)=27 \mathrm{~Hz}$

Usage example 3)

- Main speed setting (DRV-07): V1 (If you set the frequency command as 30 Hz at 5 V.)
- Max Freq in Hz (DRV-20): 400 Hz
- Aux speed (BAS-01): I1 (Expressed as an aux speed (Hz) or percentage (\%), depending on the conditions.)
- Aux speed gain (BAS-03): 50% (indicates G in the following table. The value is 0.5)
- IN01-32: Factory default

Assuming that 10.4 mA is input to 11 , the frequency corresponding to 20 mA is 60 Hz . Therefore, aux speed A in the following table is $24 \mathrm{~Hz}(=60 \mathrm{~Hz} \times((10.4 \mathrm{~mA}$ $4 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA}))$, or $40 \%(=100 \% \times((10.4 \mathrm{~mA}-4 \mathrm{~mA}) /(20 \mathrm{~mA}-4 \mathrm{~mA}))$.

Setting type		Final command frequency
0	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\mathrm{~Hz}]\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(50 \%(\mathrm{G}) \times 24 \mathrm{~Hz}(\mathrm{~A}))=42 \mathrm{~Hz}$
1	$\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=6 \mathrm{~Hz}$
2	$\mathrm{M}[\mathrm{Hz}] /\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A}))=150 \mathrm{~Hz}$
3	$\mathrm{M}[\mathrm{Hz}]+\left(\mathrm{M}[\mathrm{Hz}]^{*}\left(\mathrm{G}[\%]^{*} \mathrm{~A}[\%]\right)\right)$	$30 \mathrm{~Hz}(\mathrm{M})+(30 \mathrm{~Hz} \times(50 \%(\mathrm{G}) \times 40 \%(\mathrm{~A})))=36 \mathrm{~Hz}$
4	$\mathrm{M}[\mathrm{Hz}]+\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])[\mathrm{Hz}]$	$30 \mathrm{~Hz}(\mathrm{M})+50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%) \times 60 \mathrm{~Hz}=$ 24 Hz
5	$\mathrm{M}[\mathrm{HZ}]^{*}\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) \times(50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-50 \%))=-3 \mathrm{~Hz}$ $(R e v e r s e ~ d i r e c t i o n)$
6	$\mathrm{M}[\mathrm{HZ}] /\left(\mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])\right)$	$30 \mathrm{~Hz}(\mathrm{M}) /(50 \%(\mathrm{G}) \times 2 \times(60 \%-40 \%))=-300 \mathrm{~Hz}$ $(\mathrm{Reverse}$ direction) $)$
7	$\mathrm{M}[\mathrm{HZ}]+\mathrm{M}[\mathrm{HZ}]^{*} \mathrm{G}[\%]^{*} 2^{*}(\mathrm{~A}[\%]-50[\%])$	$30 \mathrm{~Hz}(\mathrm{M})+30 \mathrm{~Hz}(\mathrm{M}) \times 50 \%(\mathrm{G}) \times 2 \times(40 \%(\mathrm{~A})-$ $50 \%)=27 \mathrm{~Hz}$

5.2 Jog Operation (Jog-operating the Inverter)

You can jog-operate the inverter using the terminal block or keypad multi-keys.

(1) Jog Operation 1: Based on the Terminal Block

Group	Code number	Function display	Function settings		Range	Unit
DRV	11	JOG Frequency	-	10.00	$0.5-$ Max. frequency	-
DRV	12	JOG Acc Time	-	20.00	$0-600$	sec
DRV	13	JOG Dec Time	-	30.00	$0-600$	sec
IN	$65-75$	Px Define	6	JOG	-	-

*Px: P1 - P8, P9 - P11 (option)
Select a multi-function terminal block between P1 and P11 to serve as the jog frequency setting terminal, and then select No. 6 (JOG) as the function for one of terminal blocks ranging from IN -65 to IN -75. If you input the jog terminal with an operation command input, the operation frequency moves to the jog frequency explained below.

DRV-11 Jog Frequency (Jog frequency): Specifies the frequency for jog operation. The jog operation is assigned top priority except the Dwell operation. Therefore, if you input a jog terminal while operating the inverter at any speed, including multi-step operations, up-down operations, or 3-wire operations, it operates according to the jog frequency.

DRV-12 JOG Acc Time, DRV-13 JOG Dec Time: These are the accel and decel times for moving at the jog frequency.

(2) Jog Operation 2: Based on the Terminal Block

Group	Code number	Function display	Function settings		Range	Unit
DRV	11	JOG Frequency	-	10.00	$0.5-$ Max. frequency	Hz
DRV	12	JOG Acc Time	-	20.00	$0-600$	sec
DRV	13	JOG Dec Time	-	30.00	$0-600$	sec
IN	$65-75$	Px Define	46	FWD JOG	-	-
IN	$65-75$	Px Define	47	REV JOG	-	-

*Px: P1-P8, P9 - P11 (option)
Jog Operation 1 requires an operation command, but Jog Operation 2 can carry out the jog operation using a terminal set to forward jog (FWD JOG) or reverse jog (REV JOG).

During jog operation, the priority for the Acc/Dec time and terminal block input (Dwell, 3-wire, up/down, etc.) is the same as for Jog Operation 1.Even if you input an operation command during jog operation, the inverter continues to operate at the jog frequency.

(3) Keypad-based Jog Operation

Mode	Group	Code number	Function display	Function settings			Range
Unit							
CNF	-	42	Multi-Key Sel	1	JOG Key	-	-
PAR	DRV	06	Cmd Source	0	Keypad	$0-5$	sec

*Px: P1 - P8, P9 - P11 (option)
Set the \#42 code of Config (CNF) mode using the \#1 JOG Key. Set the DRV-06 code of Parameter (PAR) mode using the \#0 Keypad. When you press the Multi key, the J icon on the upper portion of the display screen inverts (\quad). This indicates that you can perform jog operation using the keypad. You can press and hold the forward (FWD) or reverse (REV) operation key on the keypad to operate the inverter at the jog frequency setting (DRV-11 JOG Frequency).

The inverter stops operating if you do not press the FWD or REV key.
DRV-12 and DRV-13 set the accel/decel ramp time to the jog operation frequency.

5.3 Up - Down Operation

Group	Code number	Function display	Function settings		Range	Unit
ADV	65	U/D Save Mode	1	Yes	$0-1$	-
IN	$65-75$	Px Define	17	Up	$0-48$	-
IN	$65-75$	Px Define	18	Down	$0-48$	-
IN	$65-75$	Px Define	20	U/D Clear	$0-48$	-

*Px: P1 - P8, P9 - P11 (option)
You can use the multi-function terminal block to control acceleration and deceleration. You can use this in systems where the upper-lower limit switch signal functions as the deceleration command.

Group	Code number	Function display	Code description
ADV	65	U/D Save Mode	- If the operation command (FX or RX terminal) is off or trips or a power failure occurs during the constant speed operation, the frequency used for the operation is stored in the memory. - The inverter uses the saved frequency when the operation command turns on again or returns to its normal status. Use the multi-function terminal block to delete the saved frequency. Set a multifunction terminal to \#20 U/D Clear, and then input the terminal during a stop or at a constant speed to delete the frequency stored for the up-down operation.
IN	65-75	Px Define	- Select the terminal to use for the up-down operation, and then set the relevant terminal functions in \#17 up and \#18 down. - If the UP terminal signal is ON when an operation command is input, then the speed increases. If this signal is OFF, then the inverter stops accelerating and operates at a constant speed. - If the DOWN terminal signal is ON during operation, the inverter begins to decelerate. If this signal is OFF, the inverter stops decelerating and operates at a constant speed. - If both the UP and DOWN signals are ON at the same time, both acceleration and deceleration stop.

5.4 Wire Operation (Operating the Inverter with the Push Button or Equivalent)

Group	Code number	Function display	Function settings		Range	Unit
DRV	06	Cmd Source	1	Fx/Rx-1	$0-5$	-
IN	$65-75$	Px Define	14	3-Wire	$0-48$	-

*Px: P1 - P8, P9 - P11 (option)
This refers to a function that latches the input signals and carries out the operation shown in the following figure.

Therefore, you can use the Push button switch to configure a simple sequence circuit, as shown in the following figure. The minimum input time (t) for the input terminal should be 1 msec or longer to properly operate the inverter.

The inverter stops operating if forward and reverse operation commands are input at the same time.

5.5 Safe Operation Mode (Using the Terminal Input to Limit Operation)

Group	Code number	Function display	Function settings		Range	Unit
ADV	70	Run En Mode	1	DI Dependent	-	-
ADV	71	Run Dis Stop	0	Free-Run	$0-2$	-
ADV	72	Q-Stop Time	-	5.0	$0-600$	sec
IN	$65-75$	Px Define	13	Run Enable	$0-48$	

A function that uses the multi-function input terminal to make the operation command effective by software.

Group	Code number	Function display	Code description
IN	65-75	Px Define	- Selects a multi-function input terminal for No. 13 safe operation mode (RUN Enable). (The safe operation function does not work if you only set the multi-function terminal block to RUN Enable.)
ADV	70	Run En Mode	- When you set this code to \#1 DI Dependent, the multi-function input terminals can recognize this operation command. - Safe operation mode cannot function if you set this code to \#0 Always Enable.
ADV	71	Run Dis Stop	- Sets the inverter operation when the multi-function input terminal for safe operation mode is OFF. - 0: Free-Run Cuts off the power to the inverter when the multifunction terminal is OFF. - 1: Q-Stop Uses the deceleration time (Q-Stop Time) in safe operation mode to decelerate inverter. You must input the operation command again to enable this operation even if the multi-function terminal is ON. - 2: Q-Stop Resume Uses the safe operation mode deceleration time (Q-Stop Time) to decelerate. With the operation command ON, the operation starts normally when the multi-function terminal receives an input.
ADV	72	Q-Stop Time	- Sets the deceleration time if you set ADV-71 (Run Dis Stop) to \#1 Q-Stop or \#2 Q-Stop Resume.

5.6 Dwell Operation (Operating the Inverter in Dwell Mode)

Group	Code number	Function display	Initial value		Range	Unit
ADV	20	Acc Dwell Freq	-	5.00	Start frequency - Max. frequency	Hz
ADV	21	Acc Dwell Time	-	0.0	$0-10$	sec
ADV	22	Dec Dwell Freq	-	5.00	Start frequency - Max. frequency	Hz
ADV	23	Dec Dwell Time	-	0.0	$0-10$	sec

When an operation command is input, you can operate the inverter at a constant speed with the preset acceleration dwell frequency during the acceleration dwell time, and then the inverter begins to accelerate.

When a stop command is input, you can operate the inverter at a constant speed with the preset deceleration dwell frequency during the deceleration dwell time before the inverter stops.

When you use the control mode (DRV-09 Control Mode) as the V/F mode, you can use it to operate the inverter at the dwell frequency before opening the mechanical brake under the elevator load, and then open the brake.

Caution

If you perform a dwell operation at a frequency higher than the motor's rated slip under similar loads, as shown in the previous examples, bear in mind that the overcurrent flowing through the motor may damage it or adversely affect its lifespan.

Detailed Description of Dwell Operations

You can use Dwell operations to assure a certain level of torque for opening and activating the brake under a lift load. When an operation command is input, you can accelerate inverter in Dwell operation mode up to the Dwell frequency during the preset acceleration time. You can operate the inverter using the speed setting after the Accel Dwell Time set for the Dwell operation frequency. If a stop command is input during operation, you can use the Dwell operation frequency to operate the inverter at a lower speed. After the Dec Dwell Time, you can stop the inverter according to the previous deceleration time. If the Dwell operation time or Dwell frequency is set to 0 , then the Dwell operation does not work.

The acceleration Dwell operation command is only effective when you issue the first command. This operation does not work if the inverter returns to the previous acceleration path following the Dwell frequency acceleration. The deceleration Dwell functions when you input a stop command and the inverter goes through the deceleration Dwell frequency. It does not function during normal frequency deceleration which is not the result of a stop deceleration. The Dwell operation does not function if the outside brake control is ON.

- Acceleration Dwell

The acceleration Dwell operation command is only effective when you issue the first command. This operation does not work if the inverter returns to the previous acceleration path following the Dwell frequency acceleration.

Deceleration Dwell

The deceleration Dwell functions when you input a stop command and the inverter goes through the deceleration Dwell frequency. It does not function during normal frequency deceleration which is not the result of a stop deceleration.

5.7 Slip Compensation Operation

In induction motors, the difference between the motor rotation speed and the frequency (synchronous speed) increases depending on the load factor.

You can adjust the speed difference (slip) to compensate for the load if this occurs. If the control mode is set to Sensorless or Vector and V/F PG, the system automatically compensates for the speed difference.

Group	Code number	Function display	Function setting display		Unit
DRV	09	Control Mode	2	Slip Compen	-
DRV	14	Motor Capacity	2	0.75 (Based on 0.75 kW)	kW
BAS	11	Pole Number	-	4	-
BAS	12	Rated Slip	-	90 (Based on 0.75 kW)	rpm
BAS	13	Rated Curr	-	3.6 (Based on $0.75 \mathrm{kW)}$	A
BAS	14	Noload Curr	-	1.6 (Based on 0.75 kW)	A
BAS	16	Efficiency	-	72 (Based on 0.75 kW)	$\%$
BAS	17	Inertia Rate	-	0 (Based on 0.75 kW)	-

DRV-09 Control Mode (Control mode): Ensure that the control mode is set to \#2 Slip Compen.

DRV-14 Motor Capacity (Motor capacity): Set the capacity of motor connected to the inverter output.

BAS-11 Pole Number (No. of motor poles): Input the number of poles stated on the motor nameplate.

BAS-12 Rated Slip (Rated slip): Use the RPM rating on the motor nameplate to input the rated slip.

BAS-13 Rated Curr (Rated current): Input the rated current shown on the motor nameplate.

BAS-14 Noload Curr (No-load current): Input the current reading obtained when operating the motor at the rated frequency after removing load devices connected to the motor shaft. If it is difficult to measure the no-load current, input a current level equivalent to $30-50 \%$ of the rated motor current.

BAS-16 Efficiency (Motor efficiency): Input the efficiency rating stated on the motor nameplate.

BAS-17 Inertia Rate (Load inertia ratio): Select the load inertia based on motor inertia.
(0: Less than 10 times the motor inertia, 1: 10 times the motor inertia, 2-8: More than 10 times the motor inertia)

$$
f_{s}=f_{r}-\left(\frac{r p m \times P}{120}\right)
$$

Here,
$f_{s}=$ Rated slip frequency, $f_{r}=$ Rated frequency, $\quad r p m=$ Motor rated RPM, $P=$ Number of motor poles

Ex) Rated frequency: 60 Hz , Rated RPM: 1740 rpm , No. of poles: 4.

$$
f_{s}=60-\left(\frac{1740 \times 4}{120}\right)=2 H z
$$

5.8 PID Control

(1) Basic PID Operation

This is the most common type of automatic control. The P in PID stands for proportional, the I stands for integral, and the D stands for differential. Combining these three elements provides flexible control for the system.

Group	Code number	Function display	Setting display		Setting range	Unit
APP	01	App Mode	2	Proc PID	$0-4$	-
APP	16	PID Output	-	-	-	-
APP	17	PID Ref Value	-	-	-	-
APP	18	PID Fdb Value	-	-	-	-
APP	19	PID Ref Set	-	50.00	$-100-100$	$\%$
APP	20	PID Ref Source	0	Keypad	$0-10$	-
APP	21	PID F/B Source	0	V1	$0-10$	-
APP	22	PID P-Gain	-	50.0	$0-1000$	$\%$
APP	23	PID I-Time	-	10.0	$0-32.0$	Sec
APP	24	PID D-Time	-	0	$0-1000$	msec
APP	25	PID F-Gain	-	0.0	$0-1000$	$\%$
APP	26	P Gain Scale	-	100.0	$0-100$	$\%$
APP	27	PID Out LPF	-	0	$0-10000$	msec
APP	29	PID Limit Hi	-	60.00	$0-300$	Hz
APP	30	PID Limit Lo	-	0.5	$0-300$	Hz
APP	31	PID Out Inv	-	No	$0-1$	-
APP	32	PID Out Scale	-	100.0	$0.1-1000$	$\%$
APP	34	Pre-PID Freq	-	0.00	$0-$ Max.	Hz
frequency						
APP	35	Pre-PID Exit	-	0.0	$0-100$	$\%$
APP	36	Pre-PID Delay	-	600	$0-9999$	Sec
APP	37	PID Sleep DT	-	60.0	$0-999.9$	Sec
APP	38	PID Sleep Freq	-	0.00	$0-$ Max.	Hz
frequency						
APP	39	PID WakeUp Lev	-	35	$0-100$	$\%$

Group	Code number	Function display	Setting display		Setting range	Unit
APP	40	PID WakeUp Mod	0	Below Level	$0-2$	-
APP	42	PID Unit Sel	0	$H z$	$0-12$	-
APP	43	PID Unit Gain	-	100.0	$0-650$	$\%$
APP	44	PID Unit Scale	2	X1	$0-2$	-
APP	45	PID P2-Gain	-	100.0	$0-1000$	$\%$
IN	$65-75$	Px Define	22	I-Term Clear	$0-48$	-
IN	$65-75$	Px Define	23	PID Openloop	$0-48$	-
IN	$65-75$	Px Define	24	P Gain2	$0-48$	-

The PID manipulates the output frequency of the inverter to control the flux, temperature, tension, and other system processes.

APP-01 App Mode (Application mode): When set to No. 2 Proc PID, this code sets the functions for the PID process.

APP-16 PID Output: Displays the current output value of the PID controller. The unit, gain, and scale specified in APP-42, APP-43, and APP-44 are applied to the values before they are displayed.

APP-17 PID Ref Value: Displays the reference currently set in the PID controller. The unit, gain, and scale specified in APP-42, APP-43, and APP-44 are applied to the values before they are displayed.

APP-18 PID Fdb Value: Displays the current feedback input for the PID controller. The unit, gain, and scale specified in APP-42, APP-43, and APP-44 are applied to the values before they are displayed.

APP-19 PID Ref Set: If the reference for PID control (APP-20) is set to Keypad (0 : Keypad), you can input the reference value in this code. If the reference is any value besides Keypad, it ignores the value specified in APP-19.

APP-20 PID Ref Source: Selects the reference input for PID control (the items in gray will be provided as options in the future). If the V1 terminal is set to PID F/B Source, you cannot set V1 to PID Ref Source. You can change the F/B Source to another item to set V1 to Ref Source.

Setting type		Function	PID F/B Source Availability
0	Keypad	Inputs the PID reference from the inverter keypad.	X
1	V 1	The $-10-10 \mathrm{~V}$ voltage input terminal of terminal block	O
2	I	The $0-20 \mathrm{~mA}$ current input terminal	O

Setting type		Function	PID F/B Source Availability
		of terminal block	0
3	V2	The voltage input terminal of the Ext l/O option card	0
4	12	The current input terminal of the Ext l/O option card	0
5	Int. 485	The RS485 input terminal of the terminal block	0
6	Encoder	The pulse input of the encoder option card	0
7	FieldBus	The communication command from the communication option card	0
8	PLC	The command from the PLC option card	0
9	Synchro	The command from the synchronous operation option card	O
10	Binary Type	The command from the BCD option card	0

You can display the PID reference in monitor mode and APP-17. You can monitor it using the item defined as No. 17 PID Ref Value in CNF-06-08 under Config Mode (CNF).

APP-21 PID F/B Source: Selects the feedback input in PID control. You can select any reference input type except keypad input (Keypad-1, Keypad-2). You cannot set the feedback with the same input as the reference input.

For instance, if you select the No. 1 V1 terminal as the APP-20 Ref Source, then you cannot select V1 as the APP-21 PID F/B Source. You can monitor the feedback flow by selecting No. 18 PID Fbk Value in CNF-06-08.

APP-22 PID P-Gain, APP-26 P Gain Scale: Defines the output rate for the difference (error) between the reference and the feedback.

If the P gain is set to 50%, then the system outputs 50% of the errors. You can set the P gain within the 0.0 to 1000.0% range. If you need a value lower than 0.1%, then use the P Gain Scale in APP-26.

APP-23 PID I-Time: Sets the time for outputting the accumulated error volume. If the error setting is 100%, set the time for when it reaches a 100% output. If the integral time (PID I-Time) is 1 second, then 100% is outputted 1 second after the error reaches 100%. You can use the integral time to reduce normal errors. Set the function of the multi-function terminal block to No. 21 I-Term Clear, and then turn ON the terminal block. This allows you to delete the accumulated integral volume.

APP-24 PID D-Time: Sets the output volume for the error change rate. If the differential time (PID D-Time) is 1 msec and the rate of change per second is 100%, then 1% is outputted every 10 msec .

APP-25 PID F-Gain: Sets the target volume to the PID output and sets its rate. This can improve response time.

APP-27 PID Out LPF: You can use this code when the PID controller output changes too quickly or the entire system becomes unstable due to severe oscillations. Usually, small values (the default value is 0) increase the response time, but larger values increase the stability. Larger values make the PID controller output more stable, but the response time may increase.

APP-29 PID Limit Hi, APP30 PID Limit Lo: The output limits for the PID controller.

APP-32 PID Out Scale: Adjusts the output of the controller.
APP-42 PID Unit Sel: Specifies the units for the control volume.

Setting type			Function
0	\%	-	Indicates the value as a percentage without a physical quantity.
1	Bar	Pressure	You can select various units of pressure.
2	mBar		
3	Pa		
4	kPa		
5	Hz	Speed	Indicates the inverter output frequency or motor rotation speed.
6	rpm		
7	v	Voltage	Indicates the value in voltage, current, wattage, or horse power.
8	I	Current	
9	kW	Wattage	
10	HP	Horse power	
11	${ }^{\circ} \mathrm{C}$	Temperature	Indicates the value in Celsius or Fahrenheit.
12	${ }^{\circ} \mathrm{F}$		

APP-43 PID Unit Gain, APP44 PID Unit Scale: Adjust the size to suit the unit selected in APP-42 PID Unit Sel.

APP-45 PID P2-Gain: You can use the multi-function terminal to change the PID controller gain. Setting the function of the terminal block selected in the IN-65 to IN-75 range to No. 23 P Gain2 and inputting the selected terminal switches to the gain set in APP-45 instead of the gain set in APP-22 and APP-23.
(2) PID Control Block Diagram

Note

- When the PID switching operation (switching from PID operation to general operation) is inputted to the multi-function input (P1 - P11), the percentage values are converted to hertz values before they are outputted.
- The polarity of the normal PID output (PID OUT) is unidirectional and limited by APP29 (PID Limit Hi) and APP-30 (PID Limit Lo).
- 100.0% is based on the DRV-20 (maxFreq) value.

(3) Pre-PID Operation

You can use this function when an operation command is inputted to activate the inverter in general acceleration to set the frequency without starting a PID operation. You can start the PID operation once the control volume increases to a certain level.

APP-34 Pre-PID Freq: This code allows you to input a frequency up to the general acceleration, if you need general acceleration without PID control.

For instance, if you set the Pre-PID Freq to 30 Hz , then you can continue to carry out general operation at 30 Hz until the control volume (PID feedback volume) exceeds the value specified in APP-35.

APP-35 Pre-PID Exit, APP36 Pre-PID Delay: You can start the PID control operation when the feedback volume (control volume) of the PID controller exceeds the value specified in APP-35. If the feedback volume is less than the value specified in APP-35 for the time period specified in APP-36, then a 'PrePID Fail' trip occurs and the power is cut off.

(4) PID Sleep Mode

APP-37 PID Sleep DT, APP-38 PID Sleep Freq: If the inverter operates at a frequency lower than the APP-38 Sleep Frequency for the time period set in APP-37 PID Sleep DT, then the inverter stops operating and enters PID sleep mode. For details about the criteria for switching to PID operation mode from PID sleep mode, refer to the APP-39 PID WakeUp Lev.

APP-39 PID WakeUp Lev, APP40 PID WakeUp Mod: Specifies the criteria for starting PID operation from PID sleep mode, as previously explained.

If you select \#0 (Below Level) in APP-40, you can restart PID operation when the feedback volume is less than the value specified in APP-39 (PID WakeUp Lev). If you select \#1 (Above Level), you can start the inverter when the volume is more than the value specified in APP-39.

If you select \#2 (Beyond Level), you can restart the inverter when the difference between the reference and feedback is more than the value specified in APP-39.

(5) PID Operation Switching (PID Openloop)

When you input a terminal set to No. 22 PID Openloop in IN-65-75 (Px Define) of the multi-function terminal block, this function stops the PID operation and switches to general operation. If the terminal is OFF, you can restart the PID operation.

5.9 Auto-tuning

You can measure the motor parameters automatically. Moreover, you can connect the encoder option card to the inverter body to test the operating conditions of the encoder. You can use motor parameters (measured by autotuning) for auto torque boost, sensorless vector control, vector control, etc.

Ex) Based on a $0.75 \mathrm{~kW}, 220 \mathrm{~V}$ motor

Group	Code number	Function display	Initial settings display		Unit
DRV	14	Motor Capacity	1	0.75	kW
BAS	11	Pole Number	-	4	-
BAS	12	Rated Slip	-	40	rpm
BAS	13	Rated Curr	-	3.6	A
BAS	14	Noload curr	-	1.6	A
BAS	15	Rated Volt	-	220	V
BAS	16	Efficiency	-	72	\%
BAS	20	Auto Tuning	0	None	-
BAS	21	Rs	-	26.00	Ω
BAS	22	Lsigma	-	179.4	mH
BAS	23	Ls	-	1544	mH
BAS	24	Tr	-	145	msec
APO	04	Enc Opt Mode	0	None	-

Caution

Be sure to perform auto-tuning after the motor stops.
Before auto-tuning, input the number of motor poles, rated slip, rated current, rated voltage, and efficiency stated on the motor nameplate. You can use items you do not input as automatic default settings.

Input voltage	Motor capacity (kW)	Rated current (A)	No-load current (A)	Rated slip frequency (Hz)	Stator resistor (Ω)	$\begin{aligned} & \text { Leakage } \\ & \text { inductance } \\ & (\mathrm{mH}) \end{aligned}$
200	0.2	1.1	0.8	3.33	14.0	40.4
	0.4	2.4	1.4	3.33	6.70	26.9
	0.75	3.4	1.7	3.00	2.600	17.94
	1.5	6.4	2.6	2.67	1.170	9.29
	2.2	8.6	3.3	2.33	0.840	6.63
	3.7	13.8	5.0	2.33	0.500	4.48
	5.5	21.0	7.1	1.50	0.314	3.19
	7.5	28.2	9.3	1.33	0.169	2.844
	11	40.0	12.4	1.00	0.120	1.488
	15	53.6	15.5	1.00	0.084	1.118
	18.5	65.6	19.0	1.00	0.068	0.819
	22	76.8	21.5	1.00	0.056	0.948
	30	104.6	29.3	1.00	0.042	0.711
400	0.2	0.7	0.5	3.33	28.00	121.2
	0.4	1.4	0.8	3.33	14.0	80.8
	0.75	2.0	1.0	3.00	7.81	53.9
	1.5	3.7	1.5	2.67	3.52	27.9
	2.2	5.0	1.9	2.33	2.520	19.95
	3.7	8.0	2.9	2.33	1.500	13.45
	5.5	12.1	4.1	1.50	0.940	9.62
	7.5	16.3	5.4	1.33	0.520	8.53
	11	23.2	7.2	1.00	0.360	4.48
	15	31.0	9.0	1.00	0.250	3.38
	18.5	38.0	11.0	1.00	0.168	2.457
	22	44.5	12.5	1.00	0.168	2.844
	30	60.5	16.9	1.00	0.126	2.133
	37	74.4	20.1	1.00	0.101	1.704
	45	90.3	24.4	1.00	0.084	1.422
	55	106.6	28.8	1.00	0.069	1.167
	75	141.6	35.4	1.00	0.050	0.852
	90	167.6	41.9	1.00	0.039	0.715
	110	203.5	48.8	1.00	0.032	0.585
	132	242.3	58.1	1.00	0.027	0.488
	160	290.5	69.7	1.00	0.022	0.403
	185	335.0	77.0	1.00	0.021	0.380

(1) Motor Parameter Tuning (Rs, Lsigma, Ls, Tr, Noload curr)

BAS-20 Auto Tuning: Selects the type of auto-tuning and performs. Select one of the following items and press the Prog key to immediately perform auto-tuning.

- 0: None

Displays the initial auto-tuning items. Indicates when auto-tuning is in progress and when it is complete.

- 1: ALL

Select this item to measure the motor parameters as the motor rotates. You can measure parameters such as the stator resistance (Rs), leakage inductance (Lsigma), stator inductance (Ls), no-load current (Noload Curr), rotor time constant (Tr), etc. If the inverter is equipped with an encoder option card, you can also measure the status of the encoder. Make sure that you set the correct functions related to the encoder to measure the status of the encoder.

If you select vector control as the control mode, then select \#1 ALL autotuning item. Since the parameters are measured as the motor rotates, connecting a load to the motor shaft may cause the parameters to be incorrectly measured. Therefore, remove any loads on the motor to correctly measure the parameters.

However, if the Control Mode (DRV-09) is set to Sensorless-2, then the rotor time constant (Tr) is tuned while the motor is stopped.

- 2: ALL (Stdstl)

Measures the parameters when the motor is stopped. Select this mode to measure the stator resistance (Rs), leakage inductance (Lsigma), and rotor time constant (Tr) at the same time. You can use this mode when the Control Mode (DRV-09) is Sensorless-2.

- 3: Rs+Lsigma

Measures parameters when the motor is stopped. You can use the values measured in auto torque boost and sensorless vector control. Since the motor is not rotating, loads on the motor do not affect the accuracy of the parameter measurement. However, you must ensure that the load does not cause the motor shaft to rotate.

- 4: Enc. Test

Connect the encoder option card to the body of the inverter, and then properly connect the encoder lead (attached to the motor) to the option card. As the motor rotates, ensure that the wiring is correct and check the A and B pulses for incorrect wiring. Be sure to properly set the functions related to encoder when measuring the status of the encoder.

- $5: \mathrm{Tr}$

When the Control Mode (DRV-09) is Vector, measure the rotor time constant (Tr) as the motor rotates.
When the Control Mode (DRV-09) is Sensorless-2, measure the rotor time constant (Tr) when the motor is stopped.
You must tune the rotor time constant (Tr) again if you change the Control Mode (DRV-09) from Sensorless-2 to Vector.

BAS-21 Rs - BAS-24 Tr, BAS-14 Noload Curr: Indicates the motor parameters measured during auto-tuning.
The default auto-tuning settings appear for parameters that are not included in the measurement list.

(2) Measuring the Encoder Connection Status (When Using V/F PG, SENSORED VECTOR)

Group	Code number	Function display	Setting display		Setting range	Unit
BAS	20	Auto Tuning	3	Enc Test	$0-4$	-
APO	01	Enc Opt Mode	1	Feed-back	$0-2$	-
APO	04	Enc Type Sel	0	Line Driver	$0-2$	-
APO	05	Enc Pulse Sel	0	$(A+B)$	$0-2$	-
APO	06	Enc Pulse Num	-	1024	$10-4096$	-
APO	08	Enc Monitor	-	-	-	-

APO-01 Enc Opt Mode: Set this mode to \#1 Feedback.
APO-04 Enc Type Sel: Selects how to transmit encoder signals. Set this option according to the specifications included in the Encoder User Manual.

Select Line Driver (0), Totem or Com (1), or Open Collect (2), depending on the specification of the encoder.

- Control output diagram

\% Totem pole output type can be used for NPN open collector output type($\$$, 1) or Voltage output type ($\mathbf{6}$ 2).
Iv All output circuits are the same A, B, Z phase (Line driver output is $\mathrm{A}, \overline{\mathrm{A}}, \mathrm{B}, \overline{\mathrm{B}}, \mathbf{Z}, \overline{\mathrm{Z}}$)
-Output waveform

APO-05 Enc Pulse Sel: Sets the direction of the encoder output pulse. You can select \#0 (A+B) for the forward operation (FWD) and \#2-(A+B) for the reverse operation (REV). Select \#1 to use the encoder output pulse as a reference for the frequency setting.

APO-06 Enc Pulse Num: Specifies the number of output pulses for each revolution.

APO-08 Enc Monitor: Converts the encoder output into motor revolutions and represent it in Hz or rpm.

BAS-20 Auto Tuning: Select the encoder-related options and set \#3 Enc Test in auto-tuning to operate the inverter up to 20 Hz in the forward direction. Operate the inverter in the forward direction, and then decelerate it before accelerating it up to 20 Hz in the reverse direction. If the encoder functions properly, the autotuning item changes to None. The "Enc reversed" icon appears when there is a fault in the encoder wiring. If this occurs, change the APO-05 Enc Pulse Sel setting or reverse two of the inverter output wires connected to the motor.

5.10 V/F Operation Using the Speed Sensor

Group	Code number	Function display		Setting display	Setting range	Unit
DRV	09	Control Mode	1	V/F PG	$0-5$	-
CON	45	PG P-Gain	-	3000	$0-9999$	-
CON	46	PG I-Gain	-	50	$0-9999$	-
CON	47	PG Slip Max \%	-	100	$0-200$	$\%$
APO	01	Enc Opt Mode	1	Feedback	$0-2$	-

Install an encoder option card to improve the speed control precision of the V/F controller. Ensure that the encoder is properly connected before operating the inverter.

DRV-09 Control Mode: Selects the control mode for the \#2 V/F PG. \#0 V/F control mode adds speed control to inverter operation. The reference for the speed controller becomes the set frequency, and the feedback becomes an encoder input.

CON-45 PG P-Gain, CON-46 PG I-Gain: Specifies the proportional gain (PG PGain) and integral gain (PG I-Gain) of the speed controller. A higher proportional gain reduces the response time. However, setting the proportional gain too high may cause the speed controller to function unstably. In contrast to this, a lower integral gain reduces the response time. However, an excessively low integral gain setting may cause the speed controller to function unstably.

CON-47 PG Slip Max \%: This code is the reference value (as a percentage) of the rated slip (BAS12: Rated Slip). You can use the value of this code as the maximum compensation slip value. For example, if this function code is 90% and the rated slip (BAS12: Rated Slip) is 30 rpm , then the maximum compensation slip is equal to 30 * $0.9=27 \mathrm{rpm}$.

5.11 Sensorless (I) Vector Control

Group	Code number	Function display	Setting display		Unit
DRV	09	Control Mode	3	Sensorless-1	-
DRV	10	Torque Control	0	No	-
DRV	14	Motor Capacity	x	$\mathrm{x} . \mathrm{xx}$	kW
BAS	11	Pole Number	-	4	-
BAS	12	Rated Slip	-	2.00	Hz
BAS	13	Rated Curr	-	3.6	A
BAS	14	Noload curr	-	0.7	A
BAS	15	Rated Volt	-	220	$\%$
BAS	16	Efficiency	-	83	-
BAS	20	Auto Tuning	2	Rs+Lsigma	$\%$
CON	21	ASR-SL P Gain1	-	100.0	200
CON	22	ASR-SL I Gain1	-	msec	

Caution

For high performance operation, you should measure the parameters of the motor connected to the inverter output.
Use auto-tuning (BAS-20 Auto Tuning) to measure the parameters before initiating Sensorless (I) Vector operation.
The inverter and motor should have the same capacity to achieve high performance in Sensorless (I) Vector control mode.
A motor with a capacity that is two or more levels smaller than the inverter capacity could adversely affect the control characteristics. If this is the case, change the control mode to V/F control mode. Moreover, DO NOT connect multiple motors to the inverter output when operating the inverter in Sensorless (I) Vector control mode.

Before auto-tuning, input the following items as stated on the motor nameplate.

- DRV-14 Motor Capacity (Motor capacity)
- BAS-11 Pole Number (No. of poles)
- BAS-12 Rated Slip (Rated slip)
- BAS-13 Rated Curr (Rated current)
- BAS-15 Rated Volt (Rated voltage)
- BAS-16 Efficiency (Efficiency)

Auto-tuning when the motor is stopped: If it is difficult to remove the load connected to the motor shaft, select \#2 Rs+Lsigma as the auto-tuning item (BAS-20 Auto Tuning). Measure the motor parameters when the motor stops. Use the motor no-load current as the basic setting. After performing auto-tuning, the motor stator resistance (Rs) and leakage inductance (Lsigma) values are saved in BAS-21 and BAS-22.

Auto-tuning as the motor rotates: Disconnect the load connected to the motor shaft, and then select \#1 All as the auto-tuning item. Selecting this item measures the parameters while the motor rotates. When auto-tuning is complete, you can save the motor stator resistance (Rs), leakage inductance (Lsigma), stator inductance (Ls), and no-load current (Noload Curr) values.

CON-21 ASR-SL P Gain1, CON-22 ASR-SL I Gain1: These codes change the speed controller gain of Sensorless (I) Vector control.

Set the controller gain to meet the default motor parameters and accel/decel time.

Caution

You can adjust the controller gain to meet the load characteristics. However, the motor may overheat or the system may become unstable due to the controller gain settings.

DRV-10 Torque Control: You can select which speed and torque control modes to use for Sensorless (I) Vector control. Set torque control (DRV-10) to Yes to operate the inverter in torque control mode. For more details on torque control mode, see section 5.14 Torque Control.

\triangle Caution
Select Control.
In torque control mode, DO NOT switch the forward rotation command to a reverse
rotation command or vice versa while operating the inverter. This can cause an
overcurrent trip or reverse deceleration error.
Select Speed Search for sensorless vector control if the inverter starts during a motor free-
run.
(CON-71 Speed Search = Speed search setting during acceleration (0001))

5.12 Sensorless (II) Vector Control

Group	Code number	Function display		Setting display	Unit
DRV	09	Control Mode	3	Sensorless-2	-
DRV	10	Torque Control	0	No	-
DRV	14	Motor Capacity	x	Varies depending on the motor capacity.	kW
BAS	11	Pole Number	-	4	-
BAS	12	Rated Slip	-	Varies depending on the motor capacity.	Hz
BAS	13	Rated Curr	-	Varies depending on the motor capacity.	A
BAS	14	Noload curr	-	Varies depending on the motor capacity.	A
BAS	15	Rated Volt	-	220/380/440/480	V
BAS	16	Efficiency	-	Varies depending on the motor capacity.	\%
BAS	20	Auto Tuning	2	Rs+Lsigma	-
CON	20	SL2 G View Sel	1	Yes	-
CON	21	ASR-SL P Gain1	-	Varies depending on the motor capacity.	\%
CON	22	ASR-SL I Gain1	-	Varies depending on the motor capacity.	msec
CON	23	ASR-SL P Gain2	-	Varies depending on the motor capacity.	\%
CON	24	ASR-SL I Gain2	-	Varies depending on the motor capacity.	\%
CON	26	Observer Gain1	-	10500	-
CON	27	Observer Gain2	-	100.0	\%
CON	28	Observer Gain3	-	13000	-
CON	29	S-Est P Gain 1	-	Varies depending on the motor capacity.	-
CON	30	S-Est I Gain 1	-	Varies depending on the motor capacity.	-
CON	31	S-Est P Gain 2	-	Varies depending on the motor capacity.	\%
CON	32	S-Est I Gain 2	-	Varies depending on the motor capacity.	\%
CON	48	ACR P-Gain	-	1200	-
CON	49	ACR I-Gain	-	120	-

Caution

For high performance operation, you should measure the parameters of the motor connected to the inverter output.
Use auto-tuning (BAS-20 Auto Tuning) to measure the parameters before initiating Sensorless (II) Vector operation.
The inverter and motor must have the same capacity to achieve high performance in Sensorless (II) Vector control mode. A motor with a capacity that is two or more levels smaller than the inverter capacity could adversely affect the control characteristics. If this is the case, change the control mode to V/F control mode. Moreover, DO NOT connect multiple motors to the inverter output when operating the inverter in Sensorless (II) Vector control mode.

Before performing auto-tuning, input the following items as stated on the motor nameplate.

- DRV-14 Motor Capacity (Motor capacity)
- BAS-11 Pole Number (No. of poles)
- BAS-12 Rated Slip (Rated slip)
- BAS-13 Rated Curr (Rated current)
- BAS-15 Rated Volt (Rated voltage)
- BAS-16 Efficiency (Efficiency)

Disconnect the load connected to the motor shaft, and then select \#1 All as the auto-tuning item. Selecting this item measures the parameters as the motor rotates. When auto-tuning is complete, ensure that the stator resistance (Rs), leakage inductance (Lsigma), stator inductance (Ls), no-load current (Noload Curr), and rotor time constant (Tr) values of the motor are automatically saved in BAS-21, BAS-22, BAS-23, BAS-14, and BAS-24, respectively.

CON-20 SL2 G View Sel: Select Yes for \#1 to set the various gains (e.g. CON23 ASR-SL P Gain2, CON-24 ASR-SL I Gain2, CON-27 Observer Gain2, CON28 Observer Gain3, CON-31 S-Est P Gain2, CON-32 S-Est I Gain2, etc) that are applied when the motor rotates at moderate or high speeds (ca. 1/2 of base frequency) under Sensorless (II) Vector control. These parameters do not appear if you select \#0.

(1) Speed Controller Gain

CON-21 ASR-SL P Gain1, CON-22 ASR-SL I Gain1: These codes change the speed PI controller gain in Sensorless (II) Vector control. For the PI speed controller, the speed controller P gain is the proportional gain for speed errors. As the speed error becomes larger, the torque output command become larger. Therefore, the larger the value is, the faster the speed deviation decreases.

The speed controller I gain is the integral gain for speed errors. It is the time (in msec) until the gain becomes the rated torque output command when the constant speed error continues. The smaller the value is, the faster the speed deviation decreases. The speed controller gain can improve the speed control waveform while monitoring the changes in the speed. If the speed deviation does not decrease quickly, increase the speed controller P gain or decrease the I gain (time in msec). However, setting the P gain too high or the I gain too low can cause severe vibrations. If oscillations occurs in the speed waveform, try to increase the I gain (time in msec) or P gain.

CON-23 ASR-SL P Gain2, CON-24 ASR-SL I Gain2: These only appear when you select No. 1 Yes for SL2 G View Sel (CON-20). They change the gain of the speed controller at moderate or high speeds (ca. 1/2 of base frequency) when controlling the Sensorless (II) Vector.

You can set CON-23 ASR-SL P Gain2, as a percentage, to the low speed gain CON-23 ASR-SL P Gain1. This causes the responsiveness to decrease if P Gain 2 falls below 100.0\%. For example, if CON-23 ASR-SL P Gain1 is 50.0% and CON-23 ASR-SL P Gain2 is 50.0%, then the speed controller P gain for moderate or high speeds is 25.0%.

You can also set CON-24 ASR-SL I Gain2 as a percentage of CON-24 ASR-SL I Gain1. For I gain, the smaller I gain 2 is, the slower the response time is. For example, if CON-23 ASR-SL I Gain1 is 100 msec and CON-23 ASR-SL I Gain2 is 50.0%, then the speed controller I gain for moderate or high speeds is 200 msec. Set the controller gain to meet the default motor parameters and accel/decel time.

(2) Observer Controller Gain of the Magnetic Flux

CON-26 Observer Gain1, CON27 Observer Gain2, CON-28 Observer Gain3:
For Sensorless (II) Vector control, you must use an observer to estimate the stator current and rotor magnetic flux of the motor. Observer Gain1 (CON-26) applies to the low-middle speed zone. Observer Gain2 (CON-27) and Observer Gain3 (CON-28) apply to the middle-high speed zone and torque mode, respectively. DO NOT change the default settings for the observer gains unless otherwise authorized.

Observer Gain2 (CON-27) and Observer Gain3 (CON-28) only appear when you select \#1 Yes in SL2 G View Sel (CON-20).

(3) Speed Estimator Controller Gain

CON-29 S-Est P Gain1, CON30 S-Est I Gain1: These change the speed estimator gain for Sensorless (II) Vector control. When the speed indication does not fit the target value for the normal status, you can increase or decrease the speed estimator P gain or I gain. Moreover, you can adjust these gains if severe vibrations or current ripples occur in the motor when a load is applied. Test the effects of reducing the speed estimator P gain or I gain. The speed estimator gain setting is set to meet the default motor parameters and accel/decel time.

CON-31 S-Est P Gain2, CON-32 S-Est I Gain2: These only appear when you select No. 1 Yes for SL2 G View Sel (CON-20). They change the gain of the speed estimator at moderate or high speeds (ca. $1 / 2$ of base frequency) when controlling the Sensorless (II) Vector.

You can set CON-31 S-Est P Gain2 and CON32 S-Est I Gain2 as a percentage (\%) of low speed gains CON-29 S-Est P Gain1 and CON-30 S-Est I Gain1, respectively. For example, when CON-29 S-Est P Gain1 is 300 and CON-31 SEst P Gain2 is 40.0%, the speed estimator P gain at middle or high speeds is equal to 120. You can set this P Gain1 in the same manner as the low-middle speed gain. The speed estimator gain setting must meet the default motor parameters and accel/decel time.

CON-34 SL2 OVM Perc: The overmodulation zone does not appear when the ratio of the output voltage to the input voltage is less than 100%, so the output voltage has a linear relation to the input voltage. CON34 (SL2 OVM Perc) sets the voltage range. This range is limited by the overmodulation zone of Sensorless-2.

The factory default setting of this code is 120%, but you can specify a higher value for CON34 (SL2 OVM Perc) if you use a mechanical unit that operates with a very high level of reverse load (torque limit < load level) or strikes and retracts, like an impact load (press, etc), to operate the inverter with load applied without causing a trip.

Moreover, areas with poor input voltages primarily have lower input voltages than the nominal voltage, so an OC1 trip occurs more frequently when you apply a very high reverse load (torque limit < load level), such as an impact load. This can also occur due to insufficient output voltages. You can operate the inverter without a trip at very high loads by setting CON34 (SL2 OVM Perc) to as high as 140-150\%.

CON-48 ACR P-Gain, CON49 ACR I Gain: Adjusts the P gain and I gain of current PI controller.

DRV-10 Torque Control: You can select which speed and torque control modes to use in Sensorless (II) Vector control mode. Set torque control (DRV-10) to Yes to switch to operate the inverter in torque control mode. For more details on torque control mode, see section 5.14 Torque Control.

Adjusting the various gains in Sensorless (II) Vector control mode: The motor and load characteristics greatly affect Sensorless (II) Vector control, so you need to adjust the gains of the controller to suit the application. Suppose that Sensorless (II) Vector control operates in speed mode (DRV-10 torque control is set to \#0 No).

First, if the inverter operates unstably at extremely low speeds (below 2-3 Hz) or speed shakes occur at startup, double the factory default setting of CON-22 ASR-SL I Gain1 and adjust the gain value to the proper level.

Secondly, sites that primarily use a regenerative load may produce torque ripples in the motor when the regenerative load is applied. If this occurs, reduce CON-21 ASR-SL P Gain1 to as low as 50% of the factory default setting and adjust the gain value to the proper level.

If the torque ripple does not disappear, restore CON-21 ASR-SL P Gain1 to its factory default settings and reduce CON-30 S-Est I Gain 1 to as much as 50% of its factory default setting and adjust the gain value to the proper level.

5.13 Vector Control

Install the encoder option card in the inverter body and operate the motor at a highly accurate speed and in a vector control mode where you can control the torque.

Group	Code number	Function display	Initial settings display		Unit
DRV	09	Control Mode	4	Vector	-
DRV	21	Hz / rpm Sel	1	Rpm Display	-
BAS	20	Auto Tuning	1	Yes	-
CON	09	PreExTime	-	1.0	Sec
CON	10	Flux Force	-	100.0	\%
CON	11	Hold Time	-	1.0	Sec
CON	12	ASR P Gain 1	-	50.0	\%
CON	13	ASR I Gain 1	-	300	msec
CON	15	ASR P Gain 2	-	50.0	\%
CON	16	ASR I Gain 2	-	300	msec
CON	18	Gain Sw Freq	-	0.00	Hz
CON	19	Gain Sw Delay	-	0.10	Sec
CON	51	ASR Ref LPF	-	0	msec
CON	52	Torque Out LPF	-	0	msec
CON	53	Torque Lmt Src	0	Keypad-1	-
CON	54	FWD + Trq Lmt	-	180	\%
CON	55	FWD -Trq Lmt	-	180	\%
CON	56	REV + Trq Lmt	-	180	\%
CON	57	REV -Trq Lmt	-	180	\%
CON	58	Trq Bias Src	0	Keypad-1	-
CON	59	Torque Bias	-	0.0	\%
CON	60	Trq BiasFF	-	0.0	\%
IN	65-75	Px Define	36	Asr Gain 2	-
IN	65-75	Px Define	37	ASR P/PI	-

Caution

For high performance operation in vector control mode, you must input the correct data for the related functions, such as the motor parameter measurements and the encoder.
Perform the following setting procedure before starting operation in vector control mode. The inverter and motor must have the same capacity to achieve high performance in vector control mode. A motor with a capacity that is two or more levels smaller than the inverter capacity could adversely affect the control characteristics. If this is the case, change the control mode to V/F control mode. Moreover, DO NOT connect multiple motors to the inverter output when operating the inverter in vector control mode.

(1) Items to Check Before Operation

Disconnect any loads connected to the motor shaft. Input the motor parameters: Input the values for the following items stated on the motor nameplate:

- DRV-14 Motor Capacity (Motor capacity)
- BAS-11 Pole Number (No. of poles)
- BAS-12 Rated Slip (Rated slip)
- BAS-13 Rated Curr (Rated current)
- BAS-15 Rated Volt (Rated voltage)
- BAS-16 Efficiency (Efficiency)

(2) Encoder Option Card Checklist

Set the encoder option mode (APO-01) to No. 1 Feedback. Then, provide the following information to meet the specifications of the encoder.

APO-04 Enc Type Sel: Selects how to transmit encoder signals. Set this option according to the specifications included in the Encoder User Manual. Select Line Driver (0), Totem or Com (1), or Open Collect (2), depending on the specification of the encoder.

APO-05 Enc Pulse Sel: Sets the direction of the encoder output pulse. You can select \#0 (A+B) for the forward operation (FWD) and \#2 -(A+B) for the reverse operation (REV). Select \#1 to use the encoder output pulse as a reference for the frequency setting.

APO-06 Enc Pulse Num: Inputs the number of output pulses for each revolution.

Group	Code number	Function display	Setting display		Setting range	Unit
BAS	20	Auto Tuning	3	Enc Test	$0-4$	-
APO	01	Enc Opt Mode	1	Feed-back	$0-2$	-
APO	04	Enc Type Sel	0	Line Driver	$0-2$	-
APO	05	Enc Pulse Sel	0	$(A+B)$	$0-2$	-

Group	Code number	Function display	Setting display		Setting range	Unit
APO	06	Enc Pulse Num	-	1024	$10-4096$	-
APO	08	Enc Monitor	-	-	-	-

APO-01 Enc Opt Mode: Set this mode to \#1 Feedback.
APO-04 Enc Type Sel: Selects how to transmit encoder signals. Set this option according to the specifications included in the Encoder User Manual. Select an option, such as Line Driver (0), Totem or Com (1) and Open Collect (2).

APO-05 Enc Pulse Sel: Sets the direction of the encoder output pulse. You can select \#0 (A+B) for the forward operation (FWD) and \#2-(A+B) for the reverse operation (REV). Select \#1 to use the encoder output pulse as a reference for the frequency setting.

APO-06 Enc Pulse Num: Specifies the number of output pulses for each revolution.

APO-08 Enc Monitor: Converts the encoder output into motor revolutions and represent it in Hz or rpm.

BAS-20 Auto Tuning: Select the encoder-related options and set \#3 Enc Test in auto-tuning to operate the inverter up to 20 Hz in the forward direction. Operate the inverter in the forward direction, and then decelerate it before accelerating it up to 20 Hz in the reverse direction. If the encoder functions properly, the autotuning item changes to None. The "Enc reversed" icon appears if there is a fault in the encoder wiring. If this occurs, change the APO-05 Enc Pulse Sel setting or reverse two of the inverter output wires connected to the motor.
(3) Auto-Tuning

Select No. 1 ALL in auto-tuning (BAS-20).

(4) Initial Excitation

CON-09 PreExTime: Sets the initial excitation time. You can start operation after performing excitation up to the rated flux of the motor.

CON-10 Flux Force: You can reduce the initial excitation time. The motor flux increases up to the rated flux and the time remains constant, as in the following figure. Therefore, in order to reduce the time that it takes to reach the rated flux, apply a higher motor flux base value than the rated flux and reduce the applied motor flux base value when the magnetic flux reaches the rated flux.

(5) Gain Setting

CON-12 ASR P Gain 1, CON-13 ASR I Gain 1: Sets the proportional gain and integral gain of the speed controller (ASR).

A higher proportional gain increases the response rate of the controller, so it is applied to large loads. However, an excessively high gain may cause the motor to oscillate at speed. A lower integral gain setting increases the response rate. However, an excessively low gain may cause the motor to oscillate at speed.

CON-15 ASR P Gain 2, CON-16 ASR I Gain 2: You can use a separate control gain, depending on the motor RPM, to meet the requirements of the load system. The gain of the speed controller varies depending on the gain switching frequency (CON-18) and switching time (CON-19) settings.

CON-51 ASR Ref LPF: Available in vector speed mode. This adjusts the filter time constant of the speed controller reference input.

CON-52 Torque Out LPF: Available in vector speed mode or vector torque mode. In vector speed mode, you can use this code to adjust the filter time constant of the speed controller output. In vector torque mode, you can use this code to adjust the filter time constant of the torque command.

CON-48 ACR P-Gain, CON-49 ACR I Gain: Available in sensorless speed/torque, vector speed/torque mode. Adjusts the P gain and I gain of the current PI controller.

IN-65-75 Px Define

36: ASR Gain2

When the preset terminal is inputted, you can switch gains after the switching time (CON-19).

37: ASR P/PI

Operates while the inverter is stopped. The integral controller does not operate when the preset terminal is inputted.

(6) Torque Limit

Limit the speed controller power to adjust the size of torque reference. You can set the reverse and regeneration limits for positive/negative direction operations, as shown in the following figure.

CON-53 Torque Lmt Src: Selects the input type for the torque limit. You can use the keypad, terminal block analog input (V1 and I1), or communication options to set the torque limit.

- 0: Keypad-1, 1: Keypad-2

Use the keypad to set torque limits. You can set the limit to be up to 200%, depending on the rated torque of the motor. The following codes set the direction of rotation and reverse/regeneration limits.

CON-33 FWD +Trq Lmt: Positive direction reverse (motoring) operation torque limit

CON-34 FWD -Trq Lmt: Positive regeneration operation torque limit CON-35 REV +Trq Lmt: Negative direction reverse operation torque limit
CON-36 REV -Trq Lmt: Negative direction regeneration operation torque limit

- 2: V1, 3: I1

Use the inverter terminal block's analog input terminal to set the torque limit. Use IN-02 Torque at 100% of the item to set the max. torque. For example, if $\mathrm{IN}-02$ is 200% and you use the voltage input (V1), then the torque limit is 200% when 10 V is inputted.

However, when using the factory default settings for the V1 terminal, check the settings in monitor mode if the torque limit setting uses a method other than the keypad. In Config Mode CNF-06-08, select No. 20 Torque Limit.

- 3: Int 485

Use the terminal block's communication terminal to set the torque limit.

(7) Setting the Torque Bias

CON-58 Trq Bias Src: Selects the offset value to add to the torque reference.

- 0: Keypad-1, 1: Keypad-2

Input the keypad-aided setting in CON-38 Torque Bias. You can set this code to be up to 120%, depending on the rated current of the motor.

- 2: V1, 3: I1, 6: Int 485

You can set this code in the same manner as the torque reference setting previously described. You can see the setting in monitor (MON) mode. Select \#21 Torque Bias in CFG06-08, which are the Config (CFG) mode items.

IN-65-75 Px Define: If the multi-function input is set to \#48 Trq Bias and the multi-function input is not ON, then the system ignores any Torque Bias value entered via the keypad, analog, or communication inputs.

CON-60 Trq BiasFF: Depending on the rotational direction of the motor, you can add this code to the torque bias level to compensate for any losses. When you input a negative (-) value, the torque bias level decreases by the set amount.

Zero-speed control when the inverter stops: Hold Time
CON-11 Hold Time: Performs a zero-speed operation for the amount of time specified after a stop command decelerates and stops the motor. This cuts off the output flow after the time elapses.

5.14 Torque Control (Controlling the Torque)

Torque control refers to controlling the motor to ensure that the torque output matches the torque command. The motor RPM remains constant when the motor output torque is balanced with the motor load torque. Thus the motor RPM depends on the load for torque control.

To control the torque, the motor RPM increases when the output torque of the motor exceeds the amount required for the load on the motor. In order to avoid this, you must set the speed limit to prevent the motor RPM from increasing excessively. (Speed control is enabled during speed limit operation, so you cannot control the motor torque.)

(1) Setting Torque Control

Ensure that the DRV-09 Control Mode is set to Sensorless 1, 2, or Vector to activate torque control.

- DRV-09 Control Mode: Set the control mode to No. 3, 4 Sensorless 1, 2, or No. 5 Vector.
- DRV-10 Torque Control: Set the torque control to No. 1 Yes.

Group	Code number	Function display	Setting display		Unit
DRV	02	Cmd Torque	-	0.0	\%
DRV	08	Trq Ref Src	0	Keypad-1	-
DRV	09	Control Mode	5	Vector	-
DRV	10	Torque Control	1	Yes	-
BAS	20	Auto Tuning	1	Yes	-
CON	62	Speed Lmt Src	0	Keypad-1	-
CON	63	FWD Speed Lmt	-	60.00	Hz
CON	64	REV Speed Lmt	-	60.00	Hz
CON	65	Speed Lmt Gain	-	100	\%
IN	65-75	Px Define	35	Speed/Torque	-
OUT	31-33	Relay x or Q1	27	Torque Dect	-
OUT	59	TD Level	-	100	\%
OUT	60	TD Band	-	5.0	\%

\triangle Caution
In order to operate inverter in torque control mode, you must make sure that the basic
operating conditions are set as explained in the Sensorless Vector mode or Vector Control
mode sections. You cannot control the motor torque in the slow speed regeneration zone or
at slow speeds with a small load. Select the Vector Control mode.
In torque control mode, DO NOT switch the forward rotation command to a reverse
rotation command or vice versa while operating the inverter. This can cause an

\triangle Caution
overcurrent trip or reverse deceleration error.
Select Speed Search for sensorless vector control if you want the inverter to start during a
motor free-run. (CON-71 Speed Search = Speed search setting during acceleration
(0001))

(2) Setting the Torque Reference

You can set the torque reference in the same manner as the frequency reference. Selecting torque control mode deactivates the frequency reference.

DRV-08 Trq Ref Src: Selects the torque reference type.

- 0: Keypad-1, 1: keypad-2

Use the keypad to input the torque reference value. CON-02 Cmd Torque sets the torque command. Depending on the rated torque of the motor, you can set it up to 180%.

- 2: V1, 3: I1

You can use the voltage (V1) or current (I1) terminal block of the inverter to input the torque reference. Use the IN-02 Torque at 100\% item to set the maximum torque. For example, if you set $\mathrm{IN}-02$ to 200% and use the current input (V1) to set the torque reference, then the torque limit is 200% at a 20 mA input current (when the function of the 11 terminal is set to the factory default setting). You can see the setting in monitor (MON) mode. Select \#19 Torque Ref in CFG codes 06-08, which are the codes that set Config (CFG) mode options.

- 6: Int 485

Use the inverter terminal block's communication terminal to set the torque limit.

(3) Speed Limit

When operating the inverter in torque control mode, different load conditions may cause it to operate faster than the maximum speed. Therefore, you must use the speed limit function to avoid such speed divergences.

CON-62 Speed Lmt Src: Selects the method for setting the speed limit value.

0: Keypad-1, 1: keypad-2

Use the keypad to set the speed limit value. Set the forward speed limit value in CON-41 FWD Speed Lmt and set the reverse speed limit value in CON-42 REV Speed Lmt.
2: V1, 3: I1, 6: Int 485
Operates in the same way as the frequency command setting. You can see the setting in monitor (MON) mode. Select \#21 Torque Bias in CFG
codes $06-08$, which are the codes that set the Config (CFG) mode option.

CON-65 Speed Lmt Gain: If the motor speed exceeds the set speed limit, set the reduction ratio of the torque reference.

Select No. 35 Speed/Torque as the function of the multi-function input terminal, and then input it while the inverter is stopped. This allows you to shift from torque control mode to vector control (speed control) mode to operate the inverter.

5.15 Droop Control

When you use multiple motors to drive a single load, you can use Droop Control to balance the load or prevent speed controller saturation in vector control or equivalent modes.

Group	Code number	Function display	Initial settings display		Unit
CON	66	Droop Perc	-	0.0	$\%$
CON	67	Droop St Torque	-	100.0	$\%$

CON-66 Droop Perc: Sets the ratio of the speed command to the rated torque of motor.

CON-67 Droop St Torque: Specifies the torque at which to start the Droop Control function. These values allow you to control the motor speed based on the load torque. This function uses the following equation.

Droop speed $=$ Maximum frequency \times DroopPerc $\times \frac{\text { Torque reference }- \text { DroopStTorque }}{100 \% \text { torque }- \text { DroopStTorque }}$

5.16 Speed/Torque Switchover

This function only operates in Vector Control mode. You can use this function to shift from speed mode to torque mode or vice versa with the multi-function input while operating the inverter.

| Group | Code
 number | Function display | | Initial settings display | |
| :---: | :---: | :---: | :---: | :---: | :---: | Unit

While operating the inverter in vector torque mode (DRV09: Vector, DRV10: Yes), turn ON the multi-function input set to Speed/Torque. This switches from the
current mode to vector speed mode. The mode changes based on the accel/decel time set in CON codes 50 and 51.

While operating the inverter in vector speed mode (DRV09: Vector, DRV10: No), turn ON the multi-function input set to Speed/Torque. This switches from the current mode to vector torque mode.

5.17 Kinetic Energy Buffering

If the input power fails, the voltage of the inverter DC power decreases and the low voltage trip cuts off the power output. During a power failure, the system controls the inverter power frequency and maintains the voltage level in the DC power unit. Therefore, the system can keep functioning during momentary power interruptions because they do not cause a low voltage trip.

Group	Code number	Function display	Setting display		Unit
CON	77	KEB Select	1	Yes	-
CON	78	KEB Start Lev	-	130	$\%$
CON	79	KEB Stop Lev	-	135	$\%$
CON	80	KEB Gain	-	1000	-

CON-77 KEB Select: Selects the energy buffering operation for when the input power is cut off. If you select No. 0 Continue, the system performs a general deceleration operation until a low voltage failure occurs. If you select No. 1 KEB Select, the system controls the inverter power frequency and sends the regeneration energy from the motor to charge the DC unit of the inverter.

CON-78 KEB Start Lev, CON-79 KEB Stop Lev: These set the start and stop point for the energy buffering operation. Set the low voltage level based on 100% so that the stop level (CON-79) is higher than the start level (CON-78).

CON-80 KEB Gain: Specifies the gain that uses the load-side moment of inertia quantity to control the energy buffering operation. If the load inertia is large, use the lower gain value. Use a higher gain value for smaller load inertia values.

If the motor vibrates severely when the input power cuts off and the KEB function operates, set the gain (CON-80: KEB Gain) to half of its previous value. But lowering the gain too much can cause a low voltage trip during the energy buffering operation (KEB).

Caution

- A low voltage trip may occur during the deceleration phase of the energy buffering operation due to a momentary power interruption or the load inertia.
- During the energy buffering operation, the motor may vibrate under loads other than the variable torque load (load from the fans and pumps).

5.18 Energy Saving Operation

Manual Energy Saving Operation

Group	Code number	Function display	Setting display		Unit
ADV	50	E-Save Mode	1	Manual	-
ADV	51	Energy Save	-	30	$\%$

If the inverter output current is less than the current set in BAS-14 Noload Curr (motor no-load current), then the output voltage is reduced by the amount set in ADV-51. The voltage before the energy saving operation starts becomes the base value, as a percentage. The energy saving operation does not work during acceleration and deceleration.

Automatic Energy Saving Operation

Group	Code number	Function display	Setting display		Unit
ADV	50	E-Save Mode	2	Auto	-

The system automatically calculates the amount of energy savings based on the rated current of the motor (BAS-13) and the no-load current (BAS-14), and then it adjust the output voltage accordingly.

Caution

If the operation frequency changes or acceleration/deceleration is initiated by a stop command or other command during the energy saving operation, the Acc/Dec time may be longer than the specified Acc/Dec time due to the time required to return to normal operation from the energy saving operation.

5.19 Speed Search Operation

This function prevents situations that could happen when the inverter is provided with the output voltage while the inverter output voltage is cut off and the motor is idling. This determines the rotation speed of motor based on the output current of the inverter, without measuring the actual speed.

Group	Code number	Function display	Initial settings display		Unit	
CON	71	Speed Search	-	0000	Bit	
CON	72	SS Sup-Current	-	Less than 75 kW	150	$\%$
			More than 90 kW	100		
CON	73	SS P-Gain	-	100	-	
CON	74	SS I-Gain	-	200	-	
CON	75	SS Block Time	-	1.0	Sec	
OUT	$31 \sim 32$	Relay 1,2	19	Speed Search	-	
OUT	33	Q1 Define				

CON-71 Speed Search: Selects one of the following types of speed searches. If the point of the switch appears at the top, the bit is set. If the point appears at the bottom, no bit is set.

Bit setting status (On):

Bit setting off state (Off):

Setting type				Function
Bit 4	Bit 3	Bit 2	Bit 1	The right side of the display is bit 1.
			\checkmark	Select speed search for acceleration
		\checkmark		When starting on a reset after a trip occurs.
	\checkmark			When restarting after a momentary power interruption.
\checkmark				When starting at the same time as the power is input.

(1) Select Speed Search for Acceleration

If bit 1 is set to 1 and an inverter operation command is inputted, then the acceleration starts with the speed search operation. A trip can occur if the motor is rotating due to the load when the operation command is input into the inverter for voltage output. This can also cause stress on the motor. If this is the case, you can use the search function to accelerate the inverter without causing a trip.
\square
\triangle Caution
When operating the inverter in Sensorless II mode for the starting load during a free run cycle, select speed search for acceleration to assure good operation. Failure to do so may cause an overcurrent trip or overload trip.

(2) Starting on Reset after a Trip Occurs

If you set Bit 2 to 1 and set PRT-08 RST Restart to Yes, then you can use the speed search operation to accelerate the inverter up to a certain frequency before a trip occurs when you input the reset key (or terminal block reset) after a trip occurs.

(3) Restarting after a Momentary Power Interruption

If the power returns before the power in the inverter runs out after the inverter input power is cut off and a low voltage trip occurs, then the system accelerates up to the frequency before the trip using the speed search operation.

Set Start Bit 4 to 1 at the same time as the power is input and set ADV-10 Poweron Run to Yes. If the inverter operation command is on and the inverter input power is inputted, then the system accelerates up to the target frequency using the speed search operation.

Ex) A speed search operation after the power returns from a momentary power interruption

Note

- If a momentary power interruption occurs and the input power is cut off, then the inverter generates a low voltage trip (Lvt) to block the output.
- When the input power returns, the inverter inner PI control outputs the frequency before the low voltage trip to increase the voltage.
- t1: If the current increases above the amount specified in ADV-61, then the voltage stops increasing and the frequency decreases.
- t2: If the current falls below the amount specified in ADV-61, then the voltage increases again and the frequency stops the deceleration.
- If the normal frequency and voltage are recovered, acceleration is carried out with the frequency before trip.

ADV-61 SS Sup-Current: Controls the current during the speed search operation based on the rated current of the motor.

You can set the gain of the controller in ADV-62 and 63.
ADV-64 SS Block Time: Starts operation after the output is cut off for a preset amount of time and before starting the speed search operation. The speed search operation is meant mainly for large-inertia loads. We recommend restarting after stopping for a load with high frictional force.

The iS7 series inverter is designed to operate normally in power interruptions of 15 msec or less, if used within the rated output. If the voltage input to the inverter is 200-230 Vac for an inverter with a 200 V level input voltage or 380-460 Vac for an inverter with a 400 V level input voltage, then the system is protected
against momentary power interruption and the current is based on the constant torque load current (CT load).

The DC voltage inside the inverter may change based on the output load. Therefore, a low voltage trip may occur if the momentary power interruption time is 15 msec or more or the output exceeds the rated voltage.

5.20 Automatic Restart Operation

- Automatic Restart Operation

Group	Code number	Function display	Initial setting range	Initial value	Unit
PRT	08	RST Restart	$0: \mathrm{No} / \mathrm{Yes}(1)$	$0:$ NO	-
PRT	09	Retry Number	$0-10$	0	-
PRT	10	Retry Delay	$0-60.0$	1.0	Sec
CON	$71-75$	SS-related function	-	-	-

You can use this function to prevent the system from stopping when the inverter's protection function is activated due to noise or a similar cause.

PRT-08 RST Restart, PRT-09 Retry Number, PRT-10 Retry Delay: Operates only when PRT-08 RST Restart is set to YES. PRT-09 sets the number of automatic restarts. If a trip occurs during operation, the inverter performs the automatic restart operation after the time set in PRT-10 Retry Delay. The number of restarts decreases by 1 every time an automatic restart is executed. When it becomes zero, the system cannot execute an automatic restart if a trip occurs.

If a trip does not occur within 60 seconds of the automatic restart, then the number of automatic restarts returns to the previous level set in the inverter. The maximum number is limited to the number of restarts.

An automatic restart is not executed if the inverter stops due to a low voltage, emergency stop (Bx), inverter overheat, or hardware error (HW Diag).

The acceleration operation at automatic restart has the same characteristics as the speed search operation. Therefore, you can set the functions of CON 72-75 based on the load. For more details on the speed search function, refer to page 8-36.

\triangle Caution

If the number of automatic restart is set, the inverter reset function is disabled and the motor rotates freely after a trip occurs.

The following figure shows a case when the number of automatic restarts is set to 2.

5.21 Operation Sound Selection

Group	Code number	Function display	Setting display		Range	Unit
CON	04	Carrier Freq	-	5.0	$0.7-15 \mathrm{kHz}$	kHz
CON	05	PWM Mode	1	Normal PWM	Normal PWM Low Leakage PWM	-

CON-04 Carrier Freq: Selects the operation sound generated by the motor. The power device (IGBT) in the inverter generates the high frequency switching voltage and applies it to the motor. This high frequency is also called the 'carrier frequency.' If the carrier frequency is high, the operation sound decreases. If it is low, the motor operation sound increases.

CON-05 PWM Mode: Reduces the heat loss and leakage current generated in the inverter based on the load. When you select Low Leakage PWM, the heat loss and leakage current is less than those in Normal PWM, however, the noise generated by the motor increases.

The following table lists the advantages and disadvantages of selecting the various carrier frequency sizes and load rates.

	Carrier frequency (Carrier Freq)	
	0.7 kHz	15 kHz
	LowLeakage PWM	Normal PWM
Motor noise	\uparrow (Increasement)	\downarrow (Decreasement)
Heat generated	\downarrow (Decreasement)	\uparrow (Increasement)
Noise generated	\downarrow (Decreasement)	\uparrow (Increasement)
Leakage current	\downarrow (Decreasement)	\uparrow (Increasement)

The following table lists the factory default carrier frequencies for each inverter capacity.

$0.75-22 \mathrm{~kW}$	$30-45 \mathrm{~kW}$	$55-75 \mathrm{~kW}$	$90-110 \mathrm{~kW}$	$132-160 \mathrm{~kW}$
5 kHz $(\mathrm{Max} .15 \mathrm{kHz})$	5 kHz $($ Max. 10 kHz$)$	5 kHz $(\mathrm{Max} .7 \mathrm{kHz})$	3 kHz $($ Max. 6 kHz$)$	3 kHz $($ Max. 5 kHz$)$

Caution

The default carrier frequency for 90-160 kW products is 3 kHz . However, as shown in the following figure, the value displayed on the bottom left of the keypad is D: 5.0 and this value indicates the default for products with a capacity of 75 kW or lower.

PAR \rightarrow CON NTP 720 V	
04 Carrier Freq	
3.0 kHz	
	$0.7 \sim 6.0 \mathrm{kHz}$
D:5.0	$\mathrm{C}: 3.0$

The iS7 Inverter supports two types of load rates. The overload rate is $150 \% / 1$ min for heavy duty and $110 \% / 1$ min for normal duty. Therefore, the current rating varies depending on the load rate and is limited depending on the ambient temperature.

Rated Current Derating Specifications by Temperature

The following is the rated current derating limit at various ambient temperatures when operating inverter at a general load rate (VT: Variable Torque):

Frame 1,2

Rated Current Derating Specifications by Carrier:

The following is the guaranteed rated current at various carrier frequencies based on the load.

Inverter capacity		$\mathbf{0 . 7 5 - 7 . 5} \mathbf{~ k W}$	$\mathbf{1 1 - 2 2 ~ k W}$	$\mathbf{3 0 - 7 5} \mathbf{~ k W}$
CT load	Normal temperature $\left(25^{\circ} \mathrm{C}\right)$	10 kHz	10 kHz	5 kHz
	High temperature $\left(40^{\circ} \mathrm{C}\right)$	7 kHz	7 kHz	4 kHz
	High temperature $\left(50^{\circ} \mathrm{C}\right)$	5 kHz	5 kHz	4 kHz
VT load	Normal temperature $\left(25^{\circ} \mathrm{C}\right)$	7 kHz	7 kHz	3 kHz
	High temperature $\left(40^{\circ} \mathrm{C}\right)$	2 kHz	2 kHz	2 kHz

5.22 Second Motor Operation (with One Inverter)

You can connect an inverter to two motors for the switching operation. This allows you to operate the second motor when the input of the terminal defined as the second function is 1 as a parameter of the second motor.

Group	Code number	Function display	Setting display		Unit
IN	$65-75$	Px Define	26	2nd Motor	-
M2	04	M2-Acc Time	-	5.0	Sec

IN65-75 Px Define: Set the function option of the multi-function input terminal to No. 26 2nd motor to display the PAR \rightarrow M2 group (2nd motor group) in parameter mode.

Set the multi-function terminal as the second motor input to operate the motor using the following code. During operation, the multi-function terminal does not work as the second motor parameter even when inputted.

M2-08 (M2-Ctrl Mode) does not support V/F PG and Vector as operation modes.
In order to use M2-28 (M2-Stall Lev), make sure that PRT50 (Stall Prevent) is set to the desired value.

In order to use M2-29 (M2-ETH 1 min) and M2-30 (M2-ETH Cont), make sure that PRT40 (ETH Trip Sel) is set to the desired value.

Code Number	Function	Details
04	M2-Acc Time	Acceleration time
05	M2-Dec Time	Deceleration time
06	M2-Capacity	Motor capacity
07	M2-Base Freq	Rated frequency of the motor
08	M2-Ctrl Mode	Control mode
10	M2-Pole Num	Number of poles
11	M2-Rate Slip	Rated Surr
13	M2-Noload Curr	No-load current
14	M2-Rated Volt	Rated voltage of the motor
15	M2-Efficiency	Motor efficiency
16	M2-Inertia Rt	Load inertia rate
17	M2-Rs	Stator resistor
18	M2-Lsigma	Leakage inductance

Code Number	Function	Details
19	M2-Ls	Stator inductance
20	M2-Tr	Rotor time constant
25	M2-V/F Patt	Output voltage pattern
26	M2-Fwd Boost	Positive direction torque boost
27	M2-Rev Boost	Negative direction torque boost
28	M2-Stall Lev	Stall level
29	M2-ETH 1min	One minute continuous rated level of the electronic thermal
30	M2-ETH Cont	Electronic thermal operation level
40	M2-LoadSpdGain	Adjust load speed display gain
41	M2-LoadSpdScal	Adjust load speed display scale
42	M2-LoadSpdUnit	Adjust load speed display unit

Use: Apply the following settings to use the second motor operation function of the P3 terminal in an existing 7.5 kW motor for a 3.7 kW switching operation.

Group	Code number	Function display	Setting display		Unit
$\mathbb{I N}$	67	P3 Define	26	$2^{\text {nd }}$ Motor	-
M2	06	M2-Capacity		3.7 kW	kW
M2	08	Ctrl Mode	0	$\mathrm{~V} / \mathrm{F}$	-

5.23 Bypass Operation

Group	Code number	Function display	Setting display		Unit
IN	$65-75$	Px Define	16	Exchange	-
OUT	$31-32$	Relay1,2	17	Inverter Line	-
OUT	33	Q1 Define	18	Comm Line	-

You can switch the load operated by the inverter to the commercial power or vice versa.

IN-65-75 Px Define: Sets the No. 15 Exchange and switches the motor from inverter power to commercial power. Turn OFF the preset terminal to switch the motor from commercial power to the inverter output terminal.

OUT-30 Relay 1 - OUT-32 MO1 Define: Set the multi-function relay or output to No. 16 Inverter Line and No. 17 Comm Line. For details on the relay operation sequence, refer to the following figure.

5.24 Cooling Fan Control

Group	Code number	Function display	Setting display		Unit
IN	$65-75$	Px Define	16	Exchange	-
OUT	$31-32$	Relay1,2	17	Inverter Line	-
OUT	33	Q1 Define	18	Comm Line	-

Turn the fans installed to cool the heat sink of the inverter body On or Off. Use this when the motor stops and starts frequently or in areas that must remain quiet. This function helps extend the life of the cooling fan.

No. 0 During Run (only activated during operation): Operates the cooling fan whenever power is applied to the inverter and an operation command is inputted. The cooling fan stops when the operation command turns OFF or the inverter output is cut off. If the heat sink temperature rises above a certain level, the cooling fan is activated regardless of the operation command.

No. 1 Always On (always activated): Operates the cooling fan when power is applied to the inverter.

No. 2 Temp Control (Temperature monitoring): Operates the cooling fan when the heat sink reaches a certain temperature, regardless of whether power is applied to the inverter or an operation command is input.

\triangle Caution
In products with a capacity of $11-75 \mathrm{~kW}$, even if ADV-64 is set to "During Run," the cooling fan may activate as a protective measure if the heat sink reaches a certain temperature due to harmonic waves or noise in the input current.

5.25 Input Power Frequency Selection

Group	Code number	Function display	Initial settings display		Unit
BAS	10	$60 / 50 \mathrm{~Hz}$ Sel	0	60	Hz

Select the input power frequency.
When you change this setting from 60 Hz to 50 Hz , all the items related to the frequency (or rpm) set to 60 Hz or higher change to 50 Hz .

In contrast to this, changing this setting from 50 Hz to 60 Hz causes all the function items set to 50 Hz to change to 60 Hz .

5.26 Inverter Input Voltage Selection

Set the inverter input power voltage. The Low Voltage failure level changes automatically based on the voltage setting.

Group	Code number	Function display	Initial settings display	
BAS	19	AC Input Volt	-	220
Unit				

5.27 Reading, Writing, and Saving Parameters

Mode	Code number	Function display	Setting display		Unit
CNF	46	Parameter Read	1	Yes	-
CNF	47	Parameter Write	1	Yes	-
CNF	48	Parameter Save	1	Yes	-

This function copies the parameters saved in the inverter body to the keypad or the parameters saved in the keypad to the inverter body.

CNF-46 Parameter Read: Copies the parameters saved in the inverter body to the keypad. This deletes all of the existing parameters saved in the keypad.

CNF-47 Parameter Write: Copies the parameters saved in the keypad to the inverter body. This deletes all of the existing parameters saved in the keypad. If an error occurs while writing the parameters, you can use the existing data saved as they are. An "EEP Rom Empty" message appears if there is no data saved in the keypad.

CNF-48 Parameter Save: Since the parameters set via communication are saved in the RAM, they are all deleted when you turn the inverter On or Off. If you set the parameters via communication and select Yes in CNF-48 Parameter Save, then the parameters remain even if you turn the inverter On or Off.

5.28 Parameter Initialization

Mode	Code number	Function display	Initial settings display		Unit
CNF	40	Parameter Init	0	No	-

You can initialize the parameters changed by the user to the factory default settings. You can initialize the data en bloc for all groups or for individual groups.

You cannot initialize the parameters if a trip occurs or while the inverter is operating.

1: All Groups

Initializes all data. If you select No. 1 All Groups and press the PROG key, the initialization starts. No. 0 appears when it is complete.

2: DRV - 13: M2

You can initialize parameters for individual groups. If you select a group and press the PROG key, the initialization starts. When completed, No. 0 No is displayed.

5.29 Hide Parameter Mode and Prohibit Parameter Changes

- Hide Parameter Mode Function

Mode	Code number	Function display	Setting display		Unit
CNF	50	View Lock Set	-	Unlocked	-
CNF	51	View Lock PW	-	Password	-

You can set a password and make parameter (PAR) mode invisible on the keypad. All other modes (CNF mode, user mode, macro mode, trip mode) remain visible, except for parameter (PAR) mode.

CNF-51 View Lock PW: Registers the password you want to use for hide parameter mode function. Perform the following procedure to register the password.

Order	Description
1	- Press the PROG key in the CNF-51 code to display the previous password registration window. The factory default setting is No.O. For the first registration, enter No.O. If there is a previous password, enter it. - If the entered password matches the previous password, a display window appears for you to register new password. If the password entered differs from the previous password, the previous password registration window reappears.
2	- Register the new password.
3	- The CNF-51 View Lock PW appears again once the password is registered.

CNF-50 View Lock Set: If you enter the registered password with the hide parameter mode function disabled, 'Locked' appears and no parameter groups are visible in the keypad. When you enter the password again, 'Unlocked' appears. When using the mode key to move to the next step, parameter mode appears.

Caution

When the hide parameter group function is active, you cannot change the functions related to inverter operation. Therefore, be sure to remember the registered password.

Prohibit Parameter Change

Mode	Code number	Function display	Setting display		Unit
CNF	52	Key Lock Set	-	Unlocked	-
CNF	53	Key Lock PW	-	Password	-

You can use the password registered by the user to prohibit parameter changes.
CNF-53 Key Lock PW: Registers the password you want to use to prohibit parameter changes. Perform the following steps to register the password.

Order	Description
1	- -Press the PROG key in CNF-52 code to display the previous password registration window. The factory default setting is No.0. For the first registration, enter No.0. If there is a previous password, enter it. - If the entered password matches the previous password, a display window appears for you to register new password. If the password entered differs from the previous password, the previous password registration window reappears.
2	- Register the new password.
3	- The CNF-53 Key Lock PW appears again once the password is registered.

CNF-52 Key Lock Set: If you enter the registered password with the prohibit change function disabled, 'Locked' appears and you cannot switch to the Editor mode even if you press the PROG key in the function code you want to edit. If you enter the password again, the Unlocked icon disappears and the prohibit change function is disabled.

Caution

When the hide parameter group function is active, you cannot change the functions related to inverter operation. Therefore, be sure to remember the registered password.

Displaying the Changed Parameters Function

Mode	Code number	Function display	Initial settings display		Unit
CNF	41	Changed Para	0	View All	
	41		View Changed	-	

This function only shows the parameters that differ from the factory default settings. Use it to track modified parameters.

Select No1 View Changed to only display the changed parameters. Select No. 0 View All to display all of the existing parameters.

5.30 Add User Group (USR Grp)

Mode	Code number	Function display	Initial settings display		Unit
CNF	42	Multi-Key Sel	3	UserGrp SelKey	-
CNF	45	UserGrp AllDel	0	No	-

You can put together only the selected parameters from the data available for the groups in the parameter mode to carry out data modification. You can register up to 64 parameters for each user group.

CNF-42 Multi-Key Sel: Select No. 3 UserGrp SelKey from the multi-function key functions.

Even if the aforementioned multi-function key is set to UserGrp SelKey, the user group (USR Grp) does not appear unless you register the user group parameter.

- Registering Parameters in User Group (USR Grp)

Order	Description
1	First select Multi-Key in CNF Mode Code 42 and then the No.3.UserGrp SelKey. in PAR mode, go to the parameter you want to register and press MULTI Key. For example, press MULTI Key in Cmd Frequency (DRV Group Code No.1) to open the following screen.
2	Screen description 1: Parameter group and code number to register 2: Name of the parameter to register 3: Code number to register in the user group (if you press PROG/ENT Key at 40, it is registered in the user group code No.40.) 4: Information about the parameter previously registered in user group code No.40 5: User group's code setting range (0 means cancellation of code setting)

Order	Description
3	You can set No.3 in the display screen shown above. And then select the code number you want and press the PROG/ENT key.
4	When a value changes in No.3, the values shown in No.4 also change. No.4 shows the information of the parameters previously registered and if none is registered in the code number, 'Empty Code' is displayed. 0 is cancellation of code setting.
5	These parameters are registered in U\&M Mode's user group. (If required, you can register parameters multiple times. For example, you can register a parameter in user group code No.2, code No.11, etc.)

Deleting Parameters Registered in User Groups

Order	Description
1	First select Multi-Key in CNF Mode Code 42 and then the 3.UserGrp SelKey.
2	In U\&M Mode USR Group, move the cursor to the code you want to delete.
3	Press the MULTI Key.
4	A message prompt appears asking you if you want to delete the parameter.
5	Select YES and press the PROG/ENT key.
6	Deletion is completed.

CNF-25 UserGrp AllDel: Select No. 1 Yes to delete all of the parameters registered in the user group.

5.31 Add Macro Group

Mode	Code number	Function display	Initial settings display		Unit
CNF	43	Macro Select	0	None	-

If you select an applied load, the inverter selects the related functions so that you can apply the changes to the macro group.

CNF-43 Macro Select: You can use this function to put various application functions into a group for easy setup. This causes the macro group called MC1 (DRAW function) or MC2 (Traverse function) to appear in the User \& Macro (U\&M) mode connected to the two functions, i.e. DRAW and Traverse.

This function is available from inverter. You cannot add or delete a function item included in the macro, but you can change the data in the macro group.

For details on the Traverse function, please see Chapter 8, Section 8.1.37, "Traverse Operation".

The Draw function is a type of open loop tension control. It uses the speed difference between the motors for the main speed command rate to maintain the tension of the materials between the motors.

For more details, refer to section 8.1.1, "Setting the Override Frequency Using the Aux Frequency Command".

5.32 Easy Start

Mode	Code number	Function display	Initial settings display		Unit
CNF	61	Easy Start On	1	Yes	-

CNF-61 Easy Start On: Set this code to Yes and select All in CNF-40 Parameter Init to initialize all of the inverter parameters. Easy Start begins working when you turn the inverter Off and then On.

Starting Easy Start

Order	Description
1	Set CNF-61 Easy Start On to Yes.
2	Select All in CNF-40 Parameter Init to initialize all of the inverter parameters.
	Easy Start starts when the inverter power is turned off/on the first time. If the parameters appear on the digital loader in the following sequence, set them using the appropriate values. (Press the ESC key on the digital loader to immediately exit Easy Start.) - - Start Easy Set: Select Yes.
3	- CNF-01 Language Sel: Select the desired language. - DRV-14 Motor Capacity: Specify the capacity of the motor. - BAS-11 Pole Number: Specify the number of motor poles. - BAS-15 Rated Volt: Specify the rated voltage of the motor. BAS-10 60/50Hz Sel: Specify the rated frequency of the motor. - BAS-19 AC Input Volt: Specify the input voltage. - DRV-06 Cmd Source: Select how to issue an operation command. - DRV-01 Cmd Frequency: Specify the operation frequency. Now, exit to the monitoring screen. Now that minimal parameters are set to operate the motor, use the operation command method set in DRV-06 to operate the motor.

5.33 Other Config (CNF) Mode Parameters

Mode	Code number	Function display	Initial settings display		Unit
CNF	2	LCD Contrast	-	-	-
CNF	10	Inv S/W Ver	-	x.xx	-
CNF	11	Keypad S/W Ver	-	x.xx	-
CNF	12	KPD Title Ver	-	x.xx	-
CNF	$30 \sim 32$	Option-x Type	-	None	-
CNF	42	Changed Para	0	View ALL	
CNF	44	Erase All Trip	0	No	-
CNF	60	Add Title Del	0	No	-
CNF	62	WH Count Reset	0	No	-
CNF	74	Fan Time	-	$0000 D A Y: 00: 00$	-
CNF	75	Fan Time Rst	0	No	-

CNF-2 LCD Contrast: Controls the LCD contrast of the digital loader.
CNF-10 Inv S/W Ver, CNF-11 Keypad S/W Ver: These codes display the OS versions of the inverter body and digital loader.

CNF-12 KPD Title Ver: Displays the title version of the digital loader.
CNF-30-32 Option-x Type: Displays the types of option boards inserted in slots 1-3.

CNF-42 Changed Para: Displays only parameters that differ from the factory default settings when set to View Changed.

CNF-44 Erase All Tip: Deletes the saved fault history.
CNF-60 Add Title Del: When you upgrade the software version of inverter body and add new codes, you can use this function to display any codes added to the previous version of the keypad and activate any extra functions. Set this code to Yes and remove the keypad from the inverter body and insert it again to update the digital keypad title.

CNF-62 WH Count Reset: Clears accumulated power consumption.
CNF-74 Fan Time, CNF75 Fan Time Rst: Indicates the cumulative time of cooling fan operation. Select Yes in CNF-75 Fan Time Rst to clear CNF-74 Fan Time.

5.34 Timer Function

Group	Code number	Function display	Initial settings display		Unit
IN	$65-75$	Px Define	38	Timer In	-
OUT	$31-33$	Relay1,2 / Q1	27	Timer Out	-
OUT	55	TimerOn Delay	-	3.00	Sec
OUT	56	TimerOff Delay	-	1.00	Sec

This is the timer function for the multi-function input terminal. You can turn the multi-function output (including relay) On or Off using the timer.

IN-65-75 Px Define: Sets the terminal for the timer from the multi-function input terminals to the No. 38 Timer In. When you input the set terminal, the output set to the Timer Out activates after the time period set in OUT-55 TimerOn Delay has elapsed. When the multi-function input terminal is OFF, the multi-function output (or relay) turns OFF after the time period set in OUT-56 TimerOff Delay has elapsed.

5.35 Traverse Operation Function

Group	Code number	Function display	Initial settings display		Unit
APP	01	App Mode	1	Traverse	-
APP	08	Trv Amplit \%	-	0.0	$\%$
APP	09	Trv Scramb \%	-	0.0	$\%$
APP	10	Trv Acc Time	-	2.0	Sec
APP	11	Trv Dec Time	-	3.0	Sec
APP	12	Trv Offset Hi	-	0.0	$\%$
APP	13	Trv Offset Lo	-	0.0	$\%$
IN	$65-75$	Px Define	27	Trv Offset Lo	-
IN	$65-75$	Px Define	28	Trv Offset Hi	-

APP-01 App Mode: Selects the Application Function Mode (App Mode) to No. 1 Traverse. Displays the functions necessary for the traverse operation.

APP-08 Trv Amplit \%: Selects the magnitude of the traverse operation frequency. Set as a percentage of the operation frequency.

$$
\text { Trv.Amp Frequency }=\frac{\text { Operation frequency*TrvAmplit\% }}{100}
$$

APP-09 Trv Scramb \%: Selects the magnitude of the scramble operation frequency. Sets the magnitude of the frequency jump at the start of deceleration, as shown in the following figure.

$$
\text { Trv.Scr frequency }=\text { Trv.Amp frequency- } \frac{\text { Trv.Amp frequency*(100-TrvScramb\%) }}{100}
$$

APP-10 Trv Acc Time, APP11 Trv Dec Time: Specifies the accel/decel time of the traverse operation.

APP-12 Trv Offset Hi: Selecting and entering the No. 28 Trv Offset Hi functions in the multi-function input terminal causes the system to operate with the frequency pattern increased by the value specified in APP-12.

$$
\text { Trv.OffsetHi frequency }=\frac{\text { Operation frequency*TrvOffsetH }}{100}
$$

APP-13 Trv Offset Lo: Selecting and entering the No. 27 Trv Offset Lo functions in the multi-function input terminal causes the system to operate with the frequency pattern decreased by the value specified in APP-13.

$$
\text { Trv.OffsetLo frequency }=\frac{\text { Operation frequency*TrvOffsetLo }}{100}
$$

5.36 Brake Control

Group	Code number	Function display	Setting display		Setting range	Unit
DRV	09	Control Mode	0	V/F		
ADV	41	BR RIs Curr	-	50.0	$0-180 \%$	$\%$
ADV	42	BR RIs Dly	-	1.00	$0-10.0$	Sec
ADV	44	BR RIs Fwd Fr	-	1.00	$0-$ Maximum frequency	Hz
ADV	45	BR RIs Rev Fr	-	1.00	$0-$ Maximum frequency	Hz
ADV	46	BR Eng Dly	-	1.00	$0-10$	Sec
ADV	47	BR Eng Fr	-	2.00	$0-$ Maximum frequency	Hz
OUT	$31-33$	Relay \times or Q1	35	BR Control		-

This controls the on/off operation of the brake in a load system that uses an electronic brake. The activation sequence differs depending on the control mode (DRV-09) settings. Please check the control mode before configuring the sequence.

If the brake control is working, the DC brake at start (ADV-12) and dwell operation (ADV-20-23) do not operate. If the torque control (DRV-10) is set, brake control does not work.

- Non-vector Control Modes

Brake release sequence: If you issue an operation command while the motor is stopped, the motor accelerates up to the brake release frequency (ADV-44 and $45)$ according to the forward or reverse direction. When the brake release frequency is reached and the current flowing in the motor reaches the brake release current (BR RIs Curr), then the brake release signal is outputted to the output relay defined for brake control or the multi-function output terminal. Maintain the frequency during the brake release delay time (BR RIs Dly) and then accelerate

Brake engage sequence: The motor decelerates if the stop command is inputted during operation. If the output frequency reaches the brake engage frequency (BR Eng Fr), the deceleration stops and the brake engage signal is issued to the output terminal. After maintaining the frequency during the brake engage delay period (BR Eng Dly), the output frequency becomes "0". If the DC
brake time (ADV-15) and DC braking quantity (ADV-16) are defined, cut off the inverter power after DC braking.

- Vector Control Modes

Brake release sequence: If you enter an operation command, the brake release signal is output to the output terminal after the initial excitation period. Start acceleration after the brake release delay period (BR Rly Dly).

Brake engage sequence: If you enter the stop command, the system decelerates to the zero ("0") speed and outputs the brake engage signal. After the brake engage delay period (BR Eng Dly) elapses, the system blocks the output.

This does not function in Torque Control mode.

For non-vector control mode settings

For vector control mode settings

5.37 Multi-Function Output On/Off Control Function

Group	Code number	Function display	Setting display		Setting range	Unit
ADV	66	On/Off Ctrl Src	1	V1	-	-
ADV	67	On-C Level	-	90.00	$10-100 \%$	$\%$
ADV	68	Off-C Level	-	10.00	$0-$ Output contact on level	$\%$
OUT	$31-33$	Relay \times or Q1	34	On/Off Control	-	-

You can turn the output relay or multi-function output terminal on or off if the analog input value is above the set value.

Select the analog input to use for the on/off input in ADV-66, and then define the level, in ADV-67 and 68, at which the output terminals turn on and off, respectively. If the analog input exceeds the value defined in ADV-67, the output terminal turns on. If it is below the value in ADV-68, it turns off.

5.38 Regeneration Evasion Function for Press

(Used to avoid braking in the regeneration condition during press operation)
While operating the press, this function prevents the regeneration area by automatically increasing the motor operation speed in the motor regeneration status.

Group	Code number	Function display	Setting indication and range		Initial value	Unit
ADV	74	RegenAvd Sel	0	No	0 : No	-
			1	Yes		
ADV	75	RegenAvd Level	$\begin{aligned} & 200 \mathrm{~V} \text { product: } \\ & 300-400 \mathrm{~V} \end{aligned}$		350 V	V
			$\begin{aligned} & 400 \mathrm{~V} \text { product: } \\ & 600-800 \mathrm{~V} \end{aligned}$		700 V	
ADV	76	CompFreq Limit	$0-10.00 \mathrm{~Hz}$		1.00 Hz	Hz
ADV	77	RegenAvd Pgain	0-100.0\%		50.0\%	\%
ADV	78	RegenAvd Igain	$20-30000 \mathrm{msec}$		500 msec	msec

ADV-74 RegenAvd Sel (Selection of regeneration evasion function for press): If a regeneration voltage, such as a press load, occurs frequently when operating the motor at a constant speed, select this function to suppress the DC link voltage and avoid activating the braking unit. Excessive operation of the DB unit can burn it out or reduce its lifespan.

ADV-75 RegenAvd Level (Setting the level for regeneration evasion for press): Specifies the voltage level for DB operation evasion if the DC link voltage increases due to the regeneration voltage.

ADV-76 CompFreq Limit (Compensation frequency limit of regeneration evasion for press): Specifies the variable frequency width for the actual command frequency during regeneration operation area evasion.

ADV-77 RegenAvd Pgain (Compensation controller P gain setting for regeneration evasion for press), ADV-77 RegenAvd Igain (Compensation controller I gain setting for regeneration evasion for press): These set the P and I gains for DC Link voltage suppression PI controller to avoid the regeneration operation area.

\triangle Caution

The regeneration evasion for press only works when the motor is operating at a constant speed zone (no operation during accel/decel zone).
Even operating at a constant speed during the regeneration evasion, the output frequency can change as much as the frequency specified in the ADV-76 CompFreq Limit.

6. Table of Functions

6.1 Parameter Mode - Drive Group (\rightarrow DRV)

Please refer to iS7 user manual for the parameter which a page is not indicated in the table.

* Codes in shaded rows are hidden codes that only appear when setting corresponding codes.

Note 1) This indicates the effectiveness of each code depending on the control mode setting:
V/F: V/F mode (including PG), SL: Sensorless-1 and 2 modes, VC: Vector mode, SLT: Sensorless-1 and 2 Torque modes,
VCT: Vector Torque mode
Please refer to the Options Manual provided separately for more information on the various options.

Drive Group (PAR \rightarrow DRV)

	Communication address	Function display	Name	Setting range		Initial value		Change during operation	Reference page	Control mode						
No.						V	S			V	S	V C T				
		Torque	Torque	0	No			$0:$ No		X	$\begin{gathered} 5-32 \\ 5-34,5-45 \\ \hline \end{gathered}$	x				-
		Control	Control	1	Yes	x	x			x		O	-			
11	Oh110B	Jog Frequency	Jog frequency	$0.5-\mathrm{Max}$.frequency (Hz)		10.00		0	5-5, 5-6		O	O	O	O	O	
12	Oh110C	Jog Acc Time	Jog Operation Acceleration time	$0-600 \mathrm{sec}$		20.0		0	5-5, 5-6	O	O	O	O	O		
13	Oh110D	Jog Dec Time	Jog Operation Deceleration time	$0-600 \mathrm{sec}$		30.0		0	5-5, 5-6	0	O	O	X	X		
14	Oh110E	Motor Capacity	Motor Capacity	$\begin{aligned} & 0: 0 \\ & 2: 7 \\ & 4: 2 \\ & 6: 5 \\ & \\ & 8: 1 \\ & \\ & \\ & \\ & \mathrm{~kW} \\ & 12 \\ & 37 \\ & \mathrm{~kW} \\ & 16: \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$0.2 \mathrm{~kW}, 1: 0.4$ kW $75 \mathrm{~kW}, 3: 1.5$ kW $2.2 \mathrm{~kW}, 5: 3.7$ kW $5.5 \mathrm{~kW}, 7: 7.5$ kW 11 kW, 9: 15 kW $10: 18.5$ W, 11:22 kW : $30 \mathrm{~kW}, 13$: 7 kW 14: 45 $\mathrm{N}, 15$: 55 kW : $75 \mathrm{~kW}, 17$: 90 kW 18: 110 kW 19: 132 kW 20: 160 kW 21: 185 kW	Changes depending on the inverter capacity		X	$\begin{gathered} 5-16,5-25,5- \\ 32 \end{gathered}$	O	0	0	O	0		
15	Oh110F	Torque Boost	Torque Boost Action	0	Manual	0: Manual		X	-	0	X	X	X	X		
				1	Auto											
				2	Advanced Auto											
16 Note 2)	Oh1110	Fwd Boost	Forward torque boost	0-15\%		75 kW or less	2.0	X	-	0	X	X	X	X		
						$\begin{array}{\|c} \hline 90 \mathrm{~kW} \\ \text { or } \\ \text { more } \\ \hline \end{array}$	1.0									
17	Oh1111	Rev Boost	Reverse torque boost	0-15\%		75 kW or less	2.0	X	-	0	X	X	X	X		
						$\left.\begin{gathered} 90 \mathrm{~kW} \\ \text { or } \\ \text { more } \end{gathered} \right\rvert\,$	1.0									
18	Oh1112	Base Freq	Base frequency		30-400 Hz	60.0		X	-	0	O	O	O	O		
19	Oh1113	Start Freq	Start frequency		. $01-10 \mathrm{~Hz}$	0.50		X	-	0	X	X	X	X		
20	Oh1114	Max Freq	Maximum frequency		40~400	60.0		X	-	0	0	O	O	O		
	Oh1115	$\mathrm{Hz} / \mathrm{Rpm} \mathrm{Sel}$	Speed Unit Selection	0	Hz Display	0: Hz		0	5-38	O	O	O	O	0		
21				1	Rpm Display											

No.	Communication address	Function display	Name	Setting range	Initial value	Change during	Reference page	Control mode				
$\begin{gathered} 26 \\ \substack{\text { Nicow } \\ 3} \end{gathered}$	Oh111A	Adv ATB Filter	ATB Torque boost Filter	$\begin{gathered} \text { 1~1000 } \\ \text { msec } \end{gathered}$	100	0	7.28	0	X	x	x	x
27	Oh111B	Adv ATB M Gain	Reverse Torque boost Gain	0~300 \%	50	0	7-28	0	X	x	x	x
28	Oh111C	Adv ATB G Gain	Regeneration Torque boost Gain	0~300\%	50	\bigcirc	7-28	0	X	x	X	x

* \square
Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 2) DRV-16-17 only appear when the value of the DRV-15 (Torque Boost) code is "Manual".
Note 3) DRV-26-28 only appear when the value of the DRV-15 (Torque Boost) code is "Advanced Auto".

6.2 Parameter Mode - Basic Function Group (\rightarrow BAS)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						[V			S	V	S L T	V C T		
00	-	Jump Code	Jump code		0-99		20	0	-	0	0	0	0	0
01	Oh1201	Aux Ref Src	Aux speed command setting method	0	None	0 : None	X	5-1, 5-32	0	O	0	x	x	
				1	V1									
				2	11									
				3	V2									
				4	12									
$\begin{gathered} 02 \\ \text { Note 3) } \end{gathered}$	Oh1202	Aux Calc Type	Aux speed command motion selection	0	$\mathrm{M}+\left(\mathrm{G}^{*} \mathrm{~A}\right)$	$0: M+\left(G^{*} A\right)$	X	5-1	O	0	0	x	x x	
				1	$\mathrm{M}^{*}\left(\mathrm{G}^{*} A\right)$									
				2	M/(G**)									
				3	$\mathrm{M}+\left(\mathrm{M}^{*}\left(\mathrm{G}^{*} A\right)\right)$									
				4	M $+\mathrm{G}^{*}(\mathrm{~A}-50 \%)$									
				5	$\begin{gathered} \mathrm{M}^{*}\left(\mathrm{G}^{*}(\mathrm{~A}-\right. \\ 50 \%)) \\ \hline \end{gathered}$									
				6	$\begin{gathered} \mathrm{M} /\left(\mathrm{G}^{*}(\mathrm{~A}-\right. \\ 50 \%)) \end{gathered}$									
				7	$\begin{aligned} & \mathrm{M}+\mathrm{M}^{*} \mathrm{G}^{*} \\ & (\mathrm{~A}-50 \%) \end{aligned}$									
03	Oh1203	Aux Ref Gain	Aux speed command gain	-200.0-200.0\%		100.0	0	5-1	O	O	0	X	x	
04	Oh1204	Cmd 2nd Src	Second operation command method	0	Keypad	1: Fx/Rx-1	0	-	0	O	0	0	O	
				1	Fx/Rx-1									
				2	Fx/Rx-2									
				3	Int 485									
				4	FieldBus									
				5	PLC									
05	Oh1205	Freq 2nd Src	Second frequency setting method	0	Keypad-1	$\underset{1}{0: \text { Keypad- }}$	0	-	O	O	0	x	x	

* \square Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 3) The BAS-02 and 03 codes cannot be displayed if the value of the BAS-01 (Aux Ref Src) code is "NONE".

Basic Function Group (PAR \rightarrow BAS)

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Control mode				
								V	S	V	S	V C T
21	-	Rs	Stator resistor	Depends on the motor setting.	-	X	5-25	X	O	0	0	0
22	-	Lsigma	Leakage inductance	Depends on the motor setting.	-	X	5-25	X	O	0	0	0
23	-	Ls	Stator inductance	Depends on the motor setting.	-	X	5-25	X	O	O	0	O
$24^{\text {Note 4) }}$	-	Tr	Rotor time constant	25-5000 msec	-	X	5-25	X	0	0	0	0
$41^{\text {Note 5) }}$	Oh1229	User Freq 1	User frequency 1	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	15.00	X	-	0	X	X	X	X
42	Oh122A	User Volt 1	User voltage $\begin{array}{\|r} 1 \\ \hline \end{array}$	0-100\%	25	X	-	0	X	X	X	X
43	Oh122B	User Freq 2	User frequency 2	0-Max. frequency (Hz)	30.00	X	-	0	X	X	X	X
44	Oh122C	User Volt 2	User voltage 2	0-100\%	50	X	-	0	X	X	X	X
45	Oh122D	User Freq 3	User frequency 3	0 - Max. frequency (Hz)	45.00	X	-	0	X	X	X	X
46	Oh122E	User Volt 3	$\begin{gathered} \text { User voltage } \\ 3 \\ \hline \end{gathered}$	0-100\%	75	X	-	O	X	X	X	X
47	Oh122F	User Freq 4	User frequency 4	$\begin{aligned} & 0-\mathrm{Max} . \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	60.00	X	-	0	X	X	X	X
48	Oh1230	User Volt 4	User voltage 4	0-100\%	100	X	-	0	X	X	X	X
$50^{\text {Note 6) }}$	Oh1232	Step Freq-1	Multi-step speed frequency 1	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	10.00	0	-	0	0	0	X	X
51	Oh1233	Step Freq-2	Multi-step speed frequency 2	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	20.00	0	-	0	O	0	X	X
52	Oh1234	Step Freq-3	Multi-step speed frequency 3	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	30.00	0	-	0	O	0	X	X
53	Oh1235	Step Freq-4	Multi-step speed frequency 4	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	40.00	0	-	0	0	0	X	X
54	Oh1236	Step Freq-5	Multi-step speed frequency 5	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	50.00	0	-	0	0	0	X	X
55	Oh1237	Step Freq-6	Multi-step speed frequency 6	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	60.00	0	-	0	0	0	X	X
56	Oh1238	Step Freq-7	Multi-step speed frequency 7	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	60.00	0	-	0	0	0	X	X
57	Oh1239	Step Freq-8	```Multi-step speed frequency 8```	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	55.00	0	-	0	O	0	X	X
58	Oh123A	Step Freq-9	Multi-step speed frequency 9	$\begin{aligned} & 0-\mathrm{Max} . \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	50.00	0	-	0	O	0	X	X

No.	Communication	Function	Name	Setting range	Initial	Change	Reference	Control mode				
59	Oh123B	Step Freq10	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Multi-step } \\ \text { speed } \\ \text { frequency } 10 \end{array} \\ \hline \end{array}$	$\begin{aligned} & 0-\mathrm{Max} \text {. } \\ & \text { frequency (Hz) } \end{aligned}$	45.00	0	-	0	0	0	X	X
60	Oh123C	Step Freq-11	Multi-step speed frequency 11	$\begin{aligned} & 0-\mathrm{Max} \text {. } \\ & \text { frequency (Hz) } \end{aligned}$	40.00	0	-	0	0	0	X	X
61	Oh123D	${ }_{12}^{\text {Step Freq- }}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Multi-step } \\ \text { speed } \\ \text { frequency } 12 \end{array} \\ \hline \end{array}$	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	35.00	0	-	0	0	0	X	X
62	Oh123E	$\begin{gathered} \text { Step Freq- } \\ 13 \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Multi-step } \\ \text { speed } \\ \text { frequency } 13 \end{array} \\ \hline \end{array}$	$\begin{aligned} & 0-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$	25.00	0	-	0	0	0	X	X
63	Oh123F	${ }_{14}^{\text {Step Freq- }}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Multi-step } \\ \text { speed } \\ \text { frequency } 14 \end{array} \\ \hline \end{array}$	$0 \text { - Max. }$ frequency (Hz)	15.00	0	-	0	0	0	X	X
64	Oh1240	Step Freq15	Multi-step speed frequency 15	$0 \text { - Max. }$ frequency (Hz)	5.00	0	-	0	0	0	X	x
70	Oh1246	Acc Time-1	Multi-step acceleration time 1	0-600 sec	20.0	0	-	0	0	0	x	x
71	Oh1247	Dec Time-1	Multi-step deceleration time 1	0-600 sec	20.0	0	-	0	0	0	X	X
$72^{\text {Note } 7)}$	Oh1248	Acc Time-2	Multi-step acceleration time 2	0-600 sec	30.0	0	-	0	0	0	X	X
73	Oh1249	Dec Time-2	Multi-step deceleration time 2	0-600 sec	30.0	0	2-46	0	0	0	X	X
74	Oh124A	Acc Time-3	Multi-step acceleration time 3	0-600 sec	40.0	0	-	0	0	0	X	X
75	Oh124B	Dec Time-3	Multi-step deceleration time 3	0-600 sec	40.0	0	-	0	0	0	X	X

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 4) The BAS-24 only appears when the DRV-09 control mode is "Sensorless-2" or "Vector".
Note 5) BAS-41-48 only appears when BAS-07 or M2-25 (M2-V/F Patt) is set to "User V/F".
Note 6) BAS-50-64 only appears when one or more of the IN-65-72 multi-function inputs are set to "Multistep speed" (Speed-L.M.H,X).
Note 7) It only appears when one or more of the IN-72-75 multi-function inputs are set to "Multi-step Accel/Decel" (Xcel-L,M,H).

Basic Function Group (PAR \rightarrow BAS)

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Control mode				
								V	S	V	S L T	V C T
$\begin{gathered} 80_{\text {Bote }}^{\text {Note }} \end{gathered}$	Oh1250	FricComp Spd 1	Friction loss measuring frequency 1	0-Max. frequency (Hz)	6.00	0	2-45	X	X	0	X	X
81	Oh1251	FricComp Trq 1	Friction loss value 1	0-100\%	0.00	0	$2-45$	X	X	0	X	X
82	Oh1252	$\begin{aligned} & \text { FricComp Spd } \\ & 2 \end{aligned}$	Friction loss measuring frequency 2	0-Max. frequency (Hz)	12.00	0	$2-45$	X	X	0	X	X
83	Oh1253	$\begin{gathered} \text { FricComp Trq } \\ 2 \end{gathered}$	Friction loss value 2	0-100\%	0.00	0	2-45	X	X	O	X	X
84	Oh1254	FricComp Spd 3	Friction loss measuring frequency 3	0-Max. frequency (Hz)	18.00	0	2-45	X	X	0	X	X
85	Oh1255	$\begin{aligned} & \text { FricComp Trq } \\ & 3 \end{aligned}$	Friction loss value 3	0-100\%	0.00	0	$2-45$	X	X	0	X	X
86	Oh1256	FricComp Spd 4	Friction loss measuring frequency 4	$\begin{gathered} 0-\text { Max. } \\ \text { frequency } \\ (\mathrm{Hz}) \end{gathered}$	24.00	0	2-45	X	X	0	X	X
87	Oh1257	$\begin{gathered} \text { FricComp Trq } \\ 4 \\ \hline \end{gathered}$	Friction loss value 4	0-100\%	0.00	0	$2-45$	X	X	0	X	X
88	Oh1258	$\underset{5}{\text { FricComp Spd }}$	Friction loss measuring frequency 5	0-100\%	30.00	0	2.45	X	X	0	X	X
89	Oh1259	$\begin{gathered} \text { FricComp Trq } \\ 5 \\ \hline \end{gathered}$	Friction loss value 5	0-100\%	0.00	0	2-45	X	X	0	X	X
90	Oh125A	FricComp Spd 6	Friction loss measuring frequency 6	0-Max. frequency (Hz)	36.00	0	$2-45$	X	X	0	X	X
91	Oh125B	$\begin{gathered} \text { FricComp Trq } \\ 6 \\ \hline \end{gathered}$	Friction loss value 6	0-100\%	0.00	0	2-45	X	X	0	X	X
92	Oh125C	FricComp Spd 7	Friction loss measuring frequency 7	$\begin{gathered} 0-\text { Max. } \\ \text { frequency } \\ (\mathrm{Hz}) \end{gathered}$	42.00	0	$2-45$	X	X	0	X	X
93	Oh125D	$\begin{gathered} \text { FricComp Trq } \\ 7 \\ \hline \end{gathered}$	Friction loss value 7	0-100\%	0.00	0	2-45	X	X	0	X	X
94	Oh125E	$\begin{aligned} & \text { FricComp Spd } \\ & 8 \end{aligned}$	Friction loss measuring frequency 8	0-Max. frequency (Hz])	48.00	0	$2-45$	X	X	0	X	X
95	Oh125F	$\begin{gathered} \text { FricComp Trq } \\ 8 \\ \hline \end{gathered}$	Friction loss value 8	0-100\%	0.00	0	$2-45$	X	X	0	X	X
96	Oh1260	FricComp Spd 9	Friction loss measuring frequency 9	$\begin{gathered} 0 \text { - Max. } \\ \text { frequency } \\ (\mathrm{Hz}) \\ \hline \end{gathered}$	54.00	0	$2-45$	X	X	0	X	X
97	Oh1261	$\begin{gathered} \text { FricComp Trq } \\ 9 \end{gathered}$	Friction loss value 9	0-100\%	0.00	0	2-45	X	X	0	X	X
98	Oh1262	FricComp Spd10	Friction loss measuring frequency 10	$\begin{gathered} 0-\text { Max. } \\ \text { frequency } \\ (\mathrm{Hz}) \end{gathered}$	60.00	0	$2-45$	X	X	0	X	X
99	Oh1263	FricComp Trq10	Friction loss value 10	0-100\%	0.00	0	$2-45$	X	X	0	X	X

Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 8) BAS-80 to 99 only appears when the APP-01 (App Mode) is "Tension Ctrl".

6.3 Parameter Mode - Expanded Function Group (PAR \rightarrow ADV)

				Setting range		Initial value	Change during operation	Reference page	Control mode					
No.	Communication address	Function display	Name			V			S	V	S	V C T		
00	-	Jump Code	Jump code		0-99		24	0	-	0	0	0	0	0
01	Oh1301	Acc Pattern	Accelerating pattern	0	Linear	0 : Linear	X	-	O	O	0	X	X	
02	Oh1302	Dec Pattern	Decelerating pattern	1	S-curve		X	-	0	0	0	X	X	
03	Oh1303	Acc S Start	S-curve acceleration start point gradient	1-100\%		40	X	-	0	0	0	X	X	
04	Oh1304	Acc S End	S-curve acceleration end point gradient	1-100\%		40	X	-	0	0	0	X	X	
05	Oh1305	Dec S Start	S-curve deceleration start point gradient	1-100\%		40	X	-	0	0	0	X	X	
06	Oh1306	Dec S End	S-curve deceleration end point gradient	1-100\%		40	X	-	0	0	0	X	X	
07	Oh1307	Start Mode	Start mode	0	Acc	$0:$ Acc	X	-	0	O	0	X	X	
				1	Dc-Start									
08	Oh1308	Stop Mode	Stop mode	0	Dec	0: Dec	X	-	0	0	0	X	X	
				1	Dc-Brake									
				2	Free-Run									
				3	Reserved									
				4	Power Braking									
09	Oh1309	Run Prevent	Selection of prohibited rotation direction	0	None	0 : None	X	-	0	O	0	X	X	
				1	Forward Prev									
				2	Reverse Prev									
10	Oh130A	Power-on Run	Starting with the power on	0	No	0 : No	0	-	0	0	0	X	X	
				1	Yes									
$\begin{gathered} 12 \text { Note } \\ 9 \text {) } \end{gathered}$	Oh130C	Dc-Start Time	$\begin{gathered} \text { DC braking time } \\ \text { at startup } \\ \hline \end{gathered}$	$0-60 \mathrm{sec}$		0.00	X	-	0	0	0	X	X	
13	Oh130D	Dc Inj Level	Amount of applied DC		0-200\%	50	X	-	O	0	0	X	X	
$14^{\text {Note }}$ 10)	Oh130E	Dc-Block Time	Output blocking time before DC braking		0-60 sec	0.10	X	-	0	0	0	X	X	
15	Oh130F	Dc-Brake Time	DC braking time		0-60 sec	1.00	X	-	0	0	0	x	x	
16	Oh1310	Dc-Brake Level	DC braking quantity		0-200\%	50	X	-	0	0	0	X	X	
17	Oh1311	Dc-Brake Freq	DC braking frequency		Start frequency $-60(\mathrm{~Hz})$	5.00	X	-	0	0	0	X	X	
20	Oh1314	Acc Dwell Freq	Dwell frequency on acceleration		Start frequency - Max. requency (Hz)	5.00	X	5-14	0	0	0	X	X	
21	Oh1315	Acc Dwell Time	Dwell operation time on acceleration		0-60.0 sec	0.00	X	5-14	0	0	0	X	X	
22	Oh1316	Dec Dwell Freq	Dwell frequency on deceleration		Start frequency - Max. requency (Hz)	5.00	X	5-14	0	0	0	X	X	
23	Oh1317	Dec Dwell Time	$\begin{array}{\|c} \text { Dwell operation } \\ \text { time on } \\ \hline \end{array}$		60.0 sec	0.00	X	5-14	0	0	0	X	X	

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 9) ADV-12 only appears when the ADV-07 "Start Mode" is set to "Dc-Start".
Note 10) ADV-14-17 only appears when the ADV-08 "Stop Mode" is set to "DC-Brake".

Expanded Function Group (PAR \rightarrow ADV)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V			S	V	S L	V C T		
24	Oh1318	Freq Limit	Frequency limit	0	No		0 : No	X	-	0	0	O	X	X
				1	Yes									
$25^{\text {Note } 11)}$	Oh1319	Freq Limit Lo	Lower limit frequency	$\begin{array}{\|c} \hline 0 \text { - upper limit } \\ (\mathrm{Hz}) \end{array}$		0.50	0	-	0	0	0	X	X	
26	Oh131A	Freq Limit Hi	Upper limit frequency	0.5 - Max. frequency (Hz)		60.00	X	-	0	0	0	X	X	
27	Oh131B	Jump Freq	Frequency jump	0	No	0 : No	X	-	0	0	O	X	x	
				1	Yes									
$28^{\text {Note } 12)}$	Oh131C	Jump Lo 1	Lower limit 1 of jump frequency	$\begin{gathered} \begin{array}{c} 0 \text { - jump } \\ \text { frequency } \\ \text { upper limit } 1 \\ (\mathrm{~Hz}) \end{array} \\ \hline \end{gathered}$		10.00	0	-	0	O	0	X	x	
29	Oh131D	Jump Hi 1	Upper limit 1 of jump frequency	Lower limit 1 of jump frequency 1 - Max. frequency (Hz)		15.00	0	-	0	O	O	X	x	
30	Oh131E	Jump Lo 2	Lower limit 2 of jump frequency	0 - Jump frequency Upper limit 2 (Hz)		20.00	O	-	0	0	0	x	x	
31	Oh131F	Jump Hi 2	Upper limit 2 of jump frequency		limit 2 of jump quency 1 - Max. ency (Hz)	25.00	0	-	0	0	0	X	x	
32	Oh1320	Jump Lo 3	Lower limit 3 of jump frequency		- Jump equency per limit 3 (Hz)	30.00	0	-	0	0	0	X	x	
33	Oh1321	Jump Hi 3	Upper limit 3 of jump frequency		limit 3 of jump quency 1 - Max. uency (Hz)	35.00	0	-	0	0	O	X	x	
$41^{\text {Note } 13)}$	Oh1329	BR Ris Curr	Brake release current		180.0 (\%)	50.0	0	5-73	0	0	0	X	X	
42	Oh132A	BR RIs Dly	Brake release delay time		10.00 sec	1.00	X	5-73	0	0	0	x	X	
44	Oh132C	$\underset{\mathrm{Fr}}{\text { BR Ris Fwd }}$	Brake release forward frequency		400 (Hz)	1.00	X	5-73	0	0	0	X	x	

No.	Communication address	Function display	Name		Setting range	Initial value	Change during	Reference page	Control mode				
45	Oh132D	BR Rls Rev Fr	Brake release reverse frequency		- 400 (Hz)	1.00	X	5-73	0	O	O	X	x
46	Oh132E	BR Eng Dly	Brake engage delay time		0-10 sec	1.00	X	5-73	0	O	O	X	X
47	Oh132F	BR Eng Fr	Brake engage frequency	0-400 (Hz)		2.00	X	5-73	0	O	0	X	X
50	Oh1332	E-Save Mode	Energy saving operation	0	None	0 : None	X	5-49	0	O	X	X	X
				1	Manual								
				2	Auto								
$51^{\text {Note } 14)}$	Oh1333	Energy Save	Energy saving level		-30 (\%)	0	0	5-49	0	0	0	X	X
60	Oh133C	$\underset{\mathrm{Fr}}{\substack{\text { Xcel Change } \\ \mathrm{Fr}}}$	Change Acc/Dec Time Frequency		0 - Max. quency (Hz)	0.00	X		0	0	0	X	X

* \square Codes in shaded rows are hidden codes that only appear when setting corresponding codes.

Note 11) ADV-25-26 only appear when ADV-24 (Freq Limit) is set to "Freq Limit".
Note 12) ADV-28-33 only appear when ADV-27 (Jump Freq) is set to "Yes".
Note 13) ADV-41-47 only appear when a code value of OUT-31-33 is set to "BR Control".
Note 14) ADV-51 only appears when ADV-50 (E-Save Mode) is set to a value other than "None".

Expanded Function Group (PAR \rightarrow ADV)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V			S	V	S L T	V C T		
61	-	Load Spd Gain	Revolution display gain		1-6000.0\%		100.00	0	-	O	O	0	X	X
62	-	Load Spd Scale	Revolution display scale	0	$\times 1$	0: $\times 1$	0	-	0	O	0	X	x X	
				1	$\times 0.1$									
				2	$\times 0.01$									
				3	$\times 0.001$									
				4	$\times 0.0001$									
63	Oh133F	$\begin{gathered} \text { Load Spd } \\ \quad \text { Unit } \\ \hline \end{gathered}$	Revolution display unit	0	rpm	$0: \mathrm{rpm}$	0	-	O	0	O	O	0	
				1	mpm									
64	Oh1340	FAN Control	Cooling fan control	0	During Run	0 : During Run	0	-	O	O	0	X	x	
				1	Always ON									
				2	Temp Control									
65	Oh1341	U/D Save Mode	Up/down operation frequency save	0	No	0 : No	0	5-9	O	O	0	X	X	
				1	Yes									
66	Oh1342	$\begin{aligned} & \text { On/Off Ctrl } \\ & \text { Src } \end{aligned}$	-	0	None	0 : None	X	5-76	O	O	O	0	O	
				1	V1									
				2	11									
				3	V2									
				4	12									
67	Oh1343	On-C Level	Output contact On level		10-100\%	90.00	X	5-76	0	0	0	0	0	
68	Oh1344	Off-C Level	Output contact Off level		$-100.00=$ Output contact On level (\%)	10.00	X	5-76	O	O	0	0	O	
70	Oh1346	Run En Mode	Safe operation selection	0	Always Enable	0 : Always Enable	X	5-12	0	O	O	O	0	
				1	DI Dependent									
$\begin{gathered} 71_{15} \text { Note } \\ \hline \end{gathered}$	Oh1347	Run Dis Stop	Safe operation stop method	0	Free-Run	0 : FreeRun	X	5-12	0	0	O	O	0	
				1	Q-Stop									
				2	$\begin{gathered} \text { Q-Stop } \\ \text { Resume } \\ \hline \end{gathered}$									
72	Oh1348	Q-Stop Time	Safe operation deceleration time	$0-600.0 \mathrm{sec}$		5.0	0	5-12	0	0	0	0	0	
			Selection of	0	No	No	X	5-77	O	0	O	O	0	
74	Oh134A	$\underset{\text { Sel }}{\text { Regen }}$	regeneration evasion function for the press.	1	Yes									
75	Oh134B	RegenAvd Level	Voltage level of regeneration evasion motion for press		$\begin{gathered} 200 \text { v: } 300 \text { - } \\ 400 \end{gathered}$	350 V	X	5-77	O	O	0	x	x	
					$\begin{gathered} 400 \mathrm{~V}: 600- \\ 800 \\ \hline \end{gathered}$	700V								
$\begin{gathered} 76 \\ \text { Note 16) } \end{gathered}$	Oh134C	CompFreq Limit	Compensation frequency limit of regeneration evasion for the press	$0-10.00 \mathrm{~Hz}$		$\begin{aligned} & 1.00 \\ & (\mathrm{~Hz}) \end{aligned}$	X	5-77	0	0		x	x	
77	Oh134D	$\begin{gathered} \text { RegenAvd } \\ \text { Pgain } \\ \hline \end{gathered}$	Regeneration evasion for		0-100.0\%	50.0\%	0	5-77	0	0	O	X	X	

No.	Communication address	Function display	Name	Setting range	Initial value	Change during	Reference page	Control mode				
			press P gain									
78	Oh134E	$\begin{aligned} & \text { RegenAvd } \\ & \text { Igain } \end{aligned}$	Regeneration evasion for press I gain	$\begin{gathered} 20-30000 \\ \text { msec } \end{gathered}$	$\begin{gathered} 500 \\ \text { msec } \end{gathered}$	0	5-77	0	O	0	X	x

* Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 15) ADV-71-72 only appear when ADV-70 (Run En Mode) is set to "DI Dependent".
Note 16) ADV-76 - 78 only appear when ADV-74 (RegenAvd Sel) is set to "Yes".

6.4 Parameter Mode - Control Function Group (\rightarrow CON)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Note 1)Control mode					
						V			S	V	S	V		
00	-	Jump Code	Jump code	0-99			51	0	-	0	0	0	0	0
04	Oh1404	Carrier Freq	Carrier frequency	$\begin{array}{\|l\|} \hline 75 \mathrm{~kW} \\ \text { or less } \\ \hline \end{array}$	$\begin{gathered} 0.7-15 \\ \mathrm{kHz} \\ \hline \end{gathered}$	5.0	0	5-56	0	0	O	0	0	
				$\begin{aligned} & 90- \\ & 110 \\ & \mathrm{~kW} \\ & \hline \end{aligned}$	$\underset{\mathrm{kHz}}{0.7-6}$	3.0								
				$\begin{gathered} 132- \\ 160 \\ \text { kW } \end{gathered}$	$\begin{gathered} 0.7-5 \\ \mathrm{kHz} \end{gathered}$	3.0								
05	Oh1405	PWM Mode	Switching mode	0 Nor	al PWM	0 : Normal PWM	X	5-56	0	0	0	0	0	
				$1{ }^{1}$ Low	leakage WM									
09	Oh140A	PreExTime	Initial excitation time	0-60 sec		1.00	X	5-38	X	X	O	O	0	
10	Oh140B	Flux Force	Initial excitation amount	100-500\%		100.0	X	5-38	X	X	0	0	0	
11	Oh140C	Hold Time	Continued operation duration	0-60 sec		1.00	X	5-38	X	X	O	X	X	
12	Oh140D	ASR P Gain 1	Speed controller proportional gain 1	0.10-500\%		50.0	0	5-38	X	X	O	X	X	
13	Oh140E	ASR I Gain 1	Speed controller integral gain 1	10-9999 msec		300	0	5-38	X	X	O	X	X	
15	Oh140F	ASR P Gain 2	Speed controller proportional gain 2	10-500\%		50.0	0	5-38	X	X	0	X	X	
16	Oh1410	ASR I Gain 2	Speed controller integral gain 2	10-9999 msec		300	0	5-38	X	X	O	X	X	
18	Oh1412	Gain SW Freq	Gain switching frequency	$0-120 \mathrm{~Hz}$		0.00	X	5-38	X	X	O	X	X	
19	Oh1413	Gain Sw Delay	Gain switching time	0-100 sec		0.10	X	5-38	x	X	0	X	x	
		SL2 G	Sensorless-2 2nd	0	No	0 : No	0	5-34	X	X	X	X	X	
20	Oh1414	View Sel	gain display setting		Yes									
21	Oh1415	ASR-SL P Gain1	Sensorless 1,2 speed controller proportional gain 1	0-5000\%		$\begin{aligned} & \text { Variable } \\ & \text { depending } \\ & \text { on the } \\ & \text { motor } \\ & \text { capacity } \\ & \hline \end{aligned}$	0	5-32, 5-34	X	0	X	X	X	
22	Oh1416	ASR-SLI Gain1	Sensorless 1,2 speed controller integral gain 1	10-9999 msec		```Dependent on motor capacity```	0	5-32	X	0	X	X	X	
$23^{\text {Note }}$ 17)	Oh1417	ASR-SL P Gain2	Sensorless-2 speed controller proportional gain 2	1.0-1000.0\%		Variable depending on the motor capacity	0	5-34	X	X	X	X	x	
24	Oh1418	ASR-SLI Gain2	Sensorless-2 speed controller integral gain 2	1.0-1000.0\%		Variable depending on the motor capacity	0	5-34	X	X	X	X	x	
26	Oh141A	Observer Gain1	Sensorless-2 observer gain 1	0-30000		10500	0	5-34	X	X	X	X	X	
27	Oh141B	Observer Gain2	Sensorless-2 observer gain 2	1-1000\%		100.0	0	5-34	X	X	X	X	X	
28	Oh141C	Observer	Sensorless-2	0-30000		13000	0	5-34	x	X	X	X	x	

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Note 1)Control mode				
		Gain3	observer gain 3									
29	Oh141D	S-Est P Gain 1	Sensorless-2 speed estimator proportional gain 1	0-30000	Variable depending on the motor capacity	\bigcirc	5-34	x	x	x	x	x
30	Oh141E	S-Est I Gain1	Sensorless-2 speed estimator integral gain 1	0-30000	Variable depending on the capacity	0	5-34	x	x	x	x	x

* \square Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 17) CON-23-28 and 31-32 only appear when DRV-09 (Control Mode) is set to "Sensorless-2" and CON-20 (SL2 G View Sel) is set to "YES".

Control Function Group (PAR \rightarrow CON)

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Control mode				
								V	S	V	S L T	V C T
31	Oh141F	S-Est P Gain2	Sensorless-2 speed estimator proportional gain 2	1.0-1000.0\%	Varies according to the motor capacity	0	5-34	x	X	X	x	X
32	Oh1420	S-Est I Gain2	Sensorless-2 speed estimator integral gain 2	1.0-1000.0\%	Varies according to the motor capacity	0	5-34	X	X	X	x	X
34	Oh1422	$\begin{aligned} & \text { SL2 OVM } \\ & \text { Perc } \end{aligned}$	Sensorless-2 overmodulation range adjustment	100-180\%	120.00	0	-	X	0	X	X	X
$\begin{gathered} 45_{18)}^{\text {Note }} \end{gathered}$	Oh142D	PG P Gain	PG operation proportional gain	0-9999	3000	0	5-31	0	X	X	X	X
46	Oh142E	PG I Gain	PG operation integral gain	0-9999	50	0	5-31	0	X	X	X	X
47	Oh142F	PG Slip Max\%	Max. slip during PG operation	0-200	100	X	5-31	0	X	X	X	X
48	-	ACR P Gain	Current controller Pgain	0-10000	1200	0	5-34	X	0	O	0	0
49	-	ACR I Gain	Current controller I gain	0-10000	120	0	5-34	X	0	O	0	0
51	Oh1433	ASR Ref LPF	Speed controller reference filter	0-20000 msec	0	X	-	X	0	O	X	X
52	Oh1434	Torque Out LPF	Torque controller output filter	0-2000 msec	0	X	5-38	X	X	X	0	0
53	Oh1435	Torque Lmt Src	Setting torque limit	00 Keypad-1	0 : Keypad-1	X	5-38	X	X	X	0	0
				1 Keypad-2								
				2 V 1								
				3 l								
				4 V2								
				$5{ }^{5}$								
				6 Int 485								
				7 Encoder								
				8 FieldBus								
				9 PLC								
				10 Synchro								
				11 Binary Type								
54 Note 19)	Oh1436	FWD + Trq Lmt	Positive-direction reverse Torque limit	0-200\%	180.0	0	5-38	X	X	X	0	0
55	Oh1437	$\begin{gathered} \text { FWD }-\mathrm{Trq} \\ \mathrm{Lmt} \end{gathered}$	Positive-direction regeneration Torque limit	0-200\%	180.0	0	5-38	X	X	X	0	0
56	Oh1438	REV + Trq Lmt	Negativedirection reverse Torque limit	0-200\%	180.0	0	5-38	X	X	X	0	0
57	Oh1439	REV -Trq Lmt	Negativedirection regeneration Torque limit	0-200\%	180.0	0	5-38	X	X	X	0	0

$* \square$ Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 18) CON-45-47 only appear if an encoder board is inserted.
Note 19) CON-54-57 only appear when DRV-09 (Control Mode) is set to "Sensorless-1, 2" or "Vector".

Control Function Group (PAR \rightarrow CON)

No.	Communication address	Function display			Setting range	Initial value	Change during operation	Reference page	Note 1) Control mode				
			Name						V	S	V	S	V C T
58	Oh143A	Trq Bias Src	Torque bias setting method	0	Keypad-1	0: Keypad1	X	5-38	X	X	0	X	X
				1	Keypad-2								
				2	V1								
				3	11								
				4	V2								
				5	12								
				6	Int 485								
				7	FieldBus								
				8	PLC								
59	Oh143B	Torque Bias	Torque bias amount	$-120-120 \%$		0.0	0	5-38	X	X	0	X	X
60	Oh143C	Torque Bias FF	Torque bias compensation	0-100\%		0.0	0	5-38	X	X	0	X	X
62	Oh143E	Speed Lmt Src	Speed limit setting method	0	Keypad-1	$0: K$ eypad1	0	5-45	X	X	X	X	0
				1	Keypad-2								
				2	V1								
				3	11								
				4	V2								
				5	12								
				6	Int 485								
				7	FieldBus								
				8	PLC								
63	Oh143F	FWD Speed Lmt	Forward speed limit		$0 \text { - Max. }$ frequency (Hz)	60.00	0	5-45	X	X	X	X	0
64	Oh1440	REV Speed Lmt	Reverse speed limit		$0 \text { - Max. }$ frequency (Hz)	60.00	0	5-45	X	X	X	X	0
65	Oh1441	Speed Lmt Gain	Speed limit operation gain		$\begin{gathered} 100- \\ 5000 \% \end{gathered}$	500	0	5-45	X	X	X	X	0
66	Oh1442	Droop Perc	Droop operation amount	0-100\%		0.0	0	-	X	X	X	X	0
67	Oh1443	Droop St Trq	Droop start torque	0-100\%		100.0	0	-	X	X	X	X	0
68	Oh1444	SPD/TRQAcc T	Torque mode \rightarrow speed mode switching acceleration time	0-600 sec		20.0	0	-	X	X	X	X	0
69	Oh1445	SPD/TRQAcc T	Torque mode \rightarrow speed mode switching deceleration time	0-600 sec		30.0	0	-	X	X	X	X	0
70	Oh1446	SS Mode	Selection of speed search mode	0	Flying Start-1	0 : Flying Start-1	X	-	O	0	0	X	X
				1	Flying Start-2								

Control Function Group (PAR \rightarrow CON)

	Communication address	Function display	Name			Initial value	Change during operation	Reference page	${ }^{\text {Note }{ }^{1)} \text { Control }}$ mode					
No.					tting range				V	S	V	S	V C T	
71	Oh1447	Speed Search	$\begin{aligned} & \text { Selection of } \\ & \text { speed } \\ & \text { search } \\ & \text { operation } \end{aligned}$	Bit	0000-1111	0000	X	5-50	0	0	0	X	x	
				1	Selection of speed by acceleration									
				2	When starting from reset after tripping the switch									
				3	When restarting after an interruption in instantaneous power									
				4	$\begin{aligned} & \hline \text { When starting } \\ & \text { with the } \\ & \text { power on } \\ & \hline \end{aligned}$									
$\begin{gathered} 72^{\text {Note }} \\ 201 \end{gathered}$	Oh1448	SS SupCurrent	Speed search reference current	80-200\%		75 kW or less	0	5-50	0		x	x	x	
						90 $9 W$ or more 100								
73	Oh1449	SS P-Gain	Speed search proportional gain	0-9999		100	0	5-50	0	O	X	x x		
74	Oh144A	SS I-Gain	Speed search integral gain	0-9999		200	0	5-50	0	O	x	X	x	
75	Oh144B	SS Block Time	Output blocking time before the speed search	0-60.0 sec		1.0	X	5-50	0	0	X	X	x	
77	Oh144D	KEB Select	Energy buffering selection	0	No	0 : No	X	5-48	0	0	O	x	x	
				1	Yes									
$\begin{gathered} 78^{\text {Note }} \\ 211 \end{gathered}$	Oh144E	$\begin{aligned} & \text { KEB Start } \\ & \text { Lev } \end{aligned}$	Energy buffering start level	110-140\%		125.0	X	5-48	0	0	0	X	x	
79	Oh144F	$\begin{gathered} \text { KEB Stop } \\ \text { Lev } \end{gathered}$	Energy buffering stop level	130-145\%		130.0	X	5-48	0	0	0	X	x	
80	Oh1450	KEB Gain	Energy buffering gain	1-1000		1000	0	5-48	0	O	0	X	X	
$\begin{array}{\|c} 82^{\text {Note }} \\ \hline 22) \end{array}$	Oh1452	$\begin{aligned} & \text { ZSD } \\ & \text { Frequency } \end{aligned}$	zero-speed detected frequency		$0-10 \mathrm{~Hz}$	2.00	0	-	X	x	0	X	0	
83	Oh1453	ZSD Band	```zero-speed detected frequency band```		0-2 Hz	1.00	0	-	X	x	0	X	0	

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.

Note 20) CON-72-75 only appear when CON-71 (Speed Search) is set to ' 1 ' or higher.
Note 21) CON-78-80 only appear when CON-77 (KEB Select) is set to "Yes".
Note 22) CON-82-83 only appear when DRV-09 (Control Mode) is set to "Vector".

Control Function Group (PAR \rightarrow CON)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Note 1) Control mode					
						V / F			S	V	S	V C T		
$86^{\text {Note }}$ 23)	Oh1456	Trq Exch Freq	Torque switching frequency		30.00 Hz		0.00	X	4-3	X	X	X	O	0
87	Oh1457	Trq Exch Dec	Torque mode deceleration method	0	Torque	0 : Torque	X	4-3	X	X	X	0	0	
				1	Speed									
88	Oh1456	Trq Exch Ramp	Torque switching lamp	$\begin{gathered} 0-300.0 \\ \text { sec } \end{gathered}$		5.0	X	4-3	X	X	X	O	0	
$\underset{\text { 24) }}{90^{\text {Note }}}$	Oh145A	ASR P Pro Mode	ASR P Gain profile selection	0	None	0 : None	0	4-13	X	X	0	X	X	
				1	Linear									
				2	Square									
$91^{\text {Note }}$ 25)	Oh145B	ASR P Pro Gain	ASR profile gain		- 10\%	1.00	0	4-13	X	X	0	X	X	

Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 23) CON-86-88 codes appear when DRV10 (Torque Control) is set to "1" and DRV-09 (Control Mode) is set to "Sensorless-1" or "Sensorless-2". Alternatively, it also appears when DRV09 (Control Mode) is set to "Vector;" DRV10 (Torque Control) is set to "1" and the "Speed/Torque" terminal has not been entered; or DRV10 (Torque Control) is set to " 0 " and the "Speed/Torque" terminal has been entered with the terminal set in IN65-75. Under the conditions previously mentioned, however, CON-87 and 88 only appear if CON-86 has a value other than " 0 ".
Note 24) CON-90 only appears when APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close," "UW_Spd Close," "W_Spd Open," or "UW_Spd Open".
Note 25) CON-91 only appears when CON90 (ASR P Pro Mode) is set to "Linear" or "Square".

6.5 Parameter Mode - Input Terminal Block Function Group (\rightarrow IN)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V			S	V	S L T	V C T		
00	-	Jump Code	Jump code		0-99		65	0	-	0	0	0	0	0
01	Oh1501	Freq at 100\%	Frequency at maximum analog input		art frequency - Max. quency (Hz)	60.00	0	-	0	0	0	X	X	
02	Oh1502	Torque at 100%	Torque at maximum analog input		0-200\%	100.0	0	-	X	X	0	0	0	
05	Oh1505	V1 Monitor (V)	V1 input amount display		0-10 V	0.00	0	-	0	0	O	0	0	
06	Oh1506	V1 Polarity	Selects the V1 input polarity.	0	Unipolar	0:Unipolar	X	-	0	0	O	0	0	
				1	Bipolar									
07	Oh1507	V1 Filter	Time constant of V1 input filter		$\begin{gathered} 0 \\ 10000 \mathrm{msec} \\ \hline \end{gathered}$	10	0	-	0	0	0	0	0	
08	Oh1508	V1 Volt x1	Minimum input voltage of V1		0-10 V	0.00	0	-	0	0	0	0	0	
09	Oh1509	V1 Perc y1	Output at V1 minimum voltage (\%)		0-100\%	0.00	0	-	0	0	0	0	0	
10	Oh150A	V1 Volt x2	Maximum input voltage for V1		$0-10 \mathrm{~V}$	10.00	0	-	0	0	O	0	0	
11	Oh150B	V1 Perc y2	Output at V1 maximum voltage (\%)		0-100\%	100.00	0	-	0	0	0	0	0	
$\begin{gathered} 12^{\text {Note }} \\ \hline \end{gathered}$	Oh150C	V1 -Volt x1'	V1 -minimum input voltage		$-10.0 \mathrm{~V}$	0.00	0	-	0	0	0	0	0	
13	Oh150D	V1-Perc y1'	Output at V1 minimum voltage (\%)		100-0\%	0.00	0	-	0	0	0	0	0	
14	Oh150E	V1 -Volt $\times 2{ }^{\prime}$	V1 - maximum input voltage		$-10-0 \mathrm{~V}$	-10.00	0	-	0	0	0	0	0	
15	Oh150F	V1-Perc y2'	Output at V1 maximum voltage (\%)	-100-0\%		-100.00	0	-	0	0	0	0	0	
16	Oh1510	V1 Inverting	Changing rotation direction	0	No	0 : No	0	-	0	0	0	0	0	
				1	Yes									
17	Oh1511	V1 Quantizing	V1 quantization level	0.04-10\%		0.04	0	-	0	0	0	0	0	
20	Oh1514	11 Monitor (mA)	$\begin{array}{\|c\|} \hline 11 \text { input amount } \\ \text { display } \end{array}$	0-20 mA		0.00	0	-	0	0	0	0	0	
22	Oh1516	11 Filter	I1 input filter time constant		$\begin{gathered} 0 \\ 10000 \mathrm{msec} \end{gathered}$	10	0	-	0	0	0	0	0	
23	Oh1517	11 Curr x1	I1 minimum input current	0-20 mA		4.00	0	-	0	0	0	0	0	
24	Oh1518	11 Perc y1	Output (\%) at the 11 min . current	0-100\%		0.00	0	-	0	0	O	0	0	
25	Oh1519	11 Curr x2	I1 maximum input current	0-20 mA		20.00	0	-	0	0	O	0	0	
26	Oh151A	11 Perc y2	Output (\%) at the I1 max. current	0-100\%		100.00	0	-	0	0	0	0	0	
31	Oh151F	11 Inverting	I1 rotation direction change	0	No	0 : No	0	-	0	0	0	0	0	
				1	Yes									
32	Oh1520	11 Quantizing	I1 quantization level	0.04-10\%		0.04	0	-	0	O	O	0	0	

\squareCodes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 26) IN-12-15 only appear when IN-06 (V1 Polarity) is set to "Bipolar".

Input Terminal Block Function Group (PAR \rightarrow IN)

				Setting range		Initial value	Change during operation	Reference page	Control mode					
No.	Communication address	Function display	Name			V			S	V	S	V C T		
$\underset{27)}{35^{\text {Note }}}$	Oh1523	V2 Monitor (V)	V2 input amount display		$0-10 \mathrm{~V}$		0.00	0	-	0	0	0	0	0
36	Oh1524	V2 Polarity	V1 input polarity selection	0 1	Unipolar Bipolar	1: Bipolar	0	-	0	0	0	0	0	
37	Oh1525	V2 Filter	V2 input filter time constant	$\begin{gathered} 0-10000 \\ \mathrm{msec} \end{gathered}$		10	0	-	0	0	0	O	0	
38	Oh1526	V2 Volt x1	Minimum input voltage of V2		$0-10 \mathrm{~V}$	0.00	0	-	X	X	0	0	0	
39	Oh1527	V2 Perc y1	Output (\%) at the V2-min. voltage	0-100\%		0.00	0	-	0	0	0	0	0	
40	Oh1528	V2 Volt x2	Maximum input voltage of V2	$0-10 \mathrm{~V}$		0.00	0	-	X	X	0	0	0	
41	Oh1529	V2 Perc y2	Output (\%) at the V2 max. voltage	0-100\%		100.00	0	-	0	0	0	0	0	
42	Oh152A	V2 -Volt x1'	V2 - Output at the min. voltage	$-10-0 \mathrm{~V}$		0.00	0	-	0	0	0	0	0	
43	Oh152B	V2-Perc y1'	V2 - Output (\%) at the min. voltage	$-100-0 \%$		0.00	0	-	0	0	0	0	0	
44	Oh152C	V2 -Volt x2'	V2 - Maximum input voltage	$-10-0 \mathrm{~V}$		-10.00	0	-	0	0	0	0	0	
45	Oh152D	V2 - Perc y2'	V2 - Output (\%) at the max. voltage	$-100-0 \%$		-100.00	0	-	0	0	0	O	0	
46	Oh152E	V2 Inverting	V2 rotation direction change	0	No	0: No								
				1	Yes		0	-	0	0	0	0	0	
47	Oh152F	V2 Quantizing	V2 quantization level	0.04-10\%		0.04	0	-	0	0	0	0	0	
50	Oh1532	I2 Monitor (mA)	I2 input amount display	$0-20 \mathrm{~mA}$		0.00	0	-	0	0	0	0	0	
52	Oh1534	12 Filter	12 input filter time constant	$\begin{gathered} 0-10000 \\ \text { Msec } \end{gathered}$		10	0	-	0	0	0	O	0	
53	Oh1535	12 Curr x1	12 minimum input current	0-20 mA		4.00	0	-	0	0	0	O	0	
54	Oh1536	12 Perc y1	Output (\%) at the 12 min . current	0-100\%		0.00	0	-	0	0	0	0	0	
55	Oh1537	12 Curr x2	12 maximum input current	$0-20 \mathrm{~mA}$		10.00	0	-	0	0	0	0	0	
56	Oh1538	12 Perc y2	Output (\%) at the 12 max. current	0-100\%		100.00	0	-	0	0	0	0	0	
61	Oh153D	12 Inverting	Changing rotation	0	No	0: No	0	-	0	0	0	0	0	
				1	Yes									

No.	Communication	Function	Name	Setting	Initial	Change	Reference	Control mode				
			direction									
62	Oh153E	12 Quantizing	12 quantization level	0.04-10\%	0.17	0	-	0	O	0	0	0

* \square

Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 27) IN-35-62 only appear when an expansion IO board is installed.

Input Terminal Block Function Group (PAR $\rightarrow \mathbf{I N}$)

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 28) IN73-75 only appear when an expansion IO board is installed.

Input Terminal Block Function Group (PAR \rightarrow IN)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						$\begin{aligned} & \mathbf{V} \\ & 1 \\ & \mathbf{F} \end{aligned}$			$\begin{aligned} & \mathbf{S} \\ & \mathbf{L} \end{aligned}$	V	S	V C T		
				33	- Reserved -				-					
				34	Pre Excite			-						
				35	Speed/Torque			5-45,5-47						
				36	ASR Gain 2			5-38						
				37	ASR P/PI			5-38						
				38	Timer In			5-71						
				39	Thermal In			-						
				40	Dis Aux Ref			5-1						
				41	SEQ-1									
				42	SEQ-2									
				43	Manual									
				44	Go Step									
				45	Hold Step									
				46	FWD JOG			5-6						
				47	REV JOG			5-6						
				48	Trq Bias			-						
				49	Web Dis PID			2-17						
				50	Web Quik Stop			2-10						
				51	Web Hold			-						
				52	Web Preset			2-27						
				53	Web Bobbin-L			2-27						
				54	Web Bobbin-H			2-27						
				55	Web PI Gain2			2-22						
				56	Web Bypass			-						
				57	Web Splice			-						
				58	Web Taper Dis			2-13						
				59	Web Boost En			2-15						
				60	Web Down En			2-15						
				61	Ext Dis PID			-						

No.	Communication	Function	Name	Setting range	Initial	Change	Reference	Control mode			
				62	Ext PI Gain2			-			

Input Terminal Block Function Group (PAR \rightarrow IN)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V			S	V	S	V C T		
85	Oh1555	DI On Delay	Multifunction input terminal on filter		. 10000 msec		10	0	-	0	O	0	O	O
86	Oh1556	DI Off Delay	Multifunction input terminal off filter		- 10000 msec	3	0	-	0	O	O	O	0	
87	Oh1557	DINC/NO Sel	Multifunction input contact selection		P8 - P1	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	X	-	0	O	O	0	0	
				0	$\begin{aligned} & \hline \text { A contact } \\ & (\mathrm{NO}) \\ & \hline \end{aligned}$									
				1	$\begin{aligned} & \text { B contact } \\ & (\mathrm{NC}) \end{aligned}$									
88	Oh1558	RunOn Delay	Operation command delay time		0-100 sec	0.00	X	-	0	0	O	0	\bigcirc	
89	Oh1559	InCheck Time	Multi-step command delay time		- 5000 msec	1	X	-	0	0	O	0	0	
90	Oh155A	DI Status	State of the multifunction input terminal		P8 - P1	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	O	-	O	0	0	0		
				0	$\begin{gathered} \text { Connection } \\ (\mathrm{On}) \\ \hline \end{gathered}$								0	
					Open (OFF)									

6.6 Parameter Mode - Output Terminal Block Function Group (\rightarrow OUT)

Input Terminal Block Function Group (PAR \rightarrow OUT)

Input Terminal Block Function Group (PAR \rightarrow OUT)

	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	$\begin{gathered} \text { Control } \\ \hline \text { mode } \\ \hline \end{gathered}$					
No.						V			S	V	S L T	V C T		
15	Oh160F	AO3 Gain	Analog output 3 gain		000-1000\%		100.0	0	-	0	0	0	0	0
16	Oh1610	AO3 Bias	Analog output 3 bias		100-100\%	0.0	0	-	0	0	0	0	0	
17	Oh1611	AO3 Filter	Analog output 3 filter		10000 msec	5	0	-	O	0	0	O	0	
18	-	AO3 Const \%	Analog constant output 3		0-100\%	0.0	0	-	0	0	0	O	0	
19	Oh1613	AO3 Monitor	Analog output 3 monitor	$-1000-1000 \%$		0.0	0	-	0	0	0	0	0	
20	Oh1614	AO4 Mode	Analog output 4 item	0	Frequency	$0:$ Frequency		-	O	0	0	0	0	
				1	Current									
				2	Voltage									
				3	DC Link Volt									
				4	Torque									
				5	Watt									
				6	Idss									
				7	Iqss									
				8	Target Freq									
				9	Ramp Freq									
				10	Speed Fbd									
				11	Speed Dev									
				12	PID Ref Value									
				13	PID Fbk Value									
				14	PID Output			4-4						
				15	Constant			-						
21	Oh1615	AO4 Gain	Analog output 2 gain		000-1000\%	80.0	-	-	0	0	0	O	0	
22	Oh1616	AO4 Bias	Analog output 2 bias		100-100\%	20.0	0	-	0	0	0	O	0	

No.	Communication address	Function display	Name		Setting range	Initial value	Change during	Reference page	Control mode				
23	Oh1617	AO4 Filter	Analog output 2 filter	0 -	10000 msec	5	0	-	O	O	O	O	0
24	-	AO4 Const \%	Analog constant output 4		0-100\%	0.0	0	-	0	O	O	O	0
25	Oh1619	AO4 Monitor	Analog output 2 monitor		- 1000\%	0.0	0	-	O	0	O	O	0
				Bit	000-111								
				1	Low voltage								
30	Oh161E	Trip Out Mode	Fault output item	2	Any faults other than low voltage	010	0	-	O	O	0	O	0
				3	Automatic restart final failure								

Input Terminal Block Function Group (PAR \rightarrow OUT)

Input Terminal Block Function Group (PAR \rightarrow OUT)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V			S	V	S	V		
41	Oh1629	DI Status	State of the multifunction output		-		-	-	-	0	O	O	0	0
50	Oh1632	DO On Delay	Multifunction output On delay		0-100 sec	0.00	0	-	0	O	O	0	0	
51	Oh1633	DO Off Delay	Multifunction output Off delay		0-100 sec	0.00	0	-	0	O	0	0	0	
52	Oh1634	$\begin{gathered} \text { DO } \\ \text { NC/NO Sel } \end{gathered}$	Multifunction output contact selection.		Relay2,Relay1	000	X	-	0	O	0	O	\bigcirc	
				0	A contact (NO)									
				1	$\begin{aligned} & \text { B contact } \\ & (\mathrm{NC}) \end{aligned}$									
53	Oh1635	TripOut OnDly	Fault output On delay		0-100 sec	0.00	0	-	0	O	0	0	0	

No.	Communication address	Function display	Name	Setting range	Initial value	Change during	Reference page	Control mode				
54	Oh1636	TripOut OffDly	Fault output Off delay	0-100.00 sec	0.00	0	-	O	0	0	O	0
55	Oh1637	TimerOn Delay	Timer On Delay	0-100.00 sec	0.00	0	5-71	O	0	0	O	0
56	Oh1638	TimerOff Delay	Timer Off Delay	0-100.00 sec	0.00	0	5-71	O	0	0	O	0
57	Oh1639	FDT Frequency	Detected frequency	$\begin{array}{\|c} \hline 0 \text { - Max. frequency } \\ (\mathrm{Hz}) \end{array}$	30.00	0	-	O	0	0	0	0
58	Oh163A	FDT Band	Detected frequency band	$\underset{(\mathrm{Hz})}{0-\text { Max. frequency }}$	10.00	0	-	0	O	0	0	0
59	Oh163B	TD Level	Detected torque amount	0-150\%	100.0	0	-	X	X	0	X	0
60	Oh163C	TD Band	Detected torque width	0-10\%	5.0	0	5-71	X	X	0	X	0

* Codes in shaded rows are hidden codes that only appear when setting corresponding codes.

Note 29) OUT-14-25 only appear when an expansion IO board is installed.
Note 30) OUT-34-36 only appear when an expansion IO board is installed.

6.7 Parameter Mode - Communication Function Group (\rightarrow COM)

No.	Communication address	Function display	Name	Setting range	Initial value	Change during	Reference page	Control mode				
40	Oh1728	$\begin{gathered} \hline \text { Para Stauts- } \\ 10 \end{gathered}$	Communications address 10	$\begin{gathered} 0000 \text { - FFFF } \\ \text { Hex } \end{gathered}$	0000	\bigcirc	-	-		-	-	-
41	Oh1729	$\begin{gathered} \hline \text { Para Stauts- } \\ 11 \end{gathered}$	Communications address 11	$\begin{gathered} 0000 \text { - FFFF } \\ \text { Hex } \end{gathered}$	000F	-	-	-		-	-	-

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Control mode				
								V	S	V	S L T	V C T
42	Oh172A	Para Stauts-12	Communications address 12	$\begin{gathered} 0000-\text { FFFF } \\ \text { Hex } \\ \hline \end{gathered}$	0000	0	-	0	0	O	0	0
43	Oh172B	Para Stauts-13	Communications address 13	$\begin{gathered} 0000 \text { - FFFF } \\ \text { Hex } \end{gathered}$	0000	0	-	0	0	0	0	0
44	Oh172C	Para Stauts-14	Communications address 14	$\begin{gathered} 0000-\text { FFFF } \\ \text { Hex } \\ \hline \end{gathered}$	0000	0	-	0	0	0	0	0
45	Oh172D	Para Stauts-15	Communications address 15	$\begin{gathered} 0000 \text { - FFFF } \\ \text { Hex } \\ \hline \end{gathered}$	0000	0	-	0	0	O	0	0
46	Oh172E	Para Stauts-16	Communications address 16	$\begin{gathered} 0000-\text { FFFF } \\ \text { Hex } \\ \hline \end{gathered}$	0000	0	-	0	0	O	O	0

Communication Function Group (PAR $\boldsymbol{\rightarrow}$ COM)

No.	Communic ation address	Function display	Name	Setting range		Initial value	Chang e during operati on	Refere nce page	Control mode					
						V / F			S	V	S	V C T		
50	Oh1732	Para Ctri Num			0-8		2	0	-	0	0	0	0	0
51	Oh1733	Para Control-1	Input address 1	0000	- FFFF Hex	0005	X	-	0	0	0	0	0	
52	Oh1734	Para Control-2	Input address 2	0000	FFFF Hex	0006	X	-	0	0	0	0	0	
53	Oh1735	Para Control-3	Input address 3		FFFF Hex	0000	X	-	0	0	0	0	0	
54	Oh1736	Para Control-4	Input address 4		FFFF Hex	0000	X	-	0	0	O	0	0	
55	Oh1737	Para Control-5	Input address 5	0000	FFFF Hex	0000	X	-	0	0	0	0	0	
56	Oh1738	Para Control-6	Input address 6		- FFFF Hex	0000	X	-	0	0	0	0	0	
57	Oh1739	Para Control-7	Input address 7	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
58	Oh173A	Para Control-8	Input address 8	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
59	Oh173B	Para Control-9	Input address 9		- FFFF Hex	0005	X	-	0	0	0	0	0	
60	Oh173C	Para Control-10	Input address 10	0000	FFFF Hex	0006	X	-	0	0	0	0	0	
61	Oh173D	Para Control-11	Input address 11		FFFFF Hex	0000	X	-	0	0	0	0	0	
62	Oh173E	Para Control-12	Input address 12	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
63	Oh173F	Para Control-13	Input address 13	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
64	Oh1740	Para Control-14	Input address 14	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
65	Oh1741	Para Control-15	Input address 15	0000	FFFF Hex	0000	X	-	0	0	0	0	0	
66	Oh1742	Para Control-16	Input address 16	0000	- FFFF Hex	0000	X	-	0	0	0	0	0	
70	Oh1746	Virtual DI 1	Communication multi-function input 1	0	None	0: None	0	-	0	0	O	0	0	
71	Oh1747	Virtual DI 2	Communication multi-function input 2	1	FX	0: None	0	-	O	0	O	0	0	
72	Oh1748	Virtual DI 3	Communication multi-function input 3	2	RX	0: None	0	-	0	0	0	0	0	
73	Oh1749	Virtual DI 4	Communication multi-function input 4	3	RST	0: None	0	-	0	0	O	0	0	
74	Oh174A	Virtual DI 5	Communication multi-function input 5	4	External Trip	0: None	0	-	0	0	0	0	0	
75	Oh174B	Virtual DI 6	Communication multi-function input 6	5	BX	0: None	0	-	0	0	0	0	0	
76	Oh174C	Virtual DI 7	Communication multi-function input 7	6	JOG	0: None	0	-	0	0	O	0	0	
77	Oh174D	Virtual DI 8	Communication multi-function input 8	7	Speed-L	0: None	0	-	O	0	O	0	0	
78	Oh174E	Virtual DI 9	Communication multi-function input 9	8	Speed-M	0: None	0	-	0	0	0	0	0	
79	Oh174F	Virtual DI 10	Communication multi-function input 10	9	Speed-H	$0:$ None	0	-	O	0	O	0	0	
80	Oh1750	Virtual DI 11	Communication multi-function input 11	10	Speed-X	0: None	0	-	0	0	0	0	0	

Communication Function Group (PAR \rightarrow COM)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V I F			S	v	S 	V C T		
-	-	\cdot	-	27	Trv Offset Lo		0:None	0	-	0	0	0	O	
				28	Trv Offset Hi									
				29	Interlock 1									
				30	Interlock 2									
				31	Interlock 3	0								
				32	Interlock 4									
				33	Reserved									
				34	Pre Excite									
				35	Speed/Torque									

* Codes in shaded rows are hidden codes that only appear when setting corresponding codes.

Note 31) COM-06-17 and 94 only appear after you install the communication option card.
Please refer to the Options Manual for more information about the various options.

6.8 Parameter Mode - Application Function Group (\rightarrow APP)

No.	Communication address	Function display	Name		Setting range	Initial value	Change during operation	Reference page	Control mode				
									V	S	V	S	V C T
00	-	Jump Code	Jump code		0-99	20	0	-	0	0	0	0	0
$\begin{gathered} 01 \text { Note } \\ 32 \text {) } \end{gathered}$	Oh1801	App Mode	Application function selection	0	None	0 : None	X	-	0	0	0	X	X
				1	Traverse			3-2					
				2	Proc PID			4-8					
				3	Reserved			5-18					
				4	Reserved			오류! 핵갈피가 정의되어 있지 않습니다.					
				5	Tension Ctri			-					
				6	Ext PID Ctrl			-					
02	Oh1802	Tnsn Ctrl Mode	Selection of tension control operation mode	0	W_Spd Close	$\begin{gathered} { }_{0}^{0} \\ \text { w }_{\text {Slose }}^{\text {Spd }} \end{gathered}$	X	2-2, 3-2	0	0	0	X	X
				1	UW_Spd Close				0	0			
				2	Capstan				0	0			
				3	W_Tens Close				X	X			
				4	UW_Tens Close				X	X			
				5	W_Spd Open				X	X			
				6	UW_Spd Open				X	X			
				7	W_Tens Open				X	X			
				8	UW_Tens Open				X	X			
03	Oh1803	Main Spd Disp	Main speed display	Read Only (\%)				2-8	0	0	0	X	X
04 Note 33)	Oh1804	Main Spd Set	Main speed command (keypad)	$\begin{gathered} -100.00-100.00 \\ (\%) \end{gathered}$		0.00	0	2-8	0	0	0	X	X
05	Oh1805	Main Spd Src	Selection of the main speed command method	0	Keypad	1: V1	X	2-8	0	0	0	X	X
				1	V1								
				2	11								
				3	V2								
				4	12								
				5	Int 485								
				6	Encoder								
				7	FieldBus								
				8	PLC								
06	Oh1806	Main XcelT En	Selection of the main speed accel/decel	0	No	0 : No	0	2-8	0	O	O	X	X
				1	Yes								
$\begin{gathered} 07 \text { Note } \\ \text { 34) } \\ \hline \end{gathered}$	Oh1807	Main Spd AccT	Main speed acceleration time	0.0-300.0 sec		10.0	0	2-8	0	0	0	X	X
$\begin{gathered} 14^{\text {Note }} \\ \hline 4) \end{gathered}$	Oh180E	Main Spd DecT	Main speed deceleration time	0.0-300.0 sec		20.0	0	-	0	0	0	X	X
$15^{\text {Note }}$			Tension PID	0	No	1: Yes	0	2-17	0	0	0	X	X
41)	Oh	Web PID En	control selection	1	Yes								
$\begin{gathered} 16 \text { Note } \\ 41) \\ \hline \end{gathered}$	Oh1810	PID Output	PID output monitor	Read Only (\%)				2-17,4-8,5-18	0	0	0	X	X
17	Oh1811	PID Ref Value	PID reference monitor	Read Only (\%)				2-12,4-8,5-18	0	0	O	X	X
$\begin{gathered} 18 \text { Note } \\ \hline \end{gathered}$	Oh1812	PID Fbk Value	PID feedback monitor	Read Only (\%)				2-17,4-8,5-18	0	0	0	X	X
19	Oh1813	PID Ref Set	PID reference setting		-100-100\%	50\%	0	2-12,4-8,5-18	0	0	0	X	X

Note 32) APP-02-99 only appear when APP-01 (App Mode) is set to "Tension Ctrl".
Note 33) APP-04 only appears when APP-05 (Main Spd Src) is set to "Keypad".
Note 34) APP-07 and 14 only appear when APP06 (Main XcelT En) is set to "Yes".
Note 41) It only appears when the APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close," "UW_Spd Close," "W_Tens Close," "UW_Tens Close," and "Capstan".

Application Function Group (PAR \rightarrow APP)

No.	Communication address	Function display	Name			Initial value	Change during operation	Reference page	Control mode				
					Setting range				V	S	V	S	V C T
20	Oh1814	PIDRef Source	PID reference selection	0	Keypad	0: Key pad	X	$\begin{gathered} 2-12,4-8 \\ 5-18 \end{gathered}$	0	0	0	X	X
				1	V1								
				2	11								
				3	V2								
				4	12								
				5	Int 485								
				6	Encoder								
				7	FieldBus								
				8	PLC								
$21_{41\rangle}^{\text {Note }}$	Oh1815	PID F/B Source	PID feedback selection	0	V1	1: 11	X	$\begin{gathered} 2-17,4-8, \\ 5-18 \end{gathered}$	0	0	0	X	X
				1	11								
				2	V2								
				3	12								
				4	Int 485								
				5	Encoder								
				6	FieldBus								
				7	PLC								
$22_{41)}^{\text {Note }}$	Oh1816	PID P-Gain	PID controller proportional gain	0-1000\%		50.0	0	2-17	0	O	O	X	X
$23_{41)}^{\text {Note }}$	Oh1817	PID I-Time	PID controller integral time	0-200.0 sec		10.0	0	2-17	0	O	O	X	X
$24_{41)}^{2 \text { Note }^{2}}$	Oh1818	PID D-Time	PID controller differentiation time	0-1000 msec		0	0	2-17	0	0	O	X	X
25	Oh1819	PID F-Gain	Tension scale	0-1000.0\%		100.0	0	2-41	X	X	0	X	X
$27_{41)}^{\text {Note }}$	Oh181B	PID Out LPF	PID output filter	0-10000 ms		0	0	2-17	0	O	O	X	X
$\begin{gathered} 28_{41\}}^{\text {Note }} \end{gathered}$	Oh181C	PID I Limit	PID I controller limit	0-100\%		100.0	0	2-17	0	O	O	X	X
$31_{41)}^{\text {Note }}$	Oh181F	PID Out Inv	PID output inverse	0	No	$0:$ No	X	2-17	0	0	O	X	X
				1	Yes								
$32_{41)}$	Oh1820	PID Out Scale	PID output scale	0.0-1000.0\%		30.0	0	2-17	0	O	O	X	X
33	Oh1821	Init Tns AccT	Initial tension increase time	$0.1-60.0 \mathrm{sec}$		1.0	0	2-46	X	X	O	X	X
$42_{41\}}^{\text {Note }}$	Oh182A	PID Unit Sel	PID controller unit selection	0	\%	0: \%	0	5-19	O	0	0	X	X
				1	Bar								
				2	mBar								
				3	Pa								
				4	KPa								
				5	Hz								
				6	rpm								

Note 41) It only appears when the APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close," "UW_Spd Close," "W_Tens Close," "UW_Tens Close," and "Capstan".

Application Function Group (PAR \rightarrow APP)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V $/$ F			S	V	S L T	V C T		
$43_{41)}^{(\text {Note })}$	Oh182B	PID Unit Gain	PID unit gain		0-300[\%]		100.0	0	5-19	0	O	O	X	X
$44^{\text {Note }}$ 41)	Oh182C	PID Unit Scale	PID unit scale	0	X 100	2: $\times 1$	0	5-19	0	O	0	X	X	
				1	X 10									
				2	X 1									
				3	$\times 0.1$									
				4	$\times 0.01$									
$45^{\text {Note }}$ 41)	Oh182D	PID P2-Gain	PID 2nd proportional gain	0-1000\%		100.0	0	2-22	0	0	0	X	X	
$\begin{gathered} 46_{41)}^{\text {Note }} \end{gathered}$	Oh182E	PID I2-Time	PID 2nd integral gain		0-200.0 sec	20.0	0	2-22	0	O	O	X	X	
$47_{41)}^{\text {Note }}$	Oh182F	PI Change Spd1	Starting main speed for gain switching	0 - PI Change Spd2 (\%)		0.00	0	2-23	0	0	0	X	X	
$48_{41)}^{\text {Note }}$	Oh1830	PI Change Spd2	Completing main speed for gain switching.	PI Change Spd1-100\%		0.00	0	2-23	0	0	O	X	X	
49	Oh1831	PID Ref RampT	Tension command ramp time		- 300.0 sec	0.0	0	2-15	0	0	O	X	X	
$50_{41)}^{\text {Note }}$	Oh1832	PI Gain Ramp	PI gain switching ramp time		.0-300.0 sec	30.0	0	2-22	0	O	O	X	X	
$51^{\text {Note }}$ 41)	Oh1833	PID Start Ramp	PID output ramp time at startup		.0-300.0 sec	5.0	O	2-17	0	0	O	X	X	
$52^{\text {Note }}$ 41)	Oh1834	PID Hi Lmt \%	PID output upper limit (\%)		APP53 100.0\%	100.0	0	2-17	0	0	O	X	X	
$53_{41)}^{\text {Note }}$	Oh1835	PID Lo Lmt \%	PID output lower limit (\%)	$\begin{gathered} \text {-100.0 to } \\ \text { APP52 (\%) } \end{gathered}$		-100.0	0	2-17	0	0	O	X	X	
$54_{41)}^{\text {Note }}$	Oh1836	Fixed PID En	Fixed PID controller selection	0	No	0 : No	0	2-34	0	0	0	X	X	
				1	Yes									
$55^{\text {Note }}$ 35)	Oh1837	Min Fixed PID	Minimum value of the fixed PID		0.0-100.0\%	10.0	0	2-34	0	0	O	X	X	

No.	Communication address	Function display	Name		Setting range	Initial value	Change during	Reference page	Control mode				
			controller										
56	Oh1838	Profile P Mode	PGain profiler selection	0	None	0 : None	O	2-20	0	O	O	X	x
				1	Linear								
				2	Square								
$\underset{36)}{57^{\text {Note }}}$	Oh1839	Profile P Gain	Profiler gain	0.01-10.00\%		1.00	0	2-20	0	O	O	X	X
58	Oh183A	Taper Sel	Tapering function selection	0	None	0: None	X	2-13	0	0	\bigcirc	X	x
				1	Linear								
				2	Hyperbolic								
59	Oh183B	Taper SetPt	Taper setting value (keypad)	-100-100\%		0.00	0	2-13	0	0	0	X	X
60	Oh183C	Taper Source	Taper setting selection	0	Keypad	$\begin{gathered} 0: \\ \text { Keypad } \end{gathered}$	X	2-13	0	0	0	X	x
				1	V1								
				2	11								
				3	V2								
				4	12								

Note 35) APP-55 only appears when APP54 (Fixed PID En) is set to "No".
Note 36) APP-57 only appears when APP56 (Profile P Mode) is set to "Linear" or "Square".
Note 41) It only appears when the APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close," "UW_Spd Close," "W_Tens Close," "UW_Tens Close," and "Capstan".

Application Function Group (PAR \rightarrow APP)

				Setting range		Initial value	Change during operation	Reference page	Control mode					
No.	Communication address	Function display	Name			V			S	V	S	V C T		
$\begin{gathered} 61 \text { Note } \\ 37) \end{gathered}$	Oh183D	Curr Diameter	Current diameter display (\%)		$\begin{aligned} & \text { APP67 - } \\ & 100.0 \% \end{aligned}$		Current diameter	X	2-29	0	0	0	X	X
$\begin{gathered} 62^{\text {Note }} \\ 377 \end{gathered}$	Oh183E	Curr Bobbin	Current bobbin display	Read Only (1-4)				2-27	0	O	0	X	X	
$\begin{gathered} 63^{\text {Note }} \\ 377 \end{gathered}$	Oh183F	Bobbin1 Diamtr	Bobbin 1 diameter (\%)		$\begin{aligned} & \text { APP67 - } \\ & 100.0 \% \\ & \hline \end{aligned}$	10.0	O	2-27	0	O	O	X	X	
$\begin{gathered} 64 \text { Note } \\ 37) \end{gathered}$	Oh1840	Bobbin2 Diamtr	Bobbin 2 diameter (\%)		$\begin{aligned} & \text { APP67 - } \\ & 100.0 \% \\ & \hline \end{aligned}$	15.0	0	2-27	0	0	0	X	X	
$\begin{gathered} 65 \text { Note } \\ 37) \\ \hline \end{gathered}$	Oh1841	Bobbin3 Diamtr	Bobbin 3 diameter (\%)		$\begin{aligned} & \text { APP67- } \\ & 100.0 \% \\ & \hline \end{aligned}$	20.0	0	2-27	0	0	O	X	X	
$\begin{gathered} 66 \text { Note } \\ 377 \end{gathered}$	Oh1842	Bobbin4 Diamtr	Bobbin 4 diameter (\%)		$\begin{aligned} & \text { APP67- } \\ & 100.0 \% \\ & \hline \end{aligned}$	25.0	O	2-27	0	O	O	X	X	
$\begin{gathered} 67 \text { Note } \\ 37) \\ \hline \end{gathered}$	Oh1843	Min Diameter	Min. bobbin diameter (\%)	5.0-100.0\%		10.0	X	2-29	0	O	0	X	X	
$\begin{gathered} 68 \text { Note } \\ 377 \end{gathered}$	Oh1844	Diameter LPF	Diameter calculation filter	$0.0-300.0 \mathrm{sec}$		50.0	O	2-29	0	O	0	X	X	
69	Oh1845	Web Hold Freq	Diameter calculation stop filter	$0-30.00 \mathrm{~Hz}$		5.00	O	2-31	0	0	O	X	X	
70	Oh1846	MinDia Source	Selection of min. bobbin diameter entry	0	Keypad	0: Keypad	X	2-29	0	0	0	X	X	
				1	V1									
				2	11									
				3	V2									
				4	12									
71 Note 38)	Oh1847	Thickness En	Material thickness computation selection	0	No	1: Yes	X	3-7	0	O	0	X	X	
				1	Yes									
$\begin{gathered} 72 \text { Note } \\ \text { 38) } \end{gathered}$	Oh1848	Curr Thickness	Current thickness display (\%)	10.0-100.0\%		100.0	X	3-7	0	O	0	X	X	

No.	Communication	Function	Name	Setting	Initial	Change	Reference	Control mode				
73	Oh1849	Init Boost Tns	The initial tension increase value	100.0-500.0\%	150.0	0	-	X	X	0	X	X
$74^{\text {Note }}$ 3B)	Oh184A	Thickness LPF	Material thickness computation filter	0.0-300.0 sec	30.0	0	3-8	0	0	0	X	X
75	Oh184B	MinDia Value	Min. bobbin diameter monitor	Read Only (\%)			2-29	0	0	0	X	X
76	Oh184C	Web Brk En	Selection of web break detection function	0 None	1: Warning	0	2-42	0	0	0	X	X
				1 Warning								
				2 Free-run								
$77^{\text {Note }}$ 39)	Oh184D	Web Brk St Dly	Web function detection delay time at initial startup	0.0-300.0 sec	10.0	0	2-42	0	0	0	X	X
78 Note 39)	Oh184E	Web Brk Dly	Web function detection delay time	0.0-300.0 sec	5.0	0	2-42	0	0	0	X	X
79 Nate 39)	Oh184F	Web Brk Lev Hi	Web function detection upper limit	$\begin{aligned} & \text { APP80- } \\ & 100.0 \% \end{aligned}$	80.0	0	2-43	0	0	0	X	X
$80^{\text {Note }}$ 39)	Oh1850	Web Brk Lev Lo	Web function detection lower limit	0.0 - APP79\%	20.0	0	2-43	0	0	0	X	X

Note 37) APP-61-68 only appear when APP02 (Tnsn Ctrl Mode) is set to a mode other than "Capstan". Note 38) APP-71-74 only appear when APP02 (Tnsn Ctrl Mode) is set to "Capstan".
Note 39) APP-77-80 only appear when APP76 (Web Brk En) is set to "Warning" or "Free-run".

Application Function Group (PAR \rightarrow APP)

No.	Communication address	Function display	Name		Setting range	Initial value	Change during	Reference page	Control mode				
		Spd											
91	Oh185B	Web Spd Bias	Speed bypass setting		0-60.00 (Hz)	1.00	0	2-39	X	X	0	X	X
92	Oh185C	Max Main Spd	Frequency for main speed command 100\%		DRV19 DRV20 (Hz)	60.00	O	2-29,3-8	0	O	O	X	X
$\begin{array}{\|c} 93^{\text {Note }} \end{array}$	Oh185D	Splice Level	Splice level		0.0-100.0\%	0.0	0	2-37	0	0	O	X	X
94	Oh185E	Tns Boost In	Tension boost setting		0-50.00\%	0.00	0	2-15	0	O	0	X	X
95	Oh185F	Tns Boost Type	Tension boost type		Fixed	$\begin{gathered} 0: \\ \text { Fixed } \end{gathered}$	X	2-15	0	O	0	X	X
96	Oh1860	Tns Down In	Tension down setting		0-50.00\%	0.00	0	2-15	0	O	O	X	X
97	Oh1861	Tns Down Type	Tension down type	0 1	Fixed	$\begin{gathered} 0: \\ \text { Fixed } \end{gathered}$	X	2-15	0	O	0	X	X
98	Oh1862	PID Sample T	PID calculation cycle		$1-10 \mathrm{~ms}$	1	X	2-17,4-9	0	O	0	X	X
99	Oh1863	$\begin{gathered} \text { Web S/W } \\ \text { Ver } \end{gathered}$	Dedicated S/W version	Read Only (1.xx)				-	0	O	0	X	X

Note 40) APP-93 only appears when APP02 (Tnsn Ctrl Mode) is set to a mode other than "Capstan".
Note 41) It only appears when the APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close," "UW_Spd Close," "W_Tens Close," "UW_Tens Close," and "Capstan".

6.9 Parameter Mode - Application Function Group 2 (\rightarrow AP2)

Note 42) AP2-80 only appears when APP-02 (Tnsn Ctrl Mode) is set to "W_Spd Close" and "UW_Spd Close".
Note 43) AP2-81-85 only appear when AP2-80 (Dia Dis Mode) is set to "Yes".
Note 44) AP2-86-87 only appear when AP2-85 (Xcel Comp En) is set to "No".

6.10 Parameter Mode - Option Card Function Group $(\rightarrow$ APO)

				Setting range		Initial value	Change during operation	Reference page	Control mode					
No.	Communication address	Function display	Name			V			S	V	S L T	V C T		
00	-	Jump Code	Jump code		0-99		20	0	-	0	0	0	0	0
01 Note 45)	Oh1A01	Enc Opt Mode	Encoder function item	0	None	0:None	0	$\begin{gathered} 5-29,5-31 \\ 5-39 \end{gathered}$	0	0	0	0	0	
				1	Feedback									
				2	Reference									
04	Oh1A04	$\begin{aligned} & \text { Enc } \\ & \text { Type Sel } \end{aligned}$	Encoder type selection	0	Line Driver	0 : Line Driver	X	$\begin{gathered} 5-25,5-29 \\ 5-39 \end{gathered}$	0	0	0	0	0	
				1	Totern or Com									
				2	Open Collector									
05	Oh1A05	Enc Pulse Sel	Encoder pulse direction	0	($\mathrm{A}+\mathrm{B}$)	$\begin{gathered} 0: \\ (\mathrm{A}+\mathrm{B}) \end{gathered}$	X	5-29, 5-39	0	O	0	0	0	
				1	-(A+B)									
				2	A									
06	Oh1A06	Enc Pulse Num	Number of encoder pulses	10-5000		1024	X	5-29, 5-40	0	0	0	0	0	
08	Oh1A08	Enc Monitor	Feedback monitor		-	-	0	5-29, 5-40	0	O	O	0	0	
09	Oh1A09	Pulse Monitor	Reference monitor		-	-	0	-	0	0	0	0	0	
10	Oh1A0A	Enc Filter	Encoder input filter		- 10000 msec	3	0	-	0	0	0	0	0	
11	Oh1A0B	Enc Pulse x 1	Min. pulse of the Enc input		$0-100 \mathrm{kHz}$	0.00	0	-	0	X	0	X	0	
12	Oh1A0C	Enc Perc y1	Output (\%) at the Enc min. pulse		0-100\%	0.00	0	-	0	X	0	X	0	
13	Oh1A0D	Enc Pulse $\times 2$	Max. pulse of the Enc input		0-200 kHz	100	0	-	0	X	0	X	0	
14	Oh1A0E	Enc Perc y2	Output (\%) at the Enc max. pulse		0-100\%	100	0	-	0	X	0	X	0	
${\underset{46)}{ } 58^{\text {Note }}}^{2}$	Oh1A3A	PLC LED Status	PLC option LED status		-	-	0	Option	0	O	0	0	0	
59	Oh1A3B	PLC S/W Ver	PLC option card S/W version		-	1.X	0	Option	0	0	0	0	0	
60	Oh1A3C	PLC Wr Data 1	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
61	Oh1A3D	PLC Wr Data 2	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
62	Oh1A3E	PLC Wr Data 3	-		- FFFF [Hex]	0000	\bigcirc	Option	0	0	0	0	0	
63	Oh1A3F	PLC Wr Data 4	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
64	Oh1A40	PLC Wr Data 5	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
65	Oh1A41	PLC Wr Data 6	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
66	Oh1A42	PLC Wr Data 7	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	
67	Oh1A43	PLC Wr Data 8	-		- FFFF [Hex]	0000	0	Option	0	0	0	0	0	

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 45) APO-01-14 only appear when an encoder board is installed.
Note 46) APO-58-83 only appear when the PLC option board is installed.

Option Card Function Group (PAR \rightarrow APO)

No.	Communication address	Function display	Name	Setting range	Initial value	Change during operation	Reference page	Control mode				
								V	S	V	S	V C T
76	Oh1A44	PLD Rd Data 1	-	$\begin{gathered} 0-\text { FFFF } \\ {[\mathrm{Hex}]} \\ \hline \end{gathered}$	0000	0	Option	0	0	0	0	0
77	Oh1A45	PLD Rd Data 2	-	0 - FFFF [Hex]	0000	0	Option	0	0	0	0	0
78	Oh1A41	PLD Rd Data 3	-	$\begin{gathered} 0-\mathrm{FFFF} \\ {[\mathrm{Hex}]} \\ \hline \end{gathered}$	0000	0	Option	0	0	0	0	0
79	Oh1A42	PLD Rd Data 4	-	$\begin{gathered} 0-\text { FFFF } \\ {[\mathrm{Hex}]} \end{gathered}$	0000	0	Option	0	0	O	0	0
80	Oh1A43	PLD Rd Data 5	-	$0-\text { FFFF }$ [Hex]	0000	0	Option	0	0	0	0	0
81	Oh1A44	PLD Rd Data 6	-	$0-\text { FFFF }$ [Hex]	0000	0	Option	0	0	O	0	0
82	Oh1A45	PLD Rd Data 7	-	$\begin{gathered} 0-\mathrm{FFFF} \\ {[\mathrm{Hex}]} \\ \hline \end{gathered}$	0000	0	Option	0	0	O	0	0
83	Oh1A45	PLD Rd Data 8	-	$\begin{gathered} 0-\mathrm{FFFF} \\ {[\mathrm{Hex}]} \end{gathered}$	0000	0	Option	0	0	O	0	0

6.11 Parameter Mode - Protection Function Group (\rightarrow PRT)

Codes in shaded rows are hidden codes that only appear when setting corresponding codes.
Note 47) PRT-10 only appears when PRT-09 (Retry Number) is set to "0" or more.
Note 48) PRT-13 - 15 only appear when PRT-12 (Lost Cmd Mode) is a value other than "NONE".

Protection Function Group (PAR \rightarrow PRT)

No.	Communication	Function	Name		Setting	Initial	Change	Reference	Control mode				
			fan type		Forced-cool								
42	Oh1B2A	ETH 1 min	$\begin{gathered} \text { Electronic } \\ \text { thermal 1 } \\ \text { minute rating } \end{gathered}$		-200\%	150	\bigcirc	-	-	-	0	0	-
43	Oh1B2B	ETH Cont	Electronic thermal continuous rating		-200\%	120	-	-	-	-	-	0	-
48	Oh1830	Stall Src Sel	Stall level setting method	0	Keypad	0 : Keypad	x	4-1	0	\bigcirc	-	x	x
				1	V1								
				2	11								
				3	V2								
				4	12								
				5	Pulse								

Protection Function Group (PAR \rightarrow PRT)

No.	Communication address	Function display	Name	Setting range		Initial value	Change during operation	Reference page	Control mode					
						V / F			S	V	S	V C T		
49_{49}	Oh1B31	Stall \% Disp	Stall level display		Read Only		Read Only	X	4-1	0	0	0	X	X
50	Oh1B32	Stall Prevent	Stall prevention motion	Bit	000-111	000	X	4-1	O	O	X	O	X	
				1	Accelerating									
				2	At constant speed									
				3	At deceleration									
51	Oh1B33	Stall Freq 1	Stall frequency 1	DRV19 - PRT53 (Hz)		60.00	0	-	0	0	X	O	X	
52	Oh1B34	Stall Level 1	Stall level 1	30-250\%		180	X	4-1-	0	0	X	0	X	
53	Oh1B35	Stall Freq 2	Stall frequency 2	PRT51 - PRT55(Hz)		60.00	0	-	0	O	X	O	X	
54	Oh1B36	Stall Level 2	Stall level 2	30-250\%		180	X	-	0	0	X	O	X	
55	Oh1B37	Stall Freq 3	Stall frequency 3	PRT53 - PRT57(Hz)		60.00	0	-	0	0	X	O	X	
56	Oh1B38	Stall Level 3	Stall level 3	$30-250 \%$		180	X	-	0	0	X	0	X	
57	Oh1B39	Stall Freq 4	Stall frequency 4	$\begin{gathered} \text { PRT55 - DRV20 } \\ (\mathrm{Hz}) \end{gathered}$		60.00	0	-	0	0	X	O	X	
58	Oh1B3A	Stall Level 4	Stall level 4	30-250\%		180	X	-	0	0	X	O	X	
66	Oh1B42	$\begin{gathered} \text { DB } \\ \text { Warn \%ED } \end{gathered}$	DB resistor warning level	0-30\%		0	0	-	0	O	O	O	0	
70	Oh1B46	OverSPD Freq	Overspeed judgment frequency	20-130\%		120.0	0	-	X	X	O	X	0	
72	Oh1B48	OverSPD Time	Overspeed judgment time	$0.01-10.00 \mathrm{sec}$		0.01	0	-	X	X	0	X	0	
73	Oh1B49	Speed Dev Trip	Speed error fault	0	No	0: No	0	-	X	X	O	X	X	
				1	Yes									
74	Oh1B4A	Speed Dev Band	Speed error width	$\begin{aligned} & 2-\text { Max. } \\ & \text { frequency }(\mathrm{Hz}) \end{aligned}$		20.00	0	-	X	X	0	X	X	
75	Oh1B4B	Speed	Speed error		$-1000.0 \mathrm{sec}$	1.0	0	-	X	X	0	X	X	

No.	Communication address	Function display	Name	Setting range		Initial value	Change during	Reference page	Control mode				
		DevTime	judgment time										
77	Oh1B4D	Enc Wire Check	Encoder option connection check	0	No	0: No	O	-	X	X	0	X	0
				1	Yes								
78	Oh1B4E	Enc Check Time	Encoder connection check time	$0.1-1000.0 \mathrm{sec}$		1.0	0	-	X	X	0	X	0
79	Oh1B4F	FAN Trip Mode	Cooling fan fault selection	0	Trip	0: Trip	0	-	0	0	O	0	0
				1	Warning								
80	Oh1B50	Opt Trip Mode	Motion selection at option trip	0	None	1: FreeRun	0	-	0	0	0	O	0
				1	Free-Run								
				2	Dec								
81	Oh1B51	LVT Delay	Low voltage fault judgment delay time		60.0 sec	0.0	X	-	0	0	O	0	0

* Codes in shaded rows are hidden codes that only appear when setting corresponding codes. Note 49) PRT-49 only appears when PR-48 (Stall Src Sel) is set to "1" or more.

6.12 Parameter Mode - 2nd Motor Function Group (\rightarrow M2) Note 50)

No.	Communication address	Function display	Name	Setting range		Initial value		Change during operation	Reference page	Control mode						
						V	S			V	S	V C T				
00	-	Jump Code	Jump code		0-99			1		0	-	0	0	X	0	X
04	Oh1C04	M2-Acc Time	Acceleration time	0-600 sec		75 kW or less	20.0	0	-	0	0	X	0	X		
						90 kW or more	60.0									
05	Oh1C05	M2-Dec Time	Deceleration time	0-600 sec		75 kW or less	30.0	0	-	0	0	X	0	x		
						$\begin{gathered} 90 \mathrm{~kW} \\ \text { or } \\ \text { more } \\ \hline \end{gathered}$	90.0									
06	Oh1C06	M2-Capacity	Motor capacity	0-	0.2 kW	-		X	-	0	0	X	0	X		
				21	185 kW											
07	Oh1C07	M2-Base Freq	Base frequency	$30-400 \mathrm{~Hz}$		60.00		X	-	0	0	x	0	X		
08	Oh1C08	M2-Ctri Mode	Control mode	0	V/F	$0: \mathrm{V} / \mathrm{F}$		X	-	0	0	X	0	X		
				1	V/F PG											
				2	Slip Compen											
				3	Sensorless-1											
				4	Sensorless-2											
10	Oh1C0A	M2-Pole Num	Number of motor poles	2-12		4		X	-	0	0	X	0	X		
11	Oh1C0B	M2-Rated Slip	Rated slip speed	$0-3000 \mathrm{rpm}$		-		X	-	0	0	X	0	X		
12	Oh1C0C	M2-Rated Curr	Motor rated current		. 0 - 1000.0 A	-		X	-	0	0	X	0	X		
13	Oh1C0D	M2-Noload Curr	Motor no-load current		. 5 - 1000.0 A	-		X	-	0	0	X	0	X		
14	Oh1C0E	M2-Rated Volt	Motor rated voltage		$180-480 \mathrm{~V}$	0		X	-	0	0	X	0	X		
15	Oh1C0F	M2-Efficiency	Motor efficiency		$70-100$ (\%)	-		X	-	0	0	X	0	X		
16	Oh1C10	M2-Inertia Rt	Load inertia rate		0-8	0		X	-							
17	-	M2-Rs	Stator resistor		0-9.999 (Ω)	-		X	-							
18	-	M2-Lsigma	Leakage inductance	$0-99.99 \mathrm{mH}$		-		X	-							
19	-	M2-Ls	Stator inductance	$0-999.9 \mathrm{mH}$		-		X	-	0	0	X	0	X		
20	-	M2-Tr	Rotor time constant	25-5000 msec		-		X	-	0	0	X	0	X		
25	Oh1C19	M2-V/F Patt	V/F pattern	0	Linear	0 : Linear		X	-	0	0	X	0	X		
				1	Square											
				2	User V/F											
26	Oh1C1A	M2-Fwd Boost	Forward torque boost		0-15\%	$\begin{array}{r} 75 \mathrm{~kW} \text { or } \\ 2.0 \end{array}$	rless:	X	-	0	0	X	0	X		
27	Oh1C1B	M2-Rev Boost	Reverse torque boost		0-15\%	$\begin{aligned} & 90 \mathrm{~kW} \\ & \text { more: } \end{aligned}$		X	-	0	0	X	0	X		
28	Oh1C1C	M2-Stall Lev	$\begin{array}{\|c\|c\|} \hline \text { Stall prevention } \\ \text { level } \end{array}$		30-150\%	150		X	-	0	0	X	0	X		
29	Oh1C1D	M2-ETH 1 min	Electronic thermal 1 minute rating		100-200\%	150		X	-	0	0	X	0	X		
30	Oh1C1E	M2-ETH Cont	Electronic thermal continuous rating		50-150\%	100		X	-	0	0	X	0	X		

No.	Communication address	Function display	Name		etting ange	Initial value	Change during	Reference page	Control mode				
40	Oh1C28	$\begin{gathered} \text { M2- } \\ \text { LoadSpdGain } \\ \hline \end{gathered}$	Revolution display gain	0.1-6000.0\%		100.0	0	-	0	0	0	0	0
41	Oh1C29	M2- LoadSpdScal	Revolution display scale	0	$\times 1$	$0: \times 1$	0	-	0	0	0	0	0
				1	+ 0.1								
				2	$\times 0.01$								
				3	$\times 0.001$								
				4	$\times 0.0001$								
42	Oh1C2A	M2- LoadSpdUnit	Revolution display unit	0	rpm	$0: \mathrm{rpm}$	0	-	0	0	O	0	0
				1	mpm								

Note 50) The M2 group only appear when the "2nd Motor" is specified in IN65-75.

6.13 Trip mode (TRP Current (or Last-x))

No.	Function display	Name	Setting range	Initial value
00	Trip Name (x)	Fault type display	-	-
01	Output Freq	Operation frequency at fault	-	-
02	Output Current	Output current at fault	-	-
03	Inverter State	Accel/Decel status at fault	-	-
04	DCLink Voltage	DC voltage	-	-
05	Temperature	NTC temperature	-	-
06	DI State	Input terminal block status	-	-
07	DO State	Output terminal block status	-	-
08	Trip On Time	Fault time after power on	-	0000 0000
09	Trip Run Time	Fault time after starting operation	-	0000DAY 00:00
10	Trip Delete?	Fault history deletion	0000DAY 00:00	

6.14 Config Mode (CNF)

No.	Function display	Name		Setting range	Initial value	Reference page
00	Jump Code	Jump code		0-99	40	-
01	Language Sel	Keypad language selection		English	English	-
02	LCD Contrast	LCD contrast adjustment		-	-	5-70
10	Inv S/W Ver	Main body S/W version		-	1. XX	5-70
11	Keypad S/W Ver	Keypad S/W version		-	1. XX	5-70
12	KPD Title Ver	Keypad title version		-	1. XX	5-70
$20^{\text {Note } 51)}$	Anytime Para	Status window display item	0	Frequency	0: Frequency	-
21	Monitor Line-1	Monitor mode display item 1	1	Speed	0: Frequency	-
22	Monitor Line-2	Monitor mode display item 2	2	Output Current	2: Output Current	-
23	Monitor Line-3	Monitor mode display item 3	3	Output Voltage	3: Output Voltage	-
			4	Output Power		
			5	WHour Counter		
			6	DCLink Voltage		
			7	DI State		
			8	DO State		
			9	V1 Monitor (V)		
			10	V1 Monitor (\%)		
			11	11 Monitor (mA)		
			12	11 Monitor (\%)		
			13	V2 Monitor (V)		
			14	V2 Monitor (\%)		
			15	12 Monitor (mA)		
			16	12 Monitor (\%)		
			17	PID Output		
			18	PID Ref Value		
			19	PID Fbk Value		
			20	Torque		
			21	Torque Limit		
			22	Trq Bias Ref		
			23	Speed Limit		
			24	Load Speed		
			25	XV1Monitor (V)		
			26	XV1Monitor (\%)		

Note 51) Items no. 7 and 8 do not appear in the Anytime Parameters.

Config Mode (CNF)

Config Mode (CNF)

No.	Function display	Name	Setting range		Initial value	Reference page
42	Multi Key Sel	Multi-function key item	0	None	$0:$ None	5-66,5-70
			1	JOG Key		
			2	Local/Remote		
			3	UserGrp SelKey		
43	Macro Select	Macro function item	0	None	0: None	5-68
			1	Draw App		
			2	Traverse		
44	Erase All Trip	Fault history deletion	0	No	0 : No	5-70
			1	Yes		
45	UserGrp AllDel	User registration code deletion	0	No	$0:$ No	5-66
			1	Yes		
46	Parameter Read	Read parameters	0	No	$0:$ No	5-62
			1	Yes		
47	Parameter Write	Write parameters	0	No	$0:$ No	5-62
			1	Yes		
48	Parameter Save	Saves communication parameters	0	No	$0:$ No	5-62
			1	Yes		
50	View Lock Set	Hide parameter mode		0-9999	Un-locked	5-64
51	View Lock Pw	Password to hide parameter mode		0-9999	Password	5-64
52	Key Lock Set	Lock parameter edit		0-9999	Un-locked	5-65
53	Key Lock Pw	Password to lock parameter editing		0-9999	Password	5-65
60	Add Title Up	Additional keypad title update	0	No	$0:$ No	5-70
			1	Yes		
61	Easy Start On	Simple parameter setting	0	No	$0:$ Yes	5-69
			1	Yes		
62	WHCount Reset	Initializing power consumption	0	No	$0:$ No	5-70
			1	Yes		
70	On-time	Accumulated time of inverter motion	0000DAY hh:mm		-	-
71	Run-time	Accumulated time of inverter operation	0000DAY hh:mm		-	-
72	Time Reset	Initializing the accumulative time of inverter operation	0	No	0 : No	-
			1	Yes		
73	Real Time	Clock display		00DAY hh:mm	-	-
74	Fan Time	Accumulated time of cooling fan operation		00DAY hh:mm	-	5-70
75	Fan Time Rst	Initializes the accumulated time of cooling fan operation.		00DAY hh:mm	-	5-70

7. iS7 Communication Common Areas

7.1 iS7 Monitoring Common Areas

Communic ation Address	Parameter	Scale	Unit	Assigned content by bit	
	Inverter operation, Frequency command source	-			
Oh0306			-	B7 B6 B5 B4 B3 B2 B1 B0	
Oh0307	Keypad S/W version			(Example) 0h0100: Version 1.00	
Oh0308	Keypad title version				Oh0101: Version 1.01
$\begin{gathered} \hline \text { Oh0309- } \\ \text { Oh30F } \end{gathered}$	Reserved				
Oh0310	Output current	0.1	A	-	
Oh0311	Output frequency	0.01	Hz	-	
Oh0312	Output RPM	0	RPM	-	
Oh0313	Motor feedback speed	0	RPM	-32	8 rpm - 32767 rpm (with directionality)
Oh0314	Output voltage	1	V	-	
Oh0315	DC Link Voltage	1	V	-	
Oh0316	Output power	0.1	kW	-	
Oh0317	Output torque	0.1	\%	-	
Oh0318	PID reference	0.1	\%	-	
Oh0319	PID feedback	0.1	\%	-	
Oh031A	Display the number of poles for the 1st motor	-	-		the number of poles for the 1st motor
Oh031B	Display the number of poles for the 2nd motor	-	-		the number of poles for the 2nd motor
Oh031C	Display the number of poles for the selected motor	-	-		the number of poles for the selected motor
Oh031D	Select Hz/rpm	-	-		
$\begin{gathered} \text { Oh031E } \\ \text { - Oh031F } \\ \hline \end{gathered}$	Reserved	-	-	-	

Communic ation Address	Parameter	Scale	Unit		Assigned content by bit
Oh0320	Digital input information			B15	Reserved
				B14	Reserved
				B13	Reserved
				BI2	Reserved
				BI1	Reserved
				BIO	P11 (Expansion I/O)
				B9	P10 (Expansion I/O)
				B8	P9 (Expansion I/O)
				B7	P8 (Basic I/O)
				B6	P7 (Basic //O)
				B5	P6 (Basic //O)
				B4	P5 (Basic l/O)
				B3	P4 (Basic I/O)
				B2	P3 (Basic //O)
				B1	P2 (Basic I/O)
				B0	P1 (Basic //O)
Oh0321	Digital Output information	-	-	B15	Reserved
				B14	Reserved
				B13	Reserved
				BI2	Reserved
				BI1	Reserved
				B10	Reserved
				B9	Reserved
				B8	Reserved
				B7	Reserved
				B6	Reserved
				B5	Q4 (Expansion I/O)
				B4	Q3 (Expansion I/O)
				B3	Q2 (Expansion $/ / \mathrm{O}$)
				B2	Q1 (Basic I/O)
				B1	Relay2 (Basic I/O)
				B0	Relay1 (Basic l/O)

Communic ation Address	Parameter	Scale	Unit		Assigned content by bit
Oh0322	Virtual digital Input information	-	-	B15	Virtual DI 16 (COM85)
				B14	Virtual DI 15 (COM84)
				B13	Virtual DI 14 (COM83)
				B12	Virtual DI 13 (COM82)
				B11	Virtual DI 12 (COM81)
				BIO	Virtual DI 11 (COM80)
				B9	Virtual DI 10 (COM79)
				B8	Virtual DI 9 (COM78)
				B7	Virtual DI 8 (COM77)
				B6	Virtual DI 7 (COM76)
				B5	Virtual DI 6 (COM75)
				B4	Virtual DI 5 (COM74)
				B3	Virtual DI 4 (COM73)
				B2	Virtual DI 3 (COM72)
				B1	Virtual DI 2 (COM71)
				B0	Virtual DI 1 (COM70)
Oh0323	$\begin{gathered} \text { Display the selected } \\ \text { motor } \end{gathered}$	-	-	0: T	e 1st motor/1: The 2nd motor
Oh0324	Al1	0.01	\%	Ana	g input 1 (Basic //O)
Oh0325	Al2	0.01	\%	Ana	g input 2 (Basic //O)
Oh0326	Al3	0.01	\%	Ana	g input 3 (Expansion I/O)
Oh0327	Al4	0.01	\%	Ana	g input 4 (Expansion I/O)
Oh0328	AO1	0.01	\%	Ana	g output 1 (basic 1/O)
Oh0329	AO2	0.01	\%	Ana	g output 2 (basic I/O)
0h032A	AO3	0.01	\%	Ana	g output 3 (extended I/O)
0h032B	AO4	0.01	\%	Ana	g output 4 (extended I/O)
0h032C	Reserved	-	-	-	
Oh032D	Temperature	1	${ }^{\circ} \mathrm{C}$	-	
Oh032E	Reserved	-	-	-	
0h032F	Reserved	-	-	-	

Communic ation Address	Parameter	Scale	Unit		Assigned content by bit
Oh0330	Latch type trip information-1	-	-	B15	Fuse Open Trip
				B14	Overheat Trip
				B13	Arm Short
				BI2	External Trip
				Bl1	Overvoltage Trip
				BIO	Overcurrent Trip
				B9	NTC Trip
				B8	Overspeed Deviation
				B7	Overspeed
				B6	Input open-phase trip
				B5	Output open-phase trip
				B4	Ground Fault Trip
				B3	E-Thermal Trip
				B2	Inverter Overload Trip
				B1	Underload Trip
				B0	Overload Trip
Oh0331	Latch type trip information-2	-	-	B15	Reserved
				B14	Reserved
				Bl3	The safety option on the terminal block input blocks the inverter output (only for products with a rated power of 90 kW or higher).
				BI2	Bad contact of Slot3 option card
				Bl1	Bad contact of Slot2 option card
				BI0	Bad contact of Slot1 option card
				B9	No Motor trip
				B8	External brake trip
				B7	Bad contact of basic IO board
				B6	Pre PID Fail
				B5	Error while writing parameters
				B4	Reserved
				B3	FAN Trip
				B2	PTC (thermal sensor) trip
				B1	Encoder Error Trip
				B0	MC Fail Trip

Communic ation Address	Parameter	Scale	Unit		Assigned content by bit
Oh0332	Level type trip information	\cdot	-	B15	Reserved
				B14	Reserved
				B13	Reserved
				B12	Reserved
				B11	Reserved
				B10	Reserved
				B9	Reserved
				B8	Reserved
				B7	Reserved
				B6	Reserved
				B5	Reserved
				B4	Reserved
				B3	Keypad lost command
				B2	Lost Command
				B1	LV
				B0	BX
Oh0333	H/W diagnosis trip information	-	-	B15	Reserved
				B14	Reserved
				B13	Reserved
				B12	Reserved
				B11	Reserved
				B10	Reserved
				B9	Reserved
				B8	Reserved
				B7	Reserved
				B6	Reserved
				B5	Reserved
				B4	Gate Drive Power Loss
				B3	Watchdog-2 error
				B2	Watchdog-1 error
				B1	EEPROM error
				B0	ADC error

Communic ation Address	Parameter	Scale	Unit			Assigned conte
Oh0334	Warning information	\cdot	\cdot	B15	Res	
				B14	Res	
				B13	Res	
				B12	Res	
				B11	Res	
				B10	Res	
				B9	Auto	failed
				B8	Keyp	
				B7	Enc	sconnection
				B6	Wro	llation of encoder
				B5	DB	
				B4	FAN	
				B3	Lost	
				B2	Inve	rload
				B1	Und	
				B0	Ove	
$\begin{aligned} & \hline \text { Oh0335- } \\ & \text { Oh033F } \\ & \hline \end{aligned}$	Reserved	-	-	-		
Oh0340	On Time date	0	Day	Total	umber	when the inverter is
Oh0341	On Time minute	0	Min	Total	umber	utes excluding the to
Oh0342	Run Time date	0	Day	Total	umber	when the inverter did
Oh0343	Run Time minute	0	Min	Total	umber	utes excluding the to
Oh0344	Fan Time date	0	Day	Total	umber	when the heat sink
Oh0345	Fan Time minute	0	Min	Total	umber	utes excluding the to
Oh0346	Reserved	-	-	-		
Oh0347	Reserved	-	\cdot	-		
Oh0348	Reserved	-	\cdot	-		
Oh0349	Reserved	-	\cdot	-		
Oh034A	Option 1	-	\cdot	0: N		1: Reserved
Oh034B	Option 2	\cdot	-	2: R	erved	3: Profibus,
Oh034C	Option 3			$\begin{aligned} & \text { 4: } R \epsilon \\ & \text { 6: } R \epsilon \\ & \text { 8: } R \epsilon \\ & \text { 10: } \mathrm{F} \\ & \text { 23: } \end{aligned}$	erved erved erved coder	5: Reserved 7: RNet, 9: Reserved 20: External IO-1 \qquad

7.2 Common Areas for iS7 Control

Communic ation Address	Parameter	Scale	Unit	Assigned content by bit	
Oh0380	Frequency command	0.01	Hz	Command frequency setting	
Oh0381	RPM command	1	rpm	Command RPM setting	
Oh0382	Operation command	.	-	B7	Reserved
				B6	Reserved
				B5	Reserved
				B4	Reserved
				B3	$0 \rightarrow 1$: Free-run stop
				B2	$0 \rightarrow 1$: Reset trip
				B1	$0:$ Reverse command 1:Forward command
				B0	0: Stop command 1: Run command
				Ex) Forward operation command: 0003h, Reverse operation command: 0001h	
Oh0383	Acceleration time	0.1	sec	Acceleration time setting	
Oh0384	Deceleration time	0.1	sec	Deceleration time setting	
Oh0385	Virtual digital input control (0: Off, 1: On)	-	.	B15	Virtual DI 16 (COM85)
				B14	Virtual DI 15 (COM84)
				B13	Virtual DI 14 (COM83)
				BI2	Virtual DI 13 (COM82)
				BI1	Virtual DI 12 (COM81)
				BI0	Virtual DI 11 (COM80)
				B9	Virtual DI 10 (COM79)
				B8	Virtual DI 9 (COM78)
				B7	Virtual DI 8 (COM77)
				B6	Virtual DI 7 (COM76)
				B5	Virtual DI 6 (COM75)
				B4	Virtual DI 5 (COM74)
				B3	Virtual DI 4 (COM73)
				B2	Virtual DI 3 (COM72)
				B1	Virtual DI 2 (COM71)
				B0	Virtual DI 1 (COM70)

Communic ation Address	Parameter	Scale	Unit		Assigned content by bit
Oh0386	Digital Output Control (0: Off, 1: On)	-	-	B15	Reserved
				B14	Reserved
				B13	Reserved
				BI2	Reserved
				BI1	Reserved
				BIO	Reserved
				B9	Reserved
				B8	Reserved
				B7	Reserved
				B6	Reserved
				B5	Q4 (Expansion I/O, OUT36: None)
				B4	Q3 (Expansion I/O, OUT35: None)
				B3	Q2 (Expansion I/O, OUT34: None)
				B2	Q1 (Basic I/O, OUT33: None)
				B1	Relay2 (Basic I/O, OUT32: None)
				B0	Relay1 (Basic I/O, OUT31: None)
Oh0387	Reserved	-	-	Reserved	
Oh0388	PID reference	0.1	\%	Give the PID reference command	
Oh0389	PID feedback value	0.1	\%	PID feedback value	
$\begin{gathered} 0 \mathrm{~h} 038 \mathrm{~A} \\ -\mathrm{Oh} 038 \mathrm{~F} \\ \hline \end{gathered}$	Reserved	-	-	-	
Oh0390	Torque Ref	0.1	\%	Torque command	
Oh0391	Fwd Pos Torque Limit	0.1	\%	Forward motoring torque limit	
0h0392	Fwd Neg Torque Limit	0.1	\%	Forward regenerative torque limit	
Oh0393	Rev Pos Torque Limit	0.1	\%	Reverse motoring torque limit	
Oh0394	Rev Neg Torque Limit	0.1	\%	Reverse regenerative torque limit	
Oh0395	Torque Bias	0.1	\%	Torque bias	
Oh0396	Web Main Speed	0.1	\%	Main speed command	
$\begin{aligned} & \hline \text { Oh0397 } \\ & \text { - Oh399 } \\ & \hline \end{aligned}$	Reserved	-	.	-	
0h039A	Anytime Para	-	-	Sets the CNF-20 value.	
0h039B	Monitor Line-1	-	-	Sets the CNF-21 value.	
Oh039C	Monitor Line-2	\cdot	-	Sets the CNF-22 value.	
Oh039D	Monitor Line-3	-	\cdot	Sets the CNF-23 value.	

7.3 Common Areas for iS7 Dedicated Product Monitoring

Communicat ion Address	Parameter	Scale	Unit	Assigned content by bit
Oh0D00	Input of expansion I/O-2 V1	0.01	\%	Input of expansion I/O-2 voltage (V1)
0h0D01	Input of expansion $1 / \mathrm{O}-2 \mathrm{~V} 2$	0.01	\%	Input of expansion I/O-2 voltage (V2)
Oh0D02	Input of expansion I/O-2 V3	0.01	\%	Input of expansion I/O-2 voltage (V3)
Oh0D03	Input of expansion I/O-2 V4	0.01	\%	Input of expansion 1/O-2 voltage (V4)
Oh0D04	Reserved	-	-	-
0h0D05	Input of expansion V/O-2 I1	0.01	\%	Input of expansion I/O-2 current (11)
Oh0D06	Input of expansion I/O-2 12	0.01	\%	Input of expansion I/O-2 current (12)
Oh0D07	Input of expansion //O-2 13	0.01	\%	Input of expansion I/O-2 current (13)
Oh0D08	Input of expansion //O-2 14	0.01	\%	Input of expansion I/O-2 current (14)
Oh0D09	Reserved	-	-	-
OhODOA	Expansion I/O-2 AO1	0.01	\%	Expansion I/O-2 analog output 1 (AO1)
OhODOB	Expansion I/O-2 AO2	0.01	\%	Expansion I/O-2 analog output 2 (AO 2)
OhODOC	Expansion I/O-2 AO3	0.01	\%	Expansion l/O-2 analog output 3 (AO3)
OhODOD	Expansion I/O-2 AO4	0.01	\%	Expansion I/O-2 analog output 4 (AO4)
OhODOE	External PID controller output	0.01	\%	External PID controller (APP01 App Mode: Ext PID Ctrl) output (\%)
OhODOF	External PID controller output	0.01	Hz	External PID controller (APP01 App Mode: Ext PID Ctrl) output (Hz)
Oh0D10	External PID controller output	0	RPM	External PID controller (APP01 App Mode: Ext PID Ctrl) output (RPM)
OhOD11 Oh0D7F	Reserved	-	-	-

7.4 Common Areas for iS7 Dedicated product control

Communicat ion Address	Parameter	Scale	Unit	Assigned content by bit
Oh0D80	Web Main Spd	0.1	$\%$	Main speed command
Oh0D81	Reserved	-	-	-
Oh0D82	Reserved	-	-	-
0h0D83	Reserved	-	-	-
Oh0D84	Reserved	-	-	-
0h0D85	External PID controller main speed input	0.01	$\%$	External PID controller (APP01 App Mode: Ext PID Ctr) main speed input (\%)
0h0D86	External PID controller main speed input	0.01	Hz	External PID controller (APP01 App Mode: Ext PID Ctrl) main speed input (Hz)
Oh0D87	External PID controller main speed input	0	RPM	External PID controller (APP01 App Mode: Ext PID Ctrl) main speed input (RPM)
Oh0D88 - Oh0DFF	Reserved	-	-	-

Appendix A Sample Web-only Parameter Settings

A. 1 Overview

This appendix uses an imaginary tension control system and the basic mechanical information from the winder, unwinder, and capstan to describe how to set the parameters for each inverter and perform a test drive.

Fig. A1.1 provides an outline of this imaginary tension control system.

Fig. A1.1 An imaginary tension control system
Table A1.1 lists mechanical information for each inverter depicted in Fig. A1.1. Generally, the manufacturer of the machine provides this information.

Table A1.1 An imaginary tension control system

	Unwinder	Capstan 3	Capstan 2	Capstan 1	Winder
Number of poles	4	4	4	4	4
Min. diameter (m)	0.3	0.6	0.6	0.6	0.4
Belt ratio (gear ratio)	$1: 6.5$	$1: 13.4$	$1: 9.7$	$1: 7.3$	$1: 4.1$
Max. linear speed (mpm)	$250^{(\text {Note 1) }}$	$250^{(\text {Note 1) }}$	$340^{(\text {Note 2) }}$	$450^{(\text {Note 3) }}$	$600^{(\text {Note 4) }}$

(Note 1): Max. linear speed measured between the unwinder and capstan 3.
(Note 2): Max. linear speed measured between capstan 3 and capstan 2.
(Note 3): Max. linear speed measured between capstan 2 and capstan 1.
(Note 4): Max. linear speed measured between capstan 1 and the winder.

Appendix B Setting the Parameters

B. 1 Setting Winder Parameters

1. Use the mechanical information about the winder from Table A1.1 to enter the APP92 (Max Main Spd) setting. The APP92 (Max Main Spd) setting determines the maximum rotation speed of the motor (Hz or RPM) at the minimum diameter and maximum linear speed. Use the following formula to calculate the APP92 setting.

$$
\text { APP -92 }(\text { Max Main Spd })=\frac{600[\mathrm{mpm}]}{0.4[\mathrm{~m}] \times \pi} \times 4.1(\text { Beltratio }) \times \frac{4(\text { pole })}{120}=65.29[\mathrm{~Hz}]
$$

Release the DRV20 (Max Freq) limit to set the APP92 (Max Main Spd) setting. To account for the frequency added from the PID controller, enter approx. 1.2 times the APP92 (Max Main Spd) to the DRV20 (Max Freq).
2. Now, enter the bobbin diameter. The following formula uses the minimum diameter of 0.4 m and the maximum diameter of 0.9 m from Fig. A1.1 to calculate the ratio of the maximum diameter to the min. diameter as a percentage.

$$
\text { Minimum Diameter }[\%]=\frac{0.4[\mathrm{~m}]}{0.9[\mathrm{~m}]} \times 100[\%]=44.4[\%]
$$

Enter the calculated 44.4\% as the APP63 (Bobbin 1 Diameter) and the APP67 (Min Diameter) settings.
3. Be sure to reset the bobbin diameter when replacing a bobbin. To do this, you must assign a function that resets the bobbin diameter to one of the multi-function inputs. Select an IN code between IN65-72 (P\# Define), and then set it to " 52 : Web Preset".
4. Finally, set the operation command method in DRV06 (Cmd Source); the parameters related to the main speed command in APP03-14 codes and the PID controller in APP15-57 codes; or any other additional functions (web brake detection, emergency stop, bypass, reverse crawling, etc.), if necessary.

B. 2 Setting Unwinder Parameters

1. Use the mechanical information about the unwinder from Table A1.1 to enter the APP92 (Max Main Spd) setting. The APP92 (Max Main Spd) setting determines the maximum rotation speed of the motor (Hz or RPM) at the minimum diameter and maximum linear speed. Use the following formula to calculate the APP92 setting.

$$
\text { APP }-92(\text { Max MainSpd })=\frac{250[\mathrm{mpm}]}{0.3[\mathrm{~m}] \times \pi} \times 6.5(\text { Belt ratio }) \times \frac{4(\text { Poles })}{120}=57.50[\mathrm{~Hz}]
$$

Release the DRV20 (Max Freq) limit to set the APP92 (Max Main Spd). To account for the frequency added from the PID controller, enter approx 1.2 times the APP92 (Max Main Spd) setting to the DRV20 (Max Freq).
2. Now, enter the bobbin diameter. The following formula uses the minimum diameter of 0.3 m and the maximum diameter of 1.5 m from Fig. A1.1 to calculate the ratio of the maximum diameter to the min. diameter as a percentage.

$$
\text { Minimum Diameter }[\%]=\frac{0.3[\mathrm{~m}]}{1.5[\mathrm{~m}]} \times 100[\%]=20.0[\%]
$$

Enter the calculated 20.0\% as the APP67 (Min Diameter) setting.
Enter 100.0% as the APP63 (Bobbin 1 Diameter) setting, since this is the maximum diameter.
3. Like the winder, be sure to reset the bobbin diameter when replacing a bobbin. To do this, you must assign a function that resets the bobbin diameter to one of the multi-function inputs. Select an IN code between IN65 - 72 (P\# Define), and then set it to " 52 : Web Preset".
4. Finally, set the operation command method in DRV06 (Cmd Source); the parameters related to the main speed command in APP03-14 and the PID controller in APP15-57; or any other additional functions (web brake detection, emergency stop, bypass, reverse crawling, etc.), if necessary.

B. 3 Setting Capstan Parameters

1. Use the mechanical information about Capstan 1, 2, and 3 from Table A1.1 to enter the APP92 (Max Main Spd) setting. The APP92 (Max Main Spd) setting determines the maximum rotation speed of the motor (Hz or RPM) at the reference thickness of the material (100%) and at the maximum linear speed. Use the following formula to calculate the APP92 setting.

$$
\begin{aligned}
& \text { Capstan } 1 \text { APP -92(MaxMainSpd })=\frac{450[\mathrm{mpm}]}{0.6[\mathrm{~m}] \times \pi} \times 7.3(\text { Belt ratio }) \times \frac{4(\text { Poles })}{120}=58.12[\mathrm{~Hz}] \\
& \text { Capstan } 2 \mathrm{APP}-92(\text { Max MainSpd })=\frac{340[\mathrm{mpm}]}{0.6[\mathrm{~m}] \times \pi} \times 9.7(\text { Belt ratio }) \times \frac{4(\text { Poles })}{120}=58.35[\mathrm{~Hz}] \\
& \text { Capstan } 3 \mathrm{APP}-92(\text { MaxMainSpd })=\frac{250[\mathrm{mpm}]}{0.6[\mathrm{~m}] \times \pi} \times 13.4(\text { Belt ratio }) \times \frac{4(\text { Poles })}{120}=59.27[\mathrm{~Hz}]
\end{aligned}
$$

Release the DRV20 (Max Freq) limit for each inverter to set the APP92 (Max Main Spd) setting for each inverter. To account for the frequency added from the PID controller, enter approx. 1.2 times the APP92 (Max Main Spd) to the DRV20 (Max Freq).
2. Finally, set the operation command method in DRV06 (Cmd Source); the parameters related to the main speed command in APP03-14 and the PID controller in APP15-57; or any other additional functions (web brake detection, emergency stop, bypass, reverse crawling, etc.), if necessary.

Warranty

Product Name	AC Variable Speed Drive	Date of Installation	
Model Name	Web Control Manual	Warranty Period	
Customer	Name		
	Address		
	Phone Number		
Sales Agency	Name		
	Address		
	Phone Number		

Notes

This inverter has been manufactured by LS ELECTRIC using strict quality control and inspection processes.
The warranty period is 18 months from the date of installation. A period of 18 months from the date of manufacture will be applied if the date of installation has not been entered.
However, the warranty period may vary according to the terms of the contract.

Free after-sales servicing

If the drive fails as a result of normal usage during the warranty period, contact our agency or designated service center. We will repair the drive free of charge.

Paid Servicing

In the following instances, repair services are provided for a fee:

- If the damage is the result of deliberate action or negligence.
- If the damage is the result of power supply problems or an improper connecting device.
- If the damage is the result of a natural disaster (for example, fire, flood, gas, earthquake, etc.).
- If the inverter has been modified or repaired somewhere other than our agency or service center.
- If there is no LS ELECTRIC name plate attached.
- If the warranty period is over.

Please visit the LS ELECTRIC homepage (http://www.Iselectric.co.kr) for more useful information and services:

Manual Revision History

No.	Date of Publication	Contents Changed	Version Number	Remarks
1	20080430	-	0.01	1
2	20080718	-	0.02	2
3	20080721	-	1.00	3
4	20080813	Modified the content of 3.(2), "Automated SpeedTorque Switching".	1.01	4
5	20091104	Added content on 3.(3), "External PID Controller".	1.02	5
6	20091117	Modified web-only common area	1.03	6
7	20100309	Modified content concerning the external PID control (section 3.3) and dedicated common areas.	1.04	7
8	20100512	-	1.05	8
9	20110128	Added content concerning braking resistance.	1.07	9
10	20120426	Added content concerning the Open-loop Winder and Tension Control Mode. Added Web PID improvement (web without diameter calculation).	1.10	10
11	20140709	Correct the parameter of 'Chap 6. Table of Function'	1.11	11
12	20150423	2015 S/W version contents update	1.12	12
13	20200608	New LS ELECTRIC CI update	1.13	13

www.Iselectric.co.kr

LS ELECTRIC Co., Ltd.

- Headquarter

LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

- Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea
Tel: 82-2-2034-4033, 4888, 4703 Fax: 82-2-2034-4588
E-mail: automation@lselectric.co.kr

- Overseas Subsidiaries

- LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan)

Tel: 81-3-6268-8241 E-Mail: jschuna@Iselectric.biz

- LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China)

Tel: 86-411-8730-6495 E-Mail: jiheo@lselectric.com.cn
-LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China)
Tel: 86-510-6851-6666 E-Mail: sblee@lselectric.co.kr
-LS ELECTRIC Vietnam Co., Ltd.
Tel: 84-93-631-4099 E-Mail: jhchoi4@lselectric.biz (Hanoi)
Tel: 84-28-3823-7890
E-Mail: sjbaik@lselectric.biz (Hochiminh)

- LS ELECTRIC Middle East FZE (Dubai, U.A.E.)

Tel: 971-4-886-5360 E-Mail: salesme@lselectric.biz

- LS ELECTRIC Europe B.V. (Hoofddorf, Netherlands)

Tel: 31-20-654-1424 E-Mail: europartner@Iselectric.biz

- LS ELECTRIC America Inc. (Chicago, USA)

Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com

- Overseas Branches

- LS ELECTRIC Tokyo Office (Japan)
Tel: 81-3-6268-8241
E-Mail: jschuna@lselectric.biz
- LS ELECTRIC Beijing Office (China)

Tel: 86-10-5095-1631 E-Mail: khpaek@lselectric.com.cn

- LS ELECTRIC Shanghai Office (China)

Tel: 86-21-5237-9977 E-Mail: tsjun@lselectric.com.cn

- LS ELECTRIC Guangzhou Office (China)

Tel: 86-20-3818-2883
E-Mail: chenxs@lselectric.com.cn

- LS ELECTRIC Chengdu Office (China)

Tel: 86-28-8670-3201 E-Mail: yang

- LS ELECTRIC Qingdao Office (China)

Tel: 86-532-8501-2065 E-Mail: wangzy@lselectric.com.cn

- LS ELECTRIC Nanjing Office (China)

Tel:86-25-8467-0005 E-Mail: ylong@lselectric.com.cn

- LS ELECTRIC Bangkok Office (Thailand)

Tel: 66-90-950-9683 E-Mail: sjleet@Iselectric.biz

- LS ELECTRIC Jakarta Office (Indonesia)

Tel: 62-21-2933-7614 E-Mail: dioh@lselectric.biz

- LS ELECTRIC Moscow Office (Russia)
Tel: 7-499-682-6130
E-Mail: jdpark1@lselectric.biz
- LS ELECTRIC America Western Office (Irvine, USA)

Tel: 1-949-333-3140 E-Mail: ywyun@lselectricamerica.com

[^0]: * You can change the frequency to RPM, so that RPM will be used in place of Hz .

