SMV

Lenze

Copyright © 2013-2006 Lenze Americas Corporation

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission from Lenze Americas Corporation. The information and technical data in this manual are subject to change without notice. Lenze Americas Corporation makes no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of it's merchantability and fitness for a given purpose. Lenze Americas Corporation assumes no responsibility for any errors that may appear in this manual.
All information given in this documentation has been carefully selected and tested for compliance with the hardware and software described. Nevertheless, discrepancies cannot be ruled out. We do not accept any responsibility nor liability for damages that may occur. Any necessary corrections will be implemented in subsequent editions.
This document printed in the United States.

Contents

About theselnstructions 2
1 Safety Information 3
2 Technical Data 7
2.1 Standards and Application Conditions 7
2.2 SMV Type Number Designation. 8
2.3 Ratings 9
3 Installation 12
3.1 Dimensions and Mounting 12
3.1.1 NEMA 1 (IP31) Models $\leq 30 \mathrm{HP}$ (22kW). 12
3.1.2 NEMA 1 (IP31) Models > 30HP (22kW). 13
3.1.3 NEMA 4X (IP65) Models 14
3.1.4 NEMA 4X (IP65) Models with Disconnect Switch 15
3.2 Electrical Installation 16
3.2.1 Power Connections 16
3.2.1.1 Mains Connection to 120VAC Single-Phase Supply 16
3.2.1.2 Mains Connection to 240VAC Single-Phase Supply 17
3.2.1.3 Mains Connection to Three-Phase Supply 17
3.2.1.4 Motor Connection 17
3.2.1.5 Installation Recommendations for EMC Compliance 18
3.2.1.6 NEMA 4X (IP65) Input Terminal Block 18
3.2.1.7 Dynamic Brake Connections 19
3.2.2 Fuses/Cable Cross-Sections 20
3.2.3 Control Terminals 21
4 Commissioning 23
4.1 Local Keypad \& Display 23
4.2 Drive Display and Modes of Operation. 25
4.3 Parameter Setting 26
4.4 Electronic Programming Module (EPM) 26
4.5 Parameter Menu 27
4.5.1 Basic Setup Parameters 27
4.5.2 I/O Setup Parameters 31
4.5.3 Advanced Setup Parameters 35
4.5.4 PID Parameters 39
4.5.5 Vector Parameters 41
4.5.6 Network Parameters 43
4.5.7 Diagnostic Parameters 44
4.5.7.1 Terminal \& Protection Status Display 45
4.5.7.2 Keypad Status Display. 45
4.5.8 Onboard Communications Parameters 15-60HP (11-45kW). 46
4.5.9 Sequencer Parameters 47
4.5.9.1 Sequencer Flow Diagram Left 55
4.5.9.2 Sequencer Flow Diagram Right. 56
4.5.9.3 Sequencer Status 57
5 Troubleshooting and Diagnostics 58
5.1 Status/Warning Messages 58
5.2 Drive Configuration Messages. 59
5.3 Fault Messages. 59
Appendix A 62
A. 1 Permissable Cable Lengths 62

This documentation applies to the SMV frequency inverter and contains important technical data regarding the installation, operation, and commissioning of the inverter.
These instructions are only valid for SMV frequency inverters with software revision 4.23 or higher for version 4.23 software, the drive nameplate illustrated below would show " 42 " in the " F " location.
Please read these instructions in their entirety before commissioning the drive.

A	B	C	D	E	F
Certifications	Type	Input Ratings	Output Ratings	Hardware Version	Software Version

Scope of delivery	Important
- 1 SMV Inverterwith EPM installed (see Section 4.4) - 1 Operating Instructions manual	After receipt of the delivery, check immediately whether the items delivered match the accompanying papers. Lenze Americas Corporation does not accept any liability for deficiencies claimed subsequently. Claim: - visible transport damage immediately to the forwarder. - visible deficiencies /incompleteness immediately to your Lenze Americas Corporation representative

Related Documents

The documentation listed herein contains information relevant to the operation of the SMVector frequency inverter. To obtain the latest documentation, visit the Technical Library at www.Lenze.com.

Document \#	Description
CMVINS01	SMVector Communications Module Installation Instruction
CMVMB401	SMVector ModBus RTU over RS485 Communications Reference Guide
CMVLC401	SMVector Lecom Communications Reference Guide
CMVCAN01	SMVector CANopen Communications Reference Guide
CMVDVN01	SMVector DeviceNet Communications Reference Guide
CMVETH01	SMVector EtherNet/IP Communications Reference Guide
CMVPFB01	SMVector PROFIBUS Communications Reference Guide
ALSV01	SMVector Additional I/0 Module Installation and Operation Manual
DBV01	SMVector Dynamic Braking
PTV01	SMVector Potentiometer Install Instructions
RKV01	SMVector ESVZXK1 Remote Keypad
RKVU01	SMVector ESVZXH0 Remote Keypad (for NEMA 1 15-60HP (11-45kW) Drives)

1 Safety Information

General

Some parts of Lenze Americas Corporation controllers can be electrically live and some surfaces can be hot. Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates the risk of severe injury to personnel and/or damage to equipment.
All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel who are familiar with the installation, assembly, commissioning, and operation of variable frequency drives and the application for which it is being used.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not change any insulation distances during transport, handling, installation or maintenance. Do not touch any electronic components or contacts. This drive contains electrostatically sensitive components, which can easily be damaged by inappropriate handling. Static control precautions must be adhered to during installation, testing, servicing and repairing of this drive and associated options. Component damage may result if proper procedures are not followed.
To ensure proper operation, do not install the drive where it is subjected to adverse environmental conditions such as combustible, oily, or hazardous vapors; corrosive chemicals; excessive dust, moisture or vibration; direct sunlight or extreme temperatures.
This drive has been tested by Underwriters Laboratory (UL) and is UL Listed in compliance with the UL508C Safety Standard. This drive must be installed and configured in accordance with both national and international standards. Local codes and regulations take precedence over recommendations provided in this and other Lenze Americas Corporation documentation.
The SMVector drive is considered a component for integration into a machine or process. It is neither a machine nor a device ready for use in accordance with European directives (reference machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets the applicable standards.

Electrical Connection

When working on live drive controllers, applicable national safety regulations must be observed. The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections, fuses, protective earth [PE] connection). While this document does make recommendations in regards to these items, national and local codes must be adhered to.
The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must also be observed for CE-marked controllers. The manufacturer of the system or machine is responsible for compliance with the required limit values demanded by EMC legislation.

Application

The drive must not be used as a safety device for machines where there is a risk of personal injury or material damage. Emergency Stops, over-speed protection, acceleration and deceleration limits, etc must be made by other devices to ensure operation under all conditions.
The drive does feature many protection devices that work to protect the drive and the driven equipment by generating a fault and shutting the drive and motor down. Mains power variances can also result in shutdown of the drive. When the fault condition disappears or is cleared, the drive can be configured to automatically restart, it is the responsibility of the user, OEM and/or integrator to ensure that the drive is configured for safe operation.

Safety Information

Explosion Proof Applications

Explosion proof motors that are not rated for inverter use lose their certification when used for variable speed. Due to the many areas of liability that may be encountered when dealing with these applications, the following statement of policy applies:
Lenze Americas Corporation inverter products are sold with no warranty of fitness for a particular purpose or warranty of suitability for use with explosion proof motors. Lenze Americas Corporation accepts no responsibility for any direct, incidental or consequential loss, cost or damage that may arise through the use of AC inverter products in these applications. The purchaser expressly agrees to assume all risk of any loss, cost or damage that may arise from such application.

Operation

Systems including controllers must be equipped with additional monitoring and protection devices according to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). The controller may be adapted to your application as described in this documentation.

DANGER!

- After the controller has been disconnected from the supply voltage, live components and power connection must not be touched immediately, since capacitors could be charged. Please observe the corresponding notes on the controller.
- Close all protective covers and doors prior to and during operation.
- Do not cycle input power to the controller more than once every two minutes.
- For SMVector models that are equipped with a Disconnect Switch (11th character in model number is L or M), the Disconnect Switch is intended as a motor service disconnect and does not provide branch circuit protection to the inverter or motor. When servicing the motor, it is necessary to wait 3 minutes after turning this switch to the off position before working on motor power wiring as the inverter stores electrical power. To service the inverter, it is necessary to remove mains ahead of the drive and wait 3 minutes.

Safety Notifications

All safety information given in these Operating Instructions includes a visual icon, a bold signal word and a description.

Signal Word! (characterizes the severity of the danger)
NOTE (describes the danger and informs on how to proceed)

Icon	Signal Word	Meaning	Consequences if ignored
4	DANGER!	Warns of hazardous electrical voltage.	Death or severe injuries.
SSS	WARNING!	WARNING! Hot Surface Situations.	Warns of hot surface and risk of burns. Labels may be on or inside the equipment to alert people that surfaces may reach dangerous temperatures.
STOP	STOP!	Warns of potential damage to material and equipment.	Damage to the controller/drive or its environment.
damage to equipment.			

Harmonics Notification in accordance with EN 61000-3-2, EN 61000-3-12:

Operation in public supply networks (Limitation of harmonic currents i.a.w. EN 61000-3-2, Electromagnetic Compatibility (EMC) Limits). Limits for harmonic current emissions (equipment input current up to 16A/phase).

Directive	Total Power connected to Mains (public supply)	Additional Measures Required for Compliance ${ }^{\text {(2) }}$
EN 61000-3-2	$<0.5 \mathrm{~kW}$	with mains choke
	$0.5 \ldots 1 \mathrm{~kW}$	with active filter
	$>1 \mathrm{~kW}$	complies without additional measures
EN 61000-3-12	$16 \ldots 75 \mathrm{amp}$	Additional measures are required for compliance with the standard

(1) For compliance with EMC regulations, the permissable cable lengths may change.
(2) The additional measures described only ensure that the controller meets the requirements of the EN 61000-3-2. The machine/system manufacturer is responsible for the machine's compliance with the regulations.

Safety Information in accordance with EN 61800-5-1:

DANGER! - Risk of Electric Shock

Capacitors retain charge for approximately 180 seconds after power is removed.
Disconnect incoming power and wait at least 3 minutes before touching the drive.
DANGER! - Risque de choc électrique
Les condensateurs restent sous charge pendant environ 180 secondes après une coupure de courant. Couper l'alimentation et patienter pendant au moins 3 minutes avant de toucher l'entraînement.

WARNING!

- This product can cause a d.c. current in the PE conductor. Where a residual currentoperated (RCD) or monitoring (RCM) device is used for protection in case of direct or indirect contact, only an RCD or RCM Type B is allowed on the supply side of this product.
- Leakage Current may exceed 3.5 mA AC . The minimum size of the PE conductor shall comply with local safety regulations for high leakage current equipment.
- In a domestic environment, this product may cause radio interference in which case supplementary mitigation measures may be required.

Safety Information

Safety Information in accordance with UL:

Note for UL approved system with integrated controllers: UL warnings are notes which apply to UL systems. The documentation contains special information about UL.

Warnings!

- Integral solid state protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. The use of fuses or circuit breakers is the only approved means for branch circuit protection.
- When protected by CC and T Class Fuses, suitable for use on a circuit capable of delivering not more than $200,000 \mathrm{rms}$ symmetrical amperes, at the maximum voltage rating marked on the drive.
- Additionally suitable when protected by a circuit breaker having an interrupting rating not less than $200,000 \mathrm{rms}$ symmetrical amperes, at the maximum voltage rating marked on the drive. (Excludes ESV113xx2T, ESV153xx2T, ESV113xx4T, ESV153xx4T, ESV183xx4T, ESV223xx4T, ESV303xx4T, ESV113xx6T, ESV153xx6T, ESV183xx6T, ESV223xx6T, and ESV303xx6T).
- Use minimum $75^{\circ} \mathrm{C}$ copper wire only, except for control circuits.
- For control circuits, use wiring suitable for NEC Class 1 circuits only.
- Torque Requirements (in accordance with UL) are listed in section 3.2.1, Power Connections and in 3.2.3, Control terminals
- Shall be installed in a pollution degree 2 macro-environment.
- NEMA 1 (IP31) models shall be installed in a pollution degree 2 macro-environment.
- All models are suitable for installation in a compartment handling Conditioned Air (i.e., plenum rated).

WARNING!

The opening of branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, current carrying parts and other components of the controller should be examined and replaced if damaged.

AVERTISSEMENT!

Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défaut. Pour limiter le risque d'incendie ou de choc électrique, examiner les pièces porteuses de courant et les autres éléments du contrôleur et les remplacer s'ils sont endommagés. En cas de grillage de l'élément traverse par le courant dans un relais de surcharge, le relais tout entier doit être remplacé.

NOTE

Control and communications terminals provide reinforced insulation (i.e. considered SELV or PELV, providing protection in case of direct contact) when the drive is connected to a power system rated up to 300 VAC between phase to ground (PE) and the applied voltage on Terminals 16 and 17 is less than 150VAC between phase to ground. Otherwise, control and communications terminals provide basic insulation.

2 Technical Data

2.1 Standards and Application Conditions

Conformity	CE	Low Voltage (2006/95/EC) \& EMC (2004/108/EC) Directives
Approvals	UL508C	Underwriters Laboratories -Power Conversion Equipment
Input voltage phase imbalance	$\leq 2 \%$	
Supported Power Systems	$\begin{array}{\|l\|} \hline \text { TT } \\ \text { TN } \end{array}$	- For central grounded systems, operation is permitted without restrictions. - For corner grounded $400 / 500 \mathrm{~V}$ systems, operation is possible but reinforced insulation to control circuits is compromised.
Humidity	$\leq 95 \%$ non-condensing	
Temperature range	Transport	$-25 \ldots+70^{\circ} \mathrm{C}$
	Storage	$-20 \ldots+70^{\circ} \mathrm{C}$
	Operation	$-10 \ldots+55^{\circ} \mathrm{C}$ (with $2.5 \% /{ }^{\circ} \mathrm{C}$ current derating above $+40^{\circ} \mathrm{C}$)
Installation height	0-4000m a.m.s.I.	(with $5 \% / 1000 \mathrm{~m}$ current derating above 1000 m a.m.s.l.)
Vibration resistance	acceleration resistant up to 1.0 g	
\ Earth leakage current	$>3.5 \mathrm{~mA}$ to PE	
Max Permissable Cable Length ${ }^{(1)}$	$<=4.0 \mathrm{Hp}(3.0 \mathrm{~kW})$	30 meters shielded, 60 meters un-shielded
	=> $5.0 \mathrm{Hp}(3.7 \mathrm{~kW})$	50 meters shielded, 100 meters un-shielded.
Enclosure	IP31/NEMA 1	IP65/NEMA 4X
	NEMA 1 and NEMA 4X model enclosures are plenum rated in accordance with UL 508C and are suitable for installation in a compartment handling conditioned air.	
Protection measures against	Earth fault, phase loss, over voltage, under voltage, motor stalling, over temperature motor overload (125% of FLA), short circuit (SCCR=200kA at rated voltage)	
Compliance with EN 61000-3-2 Requirements ${ }^{(2)}$	<0.5kW	with mains choke
	$0.5 \ldots 1 \mathrm{~kW}$	with active filter
	> 1 kW	without additional measures
Compliance with EN 61000-3-12 Requirements ${ }^{(2)}$	16 ... 75amp	Additional measures required for compliance with EN 61000-3-12

Operation in public supply networks (Limitation of harmonic currents i.a.w. EN 61000-3-2, Electromagnetic Compatibility (EMC) Limits). Limits for harmonic current emissions (equipment input current up to 16A/phase).
(1) The stated cable lengths are permissible at default carrier frequencies (refer to parameter P166).
(2) The additional measures described only ensure that the controller meets the requirements of the EN 61000-3-2. The machine/system manufacturer is responsible for the machine's compliance with the regulations.

Technical Data

2.2 SMV Type Number Designation

The table herein describes the Type numbering designation for the SMVector Inverter models.

NOTE
Prior to installation make sure the enclosure is suitable for the end-use environment
Variables that influence enclosure suitability include (but are not limited to) temperature, airborne contaminates, chemical concentration, mechanical stress and duration of exposure (sunlight, wind, precipitation).

Technical Data

2.3 Ratings

120V / 240VAC Models

Mains = 120V Single Phase (1/N/PE) (90..132V), 240V Single Phase (2/PE) (170...264V); 48...62Hz									
Type	Power		Mains Current		Output Current		Heat Loss (Watts)		
	Hp	kW	$\begin{gathered} 120 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 240 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\underset{A}{\text { Cont }\left(I_{n}\right)}$	$\begin{gathered} \operatorname{MaxI} \\ \% \end{gathered}$	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV251--1S--	0.33	0.25	6.8	3.4	1.7	200	24		
ESV371--1S--	0.5	0.37	9.2	4.6	2.4	200	32	32	
ESV751--1S--	1	0.75	16.6	8.3	4.2	200	52	41	
ESV112--1S--	1.5	1.1	20	10.0	6.0	200	74	74	

NOTES:

Output Current: The Output Current Maximum (\%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

240VAC Models

Mains = 240V Single Phase (2/PE) (170...264V); 48...62Hz								
Type	Power		Mains Current	Output Current		Heat Loss (Watts)		
	Hp	kW	$\begin{gathered} 240 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cont }\left(I_{n}\right) \\ \hline \end{array}$	$\begin{gathered} \operatorname{MaxI}_{\%} \end{gathered}$	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV251--2S--	0.33	0.25	3.4	1.7	200	20		
ESV371--2S--	0.5	0.37	5.1	2.4	200			30
ESV751--2S--	1	0.75	8.8	4.2	200			42
ESV112--2S--	1.5	1.1	12.0	6.0	200			63
ESV152--2S--	2	1.5	13.3	7.0	200			73
ESV222--2S--	3	2.2	17.1	9.6	200			97

240V Single Phase (2/PE) (170...264V), 240V Three Phase (3/PE) (170...264V); 48...62Hz									
Type	Power		Mains Current		Output Current		Heat Loss (Watts)		
	Hp	kW	$\begin{array}{\|c\|} \hline 1 \sim(2 / P E) \\ \text { A } \end{array}$	$\begin{gathered} 3 \sim(3 / P E) \\ A \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Cont }\left(I_{n}\right) \\ \hline \end{array}$	$\underset{\%}{\operatorname{MaxI}}$	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV371--2Y--	0.5	0.37	5.1	2.9	2.4	200	27	26	
ESV751--2Y--	1	0.75	8.8	5.0	4.2	200	41	38	
ESV112--2Y--	1.5	1.1	12.0	6.9	6.0	200	64	59	
ESV152--2Y--	2	1.5	13.3	8.1	7.0	200	75	69	
ESV222--2Y--	3	2.2	17.1	10.8	9.6	200	103	93	

240V Three Phase (3/PE) (170...264V); 48...62Hz								
Type	Power		Mains Current	Output Current		Heat Loss (Watts)		
	Hp	kW	$\begin{gathered} 240 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\underset{A}{\operatorname{Cont}\left(I_{n}\right)}$	$\begin{gathered} \text { Max I } \\ \% \end{gathered}$	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter

Technical Data

ESV112--2T--	1.5	1.1	6.9	6	200	64		
ESV152--2T--	2	1.5	8.1	7	200	75		
ESV222--2T--	3	2.2	10.8	9.6	200	103		
ESV402--2T--	5	4.0	18.6	16.5	200	154	139	
ESV552--2T--	7.5	5.5	26	23	200	225	167	
ESV752--2T--	10	7.5	33	29	200	274	242	
ESV113--2T--	15	11	48	42	180	485	468	
ESV153--2T--	20	15	59	54	180	614	591	

NOTES:

Output Current: The Output Current Maximum (\%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.
400...480VAC Models

400 ... 480V Three Phase (3/PE) (400V: 340...440V), (480V: 340...528V); 48...62Hz											
Type	Power		Mains Current		Output Current				Heat Loss (Watts)		
	Hp	kW	$\begin{gathered} 400 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 480 \mathrm{~V} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Cont }\left(I_{n}\right) \\ \hline \end{gathered}$		$\begin{gathered} \text { Max I } \\ \% \end{gathered}$		N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
					400 V	480 V	400 V	480 V			
ESV371--4T--	0.5	0.37	1.7	1.5	1.3	1.1	175	200	23	21	25
ESV751--4T--	1	0.75	2.9	2.5	2.4	2.1	175	200	37	33	37
ESV112--4T--	1.5	1.1	4.2	3.6	3.5	3.0	175	200	48	42	46
ESV152--4T--	2	1.5	4.7	4.1	4.0	3.5	175	200	57	50	54
ESV222--4T--	3	2.2	6.1	5.4	5.5	4.8	175	200	87	78	82
ESV302--4T--	4	3.0	8.3	7.0	7.6	6.3	175	200			95
ESV402--4T--	5	4.0	10.6	9.3	9.4	8.2	175	200	128	103	111
ESV552--4T--	7.5	5.5	14.2	12.4	12.6	11.0	175	200	178	157	165
ESV752--4T--	10	7.5	18.1	15.8	16.1	14.0	175	200	208	190	198
ESV113--4T--	15	11	27	24	24	21	155	180	418	388	398
ESV153--4T--	20	15	35	31	31	27	155	180	493	449	459
ESV183--4T--	25	18.5	44	38	39	34	155	180	645	589	600
ESV223--4T--	30	22	52	45	46	40	155	180	709	637	647
ESV303--4T--	40	30	68	59	60	52	155	180	1020		
ESV373--4T--	50	37.5	85	74	75	65	155	180	1275		
ESV453--4T--	60	45	100	87	88	77	155	180	1530		

NOTES:

Output Current: The Output Current Maximum (\%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.
For $400 . . .480$ VAC models, the output current maximum (\%) in the 400 V column is used when P107 $=0$
For $400 . . .480$ VAC models, the output current maximum (\%) in the 480 V column is used when P107 $=1$

Technical Data

600VAC Models

600V Three Phase (3/PE) (425...660V); 48...62Hz								
Type	Power		Mains Current A	Output Current		Heat Loss (Watts)		
	Hp	kW		$\begin{array}{\|c\|} \hline \text { Cont }\left(I_{n}\right) \\ \hline \end{array}$	$\begin{gathered} \text { Max I } \\ \% \end{gathered}$	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV751--6T--	1	0.75	2	1.7	200	37	31	
ESV152--6T--	2	1.5	3.2	2.7	200	51	43	
ESV222--6T--	3	2.2	4.4	3.9	200	68	57	
ESV402--6T--	5	4	6.8	6.1	200	101	67	
ESV552--6T--	7.5	5.5	10.2	9	200	148	116	
ESV752--6T--	10	7.5	12.4	11	200	172	152	
ESV113--6T--	15	11	19.7	17	180	380	356	
ESV153--6T--	20	15	25	22	180	463	431	
ESV183--6T--	25	18.5	31	27	180	560	519	
ESV223--6T--	30	22	36	32	180	640	592	
ESV303--6T--	40	30	47	41	180	930		
ESV373--6T--	50	37.5	59	52	180	1163		
ESV453--6T--	60	45	71	62	180	1395		

NOTES:

Output Current: The Output Current Maximum (\%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

STOP!

- For installations above 1000 m a.m.s.l., derate I_{n} by 5% per 1000 m , do not exceed 4000 m a.m.s.l.
- Operation above $40^{\circ} \mathrm{C}$, derate I_{n} by 2.5% per ${ }^{\circ} \mathrm{C}$, do not exceed $55^{\circ} \mathrm{C}$.

Output Current (In) derating for Carrier Frequency (P166) for NEMA 1 (IP31) Models:

- If P166=2 (8 kHz), derate I_{n} to 92% of drive rating
- If P166=3 (10 kHz), derate I_{n} to 84% of drive rating

Output Current (In) derating for Carrier Frequency (P166) for NEMA 4X (IP65) Models:

- If P166=1 (6 kHz), derate I_{n} to 92% of drive rating
- If P166=2 (8 kHz), derate I_{n} to 84% of drive rating
- If P166=3 (10 kHz), derate I_{n} to 76% of drive rating

Installation

3 Installation

3.1 Dimensions and Mounting

WARNING!

Drives must not be installed where subjected to adverse environmental conditions such as: combustible, oily, or hazardous vapors; corrosive chemicals; excessive dust, moisture or vibration; direct sunlight or extreme temperatures. For proper installation drives must be mounted upright in a vertical fashon on a vertical plane.

3.1.1 NEMA 1 (IP31) Models $\leq 30 \mathrm{HP}$ (22kW)

	Type	$\begin{gathered} \text { a } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { a1 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{b} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b1 } \\ \text { in (mm) } \end{gathered}$	$\begin{gathered} \text { b2 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { c } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} s 1 \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { s2 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\stackrel{m}{\mathrm{lb}(\mathrm{~kg})}$
G1	ESV251~~~~B; ESV371~~~~~B ESV751~~~~	3.90 (99)	3.12 (79)	7.48 (190)	7.00 (178)	0.24 (6)	4.35 (111)	0.6 (15)	2.0 (50)	2.0 (0.9)
G2	$\begin{aligned} & \text { ESV112~~~~~B; ESV152~~~~B } \\ & \text { ESV222~~~~~ } \end{aligned}$	3.90 (99)	3.12 (79)	7.52 (191)	7.00 (178)	0.26 (7)	5.45 (138)	0.6 (15)	2.0 (50)	2.8 (1.3)
G3	ESV402~~~~B	3.90 (99)	3.12 (79)	7.52 (191)	7.00 (178)	0.30 (8)	5.80 (147)	0.6 (15)	2.0 (50)	3.2 (1.5)
H1	ESV552~~~~~B; ESV752~~~~ ${ }^{\text {B }}$	5.12 (130)	4.25 (108)	9.83 (250)	9.30 (236)	0.26 (7)	6.30 (160)	0.6 (15)	2.0 (50)	6.0 (2.0)
J1	ESV113~~~~~B; ESV153~~~~B ESV183~~~~~; ESV223~~~~B	6.92 (176)	5.75 (146)	12.50 (318)	11.88 (302)	0.31 (8)	8.09 (205)	0.6 (15)	2.0 (50)	13.55 (6.15)

Conduit Hole Dimensions	Type	$\begin{gathered} \mathbf{N} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ \text { in }(\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{Q} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{S} \\ \text { in }(\mathrm{mm}) \end{gathered}$
	G1	1.84 (47)	1.93 (49)	. 70 (18)	1.00 (25)	. 88 (22)
	G2	1.84 (47)	3.03 (77)	. 70 (18)	1.00 (25)	. 88 (22)
	G3	1.84 (47)	3.38 (86)	. 70 (18)	1.00 (25)	. 88 (22)
	H1	2.46 (62)	3.55 (90)	. 13 (3)	1.38 (35)	1.13 (29)
						. 88 (22)
	J1	3.32 (84)	4.62 (117)	. 73 (19)	1.40 (36)	1.31 (33)
						. 88 (22)

3.1.2 NEMA 1 (IP31) Models > 30HP (22kW)

	Type	$\begin{gathered} \text { a } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { a1 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{b} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b1 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b2 } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} s 1 \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{s 2} \\ \text { in }(m m) \end{gathered}$	$\stackrel{\text { m }}{\mathrm{lb}(\mathrm{~kg})}$
K1	$\begin{aligned} & \text { ESV303~~4~~B; } \\ & \text { ESV303~6~~B } \end{aligned}$	8.72 (221)	7.50 (190)	14.19 (360)	13.30 (338)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	24 (10.9)
K2	$\begin{aligned} & \text { ESV373~~4~~B; } \\ & \text { ESV373~~6~~B } \end{aligned}$	8.72 (221)	7.50 (190)	17.19 (436)	16.30 (414)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	31 (14.1)
K3	$\begin{aligned} & \text { ESV453~~4~~B } \\ & \text { ESV453~~6~~b } \end{aligned}$	8.72 (221)	7.50 (190)	20.19 (513)	19.30 (490)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	35 (15.9)

Installation

3.1.3 NEMA 4X (IP65) Models

	Type	$\begin{gathered} \text { a } \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { a1 } \\ \text { in }(m m) \end{gathered}$	$\begin{gathered} \mathbf{b} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b1 } \\ \text { in (mm) } \end{gathered}$	$\begin{gathered} \text { b2 } \\ \text { in }(m m) \end{gathered}$	$\begin{gathered} \text { C } \\ \text { in (mm) } \end{gathered}$	$\begin{gathered} \mathrm{s} 1 \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{s} 2 \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\underset{\mathrm{lb}(\mathrm{~kg})}{\mathrm{m}}$
R1	ESV371N01SX_; ESV751N01SX_; ESV371N02YX_; ESV751N02YX_; ESV371N04TX_; ESV751N04TX_; ESV751N06TX_; ESV371N02SF_; ESV751N02SF_; ESV371N04TF_; ESV751N04TF_;	6.28 (160)	5.90 (150)	8.00 (203)	6.56 (167)	0.66 (17)	4.47 (114)	2.00 (51)	2.00 (51)	3.6 (1.63)
R2	ESV112N01SX_; ESV112N02YX_; ESV152N02YX_; ESV112N04TX_; ESV152N04TX_; ESV222N04TX_; ESV152N06TX_; ESV222N06TX_; ESV112N02SF_; ESV152N02SF_; ESV112N04TF_; ESV152N04TF_; ESV222N04TF_; ESV302N04TF_;	6.28 (160)	5.90 (150)	8.00 (203)	6.56 (167)	0.66 (17)	6.31 (160)	2.00 (51)	2.00 (51)	5.9 (2.68)
S1	ESV222N02YX_ ESV222N02SF_	7.12 (181)	6.74 (171)	8.00 (203)	6.56 (167)	0.66 (17)	6.77 (172)	2.00 (51)	2.00 (51)	7.1 (3.24)
T1	ESV552N02TX~; ESV752N02TX~ ESV752N04TX~; ESV752N06TX~; ESV752N04TF~	8.04 (204)	7.56 (192)	10.00 (254)	8.04 (204)	0.92 (23)	8.00 (203)	4.00 (102)	4.00 (102)	10.98 (4.98)
V1	ESV402N02TX_; ESV402N04TX_; ESV552N04TX_; ESV402N06TX_ ESV552N06TX; ESV402N04TF_; ESV552N04TF_	8.96 (228)	8.48 (215)	10.00 (254)	8.04 (204)	0.92 (23)	8.00 (203)	4.00 (102)	4.00 (102)	11.58 (5.25)
W1	ESV113N02TX~; ESV153N02TX~ ESV113N04TX~; ESV153N04TX~ ESV113N04TF~; ESV153N04TF~ ESV113N06TX~; ESV153N06TX~ ESV183N04TX~; ESV183N04TF~ ESV183N06TX~	9.42 (240)	8.94 (228)	14.50 (368)	12.54 (319)	0.92 (24)	9.45 (241)	4.00 (102)	4.00 (102)	22.0 (10.0)
X1	ESV223N04TX~; ESV223N04TF~ ESV223N06TX~	9.42 (240)	8.94 (228)	18.5 (470)	16.54 (420)	0.92 (24)	9.45 (241)	4.00 (102)	4.00 (102)	25.5 (11.6)

$\quad=$ Last digit of part number: $\quad \mathrm{C}=\mathrm{N} 4 \mathrm{X}$ Indoor (convection cooled) $\quad \sim=$ Last digit of part number: $\mathrm{D}=\mathrm{N} 4 \mathrm{X}$ Indoor (fan cooled)
$E=N 4 X \ln /$ Outdoor (convection cooled) $\quad F=N 4 X \ln /$ outdoor (fan cooled)

Conduit Hole Dimensions		Type	$\begin{gathered} \mathbf{N} \\ \text { in }(\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { in (mm) } \end{gathered}$	$\begin{gathered} \mathbf{Q} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{S} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { S1 } \\ \text { in }(\mathrm{mm}) \\ \hline \end{gathered}$
		R1	3.14 (80)	2.33 (59)	1.50 (38)	. 88 (22)	. 87 (22)
		R2	3.14 (80)	4.18 (106)	1.50 (38)	. 88 (22)	. 87 (22)
		S1	3.56 (90)	4.63 (118)	1.50 (38)	. 88 (22)	. 87 (22)
		T1	4.02 (102)	5.00 (127)	1.85 (47)	1.06 (27)	1.06 (27)
		V1	4.48 (114)	5.00 (127)	1.85 (47)	1.06 (27)	1.06 (27)
		W1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)
		X1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)

Installation

3.1.4 NEMA 4X (IP65) Models with Disconnect Switch

	Type	$\begin{gathered} \text { a } \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { a1 } \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{b} \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b1 } \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { b2 } \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{c} \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{c} 1 \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{s} 1 \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{s 2} \\ \text { in } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{m} \\ \mathrm{lb} \\ (\mathrm{~kg}) \end{gathered}$
AA1	ESV371N01SM_ ESV371N02YM_: ESV371NO2SL_; ESV371N04TM_; ESV371N04TL_; ESV371N06TM_; ESV751N01SM_; ESV751N02YM_; ESV751N02SL_ ESV751N04TM_; ESV751N04TL; ESV751N06TM ;	$\begin{gathered} 6.28 \\ (160) \end{gathered}$	$\begin{aligned} & 5.90 \\ & (150) \end{aligned}$	$\begin{aligned} & 10.99 \\ & (279) \end{aligned}$	$\begin{aligned} & 9.54 \\ & (242) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (17) \end{aligned}$	$\begin{aligned} & 4.47 \\ & (114) \end{aligned}$	$\begin{gathered} .86 \\ (22) \end{gathered}$	$\begin{aligned} & 2.00 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 2.00 \\ & (51) \end{aligned}$	$\begin{gathered} 4.7 \\ (2.13) \end{gathered}$
AA2	ESV112NO1SM_; ESV112NO2YM_: ESV112N02SL_ ESV112N04TM_: ESV112N04TL_; ESV152N02YM_; ESV152N02SL_ ESV152N04TM_ ESV152N04TL_; ESV152N06TM_; ESV222N04TM_; ESV222N04TL_; ESV222N06TM_: ESV302N04TL_;	$\begin{gathered} 6.28 \\ (160) \end{gathered}$	$\begin{aligned} & 5.90 \\ & (150) \end{aligned}$	$\begin{aligned} & 10.99 \\ & (279) \end{aligned}$	$\begin{aligned} & 9.54 \\ & (242) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (17) \end{aligned}$	$\begin{gathered} 6.31 \\ (160) \end{gathered}$	$\begin{gathered} .86 \\ (22) \end{gathered}$	$\begin{aligned} & 2.00 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 2.00 \\ & (51) \end{aligned}$	$\begin{gathered} 7.9 \\ (3.58) \end{gathered}$
AD1	ESV222N02SL_; ESV222N02YM_;	$\begin{array}{r} \hline 7.12 \\ (181) \\ \hline \end{array}$	$\begin{array}{r} \hline 6.74 \\ (171) \\ \hline \end{array}$	$\begin{aligned} & \hline 10.99 \\ & (279) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 9.54 \\ (242) \\ \hline \end{array}$	$\begin{aligned} & 0.66 \\ & (17) \\ & \hline \end{aligned}$	$\begin{array}{r} 6.77 \\ (172) \\ \hline \end{array}$	$\begin{aligned} & \hline .86 \\ & (22) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (51) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & (51) \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ (4.08) \\ \hline \end{gathered}$
AB1	ESV552N02TM~; ESV752N02TM~ ESV752N04TM~; ESV752N06TM~; ESV752N04TL~	$\begin{aligned} & 8.04 \\ & (204) \end{aligned}$	$\begin{aligned} & 7.56 \\ & (192) \end{aligned}$	$\begin{aligned} & 13.00 \\ & (330) \end{aligned}$	$\begin{aligned} & 11.04 \\ & (280) \end{aligned}$	$\begin{aligned} & 0.92 \\ & (23) \end{aligned}$	$\begin{aligned} & 8.00 \\ & (203) \end{aligned}$	$\begin{gathered} .86 \\ (22) \end{gathered}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{gathered} 13.9 \\ (6.32) \end{gathered}$
AC1	ESV402NO2TM_; ESV402N04TM_; ESV552N04TM_ ESV402N06TM_; ESV552N06TM_; ESV402N04TL_; ESV552N04TL_	$\begin{aligned} & 8.96 \\ & (228) \end{aligned}$	$\begin{aligned} & 8.48 \\ & (215) \end{aligned}$	$\begin{aligned} & 13.00 \\ & (330) \end{aligned}$	$\begin{aligned} & 11.04 \\ & (280) \end{aligned}$	$\begin{aligned} & 0.92 \\ & (23) \end{aligned}$	$\begin{aligned} & 8.04 \\ & 204) \end{aligned}$	$\begin{gathered} .86 \\ (22) \end{gathered}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{gathered} 14.7 \\ (6.66) \end{gathered}$
AE1	ESV113N04TM~; ESV153N04TM~, ESV113N06TM~; ESV153N06TM~	$\begin{aligned} & \hline 9.42 \\ & (240) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.94 \\ & (228) \end{aligned}$	$\begin{aligned} & \hline 14.50 \\ & (368) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12.54 \\ & (319) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.92 \\ & \text { (24) } \end{aligned}$	$\begin{aligned} & \hline 9.45 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.73 \\ & \text { (19) } \end{aligned}$	$\begin{array}{r} \hline 4.00 \\ (102) \\ \hline \end{array}$	$\begin{array}{r} \hline 4.00 \\ \text { (102) } \\ \hline \end{array}$	$\begin{gathered} \hline 23.0 \\ (10.4) \\ \hline \end{gathered}$
AF1	ESV113NO2TM~; ESV153N02TM~ ESV113N04TL~; ESV153N04TL~ ESV183N04TL~; ESV223N04TL~ ESV183N04TM~; ESV223N04TM~ ESV183N06TM~; ESV223N06TM~	$\begin{aligned} & 9.42 \\ & (240) \end{aligned}$	$\begin{aligned} & 8.94 \\ & (228) \end{aligned}$	$\begin{aligned} & 18.5 \\ & (470) \end{aligned}$	$\begin{aligned} & 16.54 \\ & (420) \end{aligned}$	$\begin{aligned} & 0.92 \\ & (24) \end{aligned}$	$\begin{aligned} & 9.45 \\ & (241) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (19) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (102) \end{aligned}$	$\begin{gathered} 28.5 \\ (12.9) \end{gathered}$

_ = Last digit of part number: $\quad \mathrm{C}=\mathrm{N} 4 \mathrm{X}$ Indoor (convection cooled)
~ = Last digit of part number: $\quad D=$ N4X Indoor (fan cooled)

Conduit Hole Dimensions		Type	$\begin{gathered} \mathbf{N} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{Q} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathbf{S} \\ \text { in }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { S1 } \\ \text { in }(\mathrm{mm}) \end{gathered}$
00		AA1	3.14 (80)	2.33 (59)	1.50 (38)	. 88 (22)	. 87 (22)
-1	10077077	AA2	3.14 (80)	4.18 (106)	1.50 (38)	. 88 (22)	. 87 (22)
		AD1	3.56 (90)	4.63 (118)	1.50 (38)	. 88 (22)	. 87 (22)
-		AB1	4.02 (102)	5.00 (127)	1.85 (47)	1.06 (27)	1.06 (27)
		AC1	4.48 (114)	5.00 (127)	1.85 (47)	1.06 (27)	1.06 (27)
		AE1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)
		AF1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)

Installation

3.2 Electrical Installation

Installation After a Long Period of Storage

STOP!

Severe damage to the drive can result if it is operated after a long period of storage or inactivity without reforming the DC bus capacitors.
If input power has not been applied to the drive for a period of time exceeding three years (due to storage, etc), the electrolytic DC bus capacitors within the drive can change internally, resulting in excessive leakage current. This can result in premature failure of the capacitors if the drive is operated after such a long period of inactivity or storage.
In order to reform the capacitors and prepare the drive for operation after a long period of inactivity, apply input power to the drive for 8 hours prior to actually operating the motor.

3.2.1 Power Connections

STOP!
If the kVA rating of the AC supply transformer is greater than 10 times the input kVA rating of the drive(s), an isolation transformer or 2-3\% input line reactor must be added to the line side of the drive(s).

DANGER! Hazard of electrical shock!
Circuit potentials up to 600 VAC are possible. Capacitors retain charge after power is removed. Disconnect power and wait at least three minutes before servicing the drive.

STOP!

- Verify mains voltage before connecting to drive.
- Do not connect mains power to the output terminals (U,V,W)! Severe damage to the drive will result.
- Do not cycle mains power more than once every two minutes. Damage to the drive may result.

$\underbrace{4}_{0}$	Mains and Motor Terminations		
	Type	Torque	Strip Length
	<5HP	$12 \mathrm{lb}-\mathrm{in}(1.3 \mathrm{Nm})$	$5 / 16$ in (8mm)
	ESV552xx2T, ESV752xx2T, ESV113xx4/6, ESV153xx4/6, ESV183xx6, ESV223xx6	$16 \mathrm{lb}-\mathrm{in}(1.8 \mathrm{Nm})$	$5 / 16$ in (8mm)
	ESV552xx4Txx, ESV752xx4Txx, ESV552xx6Txx, ESV752xx6Txx	$12 \mathrm{lb}-\mathrm{in}(1.3 \mathrm{Nm})$	0.25 in (6mm)
	ESV113xx2xxx, ESV153xx2xxx, ESV183xx4xxx, ESV223xx4xxx, ESV303xx4xxx	$24 \mathrm{lb}-\mathrm{in}(2.7 \mathrm{Nm})$	7/16 in (10 mm)
	ESV373xx4xxx, ESV453xx4xxx	$27 \mathrm{lb}-\mathrm{in}(3.05 \mathrm{Nm})$	0.75 in (19mm)
	Torque: N4X/IP65 Door Screws		
	N4X/P65	6-7 lb-in (0.67-0.79 Nm)	0.25 in (6mm)

3.2.1.1 Mains Connection to 120VAC Single-Phase Supply

3.2.1.2 Mains Connection to 240VAC Single-Phase Supply

3.2.1.3 Mains Connection to Three-Phase Supply

ESV...N02Y... ESV...N02T...	PE L1 L2 L3
ESV...N04T... ESV...N06T... (3/PE AC)	

3.2.1.4 Motor Connection

WARNING!

If the cable connection between the drive and the motor has an in-line contactor or circuit breaker then the drive must be stopped prior to opening/closing the contacts. Failure to do so may result in Overcurrent trips and/or damage to the inverter.

WARNING!

Leakage current may exceed 3.5 mAAC . The minimum size of the protective earth (PE) conductor shall comply with local safety regulations for high leakage current equipment.

STOP!

In the case of a Spinning Motor:
To bring free-wheeling loads such as fans to a rest before starting the drive, use the DC injection braking function. Starting a drive into a freewheeling motor creates a direct short-circuit and may result in damage to the drive.
Confirm motor suitability for use with DC injection braking.
Consult parameter P110 for starting / restarting into spinning motors.

Installation

3.2.1.5 Installation Recommendations for EMC Compliance

For compliance with EN 61800-3 or other EMC standards, motor cables, line cables and control or communications cables must be shielded with each shield/screen clamped to the drive chassis. This clamp is typically located at the conduit mounting plate.
The EMC requirements apply to the final installation in its entirety, not to the individual components used. Because every installation is different, the recommended installation should follow these guidelines as a minimum. Additional equipment (such as ferrite core absorbers on power conductors) or alternative practices may be required to meet conformance in some installations.

Motor cable should be low capacitance (core/core $<75 \mathrm{pF} / \mathrm{m}$, core/shield $<150 \mathrm{pF} / \mathrm{m}$). Filtered drives can meet the class A limits of EN 55011 and EN 61800-3 Category 2 with this type of motor cable up to 10 meters.

NOTE: Refer to Appendix A for recommended cable lengths. Any external line filter should have its chassis connected to the drive chassis by mounting hardware or with the shortest possible wire or braid.

3.2.1.6 NEMA 4X (IP65) Input Terminal Block

For NEMA 4X (IP65) models with integrated EMC filter and/or integrated line disconnect, the input terminal block is located on the right-hand side of the SMV inverter in the NEMA $4 \times$ (IP65) enclosure. The single and three phase models are illustrated herein. Refer to paragraph 3.2.3 Control Terminals for pin out information.

Single Phase (2/PE) 120/240 VAC models (ESVxxxN01SMC) with integrated line disconnect

Single Phase (2/PE) 240 VAC models with Filter and/or integrated line disconnect

Three Phase (3/PE) models with Filter and/or integrated line disconnect

WARNING
Power remains present for up to 3 minutes on power input terminals ($\mathrm{L} 1, \mathrm{~L} 2$ and L 3) and output terminals (U, V and W) even when the disconnect switch is in the OFF position. Remove input power ahead of the drive and wait 3 minutes before removing the terminal cover.

3.2.1.7 Dynamic Brake Connections

For NEMA 1 and NEMA 4X Drives rated up to 30HP (22kW) the Dynamic Brake connections are made as illustrated herein. Refer to the SMV Dynamic Brake Instructions (DBV01) for complete information.

The SMV $40 \ldots 60 \mathrm{Hp}(30 \ldots 45 \mathrm{~kW})$ models include a dynamic brake transistor as standard and only require the connection of an external resistor kit for dynamic braking operation. The dynamic brake resistor connections for $40 \ldots 60 \mathrm{Hp}$ ($30 . . .45 \mathrm{~kW}$) drives are standard built-in connections as illustrated in the diagram below. In the $40 \mathrm{Hp}(30 \mathrm{~kW})$ model drives, the dynamic brake connector is on the right-hand side of the drive and the terminals from top to bottom are B-, BRAKE and $\mathrm{B}+$. In the 50/60HP ($37.5 / 45 \mathrm{~kW}$) model drives, the dynamic brake connector is on the left-hand side of the drive and the terminals from top to bottom are $B+$, BRAKE and B-.

External resistor kits must be connected to terminals B+ and BRAKE (no connection to B-). Refer to the table herein for external resistor kit selection. Refer to parameter P189 for enabling the dynamic brake function in the $40 \ldots 60 \mathrm{Hp}$ ($30 . . .45 \mathrm{~kW}$) models.

400/480 VAC SMV Inverter			Resistor Kit			
Type	Hp	kW	Resistance (Ω)	Power (W)	Catalog \#	SAP\#
ESV303** T $^{* *}$	40	30	23.5	1020	841-013	13317724
ESV373** $4 T^{* *}$	50	37	17	1400	841-015	13317626
ESV453** $4 T^{* *}$	60	45	17	1400	841-015	13317626
600 VAC SMV Inverter			Resistor Kit			
Type	Hp	kW	Resistance (Ω)	Power (W)	Catalog \#	SAP\#
ESV303**6T**	40	30	35	1070	841-014	13317624
ESV373**6T**	50	37	24	1560	841-016	13317628
ESV453**6T**	60	45	24	1560	841-016	13317628

Installation

3.2.2 Fuses/Cable Cross-Sections

1 NOTE: Observe local regulations. Local codes may supersede these recommendations
WARNING: Use a FUSE * for 240V drives requiring $>40 \mathrm{~A}$ protection and for 400/480/600V drives requiring $>32 \mathrm{~A}$ protection.

	Type	Recommendations				
		Fuse	Miniature circuit breaker ${ }^{(1)}$	Fuse ${ }^{(2)^{*}}$ or Breaker ${ }^{(3)}$ (N. America)	Input Power Wiring (L1, L2, L3, PE)	
					[mm^{2}]	[AWG]
	ESV251N01SXB	M10 A	C10 A	10 A	1.5	14
	ESV371N01SXB, ESV371N01SX*	M16 A	C16 A	15 A	2.5	14
	ESV751N01SXB, ESV751N01SX*	M25 A	C25 A	25 A	4	10
	ESV112N01SXB, ESV112N01SX*	M32 A	C32 A	30A	4	10
$\begin{aligned} & 240 \mathrm{~V} \\ & 1 \sim \\ & (2 / \mathrm{PE}) \end{aligned}$	ESV251N01SXB, ESV251N02SXB, ESV371N01SXB, ESV371N02YXB, ESV371N02SF*	M10 A	C10 A	10 A	1.5	14
	ESV751N01SXB, ESV751N02YXB, ESV751N02SF*	M16 A	C16 A	15 A	2.5	14
	ESV112N02YXB, ESV112N02SFC, ESV112N01SXB ESV112N01SX*	M20 A	C20 A	20 A	2.5	12
	ESV152N02YXB, ESV152N02SF*	M25 A	C25 A	25 A	2.5	12
	ESV222N02YXB, ESV222N02SF*	M32 A	C32A	30 A	4	10
$\begin{aligned} & 240 \mathrm{~V} \\ & 3 \sim \\ & (3 / \mathrm{PE}) \end{aligned}$	ESV371N02YXB, ESV751N02YXB, ESV371N02Y_*, ESV751N02Y_*	M10 A	C10 A	10 A	1.5	14
	ESV112N02YXB, ESV152N02YXB, ESV112N02TXB, ESV152N02TXB, ESV112N02Y_*, ESV152N02Y_*	M16 A	C16 A	12 A	1.5	14
	ESV222N02YXB, ESV222N02TXB, ESV222N02YX*	M20 A	C20 A	20 A	2.5	12
	ESV402N02TXB, ESV402N02T_*	M32 A	C32 A	30 A	4.0	10
	ESV552N02TXB, ESV552N02T_~	M40 A	C40 A	35 A	6.0	8
	ESV752N02TXB, ESV752N02T_~	M50 A	* use Fuse only	$45 \mathrm{~A}^{*}$	10	8
	ESV113N02TXB, ESV113N02TX~, ESV113N02TM~	M80 A	* use Fuse only	80 A *	16	6
	ESV153N02TXB, ESV153N02TX~, ESV153N02TM~	M100 A	* use Fuse only	90 A	16	4
$\begin{gathered} 400 \mathrm{~V} \\ \text { or } 480 \mathrm{~V} \\ 3 \sim(3 / \mathrm{PE}) \end{gathered}$	ESV371N04TXB ...ESV222N04TXB ESV371N04T_* ...ESV222N04T_* ESV371N04TF* ...ESV222N04TF*	M10 A	C10 A	10 A	1.5	14
	ESV302N04T_*	M16 A	C16 A	15 A	2.5	14
	ESV402N04TXB, ESV402N04T_*	M16 A	C16 A	20 A	2.5	14
	ESV552N04TXB, ESV552N04T_*	M20 A	C20 A	20 A	2.5	14
	ESV752N04TXB, ESV752N04T_~	M25 A	C25 A	25 A	4.0	10
$\begin{gathered} 400 \mathrm{~V} \\ \text { or } 480 \mathrm{~V} \\ 3 \sim(3 / \mathrm{PE}) \end{gathered}$	ESV113N04TXB, ESV113N04T_~	M40 A	* use Fuse only	40 A *	4	8
	ESV153N04TXB, ESV153N04T_~	M50 A	* use Fuse only	50 A*	10	8
	ESV183N04TXB, ESV183N04T_~	M63 A	* use Fuse only	$70 A^{*}$	10	6
	ESV223N04TXB, ESV223N04T_~	M80 A	* use Fuse only	$80 \mathrm{~A}^{*}$	16	6
	ESV303N04TXB	M100 A	* use Fuse only	$100 \mathrm{~A}^{*}$	25	4
	ESV373N04TXB	M125 A	* use Fuse only	$125 \mathrm{~A}^{*}$	35	2
	ESV453N04TXB	M160 A	* use Fuse only	150 A *	35	1
$\begin{gathered} 600 \mathrm{~V} \\ 3 \sim(3 / \mathrm{PE}) \end{gathered}$	ESV751N06TXB ...ESV222N06TXB ESV751N06T_* ...ESV222N06T_*	M10 A	C10 A	10 A	1.5	14
	ESV402N06TXB, ESV402N06T_*	M16 A	C16 A	12 A	1.5	14
	ESV552N06TXB, ESV552N06T_*	M16 A	C16 A	15 A	2.5	14
	ESV752N06TXB, ESV752N06T_~	M20 A	C20 A	20 A	2.5	12
	ESV113N06TXB, ESV113N06TX~, ESV113N06TM~	M32 A	C32 A	30 A	4	10
	ESV153N06TXB, ESV153N06TX~, ESV153N06TM~	M40 A	* use Fuse only	40 A *	4	8
	ESV183N06TXB, ESV183N06TX~, ESV183N06TM~	M50 A	* use Fuse only	50 A *	6	8
	ESV223N06TXB, ESV223N06TX~, ESV223N06TM~	M63 A	* use Fuse only	60 A *	10	8
	ESV303N06TXB	M80 A	* use Fuse only	$70 \mathrm{~A}^{*}$	16	6
	ESV373N06TXB	M100 A	* use Fuse only	$90 A^{*}$	16	4
	ESV453N06TXB	M125 A	* use Fuse only	110 A *	25	2

Notes for Fuse and Cable Table:

(1) Installations with high fault current due to large supply mains may require a type D circuit breaker.
(2) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Bussman KTK-R, JJN or JJS or equivalent.
(3) Thermomagnetic type breakers preferred.
_ 11th digit of part number: $F=$ Integral EMC Filter
L = Integral EMC Filter and Integrated Disconnect Switch (NEMA 4X/IP65 Models only)
M = Integrated Disconnect Switch (NEMA 4X/IP65 Models only)
X = No EMC Filter/ No Disconnect Switch

* = Last digit of part number: $\quad \mathrm{C}=\mathrm{N} 4 \mathrm{X}$ Indoor only (convection cooled)
$E=$ N4X Indoor/Outdoor (convection cooled)
~ = Last digit of part number: $D=$ N4X Indoor only (fan cooled) F = N4X Indoor/Outdoor (fan cooled)
Observe the following when using Ground Fault Circuit Interrupters (GFCIs):
- Installation of GFCI only between supplying mains and controller.
- The GFCI can be activated by:
- capacitive leakage currents between the cable screens during operation (especially with long, screened motor cables)
- connecting several controllers to the mains at the same time
- RFI filters

3.2.3 Control Terminals

Control Terminal Strip for 0.33-10 HP (0.25-7.5 kW):

Control Terminal Strip for 15HP (11 kW) and Greater Drives:

NOTE

Control and communications terminals provide basic insulation when the drive is connected to a power system rated up to 300 V between phase to ground (PE) and the applied voltage on terminals 16 and 17 is less than 250 VAC between phase to phase and ground (PE).

Installation

Control Terminal Strip Descriptions

Terminal	Description	Important
1	Digital Input: Start/Stop	input resistance $=4.3 \mathrm{k} \Omega$
2	Analog Common	
5	Analog Input: $0 . . .10$ VDC	input resistance: > $50 \mathrm{k} \Omega$
6	Internal DC supply for speed pot	+10 VDC, max. 10 mA
25	Analog Input: $4 . . .20 \mathrm{~mA}$	input resistance: 250Ω
4	Digital Reference/Common	+15 VDC / 0 VDC, depending on assertion level
11	Internal DC supply for external devices	+12 VDC, max. 50 mA
13A	Digital Input: Configurable with P121	input resistance $=4.3 \mathrm{k} \Omega$
13B	Digital Input: Configurable with P122	
13C	Digital Input: Configurable with P123	
13D*	Digital Input: Configurable with P124	
14	Digital Output: Configurable with P142, P144	DC $24 \mathrm{~V} / 50 \mathrm{~mA}$; NPN
30	Analog Output: Configurable with P150...P155	$0 . .10 \mathrm{VDC}$, max. 20 mA
2*	Analog Common	
TXA*	RS485 TxA	
TXB*	RS485 TxB	
16	Relay output: Configurable with P140, P144	AC $250 \mathrm{~V} / 3 \mathrm{~A}$ DC $24 \mathrm{~V} / 2 \mathrm{~A}$... 240 V / 0.22 A , non-inductive
17		

* $=$ Terminal is part of the terminal strip for the $15 \mathrm{HP}(11 \mathrm{~kW})$ and higher models only.

Assertion level of digital inputs
The digital inputs can be configured for active-high or active-low by setting the Assertion Level Switch (ALsw) and P120. If wiring to the drive inputs with dry contacts or with PNP solid state switches, set the switch and P120 to "High" (+). If using NPN devices for inputs, set both to "Low" (-). Active-high (+) is the default setting.

$$
\begin{aligned}
& \text { HIGH }=+12 \ldots+30 \mathrm{~V} \\
& \text { LOW }=0 \ldots+3 \mathrm{~V}
\end{aligned}
$$

NOTE

An F_AL fault will occur if the Assertion Level switch (ALsw) position does not match the parameter
P120 setting and P100 or any of the digital inputs (P121...P124) is set to a value other than 0.

NOTE
Do not use unsnubbed inductive loads on terminals 14, 16 and 17.

4 Commissioning

4.1 Local Keypad \& Display

SMV Models: 0.33-10HP (0.25-7.5kW) SMV Models: 15HP (11kW) and greater

Display	START BUTTON
	In Local Mode (P100 $=0,4,6$), this button will start the drive.

Commissioning

Display	INDICATING LEDs (on 4-character display)			
$\frac{\mathrm{Fwo}}{\mathrm{~F} \cdot \mathrm{~T}}$	FWD LED: Indicate the present rotation direction is forward. Refer to ROTATION description above.			
$\underset{\text { Rev }}{\underline{I}}$	REV LED: Indicate the present rotation direction is reverse. Refer to ROTATION description above.			
$\underbrace{\text { auto }}_{-17}$	AUTO LED: Indicates that the drive has been put into Auto mode from one of the TB13 inputs (P121 ...P124 set to $1 \ldots 7$). Indicates that PID mode is active (if PID mode is enabled). Indicates that sequencer mode is active (if sequencer mode is enabled).			
$-1 \cdot I$	RUN LED: Indicates that the drive is running.			
$\therefore-1$	- $\boldsymbol{\nabla}$ LED: Indicates that the $\boldsymbol{\Delta}$ are the active reference.			
	NOTE If the keypad is selected as the auto reference (P121...P124 is 6) and the corresponding TB-13 input is closed, the AUTO LED and $\mathbf{\Delta}$ LEDs will both be on.			
	FUNCTIONS THAT FOLLOW ARE APPLICABLE TO SMV DRIVES 15HP (11kW) AND HIGHER			
CTRL	CTRL The CTRL pushbutton selects the start and speed reference control sources for the drive. Press [$\stackrel{\text { M }}{\sim}$] mode button to accept the new control mode selection.			
	CTRL LEDS		START CONTROL	REFERENCE CONTROL
		[LOCAL] [MAN]	Keypad	P101 Settings
		[LOCAL] [AUTO]	Keypad	Terminal 13x Settings
		[REMOTE] [MAN]	Terminal Strip	P101 Settings
		[REMOTE] [AUTO]	Terminal Strip	Terminal 13x Settings
	If P100 $=6$ the CTRL button is used to toggle start control between the terminal strip [REMOTE] and the keypad [LOCAL]		- REM/LOC LED indicating the present start control source is ON - Press [CTRL]; the LED for other start control source will blink - Press [M] within 4 sec to confirm the change - Blinking LED will turn ON (the other LED will turn OFF)	
	If P113 = 1 the CTRL button is used to toggle reference control between the TB-13x setup [AUTO] and P101 [MANUAL]		- AUT/MAN LED indicating present reference control is ON - Press [CTRL]; the other reference control will blink - Press [M] within 4 sec to confirm change - Blinking LED will turn ON (the other LED will turn OFF)	
	If P100 $=6$ and P113 $=1$, it is possible to change the start and reference control sources at the same time			

Display	START CONTROL	
	The REMOTE/LOCAL LEDs indicate the current start control source. If the start control source is a remote keypad or the network, then both LEDs will be OFF.	
	REFERENCE CONTROL	
	The AUTO/MANUAL LEDs indicate the current reference control source.	
	IF P113 $=0$ or 2 , the AUTO/MANUAL LEDs will match the AUTO LED on the 4-character display. IF P113 $=0$ and no AUTO reference has been setup on the terminal strip, the MANUAL LED will turn ON and the AUTO LED will turn OFF.	
	IF P113 = 1 , the AUTO/MANUAL LEDS show the commanded reference control source as selected by the [CTRL] button. If the [CTRL] button is used to set the reference control source to AUTO but no AUTO reference has been setup on the terminal strip, reference control will follow P101 but the AUTO LED will remain ON.	
	UNITS LEDs	
	HZ : current display value is in Hz	In Speed mode, if P178 = 0 then HZ LED will be ON. If P178 >0, the Units LEDs follow the setting of P177 when the drive is in run (non-programming) mode. In Torque mode, the HZ LED will be ON when the drive is in run (non-programming) mode. In Pid mode, the Units LEDs follow the setting of P203 when the drive is in run (non-programming) mode. If P179 > 0, the Units LEDs will show the unit of the diagnostic parameter that is being displayed.
	\%: current display value is in \%	
	RPM: current display value is in RPM	
	AMPS: current display value is in Amps	
	/UNITS current display value is a per unit (i.e./sec $/ \mathrm{min}, / \mathrm{hr}$, etc.)	

4.2 Drive Display and Modes of Operation

Speed Mode Display

In the standard mode of operation, the drive frequency output is set directly by the selected reference (keypad, analog reference, etc.). In this mode, the drive display will show the drive's output frequency.

PID Mode Display

When the PID mode is enabled and active, the normal run display shows the actual PID setpoint. When PID mode is not active, the display returns to showing the drive's output frequency.

Torque Mode Display

When the drive is operating in Vector Torque mode, the normal run display shows the drive's output frequency.
Alternate (Run-Screen) Display
When P179 (Run Screen Display) is set to a value other than 0, one of the diagnostic parameters (P501...P599) is displayed. Example: if P179 is set to 1, then diagnostic parameter P501 (Software version) is displayed. If P179 =2, then P502 (Drive ID) is displayed.

Commissioning

4.3 Parameter Setting

V0106

4.4 Electronic Programming Module (EPM)

The EPM contains the drives operational memory. Parameter settings are stored in the EPM and setting changes are made to the "User settings" in the EPM.
An optional EPM Programmer (model EEPM1RA) is available that allows:

- An EPM to be copied directly to another EPM.
- An EPM to be copied to the memory of the EPM Programmer.
- Stored files can be modified in the EPM Programmer.
- Stored files can be copied to another EPM.

EPM Module in SMV Drive

As the EPM Programmer is battery operated, parameter settings can be copied to an EPM and inserted into a drive without power being applied to the drive. This means that the drive will be fully operational with the new settings on the next application of power.
Additionally, when the drives parameter settings are burned into an EPM with the EPM Programmer, the settings are saved in two distinct locations; the "User settings" and the "OEM default settings". While the User settings can be modified in the drive, the OEM settings cannot. Thus, the drive can be reset not only to the "factory" drive default settings (shown in this manual), but can be set to the Original Machine settings as programmed by the OEM.
The user area contents of the EPM are what are copied into the OEM space by the EPM programmer. When parameter modifications are made to the drive and then a copy made via the EPM Programmer, these are the settings that will be available by the OEM selections from P199. The EPM Programmer is the only way to load the OEM area of the EPM.
While the EPM can be removed for copying or to use in another drive, it must be installed for the drive to operate (a missing EPM will trigger an F_F I fault)

4.5 Parameter Menu

4.5.1 Basic Setup Parameters

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P 100	Start Control Source	0	0 Local Keypad	Use RUN button on front of drive to start
			1 Terminal Strip	Use start/stop circuit wired into the terminal strip. Refer to section 3.2.3
			2 Remote Keypad Only	Use RUN button on optional Remote Keypad to start
			3 Network Only	- Start command must come from network (Modbus, CANopen, etc) - SMV models $<15 \mathrm{HP}$ (11 kW) require optional communication module (refer to the network module documentation). - Must also set one of the TB-13 inputs to 9 (Network Enable); see P121...P124
			4 Terminal Strip or Local Keypad	Allows start control to be switched between terminal strip and local keypad using one of the TB-13 inputs. See note below.
			5 Terminal Strip or Remote Keypad	Allows start control to be switched between terminal strip and optional remote keypad using one of the TB-13 inputs. See Note below
			6 CTRL button select	Allows start control to be switched between terminal strip and local keypad using the CTRL button. NOTE: P100 Selection 6 is applicable to SMV 15HP (11kW) and higher models only.
		1	WARNING! P100 $=0$ disables TB-1 as a STOP input! STOP circuitry may be disabled if parameters are reset back to defaults (see P199)	
		$\stackrel{\bullet}{1}$	NOTE - P100 $=4,5$: To switch between control sources, one of the TB-13 inputs (P121...P124) must be set to 08 (Control Select); TB-13x OPEN (or not configured): Terminal strip control TB-13x CLOSED: Local (P100 = 4) or Remote $(\mathrm{P} 100=5)$ keypad - P100 $=0,1,4,6$: Network can take control if P121...P124 $=9$ and the corresponding TB-13x input is CLOSED. - The STOP button on the front of the drive is always active except in JOG mode. - TB-1 is an active STOP input if P100 is set to a value other than 0. - An F_ FL fault will occur if the Assertion Level switch (ALsw) position does not match the P120 setting and P100 is set to a value other than 0.	
P101	Standard Reference Source	0	0 Keypad (Local or Remote)	Selects the default speed or torque reference when no Auto Reference is selected using the TB-13 inputs.
			1 0-10 VDC	
			$2 \quad 4-20 \mathrm{~mA}$	
			3 Preset \#1 (P131)	
			4 Preset \#2 (P132)	
			5 Preset \#3 (P133)	
			6 Network	
			$\begin{array}{ll} 7 & \text { Preset Sequence Segment \#1 (P710) } \\ 8 & \text { Preset Sequence Segment \#2 (P715) } \\ 9 & \text { Preset Sequence Segment \#3 (P720) } \\ \hline \end{array}$	Selections $7,8 \& 9$ are not valid for PID setpoint or torque reference.

Commissioning

(1) Any changes to this parameter will not take effect until the drive is stopped.

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P110	Start Method	0	0 Normal 1 Start on Power-up 2 Start with DC Brake 3 Auto Restart 4 Auto Restart with DC Brake 5 Flying Start/Restart - Type 1 6 Flying Start/Restart - Type 1 7 Flying Start /Restart - Type 2 for 2-pole motors requiring a flying restart 8 Flying Start/Restart - Type 2 for 2-pole motors requiring a flying restart	Drive will automatically start when power is applied. When start command is applied, drive will apply DC braking according to P174, P175 prior to starting the motor Drive will automatically restart after faults, or when power is applied. Combines settings 2 and 3 - Drive will automatically restart after faults, or when power is applied. - After 3 failed attempts, drive will Auto Restart with DC brake. - P110 = 5, 7: Performs speed search, starting at Max Frequency (P103) - P110 = 6, 8: Performs speed search, starting at the last output frequency prior to faulting or power loss - If P111 $=0$, a flying START is performed when a start command is applied. - P110 = 7,8: Utilizes P280/281 to set Max Current Level and Decel Time for restart
		\mathbf{i}	NOTE - $\mathrm{P} 110=0$, 2: Start command must be applied at least 2 seconds after power-up; F_UF fault will occur if start command is applied too soon. - P110 = 1, 3 ...6: For automatic start/restart, the start source must be the terminal strip and the start command must be present. - $\mathrm{P} 110=2,4 \ldots 6$: If $\mathrm{P} 175=999.9$, dc braking will be applied for 15 s. - P110 = 3...6: Drive will attempt 5 restarts; if all restart attempts fail, drive displays L[(fault lockout) and requires manual reset. - $\mathrm{P} 110=5,6$: If drive cannot catch the spinning motor, drive will trip into $F_{_} r F$ fault. - $\mathrm{P} 110=5,6$: If drive trips into F_ OF fault, try P110 $=7$ or 8 .	
	WARNING! Automatic starting/restarting may cause damage to equipment and/or injury to personnel! Automatic starting/restarting should only be used on equipment that is inaccessible to personnel.			
Plll	Stop Method	0		Drive's output will shut off immediately upon a stop command, allowing the motor to coast to a stop
			1 Coast with DC Brake	The drive's output will shut off and then the DC Brake will activate (refer to P174, P175)
			2 Ramp	The drive will ramp the motor to a stop according to P105 or P126.
			3 Ramp with DC Brake	The drive will ramp the motor to 0 Hz and then the DC Brake will activate (refer to P174, P175)
P112	Rotation	0	0 Forward Only 1 Forward and Reverse	If PID mode is enabled, reverse direction is disabled (except for Jog).

Commissioning

| Code | | Possible Settings | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. | Name | Default | Selection | |
| P/IB | Auto/Manual Control | 0 | Terminal Strip Control | The reference is dictated by the settings and state
 of the TB-13x terminals. If no AUTO reference has
 been setup on the terminal strip then reference
 control is dictated by P101. |

4.5.2 I/O Setup Parameters

| Code | | Possible Settings | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. | Name | Default | Selection | IMPORTANT |

Commissioning

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	

- Settings 10... 14 are only valid in Terminal Strip mode $(\mathrm{P} 100=1,4,5,6)$
- If Start/Run/Jog Forward and Start/Run/Jog Reverse are both activated, drive will STOP
- If Jog input is activated while drive is running, the drive will enter Jog mode; when Jog input is deactivated, drive will STOP
- An F_ AL fault will occur if the Assertion Level switch (ALsw) position does not match the P120 setting and any of the digital inputs (P121...P124) are set to a value other than 0.
- An F_I L fault will occur under the following conditions:
- TB-13A...TB-13D settings are duplicated (each setting, except 0,3 and 23 , can only be used once)
- One input is set to "MOP Up" and another is not set to "MOP Down", or vice-versa.
- One input is set to 10 and another input is set to $11 \ldots 14$.
- One input is set to 11 or 12 and another input is set for 13 or 14.
- Typical control circuits are shown below:
- If any input is set to 10, 12 or 14, P112 must be set to 1 for Reverse action to function.

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P 140	Relay Output TB-16, 17	0	0 None	Disables the output
			1 Run	Energizes when the drive is running
			2 Reverse	Energizes when reverse rotation is active
			3 Fault	De-energizes when the drive trips, or power is removed
			4 Inverse Fault	Energizes when the drive trips
			5 Fault Lockout	P110 $=3$...6: De-energizes if all restart attempts fail
			6 At Speed	Energizes when output frequency = commanded frequency
			7 Above Preset Speed \#6	Energizes when output frequency > P136
			8 Current Limit	Energizes when motor current $=$ P171
			9 Follower Loss (4-20 mA)	Energizes when 4-20 mA signal is < P164
			10 Loss of Load	Energizes when motor load drops below P145; Refer to P146 also
			11 Local Keypad Control Active	
			12 Terminal Strip Control Active	Energizes when the selected source is active for
			13 Remote Keypad Control Active	start control
			14 Network Control Active	
			15 Standard Reference Active	Energizes when P101 reference is active
			16 Auto Reference Active	Energizes when Auto Reference is activated using TB-13 input; refer to P121...P124
			17 Sleep Mode Active	Refer to P240...P242
			18 PID Feedback < Min. Alarm	Energizes when PID feedback signal < P214
			19 Inverse PID Feedback < Min. Alarm	De-energizes when PID feedback signal < P214
			20 PID Feedback > Max Alarm	Energizes when PID feedback signal > P215
			21 Inverse PID Feedback > Max Alarm	De-energizes when PID feedback signal > P215
			22 PID Feedback within Min/Max Alarm range	Energizes when PID feedback signal is within the Min/Max Alarm range; refer to P214, P215
			23 PID Feedback outside Min/Max Alarm range	Energizes when PID feedback signal is outside the Min/Max Alarm range; refer to P214, P215
			24 Reserved	
			25 Network Controlled	SMV models $<15 \mathrm{HP}$ (11kW) require an optiona communication module (refer to the network module documentation).
			26 Loss of 0-10V Input	Energizes when 0-10V signal is < P158
			27 Sequencer Controlled	State set in individual sequencer segments
			28 Sequencer Active	
			29 Sequencer Suspended	
			30 Sequence Done	End Sequence
			31 Output Frequency $=0.0 \mathrm{~Hz}$	Output inactive
P 142	TB-14 Output	0	0... 23 (same as P140)	
			24 Dynamic Braking	For use with Dynamic Braking option
			25... 31 (same as P140)	

Commissioning

Code		Possible Settings				IMPORTANT
No.	Name	Default	Selection			
P 144	Digital Output Inversion		P144	Invert P142	Invert P140	Used to invert the selections for P140 (Relay Output) and P142 (TB-14 Output). EXAMPLE: When P140 = 6 (AT SPEED), the relay is energized when output frequency $=$ commanded frequency. IF P144=1 or 3, then P140 is inverted (INVERSE AT SPEED) and the relay is energized when the output frequency does not equal the command frequency.
			0	NO	NO	
			1	NO	YES	
			2	YES	NO	
			3	YES	YES	
		$\stackrel{1}{1}$	Inverting P140 or P142 when the parameter is set to NONE (0) will result in the output being energized continuously.			
		$\stackrel{\bullet}{1}$	NOTE For SMVector drives rated at 0.33 to $10 \mathrm{HP}(0.25$ to 7.5 kW$)$, P144 is only available with software versions 3.0 and higher (refer to P501).			
P 145	Loss of Load Threshold	0	0	\{\%\}	200	P140, P142 = 10: Output will energize if motor load falls below the P145 value Ionger than the P146 time
P 146	Loss of Load Delay	0.0	0.0	\{s\}	240.0	
P149	Analog Output Offset	0.0	0	\{\%\}	100	Scaled value. Example: P149 =10\%, Scaled variable $=$ freq, P150 $=1, \mathrm{P} 152=60 \mathrm{~Hz}$; then TB30 $=0 \mathrm{VDC}$ below 6 Hz
P 150	TB-30 Output	0	0 None			2-10 VDC signal can be converted to $4-20 \mathrm{~mA}$ with a total circuit impedance of 500Ω
			1 0-10 VDC Output Frequency			
			2 2-10 VDC Output Frequency			
			3 0-10 VDC Load			
			4 2-10 VDC Load			
			5 0-10 VDC Torque			
			6 2-10 VDC Torque			
			7 0-10 VDC Power (kW)			
			8 2-10 VDC Power (kW)			
			9 Network Controlled			SMV models $<15 \mathrm{HP}(11 \mathrm{~kW})$ require an optional communication module (refer to the network module documentation).
			10 Sequencer Controlled			Value set in individual sequencer segments
P151	Add Analog Input to TB-30 Output	0	P151	$\begin{array}{\|l\|} \hline \text { Add TB-25 } \\ (4-20 \mathrm{~mA}) \end{array}$	$\begin{array}{\|l\|} \hline \text { Add TB-5 } \\ (0-10 V D C) \\ \hline \end{array}$	This parameter adds the analog input signal(s) to the TB-30 Output signal. EXAMPLE: If a drive is running at 60 Hz with P150 set to 1 ($0-10 \mathrm{VDC}$ Freq) and P152 set to 240.0 Hz , the output at TB-30 would be 2.5 VDC . If there is a 2.0 VDC signal going into TB-5 and P151 is set to 1 (ADD TB-5), the output at TB-30 would become 4.5VDC.
			0	N0	N0	
			1	NO	YES	
			2	YES	N0	
			3	YES	YES	
P152	TB-30 Scaling: Frequency	60.0	3.0	\{Hz\}	2000	If P150 $=1$ or 2 , sets the frequency at which output equals 10 VDC
P153	TB-30 Scaling: Load	200	10	\{\%\}	500	If P150 $=3$ or 4 , sets the Load (as a percent of drive current rating) at which output equals 10 VDC.
P154	TB-30 Scaling: Torque	100	10	\{\%\}	1000	If P150 $=5$ or 6 , sets the Torque (as a percent of motor rated torque) at which output equals 10 VDC
P 155	TB-30 Scaling: Power (kW)	1.0	0.1	\{kW\}	200.0	If P150 $=7$ or 8 , sets the power at which output equals 10 VDC

4.5.3 Advanced Setup Parameters

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P 156	Analog Inputs Configuration	0	0 TB5: $(0-10 \mathrm{VDC}) ;$ TB25: $(4-20 \mathrm{~mA})$ 1 TB5: $(0-5 \mathrm{VDC})$; $\mathrm{TB25:}(4-20 \mathrm{~mA})$ 2 TB5: $(2-10 \mathrm{VDC}) ;$ TB25: $(4-20 \mathrm{~mA})$ 4 TB5: $(0-10 \mathrm{VDC}) ;$ TB25: $(0-20 \mathrm{~mA})$ 5 TB5: $(0-5 \mathrm{VDC}) ;$ TB25: $(0-20 \mathrm{~mA})$ 6 TB5: $(2-10 \mathrm{VDC}) ;$ TB25: $(0-20 \mathrm{~mA})$	
P157	TB5 (0-10V) Analog Input Monitoring Action	0	$\|$0 No Action 1 If TB5 < P158 - Trip Fault F_FRU 2 If TB5 < P158 - Run Preset \#8 3 If TB5 < P158 - Run Preset Seg. \#16 4 If TB5 > P158 - Trip Fault F_FRU 5 If TB5 > P158 - Run Preset \#8 6 If TB5 > P158 - Run Preset Seg. \#16	Selects the reaction to a loss of the $0-10 \mathrm{~V}$ signal at TB5 500 ms is the minimum time above/below Monitoring Level (P158) before triggering the drive to trip or run at a preset speed. For P157 = 3 or 6, the accel/decel time is set in P786. NOTE: P157 has priority over P163 and TB-13 presets/auto references (P121-P124)
P15日	TB5 (0-10V) Analog Input Monitoring Level (ML)	0.0	$\begin{array}{lll}-10.0 & & \end{array}$	Negative input voltage is not currently supported.
P159	0-10V Analog Input Deadband	0.0	$\begin{array}{lll}0 & & \\ & \text { VDC }\} & \end{array}$	Not active if [-10 to +10 VDC] option is selected.
P I60	Speed at Minimum Signal Speed at Maximum Signal	0.0	-999.0 $\{H z\}$ 1000 -999.0 $\{H z\}$ 1000	
		$\stackrel{\bullet}{1}$	NOTE - P160 sets the output frequency at 0\% - P161 sets the output frequency at 100 - P160 or P161 <0.0 Hz: For scaling pu - P160 > P161: Drive will react inversely	analog input 0% analog input purposes only; does not indicate opposite direction! ly to analog input signal
P 162	Analog Input Filter	0.01	$\begin{array}{lll}0.00 & \text { \{s }\} & 10.00\end{array}$	- Adjusts the filter on the analog inputs (TB-5 and TB-25) to reduce the effect of signal noise - The P162 delay time will affect the response time of diagnostic parameters (P520-P523).
P163	TB-25 (4-20mA) Analog Input Monitoring Action	0	$\begin{array}{\|ll\|} \hline 0 & \text { No Action } \\ 1 & \text { If TB25 < P164 - Trip Fault F_FoL } \\ 2 & \text { If TB25 < P164 - Run Preset \#7 } \\ 3 & \text { If TB25 < P164 - Run Preset Seg. \#15 } \\ 4 & \text { If TB25 } \geq \text { P164 - Trip Fault F_FoL } \\ 5 & \text { If TB25 } \geq \text { P164 - Run Preset \#7 } \\ 6 & \text { If TB25 } \geq \text { P164 - Run Preset Seg. \#15 } \end{array}$	- Selects the reaction to a loss of the $4-20 \mathrm{~mA}$ signal at TB-25. - Signal is considered lost if it falls below the value set in P164 - Digital outputs can also indicate a loss of 4-20 mA signal; see P140, P142 - For P163 = 3 or 6 , the accel/decel time is set in P781. NOTE: P163 has priority over TB-13 presets/auto references (P121-P124)

Commissioning

(1) Any changes to this parameter will not take effect until the drive is stopped.

Code		Possible Settings			IMPORTANT
No．	Name	Default	Selection		
P 175	DC Brake Time	0.0	0.0 \｛s\}	999.9	
		$\stackrel{+}{1}$	NOTE：CONFIRM MOTOR SUITABILITY FOR USE WITH DC BRAKING DC Brake voltage（P174）is applied for the time specified by P175 with the following exceptions： －If $P 111=1,3$ and $P 175=999.9$ the brake voltage will be applied continuously until a run or fault condition occurs． －If $\mathrm{P} 110=2,4 \ldots 6$ and $\mathrm{P} 175=999.9$ ，brake voltage will be applied for 15 s －If P121．．．P124＝18 and the corresponding TB－13 input is CLOSED，brake voltage will be applied until the TB－13 input is OPENED or a fault condition occurs．		
P 176	Keypad Setpoint Single Press Increment	0.1	0.1	100.0	Used for run screen setpoint editing only． If P176 >0.1 then scrolling of keypad setpoint is enabled．
P 177 （2）	Speed Units	0	$\begin{array}{ll} \hline 0 & \mathrm{~Hz} \\ 1 & \mathrm{RPM} \\ 2 & \% \\ 3 & \text { /UNITS } \\ 4 & \text { NONE } \\ \hline \end{array}$		Select the UNITS LED that will be illuminated when the drive is running in speed control mode．For this parameter to be used，P178 must be set to a value other than 0 ．IF P178 is set to 0 ，the Hz LED will be illuminated regardless of the value set in P177．
P 17日	Display Frequency Multiplier	0.00	0.00	650.00	－Allows frequency display to be scaled － $\mathrm{P} 178=0.00$ ：Scaling disabled －P178＞0．00：Display $=$ Actual Frequency X P178
		$\stackrel{\square}{1}$	EXAMPLE If P178 $=29.17$ and actual frequency $=60 \mathrm{~Hz}$ ，then Drive displays 1750 （rpm）		
P 179	Run Screen Display	0	0 \｛Parameter Number\}	599	－ $0=$ Normal Run Screen，this display depends on mode of operation．Refer to section 4．2． －Other selections choose a diagnostic parameter to display（P501．．．P599）． －Parameters P560－P564 are selectable if the sequencer is enabled（P700 is not 0）． P560－P564 are not visible until P700 is enabled．
P 180	Oscillation Damping Control	0	0	80	0 ＝Damping disabled Compensation for resonances within drive
P旧1	Skip frequency 1	0.0	0.0 \｛Hz\}	500	－Drive will not run in the defined skip range； used to skip over frequencies that cause mechanical vibration －P181 and P182 define the start of the skip ranges －P184＞0 defines the bandwidth of both ranges．
P 182	Skip frequency 2	0.0	0.0 \｛Hz\}	500	
P 184	Skip frequency bandwidth	0.0	0.0 \｛Hz\}	10.0	
		$\stackrel{\bullet}{1}$	NOTE Bandwidth $(H z)=f_{s}(H z)+$ P184（Hz）$\quad f_{s}=$ P181 or P182 EXAMPLE：P181＝ 18 Hz and P184 $=4 \mathrm{~Hz}$ ；skip range is from 18 to 22 Hz		
P 185	Voltage Midpoint V／Hz characteristic	0	0.0 可\}	P165	Valid only when P300 $=0$ or 2 ． Use with P187 to define midpoint on V / Hz curve．
P 1㫜 ${ }^{(2)}$	Frequency Midpoint V／Hz characteristic	0.0	0.0 \｛Hz\}	P167	Valid only when P300 $=0$ or 2 ． Use with P185 to define midpoint on V／Hz curve．
P 189 ${ }^{(3)}$	Integrated Dynamic Brake		$\begin{array}{\|ll} \hline 0 & \text { Disabled } \\ 1 & \text { Enabled } \\ \hline \end{array}$		

（2）Parameter applicable to SMV models 15 HP （11kW）and higher．
（3）Parameter applicable to SMV models 40HP（30kW）and higher．

Commissioning

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P190	Motor Braking		0 Disabled	Flux brake OFF.
			1 Braking with BUS threshold	When drive is in deceleration and $V_{\text {bus }}>V_{\text {d }}$ \qquad (114\% of the rated V_{w}), the flux brake will be turned ON .
			2 Braking always on with deceleration	As long as drive is in deceleration, the flux brake will be ON .
			3 Braking with bus regulator	When drive is in deceleration and $V_{\text {wus }}>V_{\text {decocteratanon treaese }}$ (114% of the rated $V_{\text {bus }}$), the motor speed will be increased to reduce the bus voltage. Determined by the value in P191, the speed increment $=$ slip speed * P191(\%) / 37.
			4 Special	(Consult factory before using)
		$!$	WARNING Flux braking can cause heat in the motor. To avoid damage to the motor, use a PTC to protect the motor. If the flux brake is used too frequently, the drive will trip fault "F_PF".	
P191	Motor Brake Level	0	0 $\{\%\}$ (flux 75 braking disabled)	Active when P190>0 and drive is in deceleration mode. Use to reduce deceleration time on high inertia loads. NOTE: Over usage of P190 can cause frequent 'overload' trips "F.PF" Not active for P300 $=5$ (Torque mode)
P192	Motor Braking Deceleration Reduction Level	0.0	$0 \quad$P167 (base freq) Raising the value of P191 reduces the drive deceleration rate during flux braking.	Active when P190 >0 and P192 >0.0, Drive is in deceleration mode. Use to reduce deceleration time on high inertia loads. NOTE: Usage of P192 can cause the drive to decelerate faster than settings in P105/P127. Not active for P300 $=5$ (Torque mode)
P194	Password	0	00009999	- Must enter password to access parameters - P194 = 0000: Disables password
P197	Clear Fault History	0	0 No Action 1 Clear Fault History	
P199	Program Selection		0 Operate from User settings 1 Operate from OEM settings 2 Reset to OEM default settings 3 Reset to 60 Hz default settings 4 Reset to 50 Hz default settings 5 Translate	Refer to Notes 1, 2 and 3 Refer to Note 1 - Refer to Note 4 - Parameters are reset to the defaults listed in this manual. - For P199=4, the following exceptions apply: $\begin{aligned} & - \text { P103, P152, P161, P167 }=50.0 \mathrm{~Hz} \\ & - \text { P165 }=400 \mathrm{~V}(400 / 480 \mathrm{~V} \text { drives only }) \\ & - \text { P304 }=50 \mathrm{~Hz} \\ & - \text { P305 }=1450 \mathrm{RPM} \\ & - \text { P107 }=0(480 \mathrm{~V} \text { drives only }) \end{aligned}$ Refer to Note 5
		$!$	WARNING! Modification of P199 can affect drive functionality! STOP and EXTERNAL FAULT circuitry may be disabled! Check P100 and P121...P124	
		$\stackrel{\bullet}{\mathbf{i}}$	NOTE 1 If the EPM does not contain valid OEM settings, a flashing GF will be displayed when P199 is set to 1 or 2 . NOTE 2 When P199 is set to 1, the drive operates from the OEM settings stored in the EPM Module and no other parameters can be changed (EE will be displayed if attempted). NOTE 3 Auto Calibration is not possible when operating from OEM Settings. NOTES 4 and 5 - on next page.	

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P199	Program Selection	\mathbf{i}	NOTE 4 Resetting to 50 and 60 Hz default settings will set the Assertion Level (P120) to "2" (High). P120 may need to be reset for the digital input devices being used. An F_ AL fault may occur if P120 and the Assertion switch are not set identically. NOTE 5 If an EPM that contains data from a previous compatible software version is installed: - The drive will operate according to the previous data, but parameters cannot be changed (ε E will be displayed if attempted) - To update the EPM to the current software version, set P199 $=5$. The parameters can now be changed but the EPM is incompatible with previous software revisions.	

4.5.4 PID Parameters

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P200	PID Mode	0	0 Disabled 1 Normal-acting 2 Reverse-acting 3 Normal-acting, Bi-directional 4 Reverse-acting, Bi-directional	- Normal-acting: As feedback increases, motor speed decreases - Reverse-acting: As feedback increases, motor speed increases - PID mode is disabled in Vector Torque mode (P300 = 5) - Selections 3, 4: If P112=1, PID controller output sets the speed, (range -max freq to + max freq)
		$\stackrel{\square}{1}$	NOTE To activate PID mode, one of the TB-13 inputs (P121...P124) must be used to select the Auto Reference that matches the desired PID setpoint reference. If the selected PID setpoint reference uses the same analog signal as the PID feedback (P201), an F_I L fault will occur. Example: The desired PID setpoint reference is the keypad ($\mathbf{\Delta}$ and $\boldsymbol{\nabla}$). Set TB-13x $=6$ (Auto Reference: Keypad): - TB-13x = closed: PID mode is active - TB-13x = open: PID mode is disabled and the drive speed will be controlled by the reference selected in P101.	
P20 1	PID Feedback Source	0	$\begin{array}{ll} \hline 0 & 4-20 \mathrm{~mA} \text { (TB-25) } \\ 1 & 0-10 \mathrm{VDC} \mathrm{(TB-5)} \\ 2 & \text { Drive Load (P507) } \\ 3 & \text { Feedback from Network } \end{array}$	Must be set to match the PID feedback signal
P202	PID Decimal Point	1	$\begin{array}{ll} 0 & \text { PID Display }=\text { XXXX } \\ 1 & \text { PID Display }=\text { XXX.X } \\ 2 & \text { PID Display }=X X . X X \\ 3 & \text { PID Display }=X . X X X \\ 4 & \text { PID Display }=. X X X X \end{array}$	Applies to P204, P205, P214, P215, P231...P233, P242, P522, P523
P203 (2)	PID Units	0	$\begin{array}{ll} 0 & \% \\ 1 & \text { UNITS } \\ 2 & \text { AMPS } \\ 3 & \text { NONE } \\ \hline \end{array}$	Select the UNITS LED that will be illuminated when the drive is running in PID control mode
P204	Feedback at Minimum Signal	0.0	-99.9 3100.0	Set to match the range of the feedback signal being used
P205	Feedback at Maximum Signal	100.0	-99.9 3100.0	Example: Feedback signal is $0-300 \mathrm{PSI} ;$ P204 = $0.0, \mathrm{P} 205=300.0$

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

Commissioning

(2) Parameter applicable to SMV models 15 HP (11kW) and higher.

4.5.5 Vector Parameters

(1) Any changes to this parameter will not take effect until the drive is stopped.

Commissioning

Code		Possible Settings				IMPORTANT
No．	Name	Default	Selection			
P304 ${ }^{(1)}$	Motor Rated Frequency	60	0	\｛Hz\}	1000	Set to motor nameplate data
P305 ${ }^{(1)}$	Motor Rated Speed	1750	300	\｛RPM \}	65000	
PヨO6 ${ }^{(1)}$	Motor Cosine Phi	0.80	0.40		0.99	
		\mathbf{i}	NOTE If motor cosine phi is not known，use one of the following formulas： \cos phi $=$ motor Watts $/$（motor efficiency X P302 X P303 X 1．732） $\cos \mathrm{phi}=\cos \left[\sin ^{-1}\right.$（magnetizing current／motor current）］			
扫11 ${ }^{(1)}$	Motor Stator Resistance		0.00	$\{\Omega\}$	64.00	－P310， 311 default setting depends on drive rating －Will be automatically programmed by P399 －Changing these settings can adversely affect performance．Contact factory technical support prior to changing
Pヨ11 ${ }^{(1)}$	Motor Stator Inductance		0.0	\｛mH\}	2000	
P3 15	Dead Time Compensation Factor	0.0	－50．0	\｛\％\}	＋50．0	－Adjust dead time correction from internal default －Takes effect when P399 $=3$ ．
P3コロ	Torque Limit	100	0	\｛\％\}	400	When P300＝5，sets the maximum output torque．
Pヨヨ 1	Preset Torque Setpoint \＃1	100	0	\｛\％\}	400	TB－13A activated；P121 $=3$ and P300 $=5$
Pヨヨコ	Preset Torque Setpoint \＃2	100	0	\｛\％\}	400	TB－13B activated；P122＝3 and P300＝5
Pヨヨコ	Preset Torque Setpoint \＃3	100	0	\｛\％\}	400	TB－13C activated；P123 $=3$ and P300 $=5$
Pヨヨ4 ${ }^{(2)}$	Preset Torque Setpoint \＃4	100	0	\｛\％\}	400	TB－13D activated；P124 $=3$ and P300 $=5$
РЗ40 ${ }^{(1)}$	Current Loop P Gain	0.25	0.00		16.0	Changing these settings can adversely affect performance．Contact factory technical support prior to changing．
P341 ${ }^{\text {（1）}}$	Current Loop I Gain	65	12	\｛ms	9990	
РЗ42 ${ }^{(1)}$	Speed Loop Adjust	0.0	0.0	\｛\％\}	20.0	
PЭ4ヨ	Slip Compensation Response Filter	99	90	\｛ms\}	9999	Low pass filter time constant for varying the slip compensation response to changes in the motor current．
P399	Motor Auto－ calibration	0	0 Cali 1 Sta 2 Adv 3 Byp ope Cali 4 Sta 5 Adv	ot Don ibratio alibratio ration， vector ibratio libratio		－If P300 $=4$ or 5 ，motor calibration must be performed if P399 is not set to 3 （bypass calibration）． －If $\mathrm{P} 300=2$ or 3 ，motor calibration is recommended． －Use option 2 if option 1 failed or in case of non－ standard motors －An alternating CRL／Err will occur if： －attempt motor calibration with P300 $=0$ or 1 －motor calibration is attempted before programming motor data
		$\dot{\mathbf{i}}$	NOTE：To run the Auto Calibration： －Set P302．．．P306 according to motor nameplate －Set P399＝ 1 or 2 （if option 1 failed or in case of non－standard motor） －Make sure motor is cold $\left(20^{\circ}-25^{\circ} \mathrm{C}\right)$ －Apply a Start command －Display will indicate CAL for about 40 seconds －Once the calibration is complete，the display will indicate Stop；apply another Start command to actually start the motor －Parameter P399 will now be set to 4 or 5 ．			

（1）Any changes to this parameter will not take effect until the drive is stopped．
（2）Parameter applicable to SMV models 15HP（11kW）and higher．

4.5.6 Network Parameters

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P400	Network Protocol		0 Not Active 1 Remote Keypad 2 Modbus RTU 3 CANopen 4 DeviceNet 5 Ethernet 6 Profibus 7 Lecom-B 8 I/0 Module	This parameter setting is based upon the network or I/O module that is installed.
P401	Module Type Installed	0	0 No Module Installed 1 Basic I/O (0x0100, 1.0.0) 2 RS485/Rem. Keypad (0x0200, 2.0.0) 3 CANopen (0x0300, 3.0.0) 11 PROFIBUS ($0 \times 1100,11.0 .0$) 12 Ethernet (0x1200, 12.0.0)	Module type format: 0xAABC; Drive Display: AA.B.C $A A=$ Module Type $B=$ Major revision $\mathrm{C}=$ minor revision
P402	Module Status	0	0 Not Initialized 1 Initialization: Module to EPM 2 Initialization: EPM to Module 3 Online 4 Failed Initialization Error 5 Time-out Error 6 Initialization Failed 7 Initialization Error	Module type mismatch P401 Protocol selection mismatch P400
Р403	Module Reset	0	$\begin{array}{\|ll\|} \hline 0 & \text { No Action } \\ 1 & \text { Reset parameters to default values } \\ \hline \end{array}$	Returns module parameters $401 \ldots 499$ to the default values shown in the manual
P404	Module Timeout Action	3	0 No Fault 1 STOP (see P111) 2 Quick Stop 3 Fault (F_ntF)	Action to be taken in the event of a Module/ Drive Time-out. Time is fixed at 200 ms STOP is by the method selected in P111.
P405	Current Network Fault		0 No Fault 1 F.nF1 2 F.nF2 3 F.nF3 4 F.nF4 5 F.nF5 6 F.nF6 7 F.nF7	NetIdle Mode Loss of Ethernet I/O connection Network Fault Explicit Message Timeout Overall Network Timeout Overall Explicit Timeout Overall I/O Message Timeout
Р406	Proprietary			Manufacturer specific
P407	. P 499	Module	pecific Parameters	Refer to the Communications Reference Guide specific to the network or I/O module installed.

Commissioning

4.5.7 Diagnostic Parameters

4.5.7.1 Terminal \& Protection Status Display

Parameter P530 allows monitoring of the control terminal points and common drive conditions:
An illuminated LED segment indicates:

- the protective circuit is active (LED 1)
- the Logic Assertion Switch is set to High (+)
- input terminal is asserted (LED 2)
- output terminal is energized (LED 4)
- the Charge Relay is not a terminal, this segment will be illuminated when the Charge Relay is energized (LED 4).

* Input 13D available on 15-60HP (11-45kW) models only

4.5.7.2 Keypad Status Display

Parameter P531 allows monitoring of the keypad pushbuttons:
An illuminated LED segment indicates when the button is depressed.

LED 1 and LED 2 are used to indicate pushbutton presses on a remote keypad that is attached to the drive. LED 3 and LED 4 indicate button presses on the local drive keypad.

Commissioning

4.5.8 Onboard Communications Parameters 15-60HP (11-45kW)

The P6xx Onboard Communication parameters are applicable to the 15HP (11kW) and higher models only.

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
P600	Network Enable	0	0 Disabled 1 Remote Keypad 2 Modbus 7 Lecom	This parameter enables the onboard network communications.
		$\stackrel{\oplus}{\mathbf{i}}$	NOTE: Onboard Communications will be disabled if: $\begin{aligned} & -P 600=0, \text { or } \\ & -P 600=1 \text { and } P 400=1, \text { or } \\ & -P 600=2 \text { and } P 400=2,3,4,5,6 \text { or } 7 \\ & -P 600=7 \text { and } P 400=2,3,4,5,6 \text { or } 7 \end{aligned}$	If the onboard communications are disabled, the user will not have access to any of the other P6xx parameters.
P610	Network Address	1	1-247	Modbus
		1	1-99	Lecom
P6 11	Network Baud Rate	2	0 2400 bps 2 9600 bps 1 4800 bps 3 19200 bps	Modbus
		0	0 9600 bps 1 4800 bps 2 2400 bps 3 1200 bps 4 19200 bps	Lecom
P6 12	Network Data Format	0	$\begin{array}{ll} 0 & 8, N, 2 \\ 1 & 8, N, 1 \\ 2 & 8, E, 1 \\ 3 & 8,0,1 \\ \hline \end{array}$	Modbus Only
P620	Network Control Level	0	0 Monitor Only 1 Parameter Programming 2 Programming and Setpoint Control 3 Full Control	Lecom Only
P624	Network Powerup Start Status	0	$\begin{array}{ll} 0 & \text { Quick Stop } \\ 1 & \text { Controller Inhibit } \end{array}$	Lecom Only
P625	Network Timeout	10.0	0.0-300.0 seconds	Modbus
		50	0-65000 milliseconds	Lecom
P626	Network Timeout Action	4	0 No action 1 Stop (P111) 2 Quick Stop 3 Controller Inhibit 4 Trip Fault, F.nF1	Modbus
		0	0 No action 1 Controller Inhibit 2 Quick Stop 3 Trip Fault, F.nF1	Lecom
P627	Network Messages Received	$\stackrel{1}{1}$	Read-Only: 0-9999 NOTE: When the number of messages counting from 0 .	Valid network messages received exceeds 9999, the counter resets and resumes

4.5.9 Sequencer Parameters

The P700 Sequencer parameters are listed herein. Refer to section 4.5.7 for P56x Sequencer Diagnostic Parameters. The sequencer function consists of 16 step segments, each individual step segment can have its own ramp time, time spent in individual segment and output frequency entered. The sequencer has 3 different modes to control how the drive moves through each individual step segment: Timer Transition, Step Sequence or Timer and Step Sequence.

P700= 1 (Timer Transition)

Starting at the segment number entered in the "Start Segment" parameter, the drive will automatically move through each of the segments. The time spent in each segment is determined by the values set in the individual "Time in Current Step" parameters.

P700=2 (Step Sequence)

Starting at the segment number entered in the "Start Segment" parameter the sequencer will only move to the next segment when a rising edge is applied to the highest priority digital input which is programmed to "Step Sequence" selection " 24 ".

P700 $=3$ (Timer Transition or Step Sequence)

Starting at the segment number entered in the "Start Segment" parameter, the drive will automatically move through each of the segments. The time spent in each segment is determined by the values set in the individual "Time in Current Step" parameters, however if a rising edge is applied to the highest priority digital input which is programmed to "Step Sequence" selection "24" it will force the sequencer to step into the next segment.
NOTE: A value of " 0 " in the "Time in current step" parameter (ex: P712), will result in the segment being skipped.

Code		Possible Settings		IMPORTANT
No.	Name	Default	Selection	
Pר0	Sequencer Mode	0	0 Disabled 1 Enabled: transition on timer only 2 Enabled: transition on rising edge (P121, $122,123=25$ step sequence) 3 Enabled: transition on timer or rising edge	If P700 $=0$ and no reference (P121, P101) points to any of the sequence segments, then P701-P799 will not be displayed on the local keypad.
P701	Sequencer: TB13A Trigger Segment	1	$\begin{aligned} & 1-16 \\ & \text { TB13A = lowest priority } \end{aligned}$	Asserting TB13A with selection \#24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
P702	Sequencer: TB13B Trigger Segment	1	$1 \text {-16 }$ TB13B: higher priority than TB13A	Asserting TB13B with selection \#24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
P703	Sequencer: TB13C Trigger Segment	1	$1-16$ TB13C: higher priority thanTB13B, A	Asserting TB13C with selection \#24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
P704 ${ }^{(2)}$	Sequencer: TB13D Trigger Segment	1	1-16 TB13D: higher priority than TB13C, B, A	Asserting TB13D with selection \#24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
Pרם	Sequencer: Action after Stop/Start transition or Fault Restart	0	0 Restart at beginning of sequence 1 Restart at beginning of current seg 2 Start at beginning of prior segment 3 Start at beginning of next segment	Pointed by TB13x
P707	Sequencer: Number of cycles	1	65535	1 = single scan; $65535=$ continuous loop

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

Commissioning

Code		Possible Settings							IMPORTANT
No．		Default	Selection						
	Segment \＃3								
P720	Segment \＃3 Frequency Setpoint	0.0	－500．0 \｛Hz	\｛Hz\}	500.0				If P112 $=1$ ，negative sign forces reverse direction
P72 1	Segment \＃3 Accel／Decel Time	20.0	0.0 \｛s	\｛sec\}	3600.0				
Рา22	Segment \＃3 Time in current step	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0 \\ & \hline \end{aligned}$	\｛P708\} \｛P708\}	$\begin{aligned} & 6553.5 \\ & 65535 \end{aligned}$				Scaling／units depend on P708 Skip segment if time $=0$
P723	Segment \＃3 Digital Output State	0	Value set in P723 0 Relay（Bit 0） 0 TB14（Bit 1） VO option Relay（Bit 2） NOTE：P441 is the Rela optional Digital $/ / 0 \mathrm{mod}$	$\mathbf{0}$ $\mathbf{1}$ 0 1 0 0 0 0 elay Outp odule（ES	2 3 0 1 1 1 0 0 nut（TB－ VZALO，	4 0 0 1	$\begin{array}{\|l\|} \hline 6 \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \hline \text { 21) } 0 \\ \hline \text { 1). } \end{array}$	7 1 1 1	bit $=0$ ：OFF（De－energized） bit＝1：ON（Energized） The corresponding digital output／relay must be set to accept data from the sequencer：P140， P142，P441＝ 27
P724	Segment \＃3 TB30 Analog Output Value	0.00	0.00	\｛VDC\}	10.00				TB30 configuration parameter must be set to accept this value： $\mathrm{P} 150=10$
	Segment \＃4								
P725	Segment \＃4 Frequency Setpoint	0.0	－500．0 \｛Hz	\｛Hz\}		500			If P112 $=1$ ，negative sign forces reverse direction
P726	Segment \＃4 Accel／Decel Time	20.0	0.0 \｛s	\｛sec\}					
P727	Segment \＃4 Time in current step	$\begin{gathered} 0.0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \{P 708\} \\ & \{P 708\} \end{aligned}$					Scaling／units depend on P708 Skip segment if time $=0$
P72日	Segment \＃4 Digital Output State	0	Value set in P728 0 Relay（Bit 0 ） 0 TB14（Bit 1） 0 ／0 option Relay（Bit 2） 0 NOTE： OT441 is the Rela optional Digital $/ \mathbf{~ R ~}$	$\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$ 1 0 0 0 0 elay Output dule（ES		0		$\begin{array}{\|c\|} \hline 7 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline \text { of the } \end{array}$	bit $=0$ ：OFF（De－energized） bit＝1：ON（Energized） The corresponding digital output／relay must be set to accept data from the sequencer：P140， P142，P441＝ 27
P729	Segment \＃4 TB30 Analog Output Value	0.00	0.00 \｛V	\｛VDC\}		10.			TB30 configuration parameter must be set to accept this value： $\mathrm{P} 150=10$
	Segment \＃5								
P730	Segment \＃5 Frequency Setpoint	0.0	－500．0 \｛Hz	\｛Hz\}		500			If P112 $=1$ ，negative sign forces reverse direction
P7ヨ1	Segment \＃5 Accel／Decel Time	20.0	0.0 \｛s	\｛sec\}					
คาコ	Segment \＃5 Time in current step	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \{P 708\} \\ & \{P 708\} \end{aligned}$		655			Scaling／units depend on P708 Skip segment if time $=0$
P73コ	Segment \＃5 Digital Output State	0	Value set in P733 Relay（Bit 0） TB14（Bit 1） V／0 option Relay（Bit 2） NOTE：P441 is the Rela optional Digital I／O mod	$\mathbf{0}$ $\mathbf{1}$ $\mathbf{0}$ 1 0 0 0 0 elay Outp odule（ESI	$\mathbf{2}$ $\mathbf{3}$ 0 1 1 1 0 0 ut（TB－1 VZALO，	$\begin{array}{\|l\|l\|} \hline 4 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 19,20 \\ \hline \end{array}$	21）．	$\begin{array}{\|l\|} \hline 7 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline \end{array}$	bit $=0$ ：OFF（De－energized） bit＝1：ON（Energized） The corresponding digital output／relay must be set to accept data from the sequencer：P140， P142，P441＝ 27
P734	Segment \＃5 TB30 Analog Output Value	0.00	0.00 \｛V	\｛VDC\}		10.			TB30 configuration parameter must be set to accept this value： $\mathrm{P} 150=10$

Commissioning

Commissioning

Commissioning

Code		Possible Settings		
No.	Name	Default	Selection	IMPORTANT

WARNING

If the input defined to "Start Sequence" is opened during a sequence, the drive will exit sequencer mode and will run at the specified standard or alternate speed source (dependent on drive configuration).

4.5.9.1 Sequencer Flow Diagram Left

WARNING

If the input defined to "Start Sequence" is opened during a sequence, the drive will exit sequencer mode and will run at the specified standard or alternate speed source (dependent on drive configuration). Commissioning

4.5.9.2 Sequencer Flow Diagram Right

Action after Stop/Start (P100) transition/digital input (if setup for sequencer mode) transition or restart after trip.	
P706	Action
0	Restart at beginning of sequence (pointed by TB13x)
1	Restart at beginning of current segment
2	Start at beginning of prior segment
3	Start at beginning of next segment

4.5.9.3 Sequencer Status

i
NOTE
On the "End Segment", the output voltage is not present until after the end segment delay P792 has expired. On the other segments the output voltage is present on entry to the segment. The same is true for the digital outputs.
(1) The drive can only be restarted if the error message has been reset.

Troubleshooting and Diagnostics

5 Troubleshooting and Diagnostics

5.1 Status/Warning Messages

Status / Warning		Cause	Remedy
br	DC-injection brake active	DC-injection brake activated - activation of digital input (P121...P124 = 18) - automatically $(\mathrm{P} 110=2,4 \ldots 6)$ - automatically (P111 = 1, 3)	Deactivate DC-injection brake - deactivate digital input - automatically after P175 time has expired
bF	Drive ID warning	The Drive ID (P502) stored on the EPM does not match the drive model.	- Verify motor data (P302...P306) and perform Auto Calibration. - Set drive mode (P300) to 0 or 1 - Reset the drive (P199 to 3 or 4) and reprogram.
CRL	Motor Auto-calibration active	Refer to P300, P399	Motor Auto-calibration is being performed
cE	An EPM that contains valid data from a previous software version has been installed	An attempt was made to change parameter settings	Parameter settings can only be changed after the EPM data is converted to the current version (P199 = 5)
CL	Current Limit (P171) reached	Motor overload	- Increase P171 - Verify drive/motor are proper size for application
dE[Decel Override	The drive has stopped decelerating to avoid tripping into HF fault, due to excessive motor regen (2 sec max).	If drive trips into $H F$ fault: - Increase P105, P126 - Install Dynamic Braking option
Err	Error	Invalid data was entered, or an invalid command was attempted	
FCL	Fast Current Limit	Overload	Verify drive/motor are proper size for application
F5t	Flying Restart Attempt after Fault	P110 $=5,6$	
LE	OEM Settings Operation warning	An attempt was made to change parameter settings while the drive is operating in OEM Settings mode.	In OEM Settings mode (P199 = 1), making changes to parameters is not permitted.
EF	OEM Defaults data warning	An attempt was made to use (or reset to) the OEM default settings (P199 = 1 or 2) using an EPM without valid OEM data.	Install an EPM containing valid OEM Defaults data
LL	Fault Lockout	The drive attempted 5 restarts after a fault but all attempts were unsuccessful (P110 = 3...6)	- Drive requires manual reset - Check Fault History (P500) and correct fault condition
PdE[PID Deceleration Status	PID setpoint has finished its ramp but the drive is still decelerating to a stop.	
Pld	PID Mode Active	Drive has been put into PID Mode.	Refer to P200
5LP	Sleep Mode is active	Refer to P240...P242	
$5 P$	Start Pending	The drive has tripped into a fault and will automatically restart (P110 $=3$...6)	To disable Auto-Restart, set P110 $=0 . . .2$
5Pd	PID Mode disabled.	Drive has been taken out of PID Mode. Refer to P200.	
StaP	Output frequency $=0 \mathrm{~Hz}$ (outputs U, V, W inhibited)	Stop has been commanded from the keypad, terminal strip, or network	Apply Start command (Start Control source depends on P100)

(1) The drive can only be restarted if the error message has been reset.

5.2 Drive Configuration Messages

When the Mode button is pressed and held, the drive's display will provide a 4 -digit code that indicates how the drive is configured. If the drive is in a Stop state when this is done, the display will also indicate which control source commanded the drive to Stop (the two displays will alternate every second).

Configuration Display			
Format $=$ x.y.zz	$\begin{aligned} & x=\text { Control Source: } \\ & L=\text { Local Keypad } \\ & t=\text { Terminal Strip } \\ & r=\text { Remote Keypad } \\ & n=\text { Network } \end{aligned}$	$\begin{aligned} & y=\text { Mode: } \\ & 5=\text { Speed mode } \\ & P=\text { PID mode } \\ & t=\text { Torque mode } \\ & {[=\text { Sequencer mode }} \end{aligned}$	
	Example: L_5_CP = Local Keypad Start control, Speed mode, Keypad speed reference E_P_EU = Terminal Strip Start control, PID mode, 0-10 VDC setpoint reference t_C_ $12=$ Terminal Strip Start control, Sequencer Operation (Speed mode), Segment \#12 n_E_P2 = Network Start control, Vector Torque mode, Preset Torque \#2 reference n_5_03 = Network Start control, Speed mode, Speed reference from Sequencer segment \#03		
Stop Source Display			
Format $=$ x_5t P	L_5tP = Stop command came from Local Keypad t_5tP = Stop command came from Terminal Strip r_5tP = Stop command came from Remote Keypad n_5tP = Stop command came from Network		

5.3 Fault Messages

The messages below show how they will appear on the display when the drive trips. When looking at the Fault History (P500), the F_{-}will not appear in the fault message.

	Fault	Cause	Remedy ${ }^{(1)}$
F_AF	High Temperature fault	Drive is too hot inside	- Reduce drive load - Improve cooling
F_hL	Assertion Level fault	- Assertion Level switch is changed during operation - P120 is changed during operation - P100 or P121...P124 are set to a value other than 0 and P120 does not match the Assertion Level Switch.	- Make sure the Assertion Level switch and P120 are both set for the type of input devices being used, prior to setting P100 or P121...P124. Refer to 3.2.3 and P120.
F_bF	Personality fault	Drive Hardware	- Cycle Power - Power down and install EPM with valid data - Reset the drive back to defaults (P199 = 3, 4) and then re-program - If problem persists, contact factory technical support
F_LF	Control fault	An EPM has been installed that is either blank or corrupted	
F_cF	Incompatible EPM fault	An EPM has been installed that contains data from an incompatible parameter version	
F_cFt	Forced Translation fault	An EPM from an old drive put in new drive causes drive to trip F cFT fault.	Press [M] (mode button) twice to reset

Troubleshooting and Diagnostics

Fault		Cause	Remedy ${ }^{(1)}$
F_dbF	Dynamic Braking fault	Dynamic braking resistors are overheating	- Increase active decel time (P105, P126, P127). - Check mains voltage and P107
F_EF	External fault	- P121...P124 = 21 and that digital input has been opened. - P121...P124 = 22 and that digital input has been closed.	- Correct the external fault condition - Make sure digital input is set properly for NC or NO circuit
F_FI	EPM fault	EPM missing or defective	Power down and replace EPM
$\begin{gathered} F_{-} F Z \\ \ldots \\ F_{-} F I D \end{gathered}$	Internal faults		Contact factory technical support
F_Frr	Control Configuration Fault	The drive is setup for REMOTE KEYPAD control ($\mathrm{P} 100=2$ or 5) but is not setup to communicate with a remote keypad	Set P400 $=1$, or P600 $=1$
		The drive is setup for NETWORK ONLY control ($\mathrm{P} 100=3$) but is not setup for network communications	Set P400 or P600 to a valid network communications protocol selection
F_FoL	TB25 (4-20 mA signal) Threshold fault	$4-20 \mathrm{~mA}$ signal (at TB-25) drops below the value set in P164.	- Check signal/signal wire - Refer to parameters P163 and P164.
F_LF	OEM Defaults data fault	Drive is powered up with P199 =1 and OEM settings in the EPM are not valid.	Install an EPM containing valid OEM Defaults data or change P199 to 0.
F_HF	High DC Bus Voltage fault	Mains voltage is too high	Check mains voltage and P107
		Decel time is too short, or too much regen from motor	Increase active decel time (P105, P126, P127) or install Dynamic Braking option
F_IL	Digital Input Configuration fault (P121... P124)	More than one digital input set for the same function	Each setting can only be used once (except settings 0 and 3)
		Only one digital input configured for MOP function (Up, Down)	One input must be set to MOP Up, another must be set to MOP Down
		PID mode is entered with setpoint reference and feedback source set to the same analog signal	Change PID setpoint reference (P121...P124) or feedback source (P201).
		One of the digital inputs (P121...P124) is set to 10 and another is set to $11 \ldots 14$.	Reconfigure digital inputs
		One of the digital inputs (P121...P124) is set to 11 or 12 and another is set to 13 or 14.	
		PID enabled in Vector Torque mode (P200 $=1$ or 2 and $\mathrm{P} 300=5$)	PID cannot be used in Vector Torque mode
F_JF	Remote keypad fault	Remote keypad disconnected	Check remote keypad connections
F_LF	Low DC Bus Voltage fault	Mains voltage too low	Check mains voltage
F_nld	No Motor ID fault	An attempt was made to start the drive in Vector or Enhanced V/Hz mode prior to performing the Motor Auto-calibration	Refer to parameters P300...P399 for Drive Mode setup and calibration.
$F_{\text {_nt }}$	Module communication fault	Communication failure between drive and Network Module.	Check module connections
$\begin{aligned} & F_{-n F I} \\ & F_{-n F g} \end{aligned}$	Network Faults	Refer to the module documentation. for Causes and Remedies.	

Fault		Cause	Remedy ${ }^{(1)}$
F_DF	Output fault: Transistor fault	Output short circuit	Check motor/motor cable
		Acceleration time too short	Increase P104, P125
		Severe motor overload, due to: - Mechanical problem - Drive/motor too small for application	- Check machine / system - Verify drive/motor are proper size for application
		Boost values too high	Decrease P168, P169
		Excessive capacitive charging current of the motor cable	- Use shorter motor cables with lower charging current - Use low capacitance motor cables - Install reactor between motor and drive.
		Failed output transistor	Contact factory technical support
F_DF I	Output fault: Ground fault	Grounded motor phase	Check motor and motor cable
		Excessive capacitive charging current of the motor cable	Use shorter motor cables with lower charging current
F_PF	Motor Overload fault	Excessive motor load for too long	- Verify proper setting of P108 - Verify drive and motor are proper size for application
F_rF	Flying Restart fault	Controller was unable to synchronize with the motor during restart attempt; (P110 $=5 \text { or } 6 \text {) }$	Check motor / load
F_5F	Single-Phase fault	A mains phase has been lost	Check mains voltage
F_UF	Start fault	Start command was present when power was applied (P110 = 0 or 2).	- Must wait at least 2 seconds after power-up to apply Start command - Consider alternate starting method (P110).
F_FRU	TB5 (0-10V signal) Threshold fault	$0-10 \mathrm{~V}$ signal (at TB5) drops below the value set in P158.	- Check signal/signal wire - Refer to parameters P157 and P158

(1) The drive can only be restarted if the error message has been reset.

Appendix A

A. 1 Permissable Cable Lengths

The table herein lists the permissable cable lengths for use with an SMV inverter with an internal EMC filter.

NOTE
This table is intended as a reference guideline only; application results may vary. The values in this table are based on testing with commonly available low-capacitance shielded cable and commonly available AC induction motors. Testing is conducted at worst case speeds and loads.

Maximum Permissible Cable Lengths (Meters) for SMV Model with Internal EMC Filters									
Mains	Model	4 kHz Carrier$(P 166=0)$		6 kHz Carrier$(P 166=1)$		8 kHz Carrier(P166 = 2)		10 kHz Carrier (P166 = 3)	
		Class A	Class B						
	ESV251dd2SFe	38	12	35	10	33	5	30	N/A
	ESV371dd2SFe	38	12	35	10	33	5	30	N/A
	ESV751dd 2 SFe	38	12	35	10	33	5	30	N/A
	ESV112ded2SF	38	12	35	10	33	5	30	N/A
	ESV152dd2SF	38	12	35	10	33	5	30	N/A
	ESV222ed2SFe	38	12	35	10	33	5	30	N/A
	ESV371044TFe	30	4	25	2	20	N/A	10	N/A
	ESV751d84TF	30	4	25	2	20	N/A	10	N/A
	ESV112ed4TFe	30	4	25	2	20	N/A	10	N/A
	ESV152de4TFe	30	4	25	2	20	N/A	10	N/A
	ESV222de4TFe	30	4	25	2	20	N/A	10	N/A
	ESV302de4TFe	30	4	25	2	20	N/A	10	N/A
	ESV402de4TF	54	5	48	3	42	2	N/A	N/A
	ESV552ed4TFe	54	5	48	3	42	2	N/A	N/A
	ESV752 ${ }^{\text {d } 4 \text { TF }}$	54	5	48	3	42	2	N/A	N/A

NOTE: The "de" and "d" symbols are place holders in the Model part number that contain different information depending on the specific configuration of the model. Refer to the SMV Type Number Designation table in section 2.2 for more information.

Lenze Americas Corporation
630 Douglas Street
Uxbridge, MA 01569
USA
울 800 217-9100
508 278-7873
三\# marketing.us@lenze.com
(\#ww.Lenze.com

Service

