Mounting and switch-on instructions EN

Inverter

i510 protec frequency inverter NEMA 1 (IP20)
0.37 kW ... 5.5 kW
$0.5 \mathrm{hp} . . .7 .5 \mathrm{hp}$
Single-phase mains connection 120 V
Single-phase mains connection 230/240 V
Three-phase mains connection 230/240 V
Three-phase mains connection 400 V
Three-phase mains connection 480 V

Contents

About this document 6
Further documents 6
Notations and conventions 7
Safety instructions 8
Basic safety instructions 8
Application as directed 9
Foreseeable misuse. 9
Residual hazards 10
Product information 12
Features 12
Identification of the products. 13
Mechanical installation. 14
Dimensions 14
Electrical installation 19
Important notes 19
EMC-compliant installation 21
Connection according to UL 22
Important notes 22
Fusing data 23
Branch Circuit Protection (BCP) 23
Mains connection 24
1-phase mains connection 120 V 25
Connection diagrams 25
Terminal data 26
Fusing data 26
1-phase mains connection $230 / 240 \mathrm{~V}$ 27
Connection diagrams 27
Terminal data 28
Fusing data 28
1-phase mains connection 230/240 V "Light Duty" 29
Connection diagrams 29
Terminal data 29
Fusing data 29
3-phase mains connection 230/240 V 30
Connection diagrams 30
Terminal data 31
Fusing data 31
3-phase mains connection 230/240 V "Light Duty" 32
Connection diagrams 32
Terminal data 32
Fusing data 32
3-phase mains connection 400 V 33
Connection diagrams 33
Terminal data 34
Fusing data 34
3-phase mains connection 400 V "Light Duty" 35
Connection diagrams 35
Terminal data 35
Fusing data 35
3-phase mains connection 480 V 36
Connection diagrams 36
Terminal data 37
Fusing data 37
3-phase mains connection 480 V "Light Duty" 38
Connection diagrams 38
Terminal data 38
Fusing data 38
Control connections 39
Networks 40
CANopen 40
Modbus RTU 41
Commissioning 42
Important notes 42
Initial switch-on and functional test 43
Using accessories 44
Keypad. 44
Keypad operating mode 44
Function of keypad keys in operating mode 44
Keypad parameterisation mode 45
Function of the keypad keys in the parameterisation mode 45
Diagnostics and fault elimination 46
LED status display 46
Technical data. 47
Standards and operating conditions 47
Conformities and approvals 47
Protection of persons and device protection 47
EMC data 47
Motor connection 48
Environmental conditions 48
Electrical supply conditions 48
1-phase mains connection 120 V 49
Rated data 49
1-phase mains connection 230/240 V. 50
Rated data 50
1-phase mains connection 230/240 V "Light Duty" 51
Rated data 51
3-phase mains connection 230/240 V. 52
Rated data 52
3-phase mains connection 230/240 V "Light Duty" 53
Rated data 53
3-phase mains connection 400 V 54
Rated data 54
3-phase mains connection 400 V "Light Duty". 55
Rated data 55
3-phase mains connection 480 V 56
Rated data 56
3-phase mains connection 480 V "Light Duty". 57
Rated data 57
Environmental notes and recycling 58

About this document
 Further documents

About this document

\triangle WARNING!

Read this documentation carefully before starting any work.

- Please observe the safety instructions!

Further documents

For certain tasks, information is available in additional documents.

Document	Contents/topics
Configuration document	Basic information on configuring and ordering the product
Commissioning document	Basic information on installing and commissioning the product

More information

For certain tasks, information is available in other media.

Medium	Contents/topics
Engineering Tools	For commissioning
AKB articles	Additional technical information for users in the Application Knowledge Base
CAD data	Download in different formats from the EASY Product Finder
EPLAN macros	Project planning, documentation and management of projects for EPLAN P8.
Device descriptions	Standardized files for network configuration

Information and tools with regard to the Lenze products can be found on the Internet:
www.Lenze.com \rightarrow Downloads

Notations and conventions

Conventions are used in this document to distinguish between different types of information.

Numeric notation		
Decimal separator	Point	Generally shown as a decimal point. Example: 1234.56
Warnings		
UL Warnings	UL	Are used in English and French.
UR warnings	UR	
Text		
Engineering Tools	" "	Software Example: "Engineer", "EASY Starter"
Icons		
Page reference	\square	Reference to another page with additional information. Example: 16 = see page 16
Documentation reference	(1)	Reference to other documentation with additional information. Example: (:) EDKxxx = see documentation EDKxxx

Layout of the safety instructions

\triangle DANGER!

Indicates an extremely hazardous situation. Failure to comply with this instruction will result in severe irreparable injury and even death.

\. WARNING!

Indicates an extremely hazardous situation. Failure to comply with this instruction may result in severe irreparable injury and even death.

\triangle CAUTION!

Indicates a hazardous situation. Failure to comply with this instruction may result in slight to medium injury.

NOTICE

Indicates a material hazard. Failure to comply with this instruction may result in material damage.

Safety instructions

Disregarding the following basic safety measures and safety information may lead to severe personal injury and damage to property!
Observe all specifications of the corresponding documentation supplied. This is the precondition for safe and trouble-free operation and for obtaining the product features specified.
Please observe the specific safety information in the other sections!

Basic safety instructions

\. DANGER!

Dangerous electrical voltage
Possible consequences: Death or severe injuries from electric shock

- Any work on the device must only be carried out in a deenergized state.
- After switching off the mains voltage, observe the signs on the product.

Product

- The product must only be used as directed.
- Never commission the product in the event of visible damage.
- The product must never be technically modified.
- Never commission the product before assembly has been completed.
- The product must never be operated without required covers.
- Connect/disconnect all pluggable terminals only in de-energized condition.
- Only remove the product from the installation in the de-energized state.

Personnel

Only qualified and skilled personnel are allowed to work with the product. IEC 60364 and/or CENELEC HD 384 define the qualifications of these persons as follows:

- They are familiar with the installation, mounting, commissioning, and operation of the product.
- They possess the appropriate qualifications for their tasks.
- They are familiar with all regulations for the prevention of accidents, directives, and laws applicable at the location and are able to apply them.

Process engineering

The procedural notes and circuit details described are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals described.

Device protection

- The maximum test voltage for insulation tests between a control potential of 24 V and PE must not exceed 110 V DC (EN 61800-5-1).

Application as directed

- The product serves to control three-phase AC motors and servo motors.
- The product must only be actuated with motors that are suitable for the operation with inverters.
- The product is not a household appliance, but is only designed as a component for commercial or professional use in terms of EN 61000-3-2.
- Depending on the degree of protection, the product can be mounted inside and outside control cabinets.
- The product must only be actuated under the operating conditions and power limits specified in this documentation.
- The product meets the protection requirements of 2014/35/EU: Low-Voltage Directive.
- The product is not a machine in terms of 2006/42/EU: Machinery Directive.
- Commissioning or starting the operation as directed of a machine with the product is not permitted until it has been ensured that the machine meets the regulations of the EC Directive 2006/42/EU: Machinery Directive; observe EN 60204-1.
- Commissioning or starting operation as directed is only permissible if the EMC Directive 2014/30/EU is complied with.
- In residential areas, the product may cause EMC interferences. The operator is responsible for taking interference suppression measures.

Foreseeable misuse

Inverters are not to be operated with DC motors.

Residual hazards

Even if notes given are taken into consideration and protective measures are implemented, the occurrence of residual risks cannot be fully prevented.
The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system.
If the above is disregarded, this can lead to severe injuries to persons and damage to property!

\. DANGER!

Danger to life due to electrical voltage!
The product's power connections can still be carrying voltage when the mains supply has been switched off. Possible consequences: Death, severe injury, or burns

- Do not touch the power connections immediately.
- Take note of the corresponding warning plates on the product.
- Check power terminals for isolation from supply.

Product

Observe the warning labels on the product!

Dangerous electrical voltage:

Before working on the product, make sure there is no voltage applied to the power terminals!
After mains disconnection, the power terminals will still carry the hazardous electrical voltage for the time given next to the symbol!

Electrostatic sensitive devices:
Before working on the product, the staff must ensure to be free of electrostatic charge!

High leakage current:
Carry out fixed installation and PE connection in compliance with:
EN 61800-5-1 / EN 60204-1

Hot surface:
Use personal protective equipment or wait until the device has cooled down!

Degree of protection - protection of persons and device protection

- Information applies to the mounted and ready-for-use state.

Motor protection

With some settings of the inverter, the connected motor can be overheated.

- E. g. by longer operation of self-ventilated motors at low speed.
- E. g. by longer operation of DC-injection braking.

Protection of the machine/system

Drives can reach dangerous overspeeds.

- E. g. by setting high output frequencies in connection with motors and machines not suitable for this purpose.
- The inverters do not provide protection against such operating conditions. For this purpose, use additional components.
Switch contactors in the motor cable only if the controller is inhibited.
- Switching while the inverter is enabled is only permissible if no monitoring functions are activated.

Motor

If there is a short circuit of two power transistors, a residual movement of up to $180^{\circ} /$ number of pole pairs can occur at the motor! (e. g. 4-pole motor: residual movement max. $180^{\circ} / 2=90^{\circ}$).

Product information
Features

Product information

Features

0.37 kW ... 5.5 kW

Meaning of the status LEDs for the different networks

Network	LED left	LED right	
CANopen	CAN-RUN	CAN-ERR	
Modbus	COMM		

Identification of the products

In tables, the first 9 digits of the corresponding product code are used to identify the products:

Product code

Mechanical installation

Dimensions

The specified installation clearances are minimum dimensions to ensure a sufficient air circulation for cooling purposes. They do not consider the bend radiuses of the connecting cables.

0.37 kW ... 2.2 kW

The dimensions in mm apply to:

0.37 kW	I51AP137A..3	I51AP137D..3			
0.75 kW	I51AP175A..3	I51AP175D..3		I51AP175F..3	
1.1 kW			I51AP211D..3		I51AP211F..3
1.5 kW			I51AP215D..3		I51AP215F.3
2.2 kW					I51AP222F..3
Weight	1.4 kg	1.4 kg	1.5 kg	1.4 kg	1.5 kg

Mechanical installation Dimensions

$0.5 \mathrm{HP} . . .3 \mathrm{HP}$

The dimensions in inch apply to:

0.5 HP	I51AP137A..3	I51AP137D.3			
1 HP	I51AP175A..3	I51AP175D..3		I51AP175F..3	
1.5 HP			I51AP211D..3		I51AP211F..3
2 HP			I51AP215D.33		I51AP215F.3
3 HP					I51AP222F.3
Weight	3.1 lb	3.1 lb	3.3 lb	3.1 lb	3.3 lb

2.2 kW ... 5.5 kW

The dimensions in mm apply to:

2.2 kW	I51AP222D..3		
3 kW		I51AP230C..3	I51AP230F..3
4 kW		I51AP240C..3	I51AP240F..3
5.5 kW			I51AP255F..3
Weight	1.5 kg	1.6 kg	1.6 kg

8800786

Mechanical installation Dimensions

$3 \mathrm{HP} . . .7 .5 \mathrm{HP}$

The dimensions in inch apply to:

3 HP	I51AP222D..3		
4 HP		I51AP230C..3	I51AP230F..3
5 HP		151 AP240C..3	151AP240F..3
7.5 HP			I51AP255F.3
Weight	3.3 lb	3.5 lb	3.5 lb

8800787

Electrical installation

Important notes

4 DANGER!

Electrical voltage
Possible consequences: Death or severe injuries

- Any work on the inverter must only be carried out in the de-energized state.
- After switching off the mains voltage, wait for at least 3 min before you start working.

\triangle DANGER!

Dangerous electrical voltage
The leakage current against earth (PE) is $>3.5 \mathrm{~mA} \mathrm{AC}$ or $>10 \mathrm{~mA} \mathrm{DC}$.
Possible consequences: Death or severe injuries when touching the device in the event of an error.

- Implement the measures requested in EN 61800-5-1 or EN 60204-1. Especially:
- Fixed installation
- The PE connection must comply with the standards (PE conductor diameter $\geq 10 \mathrm{~mm}^{2}$ or use a double PE conductor)

WARNING!

Dangerous electrical voltage

Device error causes an overvoltage in the system.

- For a voltage supply with DC 24 V ($\pm 20 \%$), use only a safely separated power supply unit according to the valid SELV/PELV requirements.

NOTICE

Mounting not according to protection class
Possible consequences: Material damage due to penetrating humidity and foreign bodies.

- All cable glands and mounting parts must at least correspond to the protection class of the inverter.
- All openings in the housing must be closed according to the protection class.
- The cover must be screwed on with the specified tightening torque.

Electrical installation

Important notes

Remove housing cover and remount

\square For wiring, the housing cover must be removed and then remounted.

Remove cover

1. Press a screwdriver into the housing slot on the bottom of the device.
2. Remove cover.

The terminals are exposed for wiring.

Mount cover

1. Mount the housing cover by carefully pressing it down until it engages.

The cover is mounted.

EMC-compliant installation

The drive system (inverter and drive) only complies with the EMC Directive 2014/30/EU if it is installed according to the guidelines for CE-typical drive systems.
These guidelines should also be followed in installations requiring FCC Part 15 or ICES 001 compliance.

NOTICE

Electromagnetic interferences
Product and peripheral devices may be affected during operation.

- Use integrated conductive shield connections for control lines and motor lines.
- Use central earthing points.

i
These inverters do not have an integrated RFI filter in the AC mains supply.
In order to meet the EMC requirements according to EN 61800-3, an external EMC filter according to IEC EN 60939 must be used.
The user must verify that the conformity with EN 61800-3 is fulfilled.
The following example shows the effective wiring:

$\begin{array}{llll}\text { A } & \text { Shield connection for control connections } & \text { D } & \text { Motor cable with low capacity } \\ \text { B Control line } & \text { E } & \text { Power line }\end{array}$
C EMC cable gland
EMC-compliant installation must be implemented with shielded motor cables of low capacitance. Capacitance per unit length:

- C-core-core/C-core-shielding: < $75 / 150 \mathrm{pF} / \mathrm{m} \leq 2.5 \mathrm{~mm}^{2}$ (\geq AWG 14);
- C-core-core/C-core-shielding: < 150/300 pF/m $\geq 4 \mathrm{~mm}^{2}$ (\leq AWG 12)

Electrical installation

Connection according to UL

Important notes

WARNING!

- UL marking
- The integral solid state short circuit protection included in the inverter does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code / Canadian Electrical Code and any additional local codes.
- Marquage UL
- La protection statique intégrée contre les courts-circuits n'offre pas la même protection que le dispositif de protection du circuit de dérivation. Un tel dispositif doit être fourni, conformément au National Electrical Code / Canadian Electrical Code et aux autres dispositions applicables au niveau local.

WARNING!

- UL marking
- Use $75^{\circ} \mathrm{C}$ copper wire only, except for control circuits.
- Marquage UL
- Utiliser exclusivement des conducteurs en cuivre $75^{\circ} \mathrm{C}$, sauf pour la partie commande.

WARNING!

- UL marking
- Suitable for motor group installation or use on a circuit capable of delivering not more than the RMS symmetrical amperes (SCCR) of the drive at its rated voltage.
- Approved fusing is specified in SCCR tables below.
- Marquage UL
- Convient pour l'utilisation sur une installation avec un groupe de moteurs ou sur un circuit capable de fournir au maximum une valeur de courant efficace symétrique en ampères à la tension assignée de I'appareil.
- Les dispositifs de protection adaptés sont spécifiés dans les SCCR tableaux suivants.

NOTICE

- UL marking
- The opening of the Branch Circuit Protective Device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, current carrying parts and other components of the controller should be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced.
- Marquage UL
- Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défault. Pour limiter le risque d'incendie ou de choc électrique, examiner les pièces porteuses de courant et les autres éléments du contrôleur et les remplacer s'ils sont endommagés. En cas de grillage de l'élément traversé par le courant dans un relais de surcharge, le relais tout entier doit être remplacé.

NOTICE

- UL marking
- Internal overload protection rated for 125 \% of the rated FLA.
- Marquage UL
- Protection contre les surcharges conçue pour se déclencher à 125% de l'intensité assignée à pleine charge.

Fusing data

Branch Circuit Protection (BCP)

Short Circuit Current Ratings (SCCR) with Standard Fuses and Circuit Breaker

(Tested per UL61800-5-1, reference UL file E132659)
These devices are suitable for motor group installation when used with Standard Fuses or Circuit Breaker. For single motor installation, if the fuse value indicated is higher than 400% of the motor current (FLA), the fuse value has to be calculated. If the value of the fuse is below two standard ratings, the nearest standard ratings less than the calculated value shall apply.

Inverter									Standard Fuses (UL248)			Circuit Breaker (UL489)	
Mains	Rated power		SCCR	Max. rated current	Class	SCCR	Max. rated current						
	kW	HP	kA	A		kA	A						
$120 \mathrm{~V}, 1-\mathrm{ph}$	0.37	0.5	5	30	$\mathrm{CC}, \mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$120 \mathrm{~V}, 1-\mathrm{ph}$	0.75	1	5	30	$\mathrm{CC}, \mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$230 \mathrm{~V}, 1 / 3-\mathrm{ph}$	0.37	0.5	42	25	$\mathrm{CC}, \mathrm{CF}, \mathrm{J}, \mathrm{T}$	5							
$230 \mathrm{~V}, 1 / 3-\mathrm{ph}$	0.75	1	42	25	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5							
$230 \mathrm{~V}, 1 / 3-\mathrm{ph}$	1.1	1.5	42	25	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5							
$230 \mathrm{~V}, 1 / 3-\mathrm{ph}$	1.5	2	42	25	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5							
$230 \mathrm{~V}, 1 / 3-\mathrm{ph}$	2.2	3	42	50	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$230 \mathrm{~V}, 3-\mathrm{ph}$	3	4	42	60	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$230 \mathrm{~V}, 3-\mathrm{ph}$	4	5	42	60	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	0.75	1	65	50	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	1.1	1.5	65	50	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	1.5	2	65	50	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	2.2	3	65	50	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	3	4	5	40	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	4	5	5	40	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5	30						
$480 \mathrm{~V}, 3-\mathrm{ph}$	5.5	7.5	5	40	$\mathrm{CF}, \mathrm{J}, \mathrm{T}$	5							

Electrical installation

Mains connection

Mains connection

The connection diagram is considered exemplary for all voltage and power classes. Deviating mains connection diagrams can be found in the corresponding chapters.

1-phase mains connection 120 V

Connection diagrams

Electrical installation

Mains connection
1-phase mains connection 120 V

Terminal data

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7} \ldots \mathbf{0 . 7 5}$
Connection description			Mains connection
Connection			X100
Connection type			Pluggable
Max. cable cross-section		mm^{2}	4
Max. cable cross-section		AWG	10
Stripping length		mm	8
Stripping length		in	0.3
Tightening torque		Nm	0.6
Tightening torque		$\mathrm{lb}-\mathrm{in}$	5.3
Required tool			Screwdriver 0.5 x 3.0

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7} \ldots \mathbf{0 . 7 5}$
Connection description			PE connection
Connection			PE
Max. cable cross-section		mm^{2}	6
Max. cable cross-section		AWG	10
Stripping length		mm	10
Stripping length		in	0.4
Tightening torque		Nm	2
Tightening torque		$\mathrm{lb}-\mathrm{in}$	18
Required tool			Torx key 20

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7} \ldots \mathbf{0 . 7 5}$
Connection description			Motor connection
Connection			X105
Connection type			Pluggable
Max. cable cross-section		mm^{2}	4
Max. cable cross-section		AWG	10
Stripping length		mm	8
Stripping length		in	0.3
Tightening torque		Nm	0.6
Tightening torque		$\mathrm{lb}-\mathrm{in}$	5.3
Required tool			Screwdriver 0.5 x 3.0

Fusing data

A residual current device ($R C D$) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP137A	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP175A	gG/gL, gRL	32	B	32	≥ 30	Typ B

1-phase mains connection 230/240 V

Connection diagrams

Electrical installation

Mains connection
1-phase mains connection 230/240 V

Terminal data

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7} \ldots \mathbf{1 . 5}$	$\mathbf{2 . 2}$
Connection description			Mains connection	
Connection			X100	
Connection type			Pluggable	
Max. cable cross-section		mm^{2}	4	6
Max. cable cross-section		AWG	10	10
Stripping length		mm	8	8
Stripping length		in	0.3	0.3
Tightening torque		Nm	0.6	0.7
Tightening torque		$\mathrm{lb}-\mathrm{in}$	5.3	6.2
Required tool			Screwdriver 0.5 $\times 3.0$	Screwdriver 0.6 x 3.5

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7 \ldots 2 . 2}$
Connection description			PE connection
Connection			PE
Max. cable cross-section		mm^{2}	6
Max. cable cross-section		AWG	10
Stripping length		mm	10
Stripping length		in	0.4
Tightening torque		Nm	$\mathbf{2}$
Tightening torque		$\mathrm{lb}-\mathrm{in}$	18
Required tool			Torx key 20

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 3 7} \ldots \mathbf{1 . 5}$ | $\mathbf{2 . 2}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Motor connection | |
| Connection | | | X105 | |
| Connection type | | | Pluggable | |
| Max. cable cross-section | | mm^{2} | 4 | 6 |
| Max. cable cross-section | | AWG | 10 | 10 |
| Stripping length | | mm | 8 | 8 |
| Stripping length | | in | 0.3 | 0.3 |
| Tightening torque | | Nm | 0.6 | 0.7 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | 5.3 | 6.2 |
| Required tool | | | Screwdriver 0.5 x 3.0 | Screwdriver 0.6 x 3.5 |

Fusing data

A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP137D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP175D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP211D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP215D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP222D	gG/gL, gRL	40	B	32	≥ 30	Typ B

1-phase mains connection 230/240 V "Light Duty"

Connection diagrams

- Connection diagrams 127

Terminal data

- Terminal data $■ 28$

Fusing data

A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current	Aype	mA
		A		32	≥ 30	
I51AP137D	gG/gL, gRL	40	B	Typ B		
I51AP175D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP211D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP215D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP222D	gG/gL, gRL	40	B	32	≥ 30	Typ B

Electrical installation
Mains connection
3 -phase mains connection 230/240 V
3-phase mains connection 230/240 V

Connection diagrams

Terminal data

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 3 7} \ldots \mathbf{1 . 5}$ | $\mathbf{2 . 2} \ldots \mathbf{4}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Mains connection | |
| Connection | | | X100 | |
| Connection type | | | 4 | 6 |
| Max. cable cross-section | | mm^{2} | 10 | 10 |
| Max. cable cross-section | | AWG | 8 | 8 |
| Stripping length | | mm | 0.3 | 0.3 |
| Stripping length | | in | 0.6 | 0.7 |
| Tightening torque | | Nm | 5.3 | 6.2 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | Screwdriver 0.5 x 3.0 | Screwdriver 0.6 x 3.5 |
| Required tool | | | | |

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 3 7} \ldots \mathbf{\text { . 4 }}$
Connection description			PE connection
Connection			PE
Max. cable cross-section		mm^{2}	6
Max. cable cross-section		AWG	10
Stripping length		mm	10
Stripping length		in	0.4
Tightening torque		Nm	$\mathbf{2}$
Tightening torque		$\mathrm{lb}-\mathrm{in}$	18
Required tool			Torx key 20

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 3 7} \ldots \mathbf{1 . 5}$ | $\mathbf{2 . 2} \ldots \mathbf{4}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Motor connection | |
| Connection | | | X105 | |
| Connection type | | | Pluggable | |
| Max. cable cross-section | | mm^{2} | 4 | 6 |
| Max. cable cross-section | | AWG | 10 | 10 |
| Stripping length | | mm | 8 | 8 |
| Stripping length | | in | 0.3 | 0.3 |
| Tightening torque | | Nm | 0.6 | 0.7 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | 5.3 | 6.2 |
| Required tool | | | Screwdriver 0.5 $\times 3.0$ | Screwdriver 0.6 x 3.5 |

Fusing data

A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP137D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP175D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP211D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP215D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP222D	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP230C	gG/gL, gRL	80	B	32	≥ 30	Typ B
I51AP240C	gG/gL, gRL	80	B	32	≥ 30	Typ B

Electrical installation

Mains connection
3 －phase mains connection 230／240 V＂Light Duty＂

3－phase mains connection 230／240 V＂Light Duty＂

Connection diagrams

－Connection diagrams ■30

Terminal data

－Terminal data $■ 31$

Fusing data

i
A residual current device（RCD）is optional．
Fusing data for UL／NEC compliant installations：Fusing data $⿴ 囗 十 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max．rated current	Characteristic	Max．rated current		Type
		A		A	mA	
I51AP137D	gG／gL，gRL	40	B	32	≥ 30	Typ B
I51AP175D	gG／gL，gRL	40	B	32	≥ 30	Typ B
I51AP211D	gG／gL，gRL	40	B	32	≥ 30	Typ B
I51AP215D	gG／gL，gRL	40	B	32	≥ 30	Typ B
I51AP222D	gG／gL，gRL	40	B	32	≥ 30	Typ B
I51AP230C	gG／gL，gRL	80	B	32	≥ 30	Typ B
I51AP240C	gG／gL，gRL	80	B	32	≥ 30	Typ B

3-phase mains connection 400 V

Connection diagrams

Electrical installation

Mains connection
3-phase mains connection 400 V

Terminal data

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 7 5} \ldots \mathbf{2 . 2}$ | $\mathbf{3} \ldots \mathbf{5 . 5}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Mains connection | |
| Connection | | | X100 | |
| Connection type | | | Pluggable | |
| Max. cable cross-section | | mm^{2} | 4 | 6 |
| Max. cable cross-section | | AWG | 10 | 10 |
| Stripping length | | mm | 8 | 8 |
| Stripping length | | in | 0.3 | 0.3 |
| Tightening torque | | Nm | 0.6 | 0.7 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | 5.3 | 6.2 |
| Required tool | | | Screwdriver 0.5 x 3.0 | Screwdriver 0.6 x 3.5 |

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 7 5} \ldots \mathbf{5 . 5}$
Connection description			PE connection
Connection			PE
Max. cable cross-section		mm^{2}	6
Max. cable cross-section		AWG	10
Stripping length		mm	10
Stripping length		in	0.4
Tightening torque		Nm	2
Tightening torque		$\mathrm{lb}-\mathrm{in}$	18
Required tool			Torx key 20

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 7 5} \ldots \mathbf{2 . 2}$ | 3... 5.5 |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Motor connection | |
| Connection | | | Pluggable | |
| Connection type | | | | |
| Max. cable cross-section | | mm^{2} | 10 | 6 |
| Max. cable cross-section | | AWG | 8 | 10 |
| Stripping length | | mm | 0.3 | 8 |
| Stripping length | | in | 0.6 | 0.3 |
| Tightening torque | | Nm | 5.3 | 0.7 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | Screwdriver 0.5 $\times 3.0$ | 6.2 |
| Required tool | | | | Screwdriver 0.6 x 3.5 |

Fusing data

A residual current device ($R C D$) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP175F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP211F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP215F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP222F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP230F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP240F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP255F	gG/gL, gRL	40	B	32	≥ 30	Typ B

3-phase mains connection 400 V "Light Duty"

Connection diagrams

- Connection diagrams ■33

Terminal data

- Terminal data $■ 34$

Fusing data

i
A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
151AP175F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP211F	gG/gL, gRL	32	B	32	≥ 30	Typ B
151AP215F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP222F	gG/gL, gRL	32	B	32	≥ 30	Typ B
151AP230F	gG/gL, gRL	40	B	32	≥ 30	Typ B
151AP240F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP255F	gG/gL, gRL	40	B	32	≥ 30	Typ B

Electrical installation
Mains connection
3 -phase mains connection 480 V
3-phase mains connection 480 V

Connection diagrams

Terminal data

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 7 5} \ldots \mathbf{2 . 2}$	$\mathbf{3} . .5 \mathbf{5 . 5}$
Connection description			Mains connection	
Connection			X100	
Connection type				
Max. cable cross-section		mm^{2}	10	6
Max. cable cross-section		AWG	8	10
Stripping length		mm	0.3	8
Stripping length		in	0.6	0.3
Tightening torque		Nm	5.3	0.7
Tightening torque		$\mathrm{lb}-\mathrm{in}$	Screwdriver 0.5 x 3.0	6.2
Required tool				Screwdriver 0.6 x 3.5

Rated power	$\mathbf{P}_{\text {rated }}$	kW	$\mathbf{0 . 7 5} \ldots \mathbf{5 . 5}$
Connection description			PE connection
Connection			PE
Max. cable cross-section		mm^{2}	6
Max. cable cross-section		AWG	10
Stripping length		mm	10
Stripping length		in	0.4
Tightening torque		Nm	2
Tightening torque		$\mathrm{lb}-\mathrm{in}$	18
Required tool			Torx key 20

| Rated power | $\mathbf{P}_{\text {rated }}$ | kW | $\mathbf{0 . 7 5} \ldots \mathbf{2 . 2}$ | $\mathbf{3} \ldots \mathbf{5 . 5}$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| Connection description | | | Motor connection | |
| Connection | | | X105 | |
| Connection type | | | Pluggable | |
| Max. cable cross-section | | mm^{2} | 4 | 6 |
| Max. cable cross-section | | AWG | 10 | 10 |
| Stripping length | | mm | 8 | 8 |
| Stripping length | | in | 0.3 | 0.3 |
| Tightening torque | | Nm | 0.6 | 0.7 |
| Tightening torque | | $\mathrm{lb}-\mathrm{in}$ | 5.3 | 6.2 |
| Required tool | | | Screwdriver 0.5 $\times 3.0$ | Screwdriver 0.6 x 3.5 |

Fusing data

A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data $■ 23$

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP175F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP211F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP215F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP222F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP230F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP240F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP255F	gG/gL, gRL	40	B	32	≥ 30	Typ B

Electrical installation

Mains connection
3-phase mains connection 480 V "Light Duty"

3-phase mains connection 480 V "Light Duty"

Connection diagrams

- Connection diagrams ■36

Terminal data

- Terminal data ■ 37

Fusing data

i
A residual current device (RCD) is optional.
Fusing data for UL/NEC compliant installations: Fusing data \Vdash_{23}

Inverter	Fuse		Circuit breaker		RCD	
	Characteristic	Max. rated current	Characteristic	Max. rated current		Type
		A		A	mA	
I51AP175F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP211F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP215F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP222F	gG/gL, gRL	32	B	32	≥ 30	Typ B
I51AP230F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP240F	gG/gL, gRL	40	B	32	≥ 30	Typ B
I51AP255F	gG/gL, gRL	40	B	32	≥ 30	Typ B

Control connections

The designations of the terminals $\mathrm{X} 216, \mathrm{X} 3$ and X 9 are located on the inside of the cover.

Connection description			Control terminals	Relay output
Connection			X3	X9
Connection type			Non-pluggable	Non-pluggable
Max. cable cross-section		mm^{2}	1.5	1.5
Max. cable cross-section		AWG	16	16
Stripping length		mm	9	9
Stripping length		in	0.35	0.35
Required tool			Screwdriver 0.4×2.5	

Electrical installation

Networks
CANopen

Networks

CANopen

The network must be terminated with a 120Ω resistor at the physically first and last node. Connect resistor to terminals $\mathrm{TB} / \mathrm{CH}$ and $\mathrm{TA} / \mathrm{CL}$.

Typical topologies

Connection description			CANopen
Connection			X216
Connection type			Non-pluggable
Max. cable cross-section		mm^{2}	1.5
Max. cable cross-section		AWG	16
Stripping length		mm	9
Stripping length		in	0.35
Required tool			Screwdriver 0.4×2.5

Modbus RTU

iThe network must be terminated with a 120Ω resistor at the physically first and last node. Connect resistor to terminals $\mathrm{TB} / \mathrm{CH}$ and $\mathrm{TA} / \mathrm{CL}$.

Typical topologies

Connection description			Modbus RTU
Connection			X216
Connection type			Non-pluggable
Max. cable cross-section		mm^{2}	1.5
Max. cable cross-section		AWG	16
Stripping length		mm	9
Stripping length		in	0.35
Required tool			Screwdriver 0.4 $\times 2.5$

Commissioning

Commissioning

Important notes

\. DANGER!

Incorrect wiring can cause unexpected states during the commissioning phase.
Possible consequences: death, severe injuries or damage to property
Ensure the following before switching on the mains voltage:

- Wiring must be complete and correct.
- Wiring must be free of short circuits and earth faults.
- The motor circuit configuration (star/delta) must be adapted to the inverter output voltage.
- The motor must be connected in-phase (direction of rotation).
- The "emergency off" function of the overall system must operate correctly.

\. DANGER!

Incorrect settings during commissioning may cause unexpected and dangerous motor and system movements.
Possible consequences: death, severe injuries or damage to property

- Clear hazardous area.
- Observe safety instructions and safety clearances.

Initial switch-on and functional test

Target: Get the motor connected to the inverter to rotate in best time.
Necessary conditions:

- The power rating of the motor connected is appropriate for the inverter.
- The parameter settings correspond to the delivery status (Lenze setting).

1. Preparation

1. Wire the power connections. Electrical installation $\subseteq 19$
2. Wire digital inputs X3/DI1 (start/stop), X3/DI3 (reversal) and X3/DI4 (frequency preset 20 Hz).
3. Do not wire terminal X3/AI1 (analog setpoint selection) or set to GND.
4. Switch on mains and check readiness for operation
5. Switch on mains voltage.
6. Observe LED status displays "RDY" and "ERR" on the front of the inverter:
a) When the blue LED "RDY" blinks and the red LED "ERR" is off, the inverter is ready for operation. The controller is inhibited.
You can start the drive.
b) If the red LED "ERR" remains lit, a fault is active.

Eliminate the fault before you carry on with the functional test.

Carry out functional test

1. Start drive

1. Start inverter: X3/DI1 = HIGH.
2. Activate frequency preset $1(20 \mathrm{~Hz})$ as speed setpoint: X3/DI4 $=$ HIGH.

The drive rotates with 20 Hz .
3. Optional: Activate reversal
a) $\mathrm{X} 3 / \mathrm{DI} 3=\mathrm{HIGH}$.

The drive rotates at 20 Hz in the opposite direction.
b) Deactivate reversal again: X3/DI3 $=$ LOW.

Speed characteristic (example)

2. Stop drive

1. Deactivate frequency preset 1 again: $\mathrm{X} 3 / \mathrm{DI} 4=$ LOW .
2. Stop inverter again: X3/DI1 = LOW.

The functional test has been completed.

Control with Keypad

The "Keypad Full Control" control mode can be activated with the keypad key "CTRL". Both the control and the setpoint selection are then made via the keypad. This special control mode can be, for instance, used during the commissioning phase if external control and setpoint sources are not ready to use yet.
If the local keypad control is active, "LOC" is displayed in the lower status row of the keypad and the red LED flashed.

- After the "CTRL" key has been pressed, the activation of the control mode must be confirmed with the \downarrow key. (The \emptyset key serves to cancel the action.)
- When the control mode is changed over, the motor is first stopped and the "Forward" direction of rotation is set. Then, the motor can be started and stopped via the keypad.

Using accessories
Keypad operating mode

Using accessories

Keypad

Keypad operating mode

Function of keypad keys in operating mode

In the operating mode, the keypad can be used for local control and for manual setpoint selection.

Keypad parameterisation mode

Function of the keypad keys in the parameterisation mode

In the parameterisation mode of the keypad you can have actual values of the inverter displayed for purposes of diagnostics and change settings of the inverter.

Diagnostics and fault elimination
LED status display

Diagnostics and fault elimination

Diagnostic interfaces

Depending on the purchase order, the inverter will include one of the following modules:

- No module
- Keypad
- WLAN module
- USB module

Further information on the diagnostic modules can be found here: Download

Keypad

- Keypad ■44

WLAN module

A connection to the WLAN module is established using the connection data.

Connection data (default settings)	
IP address	192.168 .178 .1
SSID	"Product type»_"10-character identification code»
Password	password

LED status display

"RDY" LED (blue)	"ERR" LED (red)	Status/meaning																																						
Off	Off	Supply voltage not available.																																						
		Initialisation in progress (inverter is being started.)																																						
On	On																																							
$\underset{\text { Blinks }(1 \mathrm{~Hz})}{\square}$	Off	Safe torque off (STO) active. The inverter has been inhibited by the integrated safety system.																																						
$\square \underset{\text { Blinks }(1 \mathrm{~Hz})}{\square}$	On	Inverter inhibited, error active.																																						
On	Off	Inverter enabled. Motor rotates according to the specified setpoint or quick stop is active.																																						
MAMINAINII Both LEDs are bl alternat	MIDINIII ing in a rapidly mode	Firmware update active.																																						
\|IIIIIII																				 Both LEDs are blin synchron	IIII\|																		in a very rapidly s mode	"Visual tracking" function is active.

Technical data

Standards and operating conditions

Conformities and approvals

Conformities		
CE	2014/30/EU	EMC Directive (reference: CE-typical drive system)
	2014/35/EU	Low-Voltage Directive
EAC	TP TC 020/2011	Eurasian conformity: Electromagnetic compatibility of technical means
	TP TR 004/2011	Eurasian conformity: Safety of low voltage equipment
RoHS	2011/65/EU	Restrictions on the use of certain hazardous substances in electrical and electronic devices
Approvals		
		File No. E132659
UL	UL 61800-5-1	for USA and Canada (requirements of the CSA 22.2 No. 274)

Protection of persons and device protection

Degree of protection			Information applies to the mounted and ready-for-use
EN	EN 60529	IP20	
NEMA	NEMA 250	Type 1	
UL	UL 50		
Insulation resistance			
Overvoltage category	EN 61800-5-1	II	> 2000 m ü. NN
		III	0 ... 2000 m ü. NN
Insulation of control circuits			
	EN 61800-5-1	Safe mains isolation	double/reinforced insulation
Leakage current			
AC	EN 61800-5-1	$>3.5 \mathrm{~mA}$	Please observe regulations and safety instructions!
DC		$>10 \mathrm{~mA}$	
Starting current			
		$\leq 3 \times$ rated mains current	
Protective measures			
Earth fault resistance			Earth-fault protected depending on operating status
Motor stall protection			
Short-circuit strength			
Overvoltage resistance			
Overtemperature of motor			$1^{2} \times$ x monitoring

EMC data

Operation on public supply systems			The machine or system manufacturer is responsible for
$>1 \mathrm{~kW}$, mains current \leq 16 A	EN 61000-3-2	no additional measures	
<1kW		with mains choke	
Mains current > 16 A	EN 61000-3-12	With mains choke or mains filter	When designed for rated power.
Noise emission			
Category C1	EN 61800-3		See rated data
Category C2			
Category C3			
Noise immunity			
	EN 61800-3	Requirements fulfilled	

Technical data
Standards and operating conditions
Electrical supply conditions

Motor connection

Requirements for the shielded motor cable			
Capacitance per unit length		< 150/300 pF/m	C core-core/C core-shield $\leq 4 \mathrm{~mm}^{2} /$ AWG 12
		< 75/150 pF/m	C core-core/C core-shield $\leq 2.5 \mathrm{~mm}^{2} /$ AWG 14
Electric strength		Uo/U $=0.6 / 1.0 \mathrm{kV}$	$\mathrm{U}=$ r.m.s. value from external conductor to external conductor
			Uo = r.m.s. value external conductor to PE
	UL	$\mathrm{U} \geq 600 \mathrm{~V}$	$\mathrm{U}=$ r.m.s. value from external conductor to external conductor

Environmental conditions

Energy efficiency			
High Efficiency	EN 50598-2	Class IE2	
Climate			
Storage	EN 60721-3-1	$1 \mathrm{~K} 3\left(-30 \ldots+60^{\circ} \mathrm{C}\right)$	
Transport	EN 60721-3-2	2K3 (-30 ... $+70^{\circ} \mathrm{C}$)	
Operation	EN 60721-3-3	$3 \mathrm{~K} 3\left(-30 \ldots+55{ }^{\circ} \mathrm{C}\right)$	Operation at a switching frequency of 2 or 4 kHz : Above $+45^{\circ} \mathrm{C}$: reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
			Operation at a switching frequency of 8,12 or 16 kHz : Above $+40^{\circ} \mathrm{C}$: reduce rated output current by $2.5 \% /{ }^{\circ} \mathrm{C}$
Site altitude			
0 ... 1000 m ü. NN			
1000 ... 4000 m ü. NN			Reduce rated output current by $5 \% / 1000 \mathrm{~m}$
Pollution			
	EN 61800-5-1	Degree of pollution 2	
	UL 61800-5-1		
Vibration resistance			
Transport	EN 60721-3-2	2M2 (sine, shock)	in original packaging
Operation	EN 61800-5-1	Amplitude 0.075 mm	$10 \ldots 57 \mathrm{~Hz}$
		acceleration resistant up to 1 g	57 ... 150 Hz
	German Lloyd	Amplitude 1 mm	$5 \ldots 13.2 \mathrm{~Hz}$
		acceleration resistant up to $0.7 \mathrm{~g}$	13.2 ... 100 Hz

Electrical supply conditions

Power systems			
TN			Voltage to earth: max. 300 V
TT			

1-phase mains connection 120 V

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
- At switching frequency $8 \mathrm{kHz}, 12 \mathrm{kHz}$ or 16 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Technical data

1-phase mains connection 230/240 V
Rated data

1-phase mains connection 230/240 V

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
- At switching frequency $8 \mathrm{kHz}, 12 \mathrm{kHz}$ or 16 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			I51AP				
			137D	175D	211D	215D	222D
Rated power	$\mathbf{P}_{\text {rated }}$	kW	0.37	0.75	1.1	1.5	2.2
Rated power	$\mathbf{P}_{\text {rated }}$	HP	0.5	1	1.5	2	3
Mains voltage range			1/PE AC $170 \mathrm{~V} \ldots . .264 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$				
Output voltage			3 AC 0-230/240 V				
Rated mains current							
without mains choke		A	5.7	10	14.3	16.7	22.5
with mains choke		A	-				
Apparent output power		kVA	0.9	1.6	2.3	2.6	3.6
Rated output current							
2 kHz		A	2.4	4.2	6	7	9.6
4 kHz		A	2.4	4.2	6	7	9.6
8 kHz		A	2.4	4.2	6	7	9.6
12 kHz		A	2.2	3.8	5.4	6.3	8.6
16 kHz		A	1.6	2.8	4	4.7	6.4
Power loss							
2 kHz		W	19	30	38	45	62
4 kHz		W	20	32	40	48	66
8 kHz		W	24	40	51	61	85
12 kHz		W	23	38	54	65	91
16 kHz		W	22	35	49	58	81
Cyclic mains switching			3 times per minute				
Brake chopper							
Max. output current			-				
Min. Brake resistor			-				
Max. shielded motor cable length							
without EMC category		m	30				
$\begin{aligned} & \text { Category C1 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, \\ & 8 \mathrm{kHz} \text {) } \end{aligned}$		m	-				
$\begin{aligned} & \text { Category C2 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-				
$\begin{aligned} & \text { Category C3 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-				
Max. Unshielded motor cable length							
without EMC category		m	60		80		

1-phase mains connection 230/240 V "Light Duty"

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Technical data

3-phase mains connection 230/240 V
Rated data

3-phase mains connection 230/240 V

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
- At switching frequency $8 \mathrm{kHz}, 12 \mathrm{kHz}$ or 16 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			I51AP						
			137D	175D	211D	215D	222D	230C	240C
Rated power	$\mathbf{P}_{\text {rated }}$	kW	0.37	0.75	1.1	1.5	2.2	3	4
Rated power	$\mathbf{P}_{\text {rated }}$	HP	0.5	1	1.5	2	3	4	5
Mains voltage range			3/PE AC 195 V ... $264 \mathrm{~V}, 45 \mathrm{~Hz}$... 65 Hz						
Output voltage			3 AC 0-230/240 V						
Rated mains current									
without mains choke		A	3.9	6.4	7.8	9.5	13.6	15	20.6
with mains choke		A				-			
Apparent output power		kVA	0.9	1.6	2.3	2.6	3.6	4.5	6.2
Rated output current									
2 kHz		A	2.4	4.2	6	7	9.6	12	16.5
4 kHz		A	2.4	4.2	6	7	9.6	12	16.5
8 kHz		A	2.4	4.2	6	7	9.6	12	16.5
12 kHz		A	2.2	3.8	5.4	6.3	8.6	10.8	14.9
16 kHz		A	1.6	2.8	4	4.7	6.4	8	11
Power loss									
2 kHz		W	19	30	38	45	62	79	102
4 kHz		W	20	32	40	48	66	84	108
8 kHz		W	24	40	51	61	85	109	140
12 kHz		W	23	38	54	65	91	104	133
16 kHz		W	22	35	49	58	81	104	133
Cyclic mains switching						s per m			
Brake chopper									
Max. output current						-			
Min. Brake resistor						-			
Max. shielded motor cable length									
without EMC category		m	30					50	
$\begin{aligned} & \text { Category C1 (2 kHz, } 4 \mathrm{kHz}, \\ & 8 \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz} \text {) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60		80			100	

3-phase mains connection 230/240 V "Light Duty"

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			151AP						
			137D	175D	211D	215D	222D	230C	240C
Rated power	$\mathbf{P}_{\text {rated }}$	kW	0.55	1.1	1.5	2.2	3	4	5.5
Rated power	$\mathbf{P}_{\text {rated }}$	HP	0.75	1.5	2	3	4	5	7.5
Mains voltage range			3/PE AC 195 V ... $264 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Output voltage			3 AC 0-230/240 V						
Rated mains current									
without mains choke		A	4.7	7.7	9.4	11.4	16.4	17.3	23.8
with mains choke		A	-						
Apparent output power		kVA	1.2	2.2	2.6	3.6	4.9	6.2	8.7
Rated output current									
2 kHz		A	2.9	5	7.2	8.4	11.5	14.4	19.8
4 kHz		A	2.9	5	7.2	8.4	11.5	14.4	19.8
Power loss									
2 kHz		W	30	38	45	62	79	102	137
4 kHz		W	32	40	48	66	84	108	145
Cyclic mains switching			3 times per minute						
Brake chopper									
Max. output current			-						
Min. Brake resistor			-						
Max. shielded motor cable length									
without EMC category		m	30					50	
$\begin{aligned} & \text { Category C1 (} 2 \mathrm{kHz}, 4 \mathrm{kHz} \text {, } \\ & 8 \mathrm{kHz} \text {) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \text { kHz) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz} \text {) } \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60		80			100	

Technical data

3 -phase mains connection 400 V
Rated data

3-phase mains connection 400 V

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
- At switching frequency $8 \mathrm{kHz}, 12 \mathrm{kHz}$ or 16 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			I51AP						
			175F	211F	215F	222F	$230 F$	$240 F$	255F
Rated power	$\mathbf{P}_{\text {rated }}$	kW	0.75	1.1	1.5	2.2	3	4	5.5
Rated power	$\mathbf{P}_{\text {rated }}$	HP	1	1.5	2	3	4	5	7.5
Mains voltage range			3/PE AC $340 \mathrm{~V} \ldots 528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Output voltage			3 AC 0-400/480 V						
Rated mains current									
without mains choke		A	3.3	4.4	5.4	7.8	9.6	12.5	17.2
with mains choke		A				-			
Apparent output power		kVA	1.6	2.1	2.6	3.8	4.9	6.4	8.7
Rated output current									
2 kHz		A	2.4	3.2	3.9	5.6	7.3	9.5	13
4 kHz		A	2.4	3.2	3.9	5.6	7.3	9.5	13
8 kHz		A	2.4	3.2	3.9	5.6	7.3	9.5	13
12 kHz		A	1.9	2.9	3.5	5	5.8	7.6	10.4
16 kHz		A	1.4	2.1	2.6	3.7	4.9	6.3	8.7
Power loss									
2 kHz		W	30	38	45	62	79	102	137
4 kHz		W	32	40	48	66	84	108	145
8 kHz		W	40	51	61	85	109	140	189
12 kHz		W	38	54	65	91	104	133	180
16 kHz		W	35	49	58	81	104	133	180
Cyclic mains switching						s per m			
Brake chopper									
Max. output current						-			
Min. Brake resistor						-			
Max. shielded motor cable length									
without EMC category		m	30				50		
$\begin{aligned} & \text { Category C1 (2 kHz, } 4 \mathrm{kHz}, \\ & 8 \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60	80			100		

3-phase mains connection 400 V "Light Duty"

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			151AP						
			175F	211F	215F	222F	230F	240F	255F
Rated power	$\mathbf{P}_{\text {rated }}$	kW	1.1	1.5	2.2	3	4	5.5	7.5
Rated power	$\mathbf{P}_{\text {rated }}$	HP	1.5	2	3	4	5	7.5	10
Mains voltage range			3/PE AC $340 \mathrm{~V} \ldots 528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Output voltage			3 AC 0-400/480 V						
Rated mains current									
without mains choke		A	4.5	5	6.1	8.7	10.3	14	18.3
with mains choke		A	-						
Apparent output power		kVA	2.1	2.6	3.6	4.9	6.4	8.7	11
Rated output current									
2 kHz		A	2.9	3.8	4.7	6.7	8.8	11.9	15.6
4 kHz		A	2.9	3.8	4.7	6.7	8.8	11.9	15.6
Power loss									
2 kHz		W	38	45	62	79	102	137	172
4 kHz		W	40	48	66	84	108	145	183
Cyclic mains switching			3 times per minute						
Brake chopper									
Max. output current			-						
Min. Brake resistor			-						
Max. shielded motor cable length									
without EMC category		m	30				50		
$\begin{aligned} & \text { Category C1 (} 2 \mathrm{kHz}, 4 \mathrm{kHz} \text {, } \\ & 8 \mathrm{kHz} \text {) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \text { kHz) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz} \text {) } \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60	80			100		

Technical data

3-phase mains connection 480 V
Rated data

3-phase mains connection 480 V

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
- At switching frequency $8 \mathrm{kHz}, 12 \mathrm{kHz}$ or 16 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			I51AP						
			175F	211F	215F	222F	230F	240F	255F
Rated power	$\mathbf{P}_{\text {rated }}$	kW	0.75	1.1	1.5	2.2	3	4	5.5
Rated power	$\mathrm{P}_{\text {rated }}$	HP	1	1.5	2	3	4	5	7.5
Mains voltage range			3/PE AC $340 \mathrm{~V} \ldots 528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Output voltage			3 AC 0-400/480 V						
Rated mains current									
without mains choke		A	2.8	3.7	4.5	6.5	8	10.5	14.3
with mains choke		A	-						
Apparent output power		kVA	1.7	2.4	2.8	3.9	5.1	6.6	8.9
Rated output current									
2 kHz		A	2.1	3	3.5	4.8	6.3	8.2	11
4 kHz		A	2.1	3	3.5	4.8	6.3	8.2	11
8 kHz		A	2.1	3	3.5	4.8	6.3	8.2	11
12 kHz		A	1.7	2.7	3.2	4.3	5	6.6	8.8
16 kHz		A	1.3	2	2.3	3.2	4.2	5.5	7.3
Power loss									
2 kHz		W	30	38	45	62	79	102	137
4 kHz		W	32	40	48	66	84	108	145
8 kHz		W	40	51	61	85	109	140	189
12 kHz		W	38	54	65	91	104	133	180
16 kHz		W	35	49	58	81	104	133	180
Cyclic mains switching			3 times per minute						
Brake chopper									
Max. output current			-						
Min. Brake resistor			-						
Max. shielded motor cable length									
without EMC category		m	30				50		
$\begin{aligned} & \text { Category C1 (} 2 \mathrm{kHz}, 4 \mathrm{kHz}, \\ & 8 \mathrm{kHz} \text {) } \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60	80			100		

3-phase mains connection 480 V "Light Duty"

Rated data

The output currents apply to these operating conditions:

- At switching frequency 2 kHz or 4 kHz : Ambient temperature max. $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Inverter			I51AP						
			175F	211F	215F	222F	230F	240F	255F
Rated power	$\mathbf{P}_{\text {rated }}$	kW	1.1	1.5	2.2	3	4	5.5	7.5
Rated power	$\mathbf{P}_{\text {rated }}$	HP	1.5	2	3	4	5	7.5	10
Mains voltage range			3/PE AC $340 \mathrm{~V} \ldots 528 \mathrm{~V}, 45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$						
Output voltage			3 AC 0-400/480 V						
Rated mains current									
without mains choke		A	3.9	4.2	5.1	7.3	8.6	11.2	15.3
with mains choke		A	-						
Apparent output power		kVA	2.4	2.8	3.9	5.1	6.6	8.9	11.3
Rated output current									
2 kHz		A	2.5	3.6	4.2	5.8	7.6	9.8	13.2
4 kHz		A	2.5	3.6	4.2	5.8	7.6	9.8	13.2
Power loss									
2 kHz		W	38	45	62	79	102	137	172
4 kHz		W	40	48	66	84	108	145	183
Cyclic mains switching			3 times per minute						
Brake chopper									
Max. output current			-						
Min. Brake resistor			-						
Max. shielded motor cable length									
without EMC category		m	30				50		
$\begin{aligned} & \text { Category C1 }(2 \mathrm{kHz}, 4 \mathrm{kHz}, \\ & 8 \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C2 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
$\begin{aligned} & \text { Category C3 (2 kHz, } 4 \mathrm{kHz}, 8 \\ & \mathrm{kHz}) \end{aligned}$		m	-						
Max. Unshielded motor cable length									
without EMC category		m	60	80			100		

Environmental notes and recycling

Lenze has been certified according to the global environmental management standard (DIN EN) ISO 14001 for many years. As part of our environmental policy and the associated climate responsibility, please observe the following information on hazardous substances and the recycling of Lenze products and their packaging:

Lenze products are subject in part to EU Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS). This is documented accordingly in the EU Declaration of Conformity and with the CE mark.

Lenze products are not subject to EU Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), but do sometimes contain batteries/rechargeable batteries in accordance with EU Directive 2006/66/EC (Battery Directive). The separate from domestic waste disposal route is shown by the corresponding labeling with the "crossed-out garbage can". Any batteries/rechargeable batteries included are designed for the service life of the product and do not have to be replaced or otherwise removed by the end user.

Lenze products are usually sold with cardboard or plastic packaging. This packaging corresponds to EU Directive 94/62/EC on packaging and packaging waste (Packaging Directive). The required waste disposal route is shown by material-specific labeling with the "recycling triangle".
Example: "21-Miscellaneous cardboard"
REACH Lenze products are subject to the European Regulation EC No. 1907/2006 (REACH chemical regulation). When used as intended, exposure of substances to humans, animals and the environment is excluded.

Lenze products are industrial electrical and electronic products and are to be disposed of professionally. Both the mechanical and electrical components, such as electric motors, gearboxes, or inverters, contain valuable raw materials that can be recycled and reused. Proper recycling and thus maintaining the highest possible reusable materials cycle is therefore important and sensible from an economic and ecological point of view.

- Always coordinate professional waste disposal with your local waste disposal company.
- Separate mechanical and electrical components, packaging, hazardous waste (e.g. gearbox oils), and batteries/rechargeable batteries wherever possible.
- Dispose of the separated waste in an environmentally friendly and proper way (not with household waste or municipal bulky waste). energy efficiency, can be found on the Internet:
www.Lenze.com \rightarrow search word: "Sustainability"

Lenze SE
Postfach 101352 • 31763 Hameln
Hans-Lenze-Straße 1-31855 Aerzen
GERMANY
Hannover HRB 204803
Phone +49 5154 82-0
Fax +49 5154 82-2800
sales.de@lenze.com
www.Lenze.com
Lenze Americas Repair
630 Douglas Street
Uxbridge, MA 01569
UNITED STATES
+1 508 278-9100
+1 800 217-9100 (toll free)
+1508278-6620
repair.us@lenze.com

