GT3A Series - Analog Timers

Key features:

- 4 selectable operation modes on each model
- External start, reset, and gate inputs
- Panel mount or socket mount
- Large variety of timing functions
- Power and output status indicating LEDs

Specifications

	GT3A-1	GT3A-2	GT3A-3	GT3A-4,-5,-6
Operation	Multi-mode			Multi-mode with inputs (11 pins)
Time Range	0.15 to 180 hours			
Rated Voltage	100 to 240 V AC, $50 / 60 \mathrm{~Hz}$ 12 V DC 24 V AC, $50 / 60 \mathrm{~Hz}$ / 24 V DC			
Contact Ratings	125 V AC/250V AC, 3A; 30 V D, 1A (resistive load)		125 V AC/250V AC, 5A; 30V DC, 5A (resistive load)	
Minimum Applicable Load	$5 \mathrm{~V}, 10 \mathrm{~mA}$ (reference value)			
Voltage Tolerance	AF20 (100V AC): 85 to 264 V AC AD24: 20.4 to 26.4 V AC/21.6 to 26.4 V DC D12: 10.8 to 13.2 V DC			
Error	$\pm 0.2 \%, \pm 10 \mathrm{msec}$ (repeat, voltage, temperature)			
Setting Error	$\pm 10 \%$ maximum			
Reset Time	60 msec maximum			
Insulation Resistance	100MW minimum			
Dielectric Strength	Between power and output terminals: $2,000 \mathrm{~V}$ AC, 1 minute Between contacts of different poles: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute Between contacts of the same pole: 750V AC, 1 minute			
Power Consumption (approximate)	Delayed SPDT	Delayed SPDT + instantaneous SPDT	Delayed DPDT	Delayed DPDT
	$\begin{gathered} 10.8 \mathrm{VA} \\ (200 \mathrm{VC}, 6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 13.5 \mathrm{VA} \\ (200 \mathrm{VAC}, 60 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { 14.4VA } \\ \text { (200V AC, } 60 \mathrm{~Hz} \text {) } \end{gathered}$	4.7VA (100V AC, 60Hz), 14.4VA (200V AC, 60Hz)
	-	12VDC/1W 24VDC/0.7W 24VAC/1.2VA	12VDC/1.1W 24VDC/0.6W 24VAC/1.3VA	12VDC/0.8W 24VDC/0.6W 24VAC/1.3VA
Mechanical Life	10,000,000 operations minimum		5,000,000 operations minimum	
Electrical Llfe	50,000 operations minimum (rated load)		100,000 operations minimum (rated load)	
Weight (approximate)	63g	73g	79 g	80 g
Vibration Resistance	$100 \mathrm{~m} / \mathrm{sec}^{2}$ (approximate 10G)			
Shock Resistance	Operating extremes: $100 \mathrm{~m} / \mathrm{sec}^{2}$ (approximate 10G) Damage limits: $500 \mathrm{~m} / \mathrm{scc}^{2}$ (approximate 50 G)			
Operating Temperature	-10 to $+50^{\circ} \mathrm{C}$			
Operating Humidity	45 to 85% RH			
Storage Temperature	-30 to $+80^{\circ} \mathrm{C}$			
Housing Color	Gray			

Timers

Part Numbers
T3A-1, -2, -3

Mode Of Operation	Rated Voltage Code	Time Range	Output	Contact	Complete Part No.	
					8 -Pin	11-Pin
A: ON-delay 1 B: Interval 1 C: Cycle 1 D: Cycle 3	AF20: 100 to 240V AC (50/60Hz)	0.1 seconds to 180 hours	250 V AC, 3 A , 30V DC, 1A (resistive load)	Delayed SPDT	GT3A-1AF20	GT3A-1EAF20
	AF20: 100 to 240 V AC ($50 / 60 \mathrm{~Hz}$) D12: 12V DC AD24: 24V AC ($50 / 60 \mathrm{~Hz} / / 24 \mathrm{~V}$ DC			Delayed SPDT + Instantaneous SPDT	GT3A-2AF20	GT3A-2EAF20
					GT3A-2D12	GT3A-2ED12
					GT3A-2AD24	GT3A-2EAD24
			240 V AC, 5 A , 24 V DC, 5A (resistive load)	Delayed DPDT	GT3A-3AF20	GT3A-3EAF20
					GT3A-3D12	GT3A-3ED12
					GT3A-3AD24	GT3A-3EAD24

1. For wiring schematics and timing diagrams for GT3A $-1,-2,-3$, see pages page 845 and page 846 respectively.

For more details about time ranges, see instructions on page page 850.
. For socket and accessory part numbers, see page 860 .

GT3A-4, -5, -6

Mode of Operation	Rated Voltage Code	Time Range	Output	Contact	Input	Complete Part No.	
						A (11-pin)	B (11-pin)
A: ON-Delay 2 B: Cycle 2 C: Signal ON/OFF-Delay 1 D: Signal OFF-Delay 1	$\begin{aligned} & \text { AF20: } 100 \text { to } 240 \mathrm{~V} \text { AC }(50 / 60 \mathrm{~Hz}) \\ & \text { D12: } 12 \mathrm{~V} \text { DC } \\ & \text { AD24: } 24 \mathrm{~V} \text { AC }(50 / 60 \mathrm{~Hz}) / 24 \mathrm{~V} \text { DC } \end{aligned}$	0.1 seconds to 180 hours	250 V AC, 5 A , 24V DC, 5A (resistive load)	Delayed DPDT	Start Reset Gate	GT3A-4AF20	GT3A-4EAF20
						GT3A-4D12	GT3A-4ED12
						GT3A-4AD24	GT3A-4EAD24
A: Interval 2 B: One-Shot Cycle C: Signal ON/OFF-Delay 2 D: Signal OFF-Delay 2	AF20: 100 to 240 V AC (50/60Hz) AD24: 24V AC ($50 / 60 \mathrm{~Hz}$)/24V DC					GT3A-5AF20	GT3A-5EAF20
						GT3A-5AD24	GT3A-5EAD24
A: One-Shot B: One-Shot ON-Delay						GT3A-6AF20	GT3A-6EAF20
C: One-Shot 2 D: Signal ON/OFF-Delay 3						GT3A-6AD24	GT3A-6EAD24

4. For wiring schematics and timing diagrams $G T 3 A-4,-5,-6$, see pages 832,833 , and 833 respectively.
5. For more details about time ranges, see instructions on page 850.
6. $\mathrm{A}(11$-pin $)$ and $\mathrm{B}(11$-pin $)$ differ in the way inputs are wired.
7. For socket and accessory part numbers, see page 860.
8. For the timing diagrams overview, see page 832.

Timing Diagrams/Schematics

GT3A-1 Timing Diagrams

Delayed SPDT

Cycle 1 (OFF first)

GT3A-2 Timing Diagrams Delayed SPDT + Instantaneous SPDT

Cycle 3 (ON first)
MODE
D
Cycle 1 (OFF first)

Note: Pins 1, 3, and 4 are the instantaneous contacts.

GT3A-3 Timing Diagrams
Delayed DPDT

GT3A-4 Timing Diagrams Delayed DPDT

Timers

$T=$ Set time $T a=$ Shorter than set time
$T=T^{\prime}+T^{\prime \prime}$

GT3A-6 Timing Diagrams Delayed DPDT

$T=$ Set time $T a=$ Shorter than set time
$T=T^{\prime}+T^{\prime \prime}$

Instructions: Setting GT3A Series Timers

Step 1.	Desired Mode of Operation			ection	Remarks
Select the desired mode of operation.	For Timers	Mode of Operation	(1) Opera	Mode Selector	The desired operation mode can be selected from the A, B, C, and D modes using the Operation Mode Selector. Change the operation mode from A to B, C, and D in turn by turning the operation mode selector clockwise using a flat screwdriver which is a maximum of $0.156^{\prime \prime}(4 \mathrm{~mm})$ wide. The selected mode is displayed in the window.
	$\begin{aligned} & \text { GT3A-1 } \\ & \text { GT3A-2 } \\ & \text { GT3A-3 } \end{aligned}$	ON-delay 1		A	
		Interval 1		B	
		Cycle 1		C	
		Cycle 3		D	
	GT3A-4	ON-delay 2		A	
		Cycle 2		B	
		Signal ON/OFF-delay 1		C	
		Signal OFF-delay 1		D	
	GT3A-5	Interval 2		A	
		One-shot cycle		B	
		Signal ON/OFF-delay 2		C	
		Signal OFF-delay 2		D	
	GT3A-6	One-shot 1		A	
		One-shot ON-delay		B	
		One-shot 2		C	
		Signal ON/OFF-delay 3		D	
Step 2.		ed Time Range		ection	Remarks
Select the time range that contains the desired time period.		ime Ranges	(2) Dial Selector	(3) Time Range Selector	The desired time range is selected by setting both (2) Dial Selector and (3) Time Range Selector.
	0.1 seconds to	1 second	0-1	1 S	
	0.1 seconds to	3 seconds	0-3		
	0.1 seconds to	6 seconds	0-6		
	0.15 seconds	to 18 seconds	0-18		
	0.1 seconds to	10 seconds	0-1	10 S	
	0.3 seconds to	30 seconds	0-3		
	0.6 seconds to	60 seconds	0-6		
	1.8 seconds to	180 seconds	0-18		
	6 seconds to	0 minutes	0-1	10M	
	18 seconds to	30 minutes	0-3		
	36 seconds to	60 minutes	0-6		
	108 seconds	180 minutes	0-18		
	6 minutes to	0 hours	0-1	10 H	
	18 minutes to	30 hours	0-3		
	36 minutes to	60 hours	0-6		
	108 minutes	180 hours	0-18		
Step 3.	Selection				

Set the precise period of time desired by using the (4) Setting Knob.

GT3F Series - True Power OFF Delay Timers

Key features:

- "True" power OFF-delay up to 10 minutes
- No external control switch necessary
- Available with reset inputs
- Mountable in sockets or flush panel

Specifications

	GT3F-1	GT3F-2
Operation	True power OFF-delay	
Time Range	0.1 seconds to 600 seconds	
Rated Voltage	$\begin{gathered} 100 \text { to } 240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz} \\ 24 \mathrm{~V} \text { AC/DC } \end{gathered}$	
Contact Rating	250V AC/24V DC, 5A (resistive load)	250V AC/24V DC, 3A (resistive load)
Contact Form	SPDT	DPDT
Minimum Power Application Time	1 second	
Voltage Tolerance	AF20: 100 to 240V AC AD24: 21.6 to 26.4VDC, 20.4 to 26.4VAC	
Repeat Error	$\pm 0.2 \%, \pm 10 \mathrm{msec}$	
Voltage Error	$\pm 0.2 \%, \pm 10 \mathrm{msec}$	
Temperature Error	$\pm 0.2 \%, \pm 10 \mathrm{msec}$	
Setting Error	$\pm 10 \%$ maximum	
Insulation Resistance	100MW minimum	

Between power and output terminals:
$2,000 \mathrm{~V}$ AC, 1 minute (SPDT)
1,500V AC, 1 minute (DPDT)

Dielectric Strength	Between contacts on different poles: $1,000 \mathrm{~V}$ AC, 1 minute (DPDT) Between contacts of the same pole: 750 V AC, 1 minute
Power Consumption	AF20: 3.7VA (200V AC, 60Hz) AD24: 0.8 W (DC), 1.2VA (AC)
Mechanical Life	$3,000,000$ operations minimum
Electrical Life	100,000 operations minimum
Vibration Resistance	$100 \mathrm{~m} / \mathrm{sec}^{2}$ (approximate 10G)
Shock Resistance	$\begin{gathered} \text { Operating extremes: } \\ 100 \mathrm{~m} / \mathrm{sec}^{2} \text { (approximate } 10 \mathrm{G} \text {) } \\ \text { Damage limits: } 500 \mathrm{~m} / \mathrm{sec}^{2} \text { (approximate } 50 \mathrm{G} \text {) } \end{gathered}$
Operating Temperature	-10 to $+50^{\circ} \mathrm{C}$
Storage Temperature	-30 to $+80^{\circ} \mathrm{C}$
Operating Humidity	45 to 85\% RH
Weight (approximate)	77 g 79g

GT3F

Mode of Operation	Rated Voltage Code	Time Range	Output	Contact	Optional Input	Complete Part Number	
						8 -Pin	11-Pin
True-Power OFF-delay	AF20: 100 to 240VAC (50/60Hz)	0.1 seconds to 600 seconds	250V AC, 5A,	Delayed SPDT	Reset	GT3F-1AF20	GT3F-1EAF20
			30 V D, 5A (resistive load)			GT3F-1AD24	GT3F-1EAD24
	AD24. 24V AC/DC		250V AC, 3A,	Delayed	None (8p)	GT3F-2AF20	GT3F-2EAF20
	A024.24Vac/ac		$30 \mathrm{VCC}, 3 \mathrm{~A}$ (resistive load)	Delayed	Reset (11p)	GT3F-2AD24	GT3F-2EAD24

Optional reset input resets the contact to the OFF state before time out.

Timing Diagrams/Schematics

GT3F-1 Timing Diagrams

> GT3F-1 (8-pin) GT3F-1E (11-pin)

Delayed SPDT Output, with Reset Input

Part Numbering List

GT3F-1 (8-pin)		GT3F-1E (11-pin)
	Delayed SPDT Output, with Reset Input	

$T=$ Set time

Ta = Shorter than set time
Ts = 1 Second
$\mathrm{Tr}=$ Minimum Power Application Time GT3F-1: 1 Second

1. For time ranges, see page page 854.
2. For sockets and accessory part numbers, see page page 860 .
3. When power is applied, the NO output contact closes. When power is removed, the timing period begins. When time has elapsed, the NO contact opens.
4. For the timing diagram overview, see page page 832.

When power is applied, the NO contact closes. When power is removed, the timing period begins. When time has elapsed, the NO contact opens. Optional reset input will return contacts to original state before time elapses.
$T=$ Set time
$\mathrm{Ta}=$ Shorter than set time
Ts $=1$ Second
Tr = Minimum Power Application Time
GT3F-1: 1 Second

Instructions: Wiring Inputs

Inputs of GT3F

To avoid electric shock, do not touch the input signal terminal during power voltage application. Never apply the input signals to two or more GT3F timers using the same contact or transistor.

In a transistor circuit for controlling input signals, with its primary and secondary power circuits isolated, do not ground the secondary circuit.

On the GT3F timers, connect the input signals to terminal No. 1 and 4 only on the 8 -pin type; connect the input signals to terminal No. 6 and 7 only on the 11-pin type. Never apply voltage to other terminals; otherwise, the internal circuit may be damaged.

Input signal lines must be made as short as possible and installed away from power cables and power lines. Use shielded wires or a separate conduit for input wiring.

The GT3F, consisting of a high-impedance circuit, may not be reset due to the influence of an inductive voltage or residual voltage caused by a leakage current. If not reset, connect an RC filter or bleeder resistor between power terminals so that the voltage between power terminals can be reduced to less than 15% of the rated voltage.

GT3W Series - Dual Time Range Timers

Key features:

- Sequential start, sequential interval, on-delay, recycler, and interval ON timing functions
- 2 time settings in one timer
- 8 selectable operation modes on each model
- Mountable in sockets or flush panel
- Power and output status indicating LEDs
- Time ranges up to 300 hours

General Specifications

Operation System	
Operation Type	
Time Range	
Pollution Degree	
Over Voltage Category	AF20
	AD24
Rated Operational Voltage	D12
	AF20
Voltage Tolerance	AD24

Solid state CMOS Circuit

Multi-Mode

1: 0.1 sec to 6 hours, $3: 0.1$ sec to 300 hours
2 (IE60664-1)
III (IE60664-1)
$100-240 \mathrm{~V}$ AC($50 / 60 \mathrm{~Hz}$)
24 V AC(50/60Hz)/24V DC
12V DC
85-264V AC(50/60Hz)
20.4-26.4V AC(50/60Hz)/21.6-26.4V DC
10.8-13.2V DC

Rated Voltage $\times 10 \%$ minimum
-10 to $+50^{\circ} \mathrm{C}$ (without freezing)
-30 to $+75^{\circ} \mathrm{C}$ (without freezing)
35 to 85% RH (without condensation)
80 kPa to 110 kPa (Operating), 70 kPa to 110 kPa (Transport)
60 msec maximum
$\pm 0.2 \%, \pm 10 \mathrm{msec}{ }^{*}$
$\pm 0.2 \%, \pm 10 \mathrm{msec} *$
$\pm 0.6 \%, \pm 10 \mathrm{msec} *$
$\pm 10 \%$ maximum
100M Ω minimum (500 V DC)
Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole:750V AC, 1 minute

10 to 55 Hz amplitude $0.75 \mathrm{~mm}^{2}$ hours in each of 3 axes
Operating extremes: $98 \mathrm{~m} / \mathrm{sec}^{2}$ (approx.10G)
Damage limits: $490 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 50G)
3 times in each of 3 axes
IP40 (enclosure), IP20 (socket) (IEC60529)
2.3VA
4.6VA
1.8VA/0.9W

Free
$40 \mathrm{Hx} 36 \mathrm{~W} \times 70 \mathrm{~mm}$
72 g

* For the value of the error against a preset time, whichever the largest applies.

Contact Ratings

Allowable Contact Power	$960 \mathrm{VA} / 120 \mathrm{~W}$
Allowable Voltage	$250 \mathrm{~V} \mathrm{AC/150V} \mathrm{DC}$
Allowable Current	5 A
Maximum permissible operating frequency	1800 cycles per hour
Rated Load	$1 / 8 \mathrm{HP}, 240 \mathrm{~V}$ AC

Part Number List

Part Numbers

Mode of Operation	Output	Contact	Time Range*	Rated Voltage	Pin Configuration	New Part Numbers
A: Sequential Start B: On-delay with course and fine C: Recycler and instaneous D: Recycler outputs (OFF Start) E: Recycler outputs (ON Start) F: Interval ON G: Interval ON Delay H: Sequential Interval	3A, 240V AC	Delayed SPDT $+$ Delayed SPDT	1: 0.1 sec -6 hours *(See Time Range Settings for details.)	100 to 240 V AC	8 pin	GT3W-A11AF20N
				5	11 pin	GT3W-A11EAF20N
					8 pin	GT3W-A11AD24N
					11 pin	GT3W-A11EAD24N
	5A, 120V AC/30V DC (Resistive Load)				8 pin	GT3W-A11D12N
					11 pin	GT3W-A11ED12N
			3: 0.1 sec - 300 hours	100 to 240V AC (50/60Hz)	8 pin	GT3W-A33AF20N
				24 V AC/DC		GT3W-A33AD24N

1. For timing diagrams and schematics, see page 858.
2. For socket and accessory part number information, see page 860 .
3. 8 - and 11 -pin models differ only in the number of pins (extra pins are not used).
4. For the timing diagram overview, see page 832.
5. *For details on setting time ranges, see the instructions on page 859.

Time Range Table

Time Range Code: 1			Time Range Code: 3		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1 S		$0.1 \mathrm{sec}-1 \mathrm{sec}$	1 S		0.1 sec - 3 sec
10S	0-1	$0.3 \mathrm{sec}-10 \mathrm{sec}$	1M	0-3	$3 \mathrm{sec}-3 \mathrm{~min}$
10M		$15 \mathrm{sec}-10 \mathrm{~min}$	1H		$3 \mathrm{~min}-3$ hours
1 S		0.1 sec - 6 sec	1 S		0.6 sec - 30 sec
10S		$1 \mathrm{sec}-60 \mathrm{sec}$	1M		$36 \mathrm{sec}-30 \mathrm{~min}$
1M	0-6	$6 \mathrm{sec}-6 \mathrm{~min}$	1H	0-30	36 min - 30 hours
10M		$1 \mathrm{~min}-60 \mathrm{~min}$	10 H		6 hours - 300 hours
1 H		6 min - 6 hours	1		6 hours - 300 hours

Timing Diagrams/Schematics

Instructions: Setting GT3WTimer

1. The switches should be securely turned using a flat screwdriver 4 mm wide (maximum). Note that incorrect setting may cause malfunction. The switches, which do not turn infinitely, should not be turned beyond their limits.
2. Since changing the setting during timer operation my cause malfunction, turn power off before changing.

Safety Precautions

Special expertise is required to use Electronic Timers.

- All Electronic Timer modules are manufactured under IDEC's rigorous quality control system, but users must add a backup or fail safe provision to the control system when using the Electronic Timer in applications where heavy damage or personal injury may occur should the Electronic Timer fail.
- Install the Electronic Timer according to instructions described in this catalog.
- Make sure that the operating conditions are as described in the specifications. If you are uncertain about the specifications, contact IDEC in advance.
- In these directions, safety precautions are categorized in order of importance to Warning and Caution.

Warning

Warning notices are used to emphasize that improper operation may cause sever personal injury or death.

- Turn power off to the Electronic timer before starting installation, removal, Wiring, maintenance, and inspection on the Electronic Timer.
- Failure to turn power off may cause electrical shocks or fire hazard.
- Emergency stop and interlocking circuits must be configured outside the Electronic timer. If such a circuit is configured inside the Electronic Timer, failure of the Electronic timer may cause malfunction of the control system, or an accident.

Caution

Caution notices are used where inattention might cause personal injury or damage to equipment.

- The Electronic Timer is designed for installation in equipment. Do not install the Electronic Timer outside equipment.
- Install the Electronic Timer in environments described in the specifications. If the Electronic Timer is used in places where it will be subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, or excessive shocks, then electrical shocks, fire hazard, or malfunction could result.
- Use an IEC60127-approved fuse and circuit breaker on the power and output line outside the Electronic Timer.
- Do not disassemble, repair, or modify the Electronic Timer.
- When disposing of the Electronic Timer, do so as industrial waste.

DIN Rail Mounting Accessories

DIN Rail/Surface Mount Sockets and Hold-Down Springs

GT3 Series

Accessories

DIN Mounting Rai Length 1000 mm

Installation of Hold-Down Springs

DIN Rail Mount Socket

Panel Mounting Accessories

Panel Mount Sockets and Hold-Down Springs

Panel Mount Socket				Applicable HD Springs	
Style	Appearance	Use with Timers	Part No.	Appearance	Part No.
8-Pin Solder Terminal		$\begin{aligned} & \text { GT3A- (8-pin) } \\ & \text { GT3W- (8-pin) } \\ & \text { GT3F- (8-pin) } \end{aligned}$	SR2P-51		
11-Pin Solder Terminal		GT3A- (11-pin) GT3W- (11-pin) GT3F- (11-pin)	SR3P-51		

For information on installing the hold-down springs, see page 860.

Flush Panel Mount Adapter and Sockets that use an Adapter

Instructions: Wiring Inputs for GT3 Series

Inputs

To avoid electric shock, do not touch the input signal terminal during power voltage application.
When connecting the input signal terminals of two or more GT3A timers to the same contact or transistor, the input terminals of the same number should be connected. (Connect Terminals No. 2 in common.)

In a transistor circuit for controlling input signals, with its primary and secondary power circuits isolated, do not ground the secondary circuit.

Connect the input signal terminals of the GT3A timers to Terminal No. 2 only. Never apply voltage to other terminals; otherwise, the internal circuit may be damaged.

Input signal lines must be made as short as possible and installed away from power cables and power lines. Use shielded wires or a separate conduit for input wiring.

Inputs Instructions, continued

For contact input, use gold-plated contacts to make sure that the residual voltage is less than 1 V when the contacts are closed.

For transistor input, use transistors with the following specifications; VCE $=40 \mathrm{~V}$, VCES $=1 \mathrm{~V}$ or less, $\mathrm{IC}=50 \mathrm{~mA}$ or more, and ICBO $=50 \mu \mathrm{~A}$ or less. The resistance should be less than $1 \mathrm{k} \Omega$ when the transistor is on. When the output transistor switches on, a signal is input to the timer.

Inputs: GT3A-1, -2, -3
Transistor output equipment such as proximity switches and photoelectric switches can input signals if they are voltage/current output type, with power voltage ranges from 18 to 30 V and have 1 V . When the signal voltage switches from H to L , a signal is input to the timer

Inputs: GT3A-4, -5, -6

Start Input	The start input initiates a time-delay operation and controls output status.	No-voltage contact inputs and NPN open collector transis- tor inputs are applicable.
Reset Input	When the reset input is activated, the time is reset, and contacts return to original state.	24V DC, 1mA maximum

Analog GT3 Timer, 8-Pin with SR2P-06

Analog GT3 Timer, 11-Pin with SR3P-05

Analog GT3 Timer, 11-Pin with SR3P-06

Panel Mount Adapter

Analog GT3 Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11

Mounting Hole Layout

GT3 Timer, 8-Pin with SR6P-M08G

GT3 Timer, 11-Pin with SR6P-M11G

Load Current

With inductive, capacitive, and incandescent lamp loads, inrush current more than 10 times the rated current may cause welded contacts and other undesired effects. The inrush current and steady-state current must be taken into consideration when specifying a timer.

Contact Protection

Switching an inductive load generates a counter-electromotive force (back EMF) in the coil. The back EMF will cause arcing, which may shorten the contact life and cause imperfect contact. Application of a protection circuit is recommended to safeguard the contacts.

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing or condensation. After the timer has been stored below its operating temperature, leave the timer at room temperature for a sufficient period of time to allow it to return to operating temperatures before use.

Environment

Avoid contact between the timer and sulfurous or ammonia gases, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances, or strong acids. Do not use the timer in an environment where such substances are prevalent. Do not allow water to run or splash on the timer.

Vibration and Shock

Excessive vibration or shocks can cause the output contacts to bounce, the timer should be used only within the operating extremes for vibration and shock resistance. In applications with significant vibration or shock, use of hold down springs or clips is recommended to secure a timer to its socket.

Time Setting

The time range is calibrated at its maximum time scale; so it is desirable to use the timer at a setting as close to its maximum time scale as possible. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.

Input Contacts

Use mechanical contact switch or relay to supply power to the timer. When driving the timer with a solid-state output device (such as a two-wire proximity switch, photoelectric switch, or solid-state relay), malfunction may be caused by leakage current from the solid-state device. Since AC types comprise a capacitive load, the SSR dielectric strength should be two or more times the power voltage when switching the timer power using an SSR.

Generally, it is desirable to use mechanical contacts whenever possible to apply power to a timer or its signal inputs. When using solid state devices, be cautious of inrushes and back-EMF that may exceed the ratings on such devices. Some timers are specially designed so that signal inputs switch at a lower voltage than is used to power the timer (models designated as " B " type).

Timing Accuracy Formulas

Timing accuracies are calculated from the following formulas:

Repeat Error	$= \pm \frac{1 \times \text { Maximum Measured Value - Minimum Measured Value } \times 100 \%}{2 \text { Maximum Scale Value }}$
Voltage Error	$= \pm \frac{\operatorname{TV}-\operatorname{Tr} \times 100 \%}{\operatorname{Tr}}$

Tv: Average of measured values at voltage V
Tr : Average of measured values at the rated voltage
Temperature Error $\quad= \pm \frac{\mathrm{Tt}-\mathrm{T} 20 \times 100 \%}{\mathrm{~T} 20}$
Tt: Average of measured values at ${ }^{\circ} \mathrm{C}$
T20: Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error

$$
= \pm \frac{\text { Average of Measured Values - Set Value } \times 100 \%}{\text { Maximum Scale Value }}
$$

