## FC6A SERIES

# microSmart 

## LAD Programming Manual

## Safety Precautions

- Read the "FC6A Series MicroSmart LAD Programming Manual" to ensure correct operation before starting installation, wiring, operation, maintenance, and inspection of the FC6A Series MicroSmart.
- All FC6A Series MicroSmart modules are manufactured under IDEC's rigorous quality control system, but users must add a backup or failsafe provision to the control system when using the FC6A Series MicroSmart in applications where heavy damage or personal injury may be caused, in case the FC6A Series MicroSmart should fail.
- In this manual, safety precautions are categorized in order of importance:


## Warning Warning notices are used to emphasize that improper operation may cause severe personal injury or death.

- The FC6A Series MicroSmart is not designed for use in applications requiring a high degree of reliability and safety. The FC6A Series MicroSmart should not be used for such applications.
- When using the FC6A Series MicroSmart in applications (not described above) that require a high degree of reliability in terms of functionality and precision, appropriate measures such as failsafe mechanisms and redundant mechanisms must be taken for the system containing the FC6A Series MicroSmart. The following are specific examples.
- Emergency stop and interlocking circuits must be configured outside the FC6A Series MicroSmart.
- If relays or transistors in the FC6A Series MicroSmart output circuits should fail, outputs may remain at on or off state. For output signals which may cause serious accidents, configure monitor circuits outside the FC6A Series MicroSmart.
- The FC6A Series MicroSmart self-diagnostic function may detect internal circuit or program errors, stop programs, and turn outputs off. Configure circuits so that the system containing the FC6A Series MicroSmart is not jeopardized when outputs turn off.
- Turn off power to the FC6A Series MicroSmart before installation, removal, wiring, maintenance, and inspection of the FC6A Series MicroSmart. Failure to turn power off may cause electrical shocks or fire hazard.
- Special expertise is required to install, wire, program, and operate the FC6A Series MicroSmart. People without such expertise must not use the FC6A Series MicroSmart.
- Install the FC6A Series MicroSmart according to the instructions described in the "FC6A Series MicroSmart All-in-One Type User's Manual". Improper installation will result in falling, failure, or malfunction of the FC6A Series MicroSmart.


## Caution Caution notices are used where inattention might cause personal injury or damage to equipment.

- The FC6A Series MicroSmart is designed for installation in a cabinet. Do not install the FC6A Series MicroSmart outside a cabinet.
- Install the FC6A Series MicroSmart in environments described in the "FC6A Series MicroSmart All-in-One Type User's Manual". If the FC6A Series MicroSmart is used in places where the FC6A Series MicroSmart is subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations, or excessive shocks, then electrical shocks, fire hazard, or malfunction will result.
- The environment for using the FC6A Series MicroSmart is "Pollution degree 2." Use the FC6A Series MicroSmart in environments of pollution degree 2 (according to IEC 60664-1).
- Prevent the FC6A Series MicroSmart from falling while moving or transporting the FC6A Series MicroSmart, otherwise damage or malfunction of the FC6A Series MicroSmart will result.
- Wiring must use lead sizes that are appropriate for the applied voltage and current. Terminal screws must be tightened with the prescribed tightening torque.
- Prevent metal fragments and pieces of wire from dropping inside the FC6A Series MicroSmart housing. Put a cover on the FC6A Series MicroSmart modules during installation and wiring. Ingress of such fragments and chips may cause fire hazard, damage, or malfunction.
- Use a power supply of the rated value. Use of a wrong power supply may cause fire hazard.
- Use an IEC 60127-approved fuse on the power line outside the FC6A Series MicroSmart. This is required when equipment containing the FC6A Series MicroSmart is destined for Europe.
- Use an IEC 60127-approved fuse on the output circuit. This is required when equipment containing the FC6A Series MicroSmart is destined for Europe.
- Use an EU-approved circuit breaker. This is required when equipment containing the FC6A Series MicroSmart is destined for Europe.
- Make sure of safety before starting and stopping the FC6A Series MicroSmart or when operating the FC6A Series MicroSmart to force outputs on or off. Incorrect operation of the FC6A Series MicroSmart may cause machine damage or accidents.
- Do not connect the ground wire directly to the FC6A Series MicroSmart. Connect a protective ground to the cabinet containing the FC6A Series MicroSmart using an M4 or larger screw. This is required when equipment containing the FC6A Series MicroSmart is destined for Europe.
- Do not disassemble, repair, or modify the FC6A Series MicroSmart modules.
- The FC6A Series MicroSmart contains electronic parts and batteries. When disposing of the FC6A Series MicroSmart, do so in accordance with national and local regulations.



## About This Manual

This manual describes functions, specifications, installation, and operation basics of the FC6A Series MicroSmart. Also included is information on the powerful communications tools of the FC6A Series MicroSmart, as well as troubleshooting procedures.

## Chapter 1: Operation Basics

General information about setting up the basic FC6A Series MicroSmart system for programming, starting and stopping the FC6A Series MicroSmart operation, and simple operating procedures. Everything from creating a user program using WindLDR on a computer to monitoring the FC6A Series MicroSmart operation.

## Chapter 2: Devices

Descriptions of the allocations of devices such as inputs, outputs, internal relays, registers, timers, and counters that are used in the basic and advanced instructions, as well as details about the allocations of special internal relays and special data registers.

## Chapter 3: Installation and Wiring

Methods and precautions for installing and wiring the FC6A Series MicroSmart.

## Chapter 4: Instructions Reference

List of basic and advanced instructions to program the FC6A Series MicroSmart and general rules of using advanced instructions.

## Chapter 5: Basic Instructions

Programming of the basic instructions, available devices, and sample programs.
Chapter 6 through Chapter 27:
Detailed descriptions for advanced instructions.

## Appendix

Additional information about execution times and byte sizes for instructions.

## Index

Alphabetical listing of key words.
Publication history
December 2015 First Edition

## Trademarks

FC6A Series MicroSmart is a trademark of IDEC Corporation.

## Regarding laws and compatible standards

This product adheres to the laws and compatible standards of all countries involved, as shown below.

## European laws and standards

This product complies with the following EU directives.

- Low Voltage Directive
- EMC Directive

To comply with these directives, this product has been designed and evaluated on the basis of the following international and European standard.

- IEC/EN 61131-2: 2007

For details on the compatible standards and EU Directives, contact the distributor from which you purchased this product or visit our web site.
North America laws and standards
This product complies with the following standards.

- UL508
- CSA C22.2 No. 142
- ANSI/ISA 12,12,01*1
- CAN/CSA C22.2 No.213*1
${ }^{*} 1$ Certain FC6A Series MicroSmart models are not compatible. For details, please contact IDEC Corporation.
For details on compatible standards and EU directives, please contact the dealer where purchased or check the IDEC website.


## IMPORTANT INFORMATION

Under no circumstances shall IDEC Corporation be held liable or responsible for indirect or consequential damages resulting from the use of or the application of IDEC PLC components, individually or in combination with other equipment.
All persons using these components must be willing to accept responsibility for choosing the correct component to suit their application and for choosing an application appropriate for the component, individually or in combination with other equipment. All diagrams and examples in this manual are for illustrative purposes only. In no way does including these diagrams and examples in this manual constitute a guarantee as to their suitability for any specific application. To test and approve all programs, prior to installation, is the responsibility of the end user.

## Related Manuals

The following manuals related to the FC6A Series MicroSmart are available. Refer to them in conjunction with this manual.

| Type No. | Manual Name | Description |
| :---: | :--- | :--- |
| FC9Y-B1722 | FC6A Series MicroSmart <br> All-in-One Type User's Manual | Describes product specifications, installation and wiring instructions, instructions for <br> basic programming operations and special functions, device and instruction lists, <br> communication functions, and troubleshooting procedures for the FC6A Series <br> MicroSmart series. |
| FC9Y-B1726 | FC6A Series MicroSmart <br> LAD Programming Manual <br> (this manual) | Describes basic operations for programming with ladders on the FC6A Series <br> MicroSmart, monitoring methods, device and instruction lists, and details of each <br> instruction. |
| FC9Y-B1730 | FC6A Series MicroSmart <br> All-in-One Type Communication <br> Manual | Describes specifications related to FC6A Series MicroSmart communication, <br> descriptions of functions, configuration methods, and usage examples. |
| FC9Y-B1734 | FC6A Series MicroSmart <br> PID Module User's Manual | Describes PID module specifications and functions. |
| WindLDR Help | Describes usage instructions for WindLDR, programming software for the FC6A <br> Series MicroSmart series. |  |

## Names and Abbreviations Used in this Manual

## Model Names

| Name Used in This Manual |  |  | Type Number, Part Code, or Official Name |
| :---: | :---: | :---: | :---: |
| FC6A Series MicroSmart |  |  | FC6A Series MICROSmart |
| CPU module | All-in-One Type |  | FC6A-C16R1AE, FC6A-C16R1CE, FC6A-C16K1CE, FC6A-C16P1CE, FC6A-C24R1AE, FC6A-C24R1CE, FC6A-C24K1CE, FC6A-C24P1CE, FC6A-C40R1AE, FC6A-C40R1CE, FC6A-C40K1CE, FC6A-C40P1CE, FC6A-C40R1DE, FC6A-C40R1DE, FC6A-C40K1DE, FC6A-C40P1DE |
|  | CAN J1939 All-in-One Type |  | FC6A-C40R1AEJ, FC6A-C40R1CEJ, FC6A-C40K1CEJ, FC6A-C40P1CEJ, FC6A-C40R1DEJ, FC6A-C40K1DEJ, FC6A-C40P1DEJ |
|  | 16-I/O type |  | The general term for the model with 16 I/O points (FC6A-C16R1AE, FC6A-C16R1CE, FC6A-C16K1CE, FC6A-C16P1CE) |
|  | 24-I/O type |  | The general term for the model with 24 I/O points (FC6A-C24R1AE, FC6A-C24R1CE, FC6A-C24K1CE, FC6A-C24P1CE) |
|  | 40-I/O type |  | The general term for the model with 40 I/O points (FC6A-C40R1AE, FC6A-C40R1CE, FC6A-C40K1CE, FC6A-C40P1CE, FC6A-C40R1DE, FC6A-C40R1DE, FC6A-C40K1DE, FC6A-C40P1DE, FC6A-C40R1AEJ, FC6A-C40R1CEJ, FC6A-C40K1CEJ, FC6A-C40P1CEJ, FC6A-C40R1DEJ, FC6A-C40K1DEJ, FC6A-C40P1DEJ) |
|  | AC power type |  | FC6A-C16R1AE, FC6A-C24R1AE, FC6A-C40R1AE, FC6A-C40R1AEJ |
|  | DC power type | 24V DC power type | FC6A-C16R1CE, FC6A-C24R1CE, FC6A-C40R1CE, FC6A-C16K1CE, FC6A-C24K1CE, FC6A-C40K1CE, FC6A-C16P1CE, FC6A-C24P1CE, FC6A-C40P1CE, FC6A-C40R1CEJ, FC6A-C40K1CEJ, FC6A-C40P1CEJ |
|  |  | 12V DC power type | FC6A-C40R1DE, FC6A-C40K1DE, FC6A-C40P1DE, FC6A-C40R1DEJ, FC6A-C40K1DEJ, FC6A-C40P1DEJ |
|  | Relay output type |  | FC6A-C16R1AE, FC6A-C16R1CE, FC6A-C24R1AE, FC6A-C24R1CE, FC6A-C40R1AE, FC6A-C40R1CE, FC6A-C40R1DE, FC6A-C40R1AEJ, FC6A-C40R1CEJ, FC6A-C40R1DEJ |
|  | Transistor output type | Transistor sink output type | FC6A-C16K1CE, FC6A-C24K1CE, FC6A-C40K1CE, FC6A-C40K1DE, FC6A-C40K1CEJ, FC6A-C40K1DEJ |
|  |  | Transistor protection source output type | FC6A-C16P1CE, FC6A-C24P1CE, FC6A-C40P1CE, FC6A-C40P1DE, FC6A-C40P1CEJ, FC6A-C40P1DEJ |
| Expansion module |  |  | Expansion I/O module, functional module |
| Expansion I/O module |  |  | Input module, output module, mixed I/O module |
| Functional module |  |  | Analog module, PID module |
| Analog module |  |  | Analog input module, analog output module, mixed analog I/O module |
| Option module |  |  | HMI module, expansion interface module, analog cartridge, communication cartridge |
| Cartridge |  |  | Analog cartridge, communication cartridge |
| WindLDR |  |  | WindLDR application software |
| USB cable |  |  | USB maintenance cable (HG9Z-XCM42), USB Mini-B extension cable (HG9Z-XCE21) |


| Name Used in this Manual | $\quad$ WindLDR Operating Procedure |
| :--- | :--- |
| Function area settings | Configuration tab > Function Area Settings group |
| Monitors | Select Online $>$ Monitor $>$ Start Monitor. |
| PLC status | Select Online $>$ PLC $>$ Status. |
| Communication settings | Select Online $>$ Communication > Set Up. |
| Modbus master request table | On the Configuration tab, in Function Area Settings, click Communication Ports, and in the <br> displayed Function Area Settings dialog box, for Communication Mode under Communication <br> Ports, select Modbus RTU Master or Modbus TCP Client |
| Application button | The button displayed on the left side of the menu bar. Click to display the menu with New, Save, and <br> Save As, recent projects, WindLDR Options, and Exit WindLDR. |

## table of Contents

Safety Precautions ..... Preface-1
About This Manual ..... Preface-2
Related Manuals ..... Preface-4
Names and Abbreviations Used in this Manual Preface-5
CHAPTER 1: Operation Basics
Start WindLDR ..... 1-1
PLC Selection ..... 1-2
Create Program ..... 1-3
Save Project ..... 1-8
Simulate Operation ..... 1-9
Download Program ..... 1-10
Monitor Operation ..... 1-12
Exit WindLDR ..... 1-12
Checking the WindLDR Version Number ..... 1-13
Ladder Program Operation ..... 1-14
Start/Stop Operation ..... 1-15
$C_{\text {Hapter 2: }}$ Devices
Device Addresses ..... 2-1
Special Internal Relay ..... 2-3
Special Data Register ..... 2-13
ChAPTER 3: Instructions Reference
Basic Instruction List. ..... 3-1
Advanced Instruction List ..... 3-3
Structure of an Advanced Instruction ..... 3-6
Input Condition for Advanced Instructions ..... 3-6
Source and Destination Devices ..... 3-6
Using Timer or Counter as Source Device ..... 3-6
Using Timer or Counter as Destination Device ..... 3-6
Data Types for Advanced Instructions ..... 3-7
Discontinuity of Device Areas ..... 3-11
NOP (No Operation) ..... 3-11
Chapter 4: Basic Instructions
LOD (Load) and LODN (Load Not) ..... 4-1
OUT (Output) and OUTN (Output Not) ..... 4-1
SET and RST (Reset) ..... 4-3
AND and ANDN (And Not) ..... 4-4
OR and ORN (Or Not) ..... 4-4
AND LOD (Load) ..... 4-5
OR LOD (Load) ..... 4-5
BPS (Bit Push), BRD (Bit Read), and BPP (Bit Pop) ..... 4-6
TML, TIM, TMH, and TMS (Timer) ..... 4-7
TMLO, TIMO, TMHO, and TMSO (Off-Delay Timer) ..... 4-10
CNT, CDP, and CUD (Counter) ..... 4-11
CNTD, CDPD, and CUDD (Double-Word Counter). ..... 4-14
$C C=$ and $C C>=$ (Counter Comparison) ..... 4-18
DC= and DC>= (Data Register Comparison) ..... 4-20
SFR and SFRN (Forward and Reverse Shift Register) ..... 4-22
SOTU and SOTD (Single Output Up and Down) ..... 4-26
MCS and MCR (Master Control Set and Reset) ..... 4-27
JMP (Jump) and JEND (Jump End) ..... 4-29
END ..... 4-30
Restriction on Ladder Programming ..... 4-31
CHAPTER 5: Move Instructions
MOV (Move) ..... 5-1
MOVN (Move Not) ..... 5-5
IMOV (Indirect Move) ..... 5-6
IMOVN (Indirect Move Not) ..... 5-8
BMOV (Block Move) ..... 5-9
IBMV (Indirect Bit Move) ..... 5-10
IBMVN (Indirect Bit Move Not) ..... 5-12
NSET (N Data Set) ..... 5-13
NRS (N Data Repeat Set) ..... 5-14
XCHG (Exchange) ..... 5-15
TCCST (Timer/Counter Current Value Store) ..... 5-16
CHAPTER 6: Data Comparison Instructions
CMP= (Compare Equal To) ..... 6-1
CMP<> (Compare Unequal To) ..... 6-1
CMP< (Compare Less Than) ..... 6-1
CMP> (Compare Greater Than) ..... 6-1
CMP<= (Compare Less Than or Equal To) ..... 6-1
CMP>= (Compare Greater Than or Equal To) ..... 6-1
ICMP>= (Interval Compare Greater Than or Equal To) ..... 6-6
LC= (Load Compare Equal To) ..... 6-8
LC<> (Load Compare Unequal To) ..... 6-8
LC< (Load Compare Less Than) ..... 6-8
LC> (Load Compare Greater Than) ..... 6-8
LC<= (Load Compare Less Than or Equal To) ..... 6-8
LC>= (Load Compare Greater Than or Equal To) ..... 6-8
CHAPTER 7: Binary Arithmetic Instructions
ADD (Addition) ..... 7-1
SUB (Subtraction) ..... 7-1
MUL (Multiplication) ..... 7-1
DIV (Division) ..... 7-1
INC (Increment) ..... 7-13
DEC (Decrement) ..... 7-13
ROOT (Root) ..... 7-14
SUM (Sum) ..... 7-15
RNDM (Random) ..... 7-18
CHAPTER 8: Boolean Computation Instructions
ANDW (AND Word) ..... 8-1
ORW (OR Word) ..... 8-1
XORW (Exclusive OR Word) ..... 8-1
CHAPTER 9: Shift / Rotate Instructions
SFTL (Shift Left) ..... 9-1
SFTR (Shift Right) ..... 9-3
BCDLS (BCD Left Shift) ..... 9-5
WSFT (Word Shift) ..... 9-7
ROTL (Rotate Left) ..... 9-8
ROTR (Rotate Right) ..... 9-10
CHAPTER 10: Data Conversion Instructions
HTOB (Hex to BCD) ..... 10-1
BTOH (BCD to Hex) ..... 10-3
HTOA (Hex to ASCII) ..... 10-5
ATOH (ASCII to Hex) ..... 10-7
BTOA (BCD to ASCII) ..... 10-9
ATOB (ASCII to BCD) ..... 10-12
ENCO (Encode) ..... 10-15
DECO (Decode) ..... 10-16
BCNT (Bit Count). ..... 10-17
ALT (Alternate Output) ..... 10-18
CVDT (Convert Data Type) ..... 10-19
DTDV (Data Divide) ..... 10-21
DTCB (Data Combine) ..... 10-22
SWAP (Data Swap) ..... 10-23
CHAPTER 11: Week Programmer Instructions
WEEK (Weekly Timer) ..... 11-3
YEAR (Yearly Timer) ..... 11-16
CHAPTER 12: Display Instructions
MSG (Message) ..... 12-1
DISP (Display) ..... 12-20
DGRD (Digital Read) ..... 12-22
CHAPTER 13: Program Branching Instructions
LABEL (Label) ..... 13-1
LIMP (Label Jump) ..... 13-1
LCAL (Label Call) ..... 13-3
LRET (Label Return) ..... 13-3
DJNZ (Decrement Jump Non-zero) ..... 13-5
CHAPTER 14: Refresh Instructions IOREF (I/O Refresh) ..... 14-1
HSCRF (High-speed Counter Refresh) ..... 14-3
FRQRF (Frequency Measurement Refresh) ..... 14-4
COMRF (Communication Refresh), ..... 14-5
CHAPTER 15: Interrupt Control Instructions
DI (Disable Interrupt) ..... 15-1
EI (Enable Interrupt) ..... 15-1
CHAPTER 16: Coordinate Conversion Instructions
XYFS (XY Format Set) ..... 16-1
CVXTY (Convert X to Y) ..... 16-2
CVYTX (Convert Y to X) ..... 16-3
CHAPTER 17: Average Instructions AVRG (Average) ..... 17-1
CHAPTER 18: Pulse Output Instructions
PULS (Pulse Output) ..... 18-1
PWM (Variable Duty Cycle Pulse Output) ..... 18-8
RAMP (Trapezoidal Control) ..... 18-15
ZRN (Zero Return) ..... 18-27
ARAMP (RAMP with Table) ..... 18-37
ABS (Set Absolute Position) ..... 18-59
JOG (JOG Operation) ..... 18-63
CHAPTER 19: PID Control Instruction
PIDA (PID Control) ..... 19-2
PID Monitor ..... 19-25
Application Example ..... 19-30
CHAPTER 20: Dual / Teaching Timer Instructions
DTML (1-s Dual Timer) ..... 20-1
DTIM ( $100-\mathrm{ms}$ Dual Timer) ..... 20-1
DTMH (10-ms Dual Timer) ..... 20-1
DTMS (1-ms Dual Timer) ..... 20-1
TTIM (Teaching Timer) ..... 20-3
ChAPTER 21: Trigonometric Function Instructions
RAD (Degree to Radian) ..... 21-1
DEG (Radian to Degree) ..... 21-2
SIN (Sine) ..... 21-3
COS (Cosine) ..... 21-4
TAN (Tangent) ..... 21-5
ASIN (Arc Sine) ..... 21-6
ACOS (Arc Cosine) ..... 21-7
ATAN (Arc Tangent) ..... 21-8
CHAPTER 22: Logarithm / Power Instructions
LOGE (Natural Logarithm) ..... 22-1
LOG10 (Common Logarithm) ..... 22-2
EXP (Exponent) ..... 22-3
POW (Power) ..... 22-4
CHAPTER 23: File Data Processing Instructions
FIFOF (FIFO Format) ..... 23-1
FIEX (First-In Execute) ..... 23-3
FOEX (First-Out Execute) ..... 23-3
NDSRC (N Data Search) ..... 23-5
CHAPTER 24: Clock Instructions
TADD (Time Addition) ..... 24-1
TSUB (Time Subtraction) ..... 24-5
HTOS (HMS to Sec) ..... 24-9
STOH (S to HMS) ..... 24-10
HOUR (Hour Meter) ..... 24-11
CHAPTER 25: Data Log Instructions
DLOG (Data Log) ..... 25-1
TRACE (Data Trace) ..... 25-7
CHAPTER 26: Script
SCRPT (Script) ..... 26-1
Script Function Overview ..... 26-3
Script Programming and Management ..... 26-5
Programming Scripts ..... 26-12
Script Programming Examples. ..... 26-19
Important Notes ..... 26-42
About the Priority of the Operator ..... 26-42
CHAPTER 27: Flow Calculation Instructions
SCALE (Convert Analog Input) ..... 27-1
FLWA (Analog Flow Totalizer) ..... 27-9
FLWP (Pulse Flow Totalizer). ..... 27-18
$\boldsymbol{A}_{\text {Pefnoix }}$
Execution Times for Instructions ..... A-1
Breakdown of END Processing Time ..... A-5
Instruction Bytes ..... A-5
User Program Execution Error ..... A-8
$\boldsymbol{I}_{\text {noEX }}$

## 1: OpERATION BASICS

## Introduction

WindLDR (version 8.0.0 or later) is required for FC6A Series MicroSmart programming and maintenance. For details on how to check the version, see "Checking the WindLDR Version Number" on page 1-13.
This chapter describes basic procedures for operating WindLDR, programming and maintenance software for the FC6A Series MicroSmart.

## Start WindLDR

- Windows 8

Click WindLDR in the tiles on the Start screen

## - Windows 7, Windows Vista

Click Start and then Programs > Automation Organizer V2 > WindLDR > WindLDR.

- Windows XP

From the Start menu of Windows, select Programs > Automation Organizer V2 > WindLDR > WindLDR.
WindLDR starts and a blank ladder editing screen appears with menus and tool bars shown on top of the screen.


## 1: Operation Basics

## PLC Selection

Before programming a user program on WindLDR, select a PLC type.

1. Select Configuration from the WindLDR menu bar, then select PLC Type. The PLC Selection dialog box appears.
2. Select a PLC type in the selection box and the programming language to use.
3. Click OK.


Select the PLC type from the list and click Use as Default to set the selected PLC type as the default type when WindLDR starts.

In WindLDR, the FC6A Series MicroSmart is categorized by the number of inputs and outputs and the PLC type names are displayed as follows.

| PLC Selection Option | Type No. |
| :---: | :---: |
| FC6A-C16X1XE | FC6A-C16R1AE |
|  | FC6A-C16R1CE |
|  | FC6A-C16P1CE |
| FC6A-C24X1XE | FC6A-C16K1CE |
|  | FC6A-C24R1AE |
|  | FC6A-C24R1CE |
|  | FC6A-C24P1CE |
|  | FC6A-C24K1CE |
|  | FC6A-C40R1AE |
|  | FC6A-C40R1CE |
|  | FC6A-C40P1CE |
|  | FC6A-C40K1CE |
|  | FC6A-C40R1DE |
|  | FC6A-C40P1DE |
|  | FC6A-C40K1DE |
|  | FC6A-C40R1AEJ |
|  | FC6A-C40R1CEJ |
|  | FC6A-C40P1CEJ |
|  | FC6A-C40K1CEJ |
|  | FC6A-C40R1DEJ |
|  | FC6A-C40P1DEJ |
|  |  |

PLC selection is now complete. Next, create a ladder program.

## Create Program

## Create Ladder Program

This section describes the operating procedure to create a ladder program in WindLDR.
Note: For details about devices, see "Devices" on page 2-1.

## Sample User Program

Create a simple program using WindLDR. The sample program performs the following operation:
When only input IO is turned on, output Q0 is turned on.
When only input I1 is turned on, output Q1 is turned on.
When both inputs IO and I1 are turned on, output Q2 flashes in 1-s increments.

| Rung No. | Input I0 | Input I1 | Output Operation |
| :---: | :---: | :---: | :--- |
| $\mathbf{1}$ | ON | OFF | Output Q0 is turned ON. |
| $\mathbf{2}$ | OFF | ON | Output Q1 is turned ON. |
| $\mathbf{3}$ | ON | ON | Output Q2 flashes in 1-s increments. |

Note: One collection of a group of instructions that control output or advanced instructions is called a rung. WindLDR manages programs in rung units. Function descriptions can be configured as rung comments for individual rungs.

## Start WindLDR

From the Start menu of Windows, select Programs $>$ Automation Organizer V2 $>$ WindLDR $>$ WindLDR.
WindLDR starts and a blank ladder editing screen appears with menus and tool bars shown on top of the screen.


## 1: Operation Basics

## Edit User Program Rung by Rung

Start the user program with the LOD instruction by inserting a NO contact of input IO.

1. From the WindLDR menu bar, select Home > Basic > A (Normally Open).

2. Move the mouse pointer to the first column of the first line where you want to insert a NO contact, and click the left mouse button.

3. Double-click Normally Open.

The A (Normally Open) dialog box is displayed.


4. Enter $\mathbf{I O}$ in the Tag Name field, and click OK.


Note:

- To enter an NO contact from the right-click menu, right-click at the location to insert the NO contact, and on the right-click menu, click Basic Instructions (B), then A (Normally Open).
- To enter an NO contact from the keyboard, press A to display the Coil Selection dialog box. Select A (Normally Open), and then press Enter (Enter).

A NO contact of input IO is programmed in the first column of the first ladder line.
Next, program the ANDN instruction by inserting a NC contact of input I1.
5. From the WindLDR menu bar, select Home > Basic > B (Normally Closed).
6. Move the mouse pointer to the second column of the first ladder line where you want to insert a NC contact, and click the left mouse button.
7. Double-click Normally Closed.

The B (Normally Closed) dialog box is displayed.

8. Enter I1 in the Tag Name field, and click OK.

An NC contact of input I1 is programmed in the second column of the first ladder line.
At the end of the first ladder line, program the OUT instruction by inserting a NO coil of output Q0.
9. From the WindLDR menu bar, select Home > Basic > OUT (Output).
10. Move the mouse pointer to the third column of the first ladder line where you want to insert an output coil, and click the left mouse button.

Note: Another method to insert an instruction (either basic or advanced) is to type the instruction symbol, OUT, where you want to insert the instruction.
11. Double-click Output.

The Out (Output) dialog box is displayed.

12. Enter Q0 in the Tag Name field, and click OK.


A NO output coil of output Q0 is programmed in the right-most column of the first ladder line. This completes programming for rung 1.


A new rung is inserted by pressing the Enter key while the cursor is on the preceding rung. A new rung can also be inserted by selecting Home > Append > Append a Rung.
When completed, the ladder program looks like below.


## Convert Program

The program can be checked whether it contains any user program syntax error.
From the menu bar, select Home > Convert (Program group).
When the instruction/FB symbols are connected correctly, the program conversion is completed successfully. If any error is found, the errors are listed on the Info Window. Then, make corrections as necessary.


Info Window

## 1: Operation Basics

## Save Project

This section describes the operating procedure to save the created ladder program as a project file.

1. Save the current project with a new name.

Click (application) button $>$ Save As $>$ WindLDR Project.

2. Enter the file name in File name, specify the folder to save to, and click Save.


This completes the procedure to save a project to a file.
Note: The saved file is called a project file. The extension is ".pjw".

## Simulate Operation

This section describes the operating procedure to check the operation of the user program before transferring it to the FC6A Series MicroSmart.
From the WindLDR menu bar, select Online > Simulation. The Simulation screen appears.


Select and right-click the input contact you want to change, and on the right-click menu, click Set or Reset. To quit simulation, from the WindLDR menu bar, select Online > Simulation.

## Notes:

- You can also change the status of an input contact by double-clicking it.
- To quit simulation, from the WindLDR menu bar, once more select Online > Simulation > Simulation.


## 1: OPERATION BASICS

## Download Program

While WindLDR is running on a PLC, you can download the user program to the FC6A Series MicroSmart.
User programs can be downloaded to the FC6A Series MicroSmart from WindLDR using USB or Ethernet.
This section describes the operating procedure from configuring communication settings to downloading the user program using a USB connection as an example.


## Notes:

- In order for WindLDR to communicate with the FC6A Series MicroSmart via USB, a dedicated USB driver must be installed on the computer. See Appendix "USB Driver Installation Procedure" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
- A user program is a combination of a ladder program and the setting details (Function Area Settings).


1. From the WindLDR menu bar, select Online > Set Up. The Communication Settings dialog box is displayed.
2. Click the USB tab and then click OK.


The communication method is now set to USB. Next, download a user program.
3. From the WindLDR menu bar, select Online > Download. The Download dialog box appears, then click OK. The user program is downloaded to the FC6A Series MicroSmart.


Note: The Download dialog box can also be opened by selecting Home > Download.

When the following message appears, the download has completed successfully. Click OK.

| Program Download | $?$ |
| :---: | :---: |
| (i) Program Download Succeeded |  |
|  |  |

## 1: Operation Basics

## Monitor Operation

Another powerful function of WindLDR is to monitor the PLC operation on the computer. The input and output statuses of the sample program can be monitored in the ladder diagram.
From the WindLDR menu bar, select Online > Monitor > Monitor.
When both inputs I0 and I1 are on, the ladder diagram on the monitor screen looks as follows:


## Exit WindLDR

This section describes the operating procedure to exit WindLDR.
When you have completed monitoring, you can exit WindLDR either directly from the monitor screen or from the editing screen. In both cases, from the WindLDR application button, click Exit WindLDR.


## Checking the WindLDR Version Number

This section describes how to check the WindLDR version.

1. Click (application) button $>$ WindLDR Options.

The WindLDR Options dialog box appears.

2. Click the Resources tab, and then click About. The About WindLDR dialog box appears.


You can check the WindLDR version. When finished, click OK.


Note: When using the FC6A Series MicroSmart, use version 8.0.0 or later of WindLDR.
If you are using a version of WindLDR that does not meet this condition, click Check for Updates on the Resources tab to obtain the latest version of WindLDR.

This concludes the procedure for checking the WindLDR version.

## 1: OPERATION BASICS

## Ladder Program Operation

The FC6A Series MicroSmart performs the following operations to process ladder programs.

The input device values are applied to the ladder program.
Input Device


The ON/OFF status of the input terminal (external input) is applied to the input circuit. The input refresh loads the externa input status into the input devices (I) by way of the input circuit.
A delay occurs until the ON/OFF status of the input circuit is applied to the input devices (I). The delay time is equal to filter time +1 scan time.

Input Refresh


Repeat operations
One sequence of operations is set as one scan, and the time required is set as the scan time.

Processing other than the ladder processing is called the END processing.


## Notes:

- The delay time of the hardware is added to the actual input and output delay times.

For details on the hardware input/output delay times, see Chapter 2 "Product Specifications" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- The filter time differs depending on the input used.
- When the input is a CPU module input (IO to I27)

See the input filter time configured in the WindLDR Function Area Settings. The initial value is 3 ms .

- When the input is an expansion input (I30 or greater)

There is no filter time.

## Start/Stop Operation

This section describes how to run and stop the FC6A Series MicroSmart.

## Caution

Make sure of safety before starting and stopping the FC6A Series MicroSmart. Incorrect operation of the FC6A Series MicroSmart may cause machine damage or accidents.

## Start/Stop Schematic

You can start and stop FC6A Series MicroSmart operations by using WindLDR operations, FC6A Series MicroSmart operations, function switch operations, menu operations using an HMI module, by turning the FC6A Series MicroSmart on or off, or by using the stop/reset input function by way of external input.

- For operations using WindLDR, see "Start/Stop Operation Using WindLDR" on page 1-15.
- For operations using the FC6A Series MicroSmart power supply, see "Start/Stop Operation Using the Power Supply" on page 1-16.
- For operations using the function switch, see Chapter 5 "Function Switch Configuration" in the "FC6A Series MicroSmart All-inOne Type User's Manual".
- For operations using an HMI module, see Chapter 7 "HMI Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
- For the stop input settings, see Chapter 5 "Stop Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
- For the reset input settings, see Chapter 5 "Reset Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

The switch from start to stop is performed during the END processing of the user program, and the following functions are also stopped when the user program is stopped. For details on END processing, see the "Breakdown of END Processing Time" on page A-5.
High-speed counter/frequency measurement/user interrupt/catch input/timer interrupt/user communication/pulse output

- You can use M8025 (Maintain Outputs While Stopped) to select whether to maintain or clear the outputs while the CPU is stopped.
For details on M8025 (Maintain Outputs While Stopped), see "M8025: Maintain Outputs While Stopped" on page 2-8.
- The current value of the timer instruction is reset.

For details on timer instructions, see "TML (1-s Timer)" on page 4-7".
Also, when you switch from stop to start, the device status is cleared or kept depending on Memory Backup in the Function
Area Settings. For details, see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Start/Stop Operation Using WindLDR

The FC6A Series MicroSmart can be started and stopped using WindLDR run on a Windows computer connected to the FC6A Series MicroSmart. When the Start button is pressed in the menu bar shown below, start control special internal relay M8000 is turned on to start the FC6A Series MicroSmart. When the Stop button is pressed, M8000 is turned off to stop the FC6A Series MicroSmart.

1. Connect the computer to the FC6A Series MicroSmart, start WindLDR, and power up the FC6A Series MicroSmart.
2. Check that a stop input is not designated using Configuration > Run/Stop Control > Stop and Reset Inputs. See Chapter 5 "Stop Input and Reset Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

Note: When a stop input is designated, the FC6A Series MicroSmart cannot be started or stopped by turning start control special internal relay M8000 on or off.
3. Select Online from the WindLDR menu bar.

The Online tab appears.

4. Click the Start button to start operation, then the start control special internal relay M8000 is turned on.

## 1: Operation Basics

5. Click the Stop button to stop operation, then the start control special internal relay M8000 is turned off. The PLC operation can also be started and stopped while WindLDR is in the monitor mode. Select Online > Monitor > Monitor and click the Start or Stop button.

Note: Special internal relay M8000 is a keep type internal relay and stores the status when power is turned off. M8000 retains its previous status when power is turned on again. However, when the backup battery is dead, M8000 loses the stored status, and can be turned on or off as programmed when the FC6A Series MicroSmart is powered up. The selection is made in Configuration > Run/Stop Control > Run/Stop Selection at Memory Backup Error. See Chapter 5 "Run/Stop Selection at Keep Data Error" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
The backup duration is approximately 30 days (typical) at $25^{\circ} \mathrm{C}$ after the backup battery is fully charged.

## Start/Stop Operation Using the Power Supply

The FC6A Series MicroSmart can be started and stopped by turning power on and off.

1. Power up the FC6A Series MicroSmart to start operation.
2. Turn power on and off to start and stop operation.

## 2: DEVICES

This chapter provides detailed descriptions of the allocations of devices such as inputs, outputs, internal relays, registers, timers, and counters that are used in the basic and advanced instructions, as well as details about the allocations of special internal relays and special data registers.
Please use this chapter as a reference for the devices.
Note: The entry and operation of FC6A Series MicroSmart user programs requires specialist knowledge.
Take the time to develop a thorough understanding of the contents and programs in this manual before using the FC6A Series MicroSmart.
Device Addresses

| Device | Symbol | Unit | Range (Points) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 16-I/ 0 Type | 24-I/O Type | 40-I/O Type |
| Inputs ${ }^{* 1}$ | I | Bit | $\begin{gathered} \text { IO }- \text { I10 } \\ (9 \text { points) } \end{gathered}$ | $\begin{gathered} \text { I0 }- \text { I15 } \\ (14 \text { points }) \end{gathered}$ | $\begin{gathered} \text { I0 }- \text { I27 } \\ (24 \text { points }) \end{gathered}$ |
| Expansion Input Relays* ${ }^{*}$ | I | Bit | $\begin{gathered} \text { I30 }- \text { I187 } \\ (128 \text { points) } \\ \text { I190 }- \text { I507*2 } \\ (256 \text { points }) \end{gathered}$ | $\begin{gathered} \text { I30 }- \text { I307 } \\ (224 \text { points) } \\ \text { I310 }- \text { I627*3 } \\ (256 \text { points }) \end{gathered}$ |  |
| Output ${ }^{* 1}$ | Q | Bit | $\begin{gathered} \hline \text { Q0 - Q6 } \\ \text { (7 points) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Q0 - Q11 } \\ (10 \text { points }) \end{gathered}$ | $\begin{gathered} \text { Q0 - Q17 } \\ (16 \text { points }) \end{gathered}$ |
| Expansion Outputs ${ }^{* * *}$ | Q | Bit | $\begin{gathered} \text { Q30-Q187 } \\ (128 \text { points) } \\ \text { I190 }- \text { I507*2 } \\ (256 \text { points }) \end{gathered}$ | $\begin{gathered} \text { Q30-Q307 } \\ (224 \text { points }) \\ \text { Q310 - Q627*3 } \\ (256 \text { points }) \end{gathered}$ |  |
| Internal Relay ${ }^{* 1}$ | M | Bit | M0 - M7997$(6,400$ points $)$M10000 - M17497(6,000 points) |  |  |
| Special Internal Relay ${ }^{* 1}$ | M | Bit | $\begin{gathered} \text { M8000 - M8317 } \\ (256 \text { points }) \\ \hline \end{gathered}$ |  |  |
| Shift Register | R | Bit | $\begin{gathered} \hline \text { R0 }- \text { R255 } \\ (256 \text { points }) \end{gathered}$ |  |  |
| Timer | T | Bit/Word | $\begin{gathered} \text { T0 }- \text { T1023 } \\ (1,024 \text { points }) \end{gathered}$ |  |  |
| Counter | C | Bit/Word | $\begin{gathered} \text { C0 }- \text { C511 } \\ \text { (512 points) } \end{gathered}$ |  |  |
| Data Register | D | Bit/Word | D0000 - D7999 <br> (8,000 points) <br> D10000 to D55999 <br> (46,000 points) |  |  |
| Special Data Register | D | Bit/Word | $\begin{gathered} \text { D8000 - D8499 } \\ (500 \text { points) } \end{gathered}$ |  |  |

$*_{1}$ The least significant digit of the device address is an octal number (0 to 7).
*2 I190 to I507 and Q190 to Q507 are devices that can only be used when an expansion module (expansion interface side) is connected using the expansion interface module.
*3 I310 to I627 and Q310 to Q627 are devices that can only be used when an expansion module (expansion interface side) is connected using the expansion interface module.

## 2: Devices

- Inputs (I), Expansion Inputs (I)

Devices that input on/off information from external devices to the FC6A Series MicroSmart.

- Outputs (Q), Expansion Outputs (Q)

Devices that output on/off information from the FC6A Series MicroSmart to external devices.

- Internal Relays (M)

Bit devices used internally on the FC6A Series MicroSmart.

- Special Internal Relays (M)

Bit devices used internally on the FC6A Series MicroSmart. Special functions are assigned to each bit.

## - Shift Registers (R)

Bit devices that are used with the SFR instruction and the SFRN instruction. The bit sequence of the data is shifted according to pulse input.

- Timer (T)

Timers used internally in the FC6A Series MicroSmart. There are three devices: Timer bits (symbol: T, unit: bit), timer preset values (symbol: TP, unit: word), and timer current values (symbol: TC, unit: word).
These can be used as an on-delay timer or an off-delay timer. For details on timers ( $T$ ), see "Using Timer or Counter as Source Device" on page 3-6.

- Counters (C)

Counters used internally in the FC6A Series MicroSmart. There are three devices: Counter bits (symbol: C, unit: bit), counter preset values (symbol: CP, unit: word), and counter current values (symbol: CC, unit: word). These can be used as an adding counter or a reversible counter. For details on counters (C), see "Using Timer or Counter as Source Device" on page 3-6.

## - Data Registers (D)

Word devices that are used for writing numerical data internally in the FC6A Series MicroSmart. These can also be used as bit devices.

## - Special Data Registers (D)

Word devices that are used for writing numerical data internally in the FC6A Series MicroSmart. Special functions are assigned to each data register. These can also be used as bit devices.

## Notes:

- Although the device symbol for internal relays (M0000 to M7997, M10000 to M17497) and special internal relays (M8000 to M8317) is the same ("M"), the device characteristics are different. Special functions are assigned to each bit of the special internal relays.
- Although the device symbol for the data registers (D0000 to D7999, D10000 to D55999) and special data registers (D8000 to D8499) is the same ("D"), the device characteristics are different. Special functions are assigned to each special data register.


## Special Internal Relay

## Special Internal Relay Device Addresses

Do not write to data in the area marked as reserved in the special internal relays list. Otherwise the system may not operate correctly.

Note: R/W is an abbreviation for read/write.
The notation for the R/W field is as follows.
R/W: The device can be both read from and written to
R: Read-only
W: Write-only

| Device <br> Address | Description |  | When Stopped | Power OFF | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M8000 | Start Control |  | Maintained | Maintained | R/W |
| M8001 | 1-s Clock Reset |  | Cleared | Cleared | R/W |
| M8002 | All Outputs OFF |  | Cleared | Cleared | R/W |
| M8003 | Carry (Cy) or Borrow (Bw) |  | Cleared | Cleared | R/W |
| M8004 | User Program Execution Error |  | Cleared | Cleared | R/W |
| M8005 | Communication Error |  | Maintained | Cleared | R/W |
| M8006 | Communication Prohibited Flag (When Data Link Master) |  | Maintained | Maintained | R/W |
| M8007 | Initialization Flag (When Data Link Master)/Stop Communication Flag (When Data Link Slave) |  | Cleared | Cleared | R/W |
| M8010 | Status LED Operation |  | Operating | Cleared | R/W |
| $\begin{aligned} & \text { M8011 } \\ & \text { M8012 } \end{aligned}$ | - Reserved - |  | - | - | - |
| M8013 | Calendar/Clock Data Write/Adjust Error Flag |  | Operating | Cleared | R/W |
| M8014 | Calendar/Clock Data Read Error Flag |  | Operating | Cleared | R/W |
| M8015 | - Reserved - |  | - | - | - |
| M8016 | Calendar Data Write Flag |  | Operating | Cleared | R/W |
| M8017 | Clock Data Write Flag |  | Operating | Cleared | R/W |
| M8020 | Calendar/Clock Data Write Flag |  | Operating | Cleared | R/W |
| M8021 | Clock Data Adjust Flag |  | Operating | Cleared | R/W |
| M8022 | User Communication Receive Instruction Cancel Flag (Port 1) |  | Cleared | Cleared | R/W |
| M8023 | User Communication Receive Instruction Cancel Flag (Port 2) |  | Cleared | Cleared | R/W |
| M8024 | BMOV/WSFT Executing Flag |  | Maintained | Maintained | R/W |
| M8025 | Maintain Outputs While Stopped |  | Maintained | Cleared | R/W |
| M8026 | User Communication Receive Instruction Cancel Flag (Port 3) |  | Cleared | Cleared | R/W |
| M8027 | High-speed Counter (Group 1/I0) | Count Direction Flag | Maintained | Cleared | R/W |
| M8030 |  | Comparison Output Reset | Cleared | Cleared | R/W |
| M8031 |  | Gate Input | Maintained | Cleared | R/W |
| M8032 |  | Reset Input | Maintained | Cleared | R/W |
| M8033 | - Reserved - |  | - | - | - |
| M8034 | High-speed Counter (Group 3/I3) | Comparison Output Reset | Cleared | Cleared | R/W |
| M8035 |  | Gate Input | Maintained | Cleared | R/W |
| M8036 |  | Reset Input | Maintained | Cleared | R/W |
| M8037 | - Reserved - |  | - | - | - |
| M8040 | High-speed Counter (Group 4/I4) | Comparison Output Reset | Cleared | Cleared | R/W |
| M8041 |  | Gate Input | Maintained | Cleared | R/W |
| M8042 |  | Reset Input | Maintained | Cleared | R/W |
| M8043 | High-speed Counter (Group 5/I6) | Count Direction Flag | Cleared | Cleared | R/W |
| M8044 |  | Comparison Output Reset | Maintained | Cleared | R/W |
| M8045 |  | Gate Input | Maintained | Cleared | R/W |
| M8046 |  | Reset Input | Maintained | Cleared | R/W |
| $\begin{aligned} & \text { M8047 } \\ & \text { M8050 } \end{aligned}$ | - Reserved - |  | - | - | - |


| Device Address | Description |  | When Stopped | Power OFF | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M8051 | High-speed Counter (Group 2/I1) | Comparison Output Reset | Cleared | Cleared | R/W |
| M8052 |  | Gate Input | Maintained | Cleared | R/W |
| M8053 |  | Reset Input | Maintained | Cleared | R/W |
| M8054 |  | Comparison ON Status | Maintained | Cleared | R |
| M8055 |  | Overflow | Maintained | Cleared | R |
| M8056 | - Reserved - |  | - | - | - |
| M8057 | High-speed Counter (Group 6/I7) | Comparison Output Reset | Cleared | Cleared | R/W |
| M8060 |  | Gate Input | Maintained | Cleared | R/W |
| M8061 |  | Reset Input | Maintained | Cleared | R/W |
| M8062 |  | Comparison ON Status | Maintained | Cleared | R |
| M8063 |  | Overflow | Maintained | Cleared | R |
| $\begin{gathered} \text { M8064 to } \\ \text { M8067 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8070 | SD Memory Card Mount Status |  | Maintained | Cleared | R |
| M8071 | Accessing SD Memory Card |  | Maintained | Cleared | R |
| M8072 | Unmount SD Memory Card |  | Operating | Cleared | R/W |
| M8073 | Function Switch Status |  | Operating | Cleared | R |
| M8074 | Battery Voltage Measurement Flag |  | Operating | Cleared | R/W |
| $\begin{gathered} \text { M8075 to } \\ \text { M8077 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8080 | Data Link Slave 1 Communication Completed Relay (When Data Link Master) |  | Operating | Cleared | R |
| M8081 | Data Link Slave 2 Communication Completed Relay |  | Operating | Cleared | R |
| M8082 | Data Link Slave 3 Communication Completed Relay |  | Operating | Cleared | R |
| M8083 | Data Link Slave 4 Communication Completed Relay |  | Operating | Cleared | R |
| M8084 | Data Link Slave 5 Communication Completed Relay |  | Operating | Cleared | R |
| M8085 | Data Link Slave 6 Communication Completed Relay |  | Operating | Cleared | R |
| M8086 | Data Link Slave 7 Communication Completed Relay |  | Operating | Cleared | R |
| M8087 | Data Link Slave 8 Communication Completed Relay |  | Operating | Cleared | R |
| M8090 | Data Link Slave 9 Communication Completed Relay |  | Operating | Cleared | R |
| M8091 | Data Link Slave 10 Communication Completed Relay |  | Operating | Cleared | R |
| M8092 | Data Link Slave 11 Communication Completed Relay |  | Operating | Cleared | R |
| M8093 | Data Link Slave 12 Communication Completed Relay |  | Operating | Cleared | R |
| M8094 | Data Link Slave 13 Communication Completed Relay |  | Operating | Cleared | R |
| M8095 | Data Link Slave 14 Communication Completed Relay |  | Operating | Cleared | R |
| M8096 | Data Link Slave 15 Communication Completed Relay |  | Operating | Cleared | R |
| M8097 | Data Link Slave 16 Communication Completed Relay |  | Operating | Cleared | R |
| M8100 | Data Link Slave 17 Communication Completed Relay |  | Operating | Cleared | R |
| M8101 | Data Link Slave 18 Communication Completed Relay |  | Operating | Cleared | R |
| M8102 | Data Link Slave 19 Communication Completed Relay |  | Operating | Cleared | R |
| M8103 | Data Link Slave 20 Communication Completed Relay |  | Operating | Cleared | R |
| M8104 | Data Link Slave 21 Communication Completed Relay |  | Operating | Cleared | R |
| M8105 | Data Link Slave 22 Communication Completed Relay |  | Operating | Cleared | R |
| M8106 | Data Link Slave 23 Communication Completed Relay |  | Operating | Cleared | R |
| M8107 | Data Link Slave 24 Communication Completed Relay |  | Operating | Cleared | R |
| M8110 | Data Link Slave 25 Communication Completed Relay |  | Operating | Cleared | R |
| M8111 | Data Link Slave 26 Communication Completed Relay |  | Operating | Cleared | R |
| M8112 | Data Link Slave 27 Communication Completed Relay |  | Operating | Cleared | R |
| M8113 | Data Link Slave 28 Communication Completed Relay |  | Operating | Cleared | R |
| M8114 | Data Link Slave 29 Communication Completed Relay |  | Operating | Cleared | R |
| M8115 | Data Link Slave 30 Communication Completed Relay |  | Operating | Cleared | R |
| M8116 | Data Link Slave 31 Communication Completed Relay |  | Operating | Cleared | R |
| M8117 | Data Link All Slaves Communication Completed Relay |  | Operating | Cleared | R |
| M8120 | Initialize Pulse |  | Cleared | Cleared | R |
| M8121 | 1-s Clock |  | Operating | Cleared | R |
| M8122 | 100-ms Clock |  | Operating | Cleared | R |


| Device Address | Description |  | When Stopped | Power OFF | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M8123 | 10-ms Clock |  | Operating | Cleared | R |
| M8124 | Timer/Counter Preset Value Changed |  | Maintained | Cleared | R |
| M8125 | In-operation Output |  | Cleared | Cleared | R |
| M8126 | 1 Scan ON After Run-Time Download Completes |  | Cleared | Cleared | R |
| M8127 | - Reserved - |  | - | - | - |
| M8130 | High-speed Counter (Group 1/IO) | Reset Status | Maintained | Cleared | R |
| M8131 |  | Comparison ON Status | Maintained | Cleared | R |
| M8132 | - Reserved - |  | - | - | - |
| M8133 | High-speed Counter (Group 3/I3) | Comparison ON Status | Maintained | Cleared | R |
| M8134 | High-speed Counter (Group 4/I4) | Comparison ON Status | Maintained | Cleared | R |
| M8135 | High-speed Counter (Group 5/I6) | Reset Status | Maintained | Cleared | R |
| M8136 |  | Comparison ON Status | Maintained | Cleared | R |
| M8137 | Interrupt Input IO Status (Group 1/IO) | (ON: Allowed, OFF: Prohibited) | Cleared | Cleared | R |
| M8140 | Interrupt Input I1 Status (Group 2/I1) |  | Cleared | Cleared | R |
| M8141 | Interrupt Input I3 Status (Group 3/I3) |  | Cleared | Cleared | R |
| M8142 | Interrupt Input I4 Status (Group 4/I4) |  | Cleared | Cleared | R |
| M8143 | Interrupt Input I6 Status (Group 5/I6) |  | Cleared | Cleared | R |
| M8144 | Timer Interrupt Status |  | Cleared | Cleared | R |
| $\begin{gathered} \text { M8145 to } \\ \text { M8147 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8150 | Comparison Result 1 |  | Maintained | Cleared | R |
| M8151 | Comparison Result 2 |  | Maintained | Cleared | R |
| M8152 | Comparison Result 3 |  | Maintained | Cleared | R |
| M8153 | Catch Input ON/OFF Status | Group 1/I0 | Maintained | Cleared | R |
| M8154 |  | Group 2/I1 | Maintained | Cleared | R |
| M8155 |  | Group 3/I3 | Maintained | Cleared | R |
| M8156 |  | Group 4/I4 | Maintained | Cleared | R |
| M8157 |  | Group 5/I6 | Maintained | Cleared | R |
| M8160 |  | Group 6/I7 | Maintained | Cleared | R |
| M8161 | High-speed Counter (Group 1/IO) | Overflow | Maintained | Cleared | R |
| M8162 |  | Underflow | Maintained | Cleared | R |
| M8163 | High-speed Counter (Group 5/I6) | Overflow | Maintained | Cleared | R |
| M8164 |  | Underflow | Maintained | Cleared | R |
| M8165 | High-speed Counter (Group 3/I3) | Overflow | Maintained | Cleared | R |
| M8166 | High-speed Counter (Group 4/I4) | Overflow | Maintained | Cleared | R |
| M8167 | Interrupt Input I7 Status (Group 6/I7) | (ON: Allowed, OFF: Prohibited) | Maintained | Cleared | R |
| $\begin{aligned} & \text { M8170 } \\ & \text { M8171 } \end{aligned}$ | - Reserved - |  | - | - | - |
| M8172 | Transistor Source Output Overcurrent Detection | Group 1 | Operating | Cleared | R |
| M8173 |  | Group 2 | Operating | Cleared | R |
| M8174 |  | Group 3 | Operating | Cleared | R |
| M8175 |  | Group 4 | Operating | Cleared | R |
| $\begin{gathered} \text { M8176 to } \\ \text { M8183 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8184 | Change HMI Module Network Settings Trigger |  | Operating | Cleared | R/W |
| M8185 | In Daylight Saving Time Period |  | Operating | Cleared | R |
| M8186 | Executing Auto Ping |  | Operating | Cleared | R |
| M8187 | Auto Ping Stop Flag |  | Operating | Cleared | R/W |
| M8190 | Change CPU Module Network Settings Trigger |  | Operating | Cleared | R/W |
| M8191 | SNTP Acquisition Flag |  | Operating | Cleared | R/W |

2: Devices

| Device Address | Description |  | When Stopped | Power OFF | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M8192 | Interrupt Input IO Edge | On: Rising Edge Off: Falling Edge | Cleared | Cleared | R |
| M8193 | Interrupt Input I3 Edge |  | Cleared | Cleared | R |
| M8194 | Interrupt Input I4 Edge |  | Cleared | Cleared | R |
| M8195 | Interrupt Input I6 Edge |  | Cleared | Cleared | R |
| M8196 | Interrupt Input I7 Edge |  | Cleared | Cleared | R |
| M8197 | Interrupt Input I1 Edge |  | Cleared | Cleared | R |
| M8200 | User Communication Receive Instruction Cancel Flag | Connection 1 | Cleared | Cleared | R/W |
| M8201 |  | Connection 2 | Cleared | Cleared | R/W |
| M8202 |  | Connection 3 | Cleared | Cleared | R/W |
| M8203 |  | Connection 4 | Cleared | Cleared | R/W |
| M8204 |  | Connection 5 | Cleared | Cleared | R/W |
| M8205 |  | Connection 6 | Cleared | Cleared | R/W |
| M8206 |  | Connection 7 | Cleared | Cleared | R/W |
| M8207 |  | Connection 8 | Cleared | Cleared | R/W |
| M8210 | - Reserved - |  | - | - | - |
| M8211 | Send E-mail Server Settings Initialization |  | Operating | Cleared | R/W |
| M8212 | Connection Status <br> (ON: Connected, OFF: Not Connected) | Connection 1 | Operating | Cleared | R |
| M8213 |  | Connection 2 | Operating | Cleared | R |
| M8214 |  | Connection 3 | Operating | Cleared | R |
| M8215 |  | Connection 4 | Operating | Cleared | R |
| M8216 |  | Connection 5 | Operating | Cleared | R |
| M8217 |  | Connection 6 | Operating | Cleared | R |
| M8220 |  | Connection 7 | Operating | Cleared | R |
| M8221 |  | Connection 8 | Operating | Cleared | R |
| M8222 | Disconnect User Communication Connection | Connection 1 | Operating | Cleared | R/W |
| M8223 |  | Connection 2 | Operating | Cleared | R/W |
| M8224 |  | Connection 3 | Operating | Cleared | R/W |
| M8225 |  | Connection 4 | Operating | Cleared | R/W |
| M8226 |  | Connection 5 | Operating | Cleared | R/W |
| M8227 |  | Connection 6 | Operating | Cleared | R/W |
| M8230 |  | Connection 7 | Operating | Cleared | R/W |
| M8231 |  | Connection 8 | Operating | Cleared | R/W |
| M8232 | HMI Module Connection Information Reference Connection Status |  | Operating | Cleared | R |
| $\begin{gathered} \text { M8233 to } \\ \text { M8247 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8250 | Download from SD Memory Card Execution Flag |  | Operating | Cleared | R/W |
| M8251 | Upload to SD Memory Card Execution Flag |  | Operating | Cleared | R/W |
| M8252 | Executing SD Memory Card Download |  | Operating | Cleared | R |
| M8253 | Executing SD Memory Card Upload |  | Operating | Cleared | R |
| M8254 | SD Memory Card Download/Upload Execution Completed Output |  | Operating | Cleared | R |
| M8255 | SD Memory Card Download/Upload Execution Error Output |  | Operating | Cleared | R |
| $\begin{aligned} & \text { M8256 } \\ & \text { M8257 } \end{aligned}$ | - Reserved - |  | - | - | - |
| M8260 | Write Recipe Execution Flag |  | Operating | Cleared | R/W |
| M8261 | Read Recipe Execution Flag |  | Operating | Cleared | R/W |
| M8262 | Executing Write Recipe |  | Operating | Cleared | R/W |
| M8263 | Executing Read Recipe |  | Operating | Cleared | R/W |
| M8264 | Recipe Execution Completed Output |  | Operating | Cleared | R/W |
| M8265 | Recipe Execution Error Output |  | Operating | Cleared | R/W |
| $\begin{gathered} \text { M8266 to } \\ \text { M8297 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8300 | J1939 Communication Permitted Flag |  | Cleared | Cleared | R/W |
| M8301 | J1939 Online Status |  | Cleared | Cleared | R |
| M8302 | J1939 Local Station Address Confirmation Status |  | Cleared | Cleared | R |
| M8303 | J1939 Communication Error Output |  | Cleared | Cleared | R |


| Device Address | Description |  | When Stopped | $\begin{aligned} & \text { Power } \\ & \text { OFF } \end{aligned}$ | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M8304 | J1939 Communication Bus Off Occurrence Output |  | Cleared | Cleared | R |
| $\begin{gathered} \text { M8305 to } \\ \text { M8310 } \end{gathered}$ | - Reserved - |  | - | - | - |
| M8311 | ESC+Key Input (Up) | ESC+Key Input ( $\triangle$ ) | Cleared | Cleared | R |
| M8312 | ESC+Key Input (Down) | ESC+Key Input ( $\nabla$ ) | Cleared | Cleared | R |
| M8313 | ESC+Key Input (Left) | ESC+Key Input ( $\downarrow$ ) | Cleared | Cleared | R |
| M8314 | ESC+Key Input (Right) | ESC+Key Input ( $\downarrow$ ) | Cleared | Cleared | R |
| $\begin{gathered} \text { M8315 to } \\ \text { M8317 } \end{gathered}$ | - Reserved - |  | - | - | - |

## Supplementary Descriptions of the Special Internal Relays

- M8000: Start Control

M8000 controls the run/stop status of the FC6A Series MicroSmart. The CPU is set to run when M8000 is turned on, and the CPU is set to off when M8000 is turned off. See "Start/Stop Operation" on page 1-15. However, the function switch, stop input, and reset input have precedence over start control. M8000 maintains its status when the CPU is powered down. When data to be maintained during a power failure disappears after the CPU has been off for a period longer than the battery backup duration, the CPU restarts operation as selected in Configuration > Run/Stop Control > Run/Stop Selection at Keep Data Error. For details, see Chapter 5 "Run/Stop Selection at Keep Data Error" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - M8001: 1-s Clock Reset

While M8001 is on, M8121 (1-s clock) is always off.

- M8002: All Outputs OFF

While M8002 is on, all outputs are off. The self-holding circuit created in the ladder program is also off.

## ■ M8003: Carry/Borrow

When a carry (Cy) or borrow (Bw) results from executing an addition or subtraction instruction, M8003 is turned on. For details, see "Carry and Borrow" on page 3-10".

- M8004: User Program Execution Error

When an error occurs while executing a user program, M8004 is turned on. For details on user program execution errors, see Chapter 13 "User Program Execution Error" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- M8005: Communication Error

When an error occurs during data link communication, M8005 is turned on. The state is retained even when the error is cleared.

- M8006: Communication Prohibited Flag (When Data Link Master)

During data link communication, communication is stopped while M8006 is on.

- M8007: Initialization Flag (When Data Link Master)/Stop Communication Flag (When Data Link Slave)

When data link master: When this flag is turned on in the run status, the data link is initialized just once to check the connection status. Use this when the slave configured in the data link is powered at a timing slower than the master.
When data link slave : This flag is turned on when communication from the master is interrupted for 10 s or longer. This flag is turned off when communication can be normally received.

- M8010: Status LED Operation

While M8010 is on, the status LED [STAT] is turned on. While off, the status LED [STAT] is turned off.

## - M8013: Calendar/Clock Data Write/Adjust Error Flag

When the clock writing or clock adjustment processing could not be executed normally, M8013 is turned on. It is turned off when the processing completes normally.

■ M8014: Calendar/Clock Data Read Error Flag
When an error occurs while calendar/clock data is read from the internal clock to the special data registers (D8008 to D8021), M8014 is turned on. It is turned off when reading completes normally.

## - M8016: Calendar Data Write Flag

When M8016 is turned on after writing data to the calendar data (write-only) special data registers (D8015 to D8018), the calendar data (year, month, day, day of the week) is written to the internal clock.

- M8017: Clock Data Write Flag

When M8017 is turned on after writing data to the clock data (write-only) special data registers (D8019 to D8021), the clock data (hours, minutes, seconds) is written to the internal clock.

## M8020: Calendar/Clock Data Write Flag

When M8020 is turned on after writing data to the calendar/clock data (write-only) special data registers (D8015 to D8021), the calendar data (year, month, day, day of the week) and the clock data (hours, minutes, seconds) is written to the internal clock.

## - M8021: Clock Data Adjust Flag

When M8021 is turned on, the clock is adjusted with respect to seconds.

- When M8021 is turned on, if the seconds are between 0 and 29 , the seconds will be set to 0 and the minutes remain the same.
- When M8021 is turned on, if the seconds are between 30 and 59 , the seconds will be set to 0 and 1 will be added to the minutes.
- M8022: User Communication Receive Instruction Cancel Flag (Port 1)

While M8022 is on, user communication (receive instruction) executing on Port 1 is canceled.

- M8023: User Communication Receive Instruction Cancel Flag (Port 2)

While M8023 is on, user communication (receive instruction) executing on Port 2 is canceled.

- M8024: BMOV/WSFT Executing Flag

While the WSFT (word shift) instruction or the BMOV (block move) instruction is executing, M8024 is turned on. When completed, M8024 is turned off.

- M8025: Maintain Outputs While Stopped

When the FC6A Series MicroSmart is stopped while running with M8025 turned on, the outputs maintain their runtime status. When set to run again, M8025 is automatically turned off.

- M8026: User Communication Receive Instruction Cancel Flag (Port 3)

While M8026 is on, user communication (receive instruction) executing on Port 3 is canceled.

- M8027 to M8032, M8034 to M8036, M8040 to M8046, M8051 to M8055, M8057 to M8063, M8130, M8131, M8133 to M8136, M8161 to M8167: Special Internal Relays for High-speed Counter
Special internal relays used for the high-speed counter. For details, see Chapter 5 "High-Speed Counter" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
M8027 to M8032, M8130, M8131, M8161, M8162 = High-speed counter (group 1/I0)
M8034 to M8036, M8133, M8165 = High-speed counter (group 3/I3)
M8040 to M8042, M8134, M8166 = High-speed counter (group 4/I4)
M8043 to M8046, M8135, M8136, M8163, M8164 = High-speed counter (group 5/16)
M8051 to M8055 = High-speed counter (group 2/I1)
M8057 to M8063 = High-speed counter (group 6/I7)
- M8070: SD Memory Card Mount Status

When an SD memory card is inserted in the FC6A Series MicroSmart and it has been recognized and can be used, M8070 is turned on. M8070 is turned off if no SD memory card has been inserted or if it is not recognized.

- M8071: Accessing SD Memory Card

M8071 is turned on while the SD memory card is being accessed. It is turned off when access has finished.

- M8072: Unmount SD Memory Card

When M8072 is turned on, access to the SD memory card is stopped. To make an SD memory card accessible that has had access to it stopped, insert the card once again.

## - M8073: Function Switch Status

This relay indicates the status of the function switch on the front of the CPU module.
M8073 is on when the function switch is 1 . M8073 is off when the function switch is 0 .

## - M8074: Battery Voltage Measurement Flag

This relay indicates the battery voltage measurement status of the backup battery.
When M8074 is turned on, the battery voltage starts being measured, and it is turned off when the measurement has finished.

- M8080 to M8117: Data Link Communication Completed Relay

Special internal relays used for data link communication. For details, see Chapter 7 "Data Link Communication" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

## - M8120: Initialize Pulse

When operation (RUN) starts, M8120 is turned on for a period of one scan.


## - M8121: 1-s Clock

While M8001 is off, M8121 generates clock pulses in a 1 s cycle, with a duty ratio of 1:1 ( 500 ms on and 500 ms off).


## - M8122: 100-ms Clock

M8122 generates clock pulses in a 100 ms cycle, with a duty ratio of 1:1
( 50 ms on and 50 ms off).


## - M8123: 10-ms Clock

M8123 generates clock pulses in a 10 ms cycle, with a duty ratio of 1:1
( 5 ms on and 5 ms off).


- M8124: Timer/Counter Preset Value Changed

When timer or counter preset values are changed, M8124 is turned on. When a user program is transferred or when the changed data is cleared, M8124 is turned off.

- M8125: In-operation Output

M8125 is on during the run status.

- M8126: Scan ON After Run-Time Download Completes

When the user program is changed during the run status (run-time download), after the download completes, M8126 is turned on for one scan only when the user program starts operation.

- M8137 to M8143, M8167: Interrupt Input Status

These relays are turned on when the corresponding user interrupt is allowed. These relays are turned off when the user interrupt is prohibited.
M8137 = Interrupt input IO status
M8140 = Interrupt input I1 status
M8141 $=$ Interrupt input I3 status
M8142 $=$ Interrupt input I4 status
M8143 = Interrupt input I6 status
M8167 = Interrupt input I7 status

- M8144: Timer Interrupt Status

When the timer interrupt is allowed, M8144 is turned on. When the timer interrupt is prohibited, M8144 is turned off.

- M8150 to M8152: Comparison Result

M8150 to M8152 turn on according to the comparison results of the CMP= (Compare(=)) instruction and the ICMP>= (Interval comparison) instruction.
For details, see "Special Internal Relays M8150, M8151, and M8152 in ICMP>=" on page 6-6.

- M8153 to M8160: Catch Input ON/OFF Status

When the rising or falling input edge of the input contact specified as the catch input is detected during a scan, the input contact status is captured. The detectable edges are once per scan.
M8153 = Group 1/I0 status
M8154 = Group 2/I1 status
M8155 = Group 3/I3 status
M8156 = Group 4/I4 status
M8157 = Group 5/I6 status
M8160 $=$ Group 6/I7 status

- M8172 to M8175: Transistor Source Output Overcurrent Detection

When overcurrent output occurs in a transistor protection source output on the CPU module, a special internal relay (M8172 to M8175) is turned on. The following special internal relays have been allocated with four outputs set as one group. If overcurrent output occurs in any of the special internal relays, it is turned on.
Even if the overcurrent output has been cleared, these special internal relays are not reset to off. To reset a special internal relay to off, create programming to do so in the ladder program.
M8172 = Group 1 (Q0 to Q3) status
M8173 = Group 2 (Q4 to Q7) status
M8174 = Group 3 (Q10 to Q13) status
M8175 = Group 4 (Q14 to Q17) status

- M8184: Change HMI Module Network Settings Trigger

When M8184 is turned on, the values written to D8437 to D8456 are set as the HMI module IP address.
The IP address is not set just by changing the values of D8437 to D8456. For details on changing the HMI module network settings, see Chapter 3 "Network settings by HMI module special data registers" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- M8185: In Daylight Saving Time Period

When the daylight saving time function is enabled, M8185 is on during the daylight saving time period. When outside of the daylight saving time period, M8185 is off.
When the daylight saving time function is disabled, M8185 is off.

- M8186: Executing Auto Ping

M8186 is on when auto ping is operating. M8186 is off when auto ping is stopped. For details on auto ping, see Chapter 3 "Auto Ping Function" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- M8187: Auto Ping Stop Flag

While M8187 is on, auto ping stops. While M8187 is off, auto ping is executed. At that time, auto ping is executed from the smallest remote host number specified in the remote host list, regardless of the previous end status.

- M8190: Change CPU Module Network Settings Trigger

When M8190 is turned on, the values written to D8304 to D8323 are set as the CPU module IP address.
The IP address is not set just by changing the values of D8304 to D8323. For details on changing the CPU module network settings, see Chapter 3 "Network settings by special data registers" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- M8191: SNTP Acquisition Flag

When M8191 is turned on, the time information is acquired from the SNTP server.

- M8192 to M8197: Interrupt Input Edge

These relays turn on when an interrupt occurs with the rising edge of an interrupt input. They turn off when an interrupt occurs with the falling edge of an interrupt input.
M8192 = Interrupt input I0 edge
M8193 = Interrupt input I3 edge
M8194 = Interrupt input I4 edge
M8195 = Interrupt input I6 edge
M8196 = Interrupt input I7 edge
M8197 = Interrupt input I1 edge

- M8200 to M8207: User Communication Receive Instruction Cancel Flag

When M8200 to M8207 are turned on, the user communication receive instruction being executed is stopped.
M8200 = User communication receive instruction being executed on client connection 1
M8201 = User communication receive instruction being executed on client connection 2
M8202 = User communication receive instruction being executed on client connection 3
M8203 = User communication receive instruction being executed on client connection 4
M8204 = User communication receive instruction being executed on client connection 5
M8205 = User communication receive instruction being executed on client connection 6
M8206 = User communication receive instruction being executed on client connection 7
M8207 = User communication receive instruction being executed on client connection 8

- M8211: Send E-mail Server Settings Initialization

When M8211 is turned on, the send E-mail server settings are initialized.

## - M8212 to M8221: Connection Status

While connected to a network device via the maintenance communication server, user communication server/client, or Modbus TCP server/client, the connection status is turned on. While not connected to a network device, the connection status is turned off.
M8212 $=$ Connection 1
M8213 $=$ Connection 2
M8214 = Connection 3
M8215 $=$ Connection 4
M8216 = Connection 5
M8217 $=$ Connection 6
M8220 $=$ Connection 7
M8221 $=$ Connection 8

- M8222 to M8231: Disconnect User Communication Connection

When connected to a remote host via user communication, the corresponding connection is disconnected when M8222 to
M8231 is turned on.
M8222 $=$ Connection 1
M8223 = Connection 2
M8224 $=$ Connection 3
M8225 = Connection 4
M8226 = Connection 5
M8227 = Connection 6
M8230 $=$ Connection 7
M8231 $=$ Connection 8
These relays are enabled only when a user communication client is used.

- M8232: HMI Module Connection Information Reference Connection Status

M8232 is turned on when there is a connection with the connection number specified by D8429. M8232 is turned off when there is no connection.

- M8250: Download from SD Memory Card Execution Flag

When M8250 is turned on, a ZLD file is downloaded from the SD memory card. The file that will be downloaded is the ZLD file specified in the autoexec.ini file.

- M8251: Upload to SD Memory Card Execution Flag

When M8251 is turned on, a ZLD file is uploaded to the SD memory card.
A ZLD file is created with the file name specified in the autoexec.ini file.

- M8252: Executing SD Memory Card Download

M8252 is turned on when starting execution of the download from the SD memory card, and when the download has completed, it is turned off.

■ M8253: Executing SD Memory Card Upload
M8253 is turned on when starting execution of the upload to the SD memory card, and when the upload has completed, it is turned off.

- M8254: SD Memory Card Download/Upload Execution Completed Output

M8254 is turned off when starting execution of the download from the SD memory card or the upload to the SD memory card, and when the download or upload has completed, it is turned on.

- M8255: SD Memory Card Download/Upload Execution Error Output

M8255 is updated when execution of the download from the SD memory card or the upload to the SD memory card has completed. M8255 is turned on when D8255 (Download/Upload Execution Status) is a value other than 0.

## - M8260: Write Recipe Execution Flag

When M8260 is turned on, write recipe is executed.

- M8261: Read Recipe Execution Flag

When M8261 is turned on, read recipe is executed.

## - M8262: Executing Write Recipe

M8262 is turned on when the write recipe processing starts, and it is turned off when the processing has completed. M8262 also is turned off when read recipe processing starts.

## 2: Devices

- M8263: Executing Read Recipe

M8263 is turned on when the read recipe processing starts, and it is turned off when the processing has completed. M8263 also is turned off when write recipe processing starts.

- M8264: Recipe Execution Completed Output

M8264 is turned off when starting to read or write a recipe, and it is turned on when reading or writing a recipe has completed.

- M8265: Recipe Execution Error Output

M8265 is turned on when recipe execution has completed and D8264 (Recipe Execution Status) is a value other than 0. For details on recipes, see Chapter 11 "Recipe Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

■ M8300 to M8304: J1939 Communication
Special data registers used in J1939 communication. For details, see Chapter 8 "J1939 Communication" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- M8311 to M8314: Key Input Status

While the ESC button and direction buttons on the HMI module are simultaneously pressed, the corresponding special internal relays are turned on. When the keys are not pressed, the relays are turned off.
M8311 = ESC key + Up ( $(\Delta)$ key
M8312 $=$ ESC key + Down ( $\downarrow$ ) key
M8313 = ESC key + Left ( $(\stackrel{)}{ }$ ) key
M8314 = ESC key + Right ( $\uparrow$ ) key

## Special Data Register

## Special Data Register Device Addresses

Do not write to data in the area marked as reserved in the special data registers list. Otherwise the system may not operate correctly.

Note: R/W is an abbreviation for read/write.
The notation for the R/W field is as follows.
$\mathrm{R} / \mathrm{W}$ : The device can be both read from and written to
R: Read-only
W: Write-only

| Device Address |  | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: | :---: |
| D8000 | Quantity of Inputs |  | When I/O initialized | R |
| D8001 | Quantity of Outputs |  | When I/O initialized | R |
| D8002 | CPU Module Type Informatio |  | Power-up | R |
| $\begin{aligned} & \hline \text { D8003 } \\ & \text { D8004 } \end{aligned}$ | - Reserved - |  | - | - |
| D8005 | General Error Code |  | When error occurred | R/W |
| D8006 | User Program Execution Error Code |  | When error occurred | R |
| D8007 | - Reserved - |  | - | - |
| D8008 | Calendar/Clock Current Data (Read only) | Year | Every 500 ms | R |
| D8009 |  | Month | Every 500 ms | R |
| D8010 |  | Day | Every 500 ms | R |
| D8011 |  | Day of the Week | Every 500 ms | R |
| D8012 |  | Hour | Every 500 ms | R |
| D8013 |  | Minute | Every 500 ms | R |
| D8014 |  | Second | Every 500 ms | R |
| D8015 | Calendar/Clock New Data (Write only) | Year | - | W |
| D8016 |  | Month | - | W |
| D8017 |  | Day | - | W |
| D8018 |  | Day of the Week | - | W |
| D8019 |  | Hour | - | W |
| D8020 |  | Minute | - | W |
| D8021 |  | Second | - | W |
| D8022 | Scan Time Data | Constant Scan Time Preset Value (1 to 1,000 ms) | - | W |
| D8023 |  | Scan Time Current Value (ms) | Every scan | R |
| D8024 |  | Scan Time Maximum Value (ms) | At occurrence | R |
| D8025 |  | Scan Time Minimum Value (ms) | At occurrence | R |
| D8026 | Communication Mode Information (Port 1 to Port 3) |  | Every scan | R |
| $\begin{aligned} & \text { D8027 } \\ & \text { D8028 } \end{aligned}$ | - Reserved - |  | - | - |
| D8029 | System Software Version |  | Power-up | R |
| D8030 | Communication Adapter Information |  | Power-up | R |
| D8031 | Optional Cartridge Connection Information |  | Power-up | R |
| D8032 | Interrupt Input Jump Destination Label No. (I1) |  | - | R/W |
| D8033 | Interrupt Input Jump Destination Label No. (I3) |  | - | R/W |
| D8034 | Interrupt Input Jump Destination Label No. (I4) |  | - | R/W |
| D8035 | Interrupt Input Jump Destination Label No. (I6) |  | - | R/W |
| D8036 | Timer Interrupt Jump Destination Label No. |  | - | R/W |
| D8037 | Number of Connected I/O Modules |  | When I/O initialized | R |
| $\begin{gathered} \text { D8038 to } \\ \text { D8051 } \end{gathered}$ | — Reserved - |  | - | - |
| D8052 | J1939 Communication Error Code |  | Every scan | R/W |
| $\begin{aligned} & \text { D8053 to } \\ & \text { D8055 } \end{aligned}$ | — Reserved - |  | - | - |
| D8056 | Battery Voltage |  | - | R |


| Device Address |  | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: | :---: |
| D8057 | Analog Volume (AIO) |  | Every scan | R |
| D8058 | Built-in Analog Input (AI1) |  | Every scan | R |
| D8059 | Analog Input Status AIO |  | Every scan | R |
| D8060 | Analog Input Status AI1 |  | Every scan | R |
| $\begin{gathered} \text { D8061 to } \\ \text { D8066 } \end{gathered}$ | - Reserved - |  | - | - |
| D8067 | Backlight ON Time |  | - | R/W |
| D8068 | - Reserved - |  | - | - |
| D8069 | Slave 1 Communication Status/Error (When Data Link Master Mode) Slave Communication Status/Error (When Data Link Slave Mode) |  | When error occurred | R |
| D8070 | Slave 2 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8071 | Slave 3 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8072 | Slave 4 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8073 | Slave 5 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8074 | Slave 6 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8075 | Slave 7 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8076 | Slave 8 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8077 | Slave 9 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8078 | Slave 10 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8079 | Slave 11 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8080 | Slave 12 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8081 | Slave 13 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8082 | Slave 14 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8083 | Slave 15 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8084 | Slave 16 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8085 | Slave 17 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8086 | Slave 18 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8087 | Slave 19 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8088 | Slave 20 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8089 | Slave 21 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8090 | Slave 22 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8091 | Slave 23 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8092 | Slave 24 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8093 | Slave 25 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8094 | Slave 26 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8095 | Slave 27 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8096 | Slave 28 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8097 | Slave 29 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8098 | Slave 30 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8099 | Slave 31 Communication Status/Error (When Data Link Master Mode) |  | When error occurred | R |
| D8100 | Slave Number (Port 1) |  | - | R/W |
| D8101 | - Reserved - |  | - | - |
| D8102 | Slave Number (Port 2) |  | - | R/W |
| D8103 | Slave Number (Port 3) |  | - | R/W |
| D8104 | Control Signal Status (Port 1 to 3) |  | Every scan | R |
| D8105 | RS232C DSR Input Control Signal Option (Port 1 to 3) |  | When sending/ receiving data | R |
| D8106 | RS232C DTR Output Control Signal Option (Port 1 to 3) |  | When sending/ receiving data | R |
| $\begin{gathered} \text { D8107 to } \\ \text { D8119 } \end{gathered}$ | - Reserved - |  | - | - |
| D8120 | HMI Module Information | Type ID/Status | - | R |
| D8121 |  | System Software Version | - | R |
| D8122 | Cartridge Slot 1 Information | Type ID/Status | - | R |
| D8123 |  | System Software Version | - | R |


| Device Address | Description |  |  | Update Timing | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D8124 | Cartridge Slot 2 Information |  | Type ID/Status | - | R |
| D8125 |  |  | System Software Version | - | R |
| D8126 | Cartridge Slot 3 Information |  | Type ID/Status | - | R |
| D8127 |  |  | System Software Version | - | R |
| $\begin{gathered} \hline \text { D8128 to } \\ \text { D8169 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8170 | Analog Cartridge I/O AI2/AQ2 |  |  | Every scan | R |
| D8171 | Analog Cartridge I/O AI3/AQ3 |  |  | Every scan | R |
| D8172 | Analog Cartridge Status AI2/AQ2 |  |  | Every scan | R |
| D8173 | Analog Cartridge Status AI3/AQ3 |  |  | Every scan | R |
| D8174 | Analog Cartridge I/O AI4/AQ4 |  |  | Every scan | R |
| D8175 | Analog Cartridge I/O AI5/AQ5 |  |  | Every scan | R |
| D8176 | Analog Cartridge Status AI4/AQ4 |  |  | Every scan | R |
| D8177 | Analog Cartridge Status AI5/AQ5 |  |  | Every scan | R |
| D8178 | Analog Cartridge I/O AI6/AQ6 |  |  | Every scan | R |
| D8179 | Analog Cartridge I/O AI7/AQ7 |  |  | Every scan | R |
| D8180 | Analog Cartridge Status AI6/AQ6 |  |  | Every scan | R |
| D8181 | Analog Cartridge Status AI7/AQ7 |  |  | Every scan | R |
| $\begin{gathered} \text { D8182 to } \\ \text { D8191 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8192 | High-speed Counter (Group 2/I1) | High Word | Current Value/Frequency Measurement (I1) Current Value | Every scan | R |
| D8193 |  | Low Word |  | Every scan | R |
| D8194 |  | High Word | Preset Value | - | R/W |
| D8195 |  | Low Word |  | - | R/W |
| D8196 |  | High Word | Preset Value | - | R/W |
| D8197 |  | Low Word |  | - | R/W |
| D8198 | High-speed <br> Counter (Group 6/I7) | High Word | Current Value/Frequency Measurement (I7) Current Value | Every scan | R |
| D8199 |  | Low Word |  | Every scan | R |
| D8200 |  | High Word | Preset Value | - | R/W |
| D8201 |  | Low Word |  | - | R/W |
| D8202 |  | High Word | Preset Value | - | R/W |
| D8203 |  | Low Word |  | - | R/W |
| $\begin{gathered} \text { D8204 to } \\ \text { D8209 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8210 | High-speed Counter (Group 1/IO) | High Word | Current Value/Frequency Measurement (IO) Current Value | Every scan | R |
| D8211 |  | Low Word |  | Every scan | R |
| D8212 |  | High Word | Preset Value | - | R/W |
| D8213 |  | Low Word |  | - | R/W |
| D8214 | Interrupt Input Jump Destination Label No. (I7) |  |  | - | R/W |
| D8215 | Interrupt Input Jump Destination Label No. (I0) |  |  | - | R/W |
| D8216 | High-speed Counter (Group 1/IO) | High Word | Preset Value | - | R/W |
| D8217 |  | Low Word |  | - | R/W |
| D8218 | High-speed <br> Counter <br> (Group 3/I3) | High Word | Current Value/Frequency Measurement (I3) Current Value | Every scan | R |
| D8219 |  | Low Word |  | Every scan | R |
| D8220 |  | High Word | Preset Value | - | R/W |
| D8221 |  | Low Word |  | - | R/W |
| D8222 | High-speed <br> Counter <br> (Group 4/I4) | High Word | Current Value/Frequency Measurement (I4) Current Value | Every scan | R |
| D8223 |  | Low Word |  | Every scan | R |
| D8224 |  | High Word | Preset Value | - | R/W |
| D8225 |  | Low Word |  | - | R/W |
| D8226 | High-speed Counter (Group 5/I6) | High Word | Current Value/Frequency Measurement (I6) Current Value | Every scan | R |
| D8227 |  | Low Word |  | Every scan | R |
| D8228 |  | High Word | Preset Value | - | R/W |
| D8229 |  | Low Word |  | - | R/W |

2: Devices

| Device Address |  |  | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { D8230 } \\ & \text { D8231 } \end{aligned}$ | - Reserved - |  |  | - | - |
| D8232 | High-speed Counter (Group 5/I6) | High Word | Preset Value | - | R/W |
| D8233 |  | Low Word |  | - | R/W |
| D8234 | High-speed Counter (Group 3/I3) | High Word | Preset Value | - | R/W |
| D8235 |  | Low Word |  | - | R/W |
| D8236 | High-speed Counter (Group 4/I4) | High Word | Preset Value | - | R/W |
| D8237 |  | Low Word |  | - | R/W |
| D8238 | - Reserved - |  |  | - | - |
| D8239 | Absolute Position Control Status |  |  | Every scan | R |
| D8240 | Absolute Position Counter 1 | High Word | Absolute Position | Every scan | R |
| D8241 |  | Low Word |  | Every scan | R |
| D8242 | Absolute Position Counter 2 | High Word | Absolute Position | Every scan | R |
| D8243 |  | Low Word |  | Every scan | R |
| D8244 | Absolute Position Counter 3 | High Word | Absolute Position | Every scan | R |
| D8245 |  | Low Word |  | Every scan | R |
| D8246 | Absolute Position Counter 4 | High Word | Absolute Position | Every scan | R |
| D8247 |  | Low Word |  | Every scan | R |
| $\begin{aligned} & \text { D8248 } \\ & \text { D8249 } \end{aligned}$ | - Reserved - |  |  | - | - |
| D8250 | Read SD Memory Card Capacity |  |  | Every scan | R |
| D8251 | Read SD Memory Card Free Capacity |  |  | Every scan | R |
| $\begin{aligned} & \hline \text { D8252 } \\ & \text { D8253 } \end{aligned}$ | - Reserved - |  |  | - | - |
| D8254 | SD Memory Card Download/Upload Execution Information |  |  | When processing has completed | R |
| D8255 | SD Memory Card Download/Upload Execution Status |  |  | When processing has completed | R |
| $\begin{gathered} \hline \text { D8256 to } \\ \text { D8359 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8260 | Recipe Block Number |  |  | - | R/W |
| D8261 | Recipe Execution Block Number |  |  | When recipe execution has completed | R |
| D8262 | Recipe Execution Channel No. |  |  | When recipe execution has completed | R |
| D8263 | Recipe Execution Operation |  |  | When recipe execution has completed | R |
| D8264 | Recipe Execution Status |  |  | When recipe execution has completed | R |
| D8265 | Recipe Execution Error Information |  |  | When recipe execution has completed | R |
| $\begin{gathered} \text { D8266 to } \\ \text { D8277 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8278 | Communication Mode Information (Client Connection) |  | Connection 1 to 4 | - | R |
| D8279 |  |  | Connection 5 to 8 | - | R |
| $\begin{gathered} \text { D8280 to } \\ \text { D8283 } \end{gathered}$ | - Reserved - |  |  | - | - |
| D8284 | Communication Mode Information (HMI Connection) |  | HMI Connection 1 to 4 | - | R |
| D8285 |  |  | HMI Connection 5 to 8 | - | R |
| $\begin{gathered} \text { D8286 to } \\ \text { D8303 } \end{gathered}$ | - Reserved - |  |  | - | - |


| Device Address | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: |
| D8304 | CPU Module IP Address (Write-only) | - | W |
| D8305 |  | - | W |
| D8306 |  | - | W |
| D8307 |  | - | W |
| D8308 | CPU Module Subnet Mask (Write-only) | - | W |
| D8309 |  | - | W |
| D8310 |  | - | W |
| D8311 |  | - | W |
| D8312 | CPU Module Default Gateway (Write-only) | - | W |
| D8313 |  | - | W |
| D8314 |  | - | W |
| D8315 |  | - | W |
| D8316 | CPU Module Preferred DNS Server (Write-only) | - | W |
| D8317 |  | - | W |
| D8318 |  | - | W |
| D8319 |  | - | W |
| D8320 | CPU Module Alternate DNS Server (Write-only) | - | W |
| D8321 |  | - | W |
| D8322 |  | - | W |
| D8323 |  | - | W |
| D8324 | CPU Module MAC Address (Current Value Read-only) | Every 1 s | R |
| D8325 |  | Every 1 s | R |
| D8326 |  | Every 1 s | R |
| D8327 |  | Every 1 s | R |
| D8328 |  | Every 1 s | R |
| D8329 |  | Every 1 s | R |
| D8330 | CPU Module IP Address (Current Value Read-only) | Every 1 s | R |
| D8331 |  | Every 1 s | R |
| D8332 |  | Every 1 s | R |
| D8333 |  | Every 1 s | R |
| D8334 | CPU Module Subnet Mask (Current Value Read-only) | Every 1 s | R |
| D8335 |  | Every 1 s | R |
| D8336 |  | Every 1 s | R |
| D8337 |  | Every 1 s | R |
| D8338 | CPU Module Default Gateway (Current Value Read-only) | Every 1 s | R |
| D8339 |  | Every 1 s | R |
| D8340 |  | Every 1 s | R |
| D8341 |  | Every 1 s | R |
| D8342 | CPU Module Preferred DNS Server (Current Value Read-only) | Every 1 s | R |
| D8343 |  | Every 1 s | R |
| D8344 |  | Every 1 s | R |
| D8345 |  | Every 1 s | R |
| D8346 | CPU Module Alternate DNS Server (Current Value Read-only) | Every 1 s | R |
| D8347 |  | Every 1 s | R |
| D8348 |  | Every 1 s | R |
| D8349 |  | Every 1 s | R |
| D8350 | Connection 1 Connected IP Address | Every 1 s | R |
| D8351 |  | Every 1 s | R |
| D8352 |  | Every 1 s | R |
| D8353 |  | Every 1 s | R |
| D8354 | Connection 2 Connected IP Address | Every 1 s | R |
| D8355 |  | Every 1 s | R |
| D8356 |  | Every 1 s | R |
| D8357 |  | Every 1 s | R |

## 2: Devices

| Device <br> Address | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: |
| D8358 | Connection 3 Connected IP Address | Every 1 s | R |
| D8359 |  | Every 1 s | R |
| D8360 |  | Every 1 s | R |
| D8361 |  | Every 1 s | R |
| D8362 | Connection 4 Connected IP Address | Every 1 s | R |
| D8363 |  | Every 1 s | R |
| D8364 |  | Every 1 s | R |
| D8365 |  | Every 1 s | R |
| D8366 | Connection 5 Connected IP Address | Every 1 s | R |
| D8367 |  | Every 1s | R |
| D8368 |  | Every 1 s | R |
| D8369 |  | Every 1 s | R |
| D8370 | Connection 6 Connected IP Address | Every 1 s | R |
| D8371 |  | Every 1 s | R |
| D8372 |  | Every 1 s | R |
| D8373 |  | Every 1 s | R |
| D8374 | Connection 7 Connected IP Address | Every 1 s | R |
| D8375 |  | Every 1 s | R |
| D8376 |  | Every 1 s | R |
| D8377 |  | Every 1 s | R |
| D8378 | Connection 8 Connected IP Address | Every 1 s | R |
| D8379 |  | Every 1 s | R |
| D8380 |  | Every 1 s | R |
| D8381 |  | Every 1 s | R |
| D8382 | HMI Module MAC Address (Current Value Read-only) | Every 1 s | R |
| D8383 |  | Every 1 s | R |
| D8384 |  | Every 1 s | R |
| D8385 |  | Every 1 s | R |
| D8386 |  | Every 1 s | R |
| D8387 |  | Every 1 s | R |
| D8388 | HMI Module IP Address (Current Value Read-only) | Every 1 s | R |
| D8389 |  | Every 1 s | R |
| D8390 |  | Every 1 s | R |
| D8391 |  | Every 1 s | R |
| D8392 | HMI Module Subnet Mask (Current Value Read-only) | Every 1 s | R |
| D8393 |  | Every 1 s | R |
| D8394 |  | Every 1 s | R |
| D8395 |  | Every 1 s | R |
| D8396 | HMI Module Default Gateway (Current Value Read-only) | Every 1 s | R |
| D8397 |  | Every 1s | R |
| D8398 |  | Every 1 s | R |
| D8399 |  | Every 1 s | R |
| D8400 | HMI Module Preferred DNS Server (Current Value Read-only) | Every 1 s | R |
| D8401 |  | Every 1 s | R |
| D8402 |  | Every 1s | R |
| D8403 |  | Every 1 s | R |
| D8404 | HMI Module Alternate DNS Server (Current Value Read-only) | Every 1 s | R |
| D8405 |  | Every 1 s | R |
| D8406 |  | Every 1 s | R |
| D8407 |  | Every 1 s | R |
| $\begin{gathered} \text { D8408 to } \\ \text { D8412 } \end{gathered}$ | - Reserved - | - | - |
| D8413 | Time Zone Offset | - | R/W |
| D8414 | SNTP Operation Status | - | R |
| D8415 | SNTP Access Elapsed Time | - | R |


| Device Address |  | Description | Update Timing | R/W |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { D8416 to } \\ \text { D8428 } \end{gathered}$ | - Reserved - |  | - | - |
| D8429 | HMI Module Connection Information Reference | Connection No. | - | R/W |
| D8430 |  | Connected IP Address | Every 1 s | R |
| D8431 |  |  | Every 1 s | R |
| D8432 |  |  | Every 1 s | R |
| D8433 |  |  | Every 1 s | R |
| D8434 |  | Connected Port No. | Every 1 s | R |
| $\begin{aligned} & \text { D8435 } \\ & \text { D8436 } \end{aligned}$ | - Reserved - |  | - | - |
| D8437 | HMI Module IP Address (Write-only) |  | - | W |
| D8438 |  |  | - | W |
| D8439 |  |  | - | W |
| D8440 |  |  | - | W |
| D8441 | HMI Module Subnet Mask (Write-only) |  | - | W |
| D8442 |  |  | - | W |
| D8443 |  |  | - | W |
| D8444 |  |  | - | W |
| D8445 | HMI Module Default Gateway (Write-only) |  | - | W |
| D8446 |  |  | - | W |
| D8447 |  |  | - | W |
| D8448 |  |  | - | W |
| D8449 | HMI Module Preferred DNS Server (Write-only) |  | - | W |
| D8450 |  |  | - | W |
| D8451 |  |  | - | W |
| D8452 |  |  | - | W |
| D8453 | HMI Module Alternate DNS Server (Write-only) |  | - | W |
| D8454 |  |  | - | W |
| D8455 |  |  | - | W |
| D8456 |  |  | - | W |
| D8457 | EMAIL Instruction Detailed Error Information |  | - | R |
| $\begin{gathered} \text { D8458 to } \\ \text { D8469 } \end{gathered}$ | - Reserved - |  | - | - |
| D8470 | Expansion Module Slot 1 Information | Type ID/Status | - | R |
| D8471 |  | System Software Version | - | R |
| D8472 | Expansion Module Slot 2 Information | Type ID/Status | - | R |
| D8473 |  | System Software Version | - | R |
| D8474 | Expansion Module Slot 3 Information | Type ID/Status | - | R |
| D8475 |  | System Software Version | - | R |
| D8476 | Expansion Module Slot 4 Information | Type ID/Status | - | R |
| D8477 |  | System Software Version | - | R |
| D8478 | Expansion Module Slot 5 Information | Type ID/Status | - | R |
| D8479 |  | System Software Version | - | R |
| D8480 | Expansion Module Slot 6 Information | Type ID/Status | - | R |
| D8481 |  | System Software Version | - | R |
| D8482 | Expansion Module Slot 7 Information | Type ID/Status | - | R |
| D8483 |  | System Software Version | - | R |
| D8484 | Expansion Module Slot 8 Information | Type ID/Status | - | R |
| D8485 |  | System Software Version | - | R |
| D8486 | Expansion Module Slot 9 Information | Type ID/Status | - | R |
| D8487 |  | System Software Version | - | R |
| D8488 | Expansion Module Slot 10 Information | Type ID/Status | - | R |
| D8489 |  | System Software Version | - | R |
| D8490 | Expansion Module Slot 11 Information | Type ID/Status | - | R |
| D8491 |  | System Software Version | - | R |


| Device <br> Address |  | Update Timing | R/w |  |
| :---: | :--- | :--- | :---: | :---: |
| D8492 | Expansion Module Slot 12 | Type ID/Status | - |  |
| D8493 Information | System Software Version | - | R |  |
| D8494 | Expansion Module Slot 13 | Type ID/Status | - | R |
|  | Information | System Software Version | - | R |
| D8495 | Type ID/Status | - | R |  |
| D8496 | Expansion Module Slot 14 | System Software Version | - | R |
| D8497 | Information | Type ID/Status | - | R |
| D8498 | Expansion Module Slot 15 | System Software Version | - | R |
| D8499 | Information |  |  | - |

## Supplementary Descriptions of the Special Data Registers

- D8000: Quantity of Inputs

The number of FC6A Series MicroSmart inputs is written to this register.
The total number of inputs for the CPU module and the expansion modules is written to this register.

## - D8001: Quantity of Outputs

The number of FC6A Series MicroSmart outputs is written to this register.
The total number of outputs for the CPU module and the expansion modules is written to this register.

- D8002: CPU Module Type Information

CPU module type information is written this register.
0 (00h): 16-I/O type
1 (01h): 24-I/O type
2 (02h): 40-I/O type (All-in-One Type)
18 (12h): 40-I/O type (CAN J1939 All-in-One Type)

- D8005: General Error Code

FC6A Series MicroSmart general error information is written to this register. When a general error occurs, the bit corresponding to the error occurred turns on. The general error and user program execution error can be cleared by writing "1" to the most significant bit of D8005. For details on general error codes, see Chapter 13 "General Error Codes" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## D8006: User Program Execution Error Code

FC6A Series MicroSmartuser program execution error information is written to this register. When a user program execution error occurs, the error code corresponding to the error that occurred is written to this register. For details on user program execution errors, see Chapter 13 "User Program Execution Error" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8008 to D8021: Calendar/Clock Data

D8008 through D8021 are used for reading calendar/clock data from the internal clock and for writing calendar/clock data to the internal clock. For details on the calendar/clock data, see Chapter 5 "Clock Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8022 to D8025: Scan Time Data

D8022 through D8025 are special data registers for checking the scan time and configuring the constant scan time. For details on the scan time, see Chapter 5 "Constant Scan Time" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8026: Communication Mode Information (Port 1 to 3)

This register indicates communication mode information for Port 1 to Port 3.
The allocation of communication ports in the device (bit assignment) is as follows.


0 (0000): Maintenance communication
1 (0001): User communication
2 (0010): Modbus RTU master
3 (0011): Modbus RTU slave
4 (0100): Data link communication

## - D8029: System Software Version

The CPU module system software version number is written to this register.

## - D8030: Communication Adapter Information

This register indicates information about the communication cartridges in Port 2 and Port 3.
The allocation of communication ports in the device (bit assignment) is as follows.
0 (00): No communication cartridges $\qquad$

1 (01): RS-232C communication cartridge
2 (10): RS-485 communication cartridge
3 (11): Free

## - D8031: Optional Cartridge Connection Information

Optional cartridge connection information is written to this register. The allocation of bits in the device (bit assignment) is as follows.


## - D8032 to D8035, D8214, D8215: Interrupt Input Jump Destination Label No.

Jump destination label numbers for interrupt inputs are written to these registers. When using interrupt inputs, write the label number that corresponds to the special data register that has been allocated to the interrupt input. For details on interrupt inputs, see Chapter 5 "Interrupt Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
D8032 $=$ I1
D8033 $=\mathrm{I} 3$
D8034 = I4
D8035 = I6
D8214 = I7
D8215 = 10

- D8036: Timer Interrupt Jump Destination Label No.

The jump destination label number when the timer interrupt occurs is written to this register. When using the timer interrupt, store the corresponding label number.
For details on the timer interrupt, see Chapter 5 "Timer Interrupt" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - D8037: Number of Connected Expansion Modules

The number of expansion modules connected to the CPU module (expansion I/O modules and functional modules) is written to this register.

- D8052: J1939 Communication Error Code

When an error occurs in J1939 communication, the error code is written to this register. For details on J1939 communication error codes, see Chapter 8 "J1939 Communication Error Code (D8052)" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8056: Battery Voltage

The measurement result of the backup battery voltage is written to this register in 1 mV units.
0 : Measurement error

## - D8057: Analog Volume (AIO)

The analog volume value is converted to a digital value and written to this register. For details, see Chapter 5 "Analog Volume" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## 2: Devices

- D8058: Built-in Analog Input (AI1)

The analog input's analog value ( 0 to 10 V DC) is converted to a digital value and written to this register. For details, see Chapter 5 "Analog Voltage Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8059: Analog Input Status AIO

The analog volume's analog input status is written to this register. For details, see Chapter 5 "Analog Volume" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - D8060: Analog Input Status AI1

The analog input's analog input status is written to this register. For details, see Chapter 5 "Analog Voltage Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - D8067: Backlight ON Time

The backlight on time for the HMI module is written to this register. The backlight on time can be set by modifying the value of D8067 in a range between 1 and $65,535 \mathrm{~s}$. When D8067 is 0 s , the backlight is always on. The backlight on time can also be changed with the HMI environment settings. For details, see Chapter 7 "Setting the LCD Backlight ON Time" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8069 to D8099: Slave (1 to 31) Communication Status/Error

Special data registers used in data link communication. For details, see Chapter 7 "Master Station" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8100, D8102, D8103: Slave Number (Port 1 to 3)

The slave number is written to these registers when the Port 1 to 3 communication mode is maintenance communication, Modbus RTU slave, or data link communication. The slave number can be changed by changing the value of D8100, D8102, and D8103 in Function Area Settings
D8100 = Port 1 Slave No.
D8102 = Port 2 Slave No.
D8103 = Port 3 Slave No.
For details on communication modes, see the following in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- Maintenance communication: Chapter 4 "Maintenance Communication"
- Modbus RTU slave: Chapter 6 "Modbus Communication"
- Data link communication: Chapter 7 "Data Link Communication"


## - D8104: Control Signal Status (Port 1 to 3)

The signal statuses of the DSR and DTR controls lines are written to this register. This register is updated in END processing when stopped and while running. The allocation of communication ports in the device (bit assignment) is as follows.


3 (11): DTR and DSR are both on.

- D8105: RS232C DSR Input Control Signal Option (Port 1 to 3)

The signal statuses of the DSR and DTR controls lines are written to this register. This register is updated in END processing when stopped and while running. The allocation of communication ports in the device (bit assignment) is as follows.


0 (000): The DSR signal status is not used for FC6A Series MicroSmart transmission control. Use this status when DSR signal control is not required.
1 (001) When the DSR signal is on, the FC6A Series MicroSmart can transmit and receive.


2 (010): When the DSR signal is off, the FC6A Series MicroSmart can transmit and receive.


3 (011): When the DSR signal is on, transmission is possible (reception is always possible).


This is normally called "busy control" and is used for transmission control for devices with a slow processing speed such as printers.
(As viewed from the connected device, there is a limit on the data that can be input.)
4 (100): When the DSR signal is off, transmission is possible.


5 or higher: The operation is the same as the setting "000".

## 2: Devices

- D8106: RS232C DTR Output Control Signal Option (Port 1 to 3)

This register is used when indicating the FC6A Series MicroSmart control status and the transmit/receive status to the connected device. This control line is an output signal from the FC6A Series MicroSmart to the connected device. This register is only valid during user communication.
The allocation of communication ports in the device (bit assignment) is as follows.


0 (00): The signal is on when the FC6A Series MicroSmart is set to run and off when stopped.
While running, the signal is always on regardless of transmitting or receiving data. Set this value when it is necessary to indicate the run status.


1 (01): Always off.
2 (10): Set this value when performing flow control for received data. The signal is on when data from the connected device can be received.
The signal is off when data cannot be received.


3 (11): $\quad$ The operation is the same as the setting " 0 ".
■ D8120, D8121: HMI Module Information
HMI module type information is written to these registers.
The allocation of information (bit assignment) is as follows.


The system software version displays the version of the software written to the device.
For details on the type IDs and statuses, see "List of Type IDs and Statuses" on page 2-31.

## - D8122 to D8127: Cartridge Slot Information

Cartridge Slot 1 to 3 information is written to these registers.
The allocation of information (bit assignment) is as follows.


D8122, D8123 = Cartridge Slot 1 Information
D8124, D8125 = Cartridge Slot 2 Information
D8126, D8127 = Cartridge Slot 3 Information
For details on the type IDs and statuses, see "List of Type IDs and Statuses" on page 2-31.

## - D8170, D8171, D8174, D8175, D8178, D8179: Analog Cartridge I/O

Analog I/O values for the analog cartridges are written to these registers.
For the analog input type : The analog values input to the analog cartridge are converted to digital values and written to the registers.
For the analog output type : The digital values stored as digital values are converted to analog values and output from the analog cartridges.
For details, see Chapter 10 "Analog Cartridge" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
D8170 = AI2/AQ2
D8171 = AI3/AQ3
D8174 = AI4/AQ4
D8175 = AI5/AQ5
D8178 = AI6/AQ6
D8179 = AI7/AQ7

- D8172, D8173, D8176, D8177, D8180, D8181: Analog Cartridge Status

The analog status of analog cartridges is written to these registers.
For details, see Chapter 10 "Analog Cartridge" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
D8172 = AI2/AQ2
D8173 = AI3/AQ3
D8176 = AI4/AQ4
D8177 = AI5/AQ5
D8180 = AI6/AQ6
D8181 = AI7/AQ7

- D8192 to D8203, D8210 to D8213, D8216 to D8229, D8232 to D8237: High-speed Counter

These special data registers are used with the high-speed counter function and the frequency measurement function.
For details on high-speed counters, see Chapter 5 "High-Speed Counter" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
D8210 to D8213, D8216, D8217 = High-speed counter (group 1/I0)
D8218 to D8221, D8234, D8235 = High-speed counter (group 3/I3)
D8222 to D8225, D8236, D8237 = High-speed counter (group 4/I4)
D8226 to D8229, D8232, D8233 = High-speed counter (group 5/I6)
D8192 to D8197 = High-speed counter (group 2/I1)
D8198 to D8203 = High-speed counter (group 6/I7)

- D8239: Absolute Position Control Status

This register indicates the status of absolute position control.
The allocation of the absolute position counter initialized flags in the device (bit assignment) is as follows. For details on the absolute position control status, see "ABS (Set Absolute Position)" on page 18-59.


0 : Not initialized
1: Initialized
—Absolute Position Counter 3 Initialized Flag

- D8240 to D8247: Absolute Position Counter 1 to 4

The absolute position is written to these registers according to pulse output. The absolute position can be initialized with the ABS instruction.
When reversible control is set in the pulse output instructions (RAMP/ARAMP/ZRN/JOG), the absolute position is incremented or decremented according to the output result. For details on absolute position counters, see "ABS (Set Absolute Position)" on page 18-59.
D8240, D8241 = Absolute position counter 1
D8242, D8243 = Absolute position counter 2
D8244, D8245 = Absolute position counter 3
D8246, D8247 = Absolute position counter 4

- D8250: Read SD Memory Card Capacity

This register indicates the capacity of the recognized SD or SDHC (maximum size 32 GB ) memory card in megabytes. It is 0 when no SD memory card has been inserted or if it is not recognized.

## D8251: Read SD Memory Card Free Capacity

This register indicates the free capacity of the SD memory card in megabytes.
It is 0 when no SD memory card has been inserted or if it is not recognized.

- D8254: SD Memory Card Download/Upload Execution Information

Information about the SD memory card download/upload that was executed.
For details, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8255: SD Memory Card Download/Upload Execution Status

The status of the SD memory card download/upload that was executed.
For details, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - D8260: Recipe Block Number

The recipe block number to read or write using special internal relays.
All channels for the specified block number are applicable.

## - D8261: Recipe Execution Block Number

The recipe block number of the recipe that was executed.
This is updated when the recipe block starts, and the status is retained when completed.

- D8262: Recipe Execution Channel No.

The channel number of the recipe that was executed.
This is updated when the channel processing starts, and the status is retained when completed.

- D8263: Recipe Execution Operation

Information about the operation of the recipe that was executed.
For details on recipes, see Chapter 11 "Recipe Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## - D8264: Recipe Execution Status

The status of the recipe that was executed.
For details on recipes, see Chapter 11 "Recipe Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8265: Recipe Execution Error Information

Error information about the recipe that was executed.
For details on recipes, see Chapter 11 "Recipe Function" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

- D8278, D8279: Communication Mode Information (Client Connection) (Connection 1 to 8)

D8278 = Indicates the communication mode of connections 1 through 4.
D8279 = Indicates the communication mode of connections 5 through 8.
The allocation of connections in the device (bit assignment) is as follows.


- Client connection (most significant bit $=0$ )

0000: Unused
0001: User Communication
0010: Modbus TCP client

- Server connection (most significant bit $=1$ )

1000: Maintenance Communication
1001: User Communication
1010: Modbus TCP server

- D8284, D8285: Communication Mode Information (HMI Connection) (HMI Connection 1 to 8)

D8284: Indicates the communication mode of HMI connections 1 through 4.
D8285: Indicates the communication mode of HMI connections 5 through 8.
The allocation of connections in the device (bit assignment) is as follows.


- Client connection (most significant bit $=0$ ) 0000: Unused
- Server connection (most significant bit $=1$ )

1000: Maintenance Communication

- D8303: CPU Module Network Settings Acquisition Mode

This register configures writing the CPU module IP address.
0 : According to function area settings.
1: Force DHCP.
2: According to the setting for the CPU module IP address settings (write-only).

- D8304 to D8307: CPU Module IP Address (Write-only)

These registers are used to write the CPU module's IP address.
IP address: To set as aaa.bbb.ccc.ddd, write the following.
D8304=aaa, D8305=bbb, D8306=ccc, D8307=ddd

- D8308 to D8311: CPU Module Subnet Mask (Write-only)

These registers are used to write the CPU module's subnet mask.
Subnet mask: For aaa.bbb.ccc.ddd, write the following.
D8308=aaa, D8309=bbb, D8310=ccc, D8311=ddd
■ D8312 to D8315: CPU Module Default Gateway (Write-only)
These registers are used to write the CPU module's default gateway.
Default gateway: For aaa.bbb.ccc.ddd, write the following.
D8312=aaa, D8313=bbb, D8314=ccc, D8315=ddd

- D8316 to D8319: CPU Module Preferred DNS Server (Write-only)

These registers are used to write the CPU module's preferred DNS server.
Preferred DNS server: For aaa.bbb.ccc.ddd, write the following.
D8316=aaa, D8317=bbb, D8318=ccc, D8319=ddd

- D8320 to D8323: CPU Module Alternate DNS Server (Write-only)

These registers are used to write the CPU module's alternate DNS server. Alternate DNS server: For aaa.bbb.ccc.ddd, write the following.

D8320=aaa, D8321=bbb, D8322=ccc, D8323=ddd

## 2: Devices

- D8324 to D8329: CPU Module MAC Address (Current Value Read-only)

The CPU module's MAC address is written to the special data registers as follows.
Example: MAC address: AA-BB-CC-DD-EE-FF
D8324=AA, D8325=BB, D8326=CC, D8327=DD, D8328=EE, D8329=FF

- D8330 to D8333: CPU Module IP Address (Current Value Read-only)

The CPU module's IP address is written to the special data registers as follows.
Example: The CPU module's own IP address aaa.bbb.ccc.ddd
D8330=aaa, D8331=bbb, D8332=ccc, D8333=ddd

- D8334 to D8337: CPU Module Subnet Mask (Current Value Read-only)

The CPU module's subnet mask value is written to the special data registers as follows.
Example: Subnet mask: aaa.bbb.ccc.ddd
D8334=aaa, D8335=bbb, D8336=ccc, D8337=ddd

- D8338 to D8341: CPU Module Default Gateway (Current Value Read-only)

The CPU module's default gateway address is written to the special data registers as follows.
Example: Default gateway: aaa.bbb.ccc.ddd
D8338=aaa, D8339=bbb, D8340=ccc, D8341=ddd
■ D8342 to D8345: CPU Module Preferred DNS Server (Current Value Read-only)
The CPU module's preferred DNS server address is written to the special data registers as follows.
Example: Preferred DNS server: aaa.bbb.ccc.ddd
D8342=aaa, D8343=bbb, D8344=ccc, D8345=ddd

- D8346 to D8349: CPU Module Alternate DNS Server (Current Value Read-only)

The CPU module's alternate DNS server address is written to the special data registers as follows.
Example: Alternate DNS server: aaa.bbb.ccc.ddd
D8346=aaa, D8347=bbb, D8348=ccc, D8349=ddd

- D8350 to D8381: Connection Connected IP Address

The IP address of the connected device that is being accessed through a connection is written as follows.
Connection 1 Connected IP Address: For aaa.bbb.ccc.ddd
D8350=aaa, D8351=bbb, D8352=ccc, D8353=ddd
Connection 2 Connected IP Address: For aaa.bbb.ccc.ddd
D8354=aaa, D8355=bbb, D8356=ccc, D8357=ddd
Connection 3 Connected IP Address: For aaa.bbb.ccc.ddd
D8358=aaa, D8359=bbb, D8360=ccc, D8361=ddd
Connection 4 Connected IP Address: For aaa.bbb.ccc.ddd
D8362=aaa, D8363=bbb, D8364=ccc, D8365=ddd
Connection 5 Connected IP Address: For aaa.bbb.ccc.ddd
D8366=aaa, D8367=bbb, D8368=ccc, D8369=ddd
Connection 6 Connected IP Address: For aaa.bbb.ccc.ddd
D8370=aaa, D8371=bbb, D8372=ccc, D8373=ddd
Connection 7 Connected IP Address: For aaa.bbb.ccc.ddd
D8374=aaa, D8375=bbb, D8376=ccc, D8377=ddd
Connection 8 Connected IP Address: For aaa.bbb.ccc.ddd
D8378=aaa, D8379=bbb, D8380=ccc, D8381=ddd
■ D8382 to D8387: HMI Module MAC Address (Current Value Read-only)
The MAC address is written to the special data registers as follows.
Example: MAC address: AA-BB-CC-DD-EE-FF
D8382=AA, D8383=BB, D8384=CC, D8385=DD, D8386=EE, D8387=FF

- D8388 to D8391: HMI Module IP Address (Current Value Read-only)

The HMI module's IP address is written to the special data registers as follows.
Example: HMI module IP address: aaa.bbb.ccc.ddd
D8388=aaa, D8389=bbb, D8390=ccc, D8391=ddd

## - D8392 to D8395: HMI Module Subnet Mask (Current Value Read-only)

The HMI module's subnet mask value is written to the special data registers as follows.
Example: HMI module subnet mask: aaa.bbb.ccc.ddd
D8392=aaa, D8393=bbb, D8394=ccc, D8395=ddd
■ D8396 to D8399: HMI Module Default Gateway (Current Value Read-only)
The HMI module's default gateway address is written to the special data registers as follows.
Example: HMI module default gateway: aaa.bbb.ccc.ddd
D8396=aaa, D8397=bbb, D8398=ccc, D8399=ddd

- D8400 to D8403: HMI Module Preferred DNS Server (Current Value Read-only)

The HMI module's preferred DNS server address is written to the special data registers as follows.
Example: HMI module preferred DNS server: aaa.bbb.ccc.ddd
D8400=aaa, D8401=bbb, D8402=ccc, D8403=ddd

- D8404 to D8407: HMI Module Alternate DNS Server (Current Value Read-only)

The HMI module's alternate DNS server address is written to the special data registers as follows.
Example: HMI module alternate DNS server: aaa.bbb.ccc.ddd
D8404=aaa, D8405=bbb, D8406=ccc, D8407=ddd

## - D8413: Time Zone Offset

The time zone configured in the function area settings can be finely adjusted in 15-minute increments.
For details, see Chapter 3 "SNTP Settings" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8414: SNTP Operation Status

The operation status is written to this register when the time information is acquired through operation of M8191 (SNTP Time
Acquisition Flag) or when time information acquisition was executed by automatic acquisition.
For details, see Chapter 3 "SNTP Settings" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8415: SNTP Access Elapsed Time

The elapsed time in minutes from when the time information was last acquired from the SNTP server.
For details, see Chapter 3 "SNTP Settings" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8429: HMI Module Connection Information Reference Connection Number

The connection information for the specified connection number is reflected in D8430 to D8434. When 0 is written, 0 is written to D8430 to D8434. If a connection number that does not exist is specified, 0 is written to D8430 to D8434.

- D8430 to D8433: HMI Module Connection Information Reference Connected IP Address

The IP address of the terminal being accessed through the connection is written to the special data registers as follows.
Example: IP address to read: aaa.bbb.ccc.ddd
D8430=aaa, D8431=bbb, D8432=ccc, D8433=ddd
■ D8434: HMI Module Connection Information Reference Connected Port No.
The port number of the terminal being accessed through the connection is written to this register.

- D8436: HMI Module Network Settings Acquisition Mode

This register configures writing the HMI module IP address.
0 : According to function area settings.
1: Force DHCP.
2: According to the setting for the HMI module IP address settings (write-only).

- D8437 to D8440: HMI Module IP Address (Write-only)

These registers are used to write the HMI module's IP address.
HMI module IP address: To set as aaa.bbb.ccc.ddd, write the following.
D8437=aaa, D8438=bbb, D8439=ccc, D8440=ddd

- D8441 to D8444: HMI Module Subnet Mask (Write-only)

These registers are used to write the HMI module's subnet mask.
HMI module subnet mask: For aaa.bbb.ccc.ddd, write the following.
D8441=aaa, D8442=bbb, D8443=ccc, D8444=ddd

## 2: Devices

- D8445 to D8448: HMI Module Default Gateway (Write-only)

These registers are used to write the HMI module's default gateway. HMI module default gateway: For aaa.bbb.ccc.ddd, write the following.

D8445=aaa, D8446=bbb, D8447=ccc, D8448=ddd
■ D8449 to D8452: HMI Module Preferred DNS Server (Write-only)
These registers are used to write the HMI module's preferred DNS server. HMI module preferred DNS server: For aaa.bbb.ccc.ddd, write the following.

D8449=aaa, D8450=bbb, D8451=ccc, D8452=ddd

- D8453 to D8456: HMI Module Alternate DNS Server (Write-only)

These registers are used to write the HMI module's alternate DNS server. HMI module alternate DNS server: For aaa.bbb.ccc.ddd, write the following.

D8453=aaa, D8454=bbb, D8455=ccc, D8456=ddd

- D8457: EMAIL Instruction Detailed Error Information

Detailed error information for the EMAIL instruction is written to this register.
For details, see Chapter 10 "Confirm the error detail of EMAIL instruction" in the "FC6A Series MicroSmart All-in-One Type Communication Manual".

- D8470 to D8499: Expansion Module Slot Information Expansion module type information is written to these registers. The allocation of information (bit assignment) is as follows.

Upper Lower
D8470, D8471 $=$ Expansion Module Slot 1 Information
D8472, D8473 $=$ Expansion Module Slot 2 Information
D8474, D8475 $=$ Expansion Module Slot 3 Information
D8476, D8477 $=$ Expansion Module Slot 4 Information
D8478, D8479 $=$ Expansion Module Slot 5 Information
D8480, D8481 $=$ Expansion Module Slot 6 Information
D8482, D8483 $=$ Expansion Module Slot 7 Information
D8484, D8485 $=$ Expansion Module Slot 8 Information
D8486, D8487 $=$ Expansion Module Slot 9 Information
D8488, D8489 $=$ Expansion Module Slot 10 Information
D8490, D8491 $=$ Expansion Module Slot 11 Information
D8492, D8493 $=$ Expansion Module Slot 12 Information
D8494, D8495 $=$ Expansion Module Slot 13 Information
D8496, D8497 $=$ Expansion Module Slot 14 Information
D8498, D8499 $=$ Expansion Module Slot 15 Information

For details on the type IDs and statuses, see "List of Type IDs and Statuses" on page 2-31.

## List of Type IDs and Statuses

- Type ID


## Expansion module and HMI module

| Type ID |  | Type No. |
| :---: | :---: | :--- |
| Hexadecimal | Binary |  |
| $0 \times 00$ | 00000000 | FC6A-N16B1, FC6A-N16B3 |
| $0 \times 01$ | 00000001 | FC6A-R161, FC6A-T16K1, FC6A-T16P1, FC6A-T16K3, FC6A-T16P3 |
| $0 \times 02$ | 00000010 | FC6A-N32B3 |
| $0 \times 03$ | 00000011 | FC6A-T32K3, FC6A-T32P3 |
| $0 \times 04$ | 00000100 | FC6A-N08B1, FC6A-N08A11 |
| $0 \times 05$ | 00000101 | FC6A-R081, FC6A-T08K1, FC6A-T08P1 |
| $0 \times 06$ | 00000110 | FC6A-M08BR1 |
| $0 \times 07$ | 00000111 | FC6A-M24BR1 |
| $0 \times 18$ | 00011000 | FC6A-PH1 |
| $0 \times 19$ | 00011001 | FC6A-EXM2 |
| $0 \times 20$ | 00100000 | FC6A-J2C1 |
| $0 \times 21$ | 00100001 | FC6A-J4A1 |
| $0 \times 22$ | 00100010 | FC6A-J8A1 |
| $0 \times 24$ | 00100100 | FC6A-K4A1 |
| $0 \times 25$ | 00100101 | FC6A-L06A1 |
| $0 \times 26$ | 00100110 | FC6A-L03CN1 |
| $0 \times 27$ | 00100111 | FC6A-J4CN1 |
| $0 \times 28$ | 00101000 | FC6A-J8CU1 |
| $0 \times 29$ | 00101001 | FC6A-F2M1 |
| $0 \times 2 A$ | 00101010 | FC6A-F2MR1 |
| $0 \times F F$ | 11111111 | Not Connected |

## Cartridge

| Type ID |  |  | Type No. |
| :---: | :---: | :--- | :--- |
| Hexadecimal | Binary |  |  |
| $0 \times 00$ | 00000000 | FC6A-PJ2A |  |
| $0 \times 01$ | 00000001 | FC6A-PK2AV |  |
| $0 \times 02$ | 00000010 | FC6A-PK2AW |  |
| $0 \times 03$ | 00000011 | FC6A-PJ2CP |  |
| $0 \times 06$ | 00000110 | FC6A-PC1 |  |
| $0 \times 07$ | 00000111 | FC6A-PC3 |  |
| $0 \times F F$ | 11111111 | Not connected |  |

- Status

| Status |  | Description |
| :---: | :---: | :--- |
| Hexadecimal | Binary |  |
| $0 \times 00$ | 00000000 | Normal |
| $0 \times 81$ | 10000001 | Communication error (An error has occurred in the communication between the CPU module and an <br> expansion module, HMI module, or cartridge.) |
| $0 \times 82$ | 10000010 | Unknown device detected (A device other than the FC6A Series MicroSmart is connected.) |
| $0 \times 83$ | 10000011 | Device setting error (No device is connected or the connected device is different from that set in the <br> user program.) |
| $0 \times 84$ | 10000100 | Device writing error (The attempt to set the operation of the device failed.) |
| $0 \times 85$ | 10000101 | System update error (The system update failed.) |

## 3: Instructions Reference

## Introduction

This chapter provides a list of FC6A Series MicroSmart instructions and describes their functions.
The instructions are divided into basic instructions, which perform sequencing, and advanced instructions, which perform moves, comparisons, Boolean computations, binary arithmetic operations, bit shifts, and other operations.

## Basic Instruction List

| Symbol | Name | Function | See Page |
| :---: | :---: | :---: | :---: |
| AND | And | Series connection of NO contact | 4-4 |
| AND LOD | And Load | Series connection of circuit blocks | 4-5 |
| ANDN | And Not | Series connection of NC contact | 4-4 |
| BPP | Bit Pop | Restores the result of bit logical operation which was saved temporarily | 4-6 |
| BPS | Bit Push | Saves the result of bit logical operation temporarily | 4-6 |
| BRD | Bit Read | Reads the result of bit logical operation which was saved temporarily | 4-6 |
| $\mathrm{CC}=$ | Counter Comparison (=) | Equal to comparison of counter current value | 4-18 |
| $\mathrm{CC}>=$ | Counter Comparison (>=) | Greater than or equal to comparison of counter current value | 4-18 |
| CDP | Dual Pulse Reversible Counter | Dual pulse reversible counter (0 to 65,535) | 4-11 |
| CDPD | Double-Word Dual Pulse Reversible Counter | Double-word dual pulse reversible counter (0 to 4,294,967,295) | 4-14 |
| CNT | Adding Counter | Adding counter (0 to 65,535) | 4-11 |
| CNTD | Double-Word Adding Counter | Double-word adding counter (0 to 4,294,967,295) | 4-14 |
| CUD | Up/Down Selection Reversible Counter | Up/down selection reversible counter (0 to 65,535) | 4-11 |
| CUDD | Double-Word Up/Down <br> Selection Reversible Counter | Double-word up/down selection reversible counter (0 to 4,294,967,295) | 4-14 |
| DC= | Data Register Comparison (=) | Equal to comparison of data register value | 4-20 |
| DC> $=$ | Data Register Comparison (>=) | Greater than or equal to comparison of data register value | 4-20 |
| END | End | Ends a program | 4-30 |
| JEND | Jump End | Ends a jump instruction | 4-29 |
| JMP | Jump | Jumps a designated program area | 4-29 |
| LOD | Load | Stores intermediate results and reads contact status | 4-1 |
| LODN | Load Not | Stores intermediate results and reads inverted contact status | 4-1 |
| MCR | Master Control Reset | Ends a master control | 4-27 |
| MCS | Master Control Set | Starts a master control | 4-27 |
| OR | Or | Parallel connection of NO contact | 4-4 |
| OR LOD | Or Load | Parallel connection of circuit blocks | 4-5 |
| ORN | Or Not | Parallel connection of NC contact | 4-4 |
| OUT | Output | Outputs the result of bit logical operation | 4-1 |
| OUTN | Output Not | Outputs the inverted result of bit logical operation | 4-1 |
| RST | Reset | Resets output, internal relay, or shift register bit | 4-3 |
| SET | Set | Sets output, internal relay, or shift register bit | 4-3 |
| SFR | Shift Register | Forward shift register | 4-22 |
| SFRN | Shift Register Not | Reverse shift register | 4-22 |
| SOTD | Single Output Down | Falling-edge differentiation output | 4-26 |
| SOTU | Single Output Up | Rising-edge differentiation output | 4-26 |
| TIM | 100-ms Timer | Subtracting 100-ms timer (0 to 6,553.5 s) | 4-7 |
| TIMO | 100-ms Off-delay Timer | Subtracting 100-ms off-delay timer (0 to 6,553.5 s) | 4-10 |


| Symbol | Name | Function | See Page |
| :--- | :--- | :--- | :---: |
| TMH | 10-ms Timer | Subtracting 10-ms timer (0 to 655.35 s) | $4-7$ |
| TMHO | 10-ms Off-delay Timer | Subtracting 10-ms off-delay timer (0 to 655.35 s) | $4-10$ |
| TML | 1-s Timer | Subtracting 1-s timer (0 to 65,535 s) | $4-7$ |
| TMLO | 1-s Off-delay Timer | Subtracting 1-s off-delay timer (0 to 65,535 s) | $4-10$ |
| TMS | 1-ms Timer | Subtracting 1-ms timer (0 to 65.535 s) | $4-7$ |
| TMSO | 1-ms Off-delay Timer | Subtracting 1-ms off-delay timer (0 to 65.535 s) | $4-10$ |

## Advanced Instruction List

| Group | Symbol | Name | Valid Data Type |  |  |  |  | See Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | W | I | D | L | F |  |
| NOP | NOP | No Operation |  |  |  |  |  | 3-11 |
| Move | MOV | Move | X | X | X | X | X | 5-1 |
|  | MOVN | Move Not | X | X | X | X |  | 5-5 |
|  | IMOV | Indirect Move | X |  | X |  | X | 5-6 |
|  | IMOVN | Indirect Move Not | X |  | X |  |  | 5-8 |
|  | BMOV | Block Move | X |  |  |  |  | 5-9 |
|  | IBMV | Indirect Bit Move | X |  |  |  |  | 5-10 |
|  | IBMVN | Indirect Bit Move Not | X |  |  |  |  | 5-12 |
|  | NSET | N Data Set | X | X | X | X | X | 5-13 |
|  | NRS | N Data Repeat Set | X | X | X | X | X | 5-14 |
|  | XCHG | Exchange | X |  | X |  |  | 5-15 |
|  | TCCST | Timer/Counter Current Value Store | X |  | X |  |  | 5-16 |
| Data Comparison | CMP= | Compare Equal To | X | X | X | X | X | 6-1 |
|  | CMP<> | Compare Unequal To | X | X | X | X | X | 6-1 |
|  | CMP< | Compare Less Than | X | X | X | X | X | 6-1 |
|  | CMP> | Compare Greater Than | X | X | X | X | X | 6-1 |
|  | CMP<= | Compare Less Than or Equal To | X | X | X | X | X | 6-1 |
|  | CMP>= | Compare Greater Than or Equal To | X | X | X | X | X | 6-1 |
|  | ICMP> $=$ | Interval Compare Greater Than or Equal To | X | X | X | X | X | 6-6 |
|  | LC= | Load Compare Equal To | X | X | X | X | X | 6-8 |
|  | LC<> | Load Compare Unequal To | X | X | X | X | X | 6-8 |
|  | LC< | Load Compare Less Than | X | X | X | X | X | 6-8 |
|  | LC> | Load Compare Greater Than | X | X | X | X | X | 6-8 |
|  | LC<= | Load Compare Less Than or Equal To | X | X | X | X | X | 6-8 |
|  | LC> $=$ | Load Compare Greater Than or Equal To | X | X | X | X | X | 6-8 |
| Binary Arithmetic | ADD | Addition | X | X | X | X | X | 7-1 |
|  | SUB | Subtraction | X | X | X | X | X | 7-1 |
|  | MUL | Multiplication | X | X | X | X | X | 7-1 |
|  | DIV | Division | X | X | X | X | X | 7-1 |
|  | INC | Increment | X | X | X | X |  | 7-13 |
|  | DEC | Decrement | X | X | X | X |  | 7-13 |
|  | ROOT | Root | X |  | X |  | X | 7-14 |
|  | SUM | Sum (ADD) | X | X | X | X | X | 7-15 |
|  | SUM | Sum (XOR) | X |  |  |  |  | 7-15 |
|  | RNDM | Random | X |  |  |  |  | 7-18 |
| Boolean Computation | ANDW | AND Word | X |  | X |  |  | 8-1 |
|  | ORW | OR Word | X |  | X |  |  | 8-1 |
|  | XORW | Exclusive OR Word | X |  | X |  |  | 8-1 |
| Shift and Rotate | SFTL | Shift Left |  |  |  |  |  | 9-1 |
|  | SFTR | Shift Right |  |  |  |  |  | 9-3 |
|  | BCDLS | BCD Left Shift |  |  | X |  |  | 9-5 |
|  | WSFT | Word Shift | X |  |  |  |  | 9-7 |
|  | ROTL | Rotate Left | X |  | X |  |  | 9-8 |
|  | ROTR | Rotate Right | X |  | X |  |  | 9-10 |

3: Instructions Reference

| Group | Symbol | Name | Valid Data Type |  |  |  |  | See Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | W | I | D | L | F |  |
| Data Conversion | HTOB | Hex to BCD | X |  | X |  |  | 10-1 |
|  | BTOH | BCD to Hex | X |  | X |  |  | 10-3 |
|  | HTOA | Hex to ASCII | X |  |  |  |  | 10-5 |
|  | ATOH | ASCII to Hex | X |  |  |  |  | 10-7 |
|  | BTOA | BCD to ASCII | X |  | X |  |  | 10-9 |
|  | ATOB | ASCII to BCD | X |  | X |  |  | 10-12 |
|  | ENCO | Encode |  |  |  |  |  | 10-15 |
|  | DECO | Decode |  |  |  |  |  | 10-16 |
|  | BCNT | Bit Count |  |  |  |  |  | 10-17 |
|  | ALT | Alternate Output |  |  |  |  |  | 10-18 |
|  | CVDT | Convert Data Type | X | X | X | X | X | 10-19 |
|  | DTDV | Data Divide | X |  |  |  |  | 10-21 |
|  | DTCB | Data Combine | X |  |  |  |  | 10-22 |
|  | SWAP | Data Swap | X |  | X |  |  | 10-23 |
| Week Programmer | WKTIM | Week Timer |  |  |  |  |  | 11-1 |
|  | WKTBL | Week Table |  |  |  |  |  | 11-1 |
|  | WEEK | Weekly Timer |  |  |  |  |  | 11-3 |
|  | YEAR | Yearly Timer |  |  |  |  |  | 11-16 |
| Interface | MSG | Message |  |  |  |  |  | 12-1 |
|  | DISP | Display |  |  |  |  |  | 12-20 |
|  | DGRD | Digital Read |  |  |  |  |  | 12-22 |
| Program Branching | LABEL | Label |  |  |  |  |  | 13-1 |
|  | LJMP | Label Jump |  |  |  |  |  | 13-1 |
|  | LCAL | Label Call |  |  |  |  |  | 13-3 |
|  | LRET | Label Return |  |  |  |  |  | 13-3 |
|  | DJNZ | Decrement Jump Non-zero |  |  |  |  |  | 13-5 |
|  | DI | Disable Interrupt |  |  |  |  |  | 15-1 |
|  | EI | Enable Interrupt |  |  |  |  |  | 15-1 |
|  | IOREF | I/O Refresh |  |  |  |  |  | 14-1 |
|  | HSCRF | High-speed Counter Refresh |  |  |  |  |  | 14-3 |
|  | FRQRF | Frequency Measurement Refresh |  |  |  |  |  | 14-4 |
|  | COMRF | Communication Refresh |  |  |  |  |  | 14-5 |
| Coordinate Conversion | XYFS | XY Format Set | X | X |  |  |  | 16-1 |
|  | CVXTY | Convert X to Y | X | X |  |  |  | 16-2 |
|  | CVYTX | Convert Y to X | X | X |  |  |  | 16-3 |
|  | AVRG | Average | X | X | X | X | X | 17-1 |
| Pulse | PULS1 | Pulse Output 1 |  |  |  |  |  | 18-1 |
|  | PULS2 | Pulse Output 2 |  |  |  |  |  | 18-1 |
|  | PULS3 | Pulse Output 3 |  |  |  |  |  | 18-1 |
|  | PULS4 | Pulse Output 4 |  |  |  |  |  | 18-1 |
|  | PWM1 | Pulse Width Modulation 1 |  |  |  |  |  | 18-8 |
|  | PWM2 | Pulse Width Modulation 2 |  |  |  |  |  | 18-8 |
|  | PWM3 | Pulse Width Modulation 3 |  |  |  |  |  | 18-8 |
|  | PWM4 | Pulse Width Modulation 4 |  |  |  |  |  | 18-8 |
|  | RAMP1 | Ramp Pulse Output 1 |  |  |  |  |  | 18-15 |
|  | RAMP2 | Ramp Pulse Output 2 |  |  |  |  |  | 18-15 |
|  | ZRN1 | Zero Return 1 |  |  |  |  |  | 18-27 |
|  | ZRN2 | Zero Return 2 |  |  |  |  |  | 18-27 |
|  | ARAMP1 | Advanced Ramp 1 |  |  |  |  |  | 18-37 |
|  | ARAMP2 | Advanced Ramp 2 |  |  |  |  |  | 18-37 |
|  | ABS | Set Absolute Position |  |  |  |  |  | 18-59 |
|  | JOG | JOG Operation |  |  |  |  |  | 18-63 |
| PID Control | PID | PID Control (FC5A compatible) |  |  |  |  |  | 19-1 |
|  | PIDA | PID Control |  |  |  |  |  | 19-2 |


| Group | Symbol | Name | Valid Data Type |  |  |  |  | See Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | W | I | D | L | F |  |
| Dual / Teaching Timer | DTML | 1-s Dual Timer |  |  |  |  |  | 20-1 |
|  | DTIM | 100-ms Dual Timer |  |  |  |  |  | 20-1 |
|  | DTMH | 10-ms Dual Timer |  |  |  |  |  | 20-1 |
|  | DTMS | 1-ms Dual Timer |  |  |  |  |  | 20-1 |
|  | TTIM | Teaching Timer |  |  |  |  |  | 20-3 |
| Trigonometric Function | RAD | Degree to Radian |  |  |  |  | X | 21-1 |
|  | DEG | Radian to Degree |  |  |  |  | X | 21-2 |
|  | SIN | Sine |  |  |  |  | X | 21-3 |
|  | COS | Cosine |  |  |  |  | X | 21-4 |
|  | TAN | Tangent |  |  |  |  | X | 21-5 |
|  | ASIN | Arc Sine |  |  |  |  | X | 21-6 |
|  | ACOS | Arc Cosine |  |  |  |  | X | 21-7 |
|  | ATAN | Arc Tangent |  |  |  |  | X | 21-8 |
| Logarithm / Power | LOGE | Natural Logarithm |  |  |  |  | X | 22-1 |
|  | LOG10 | Common Logarithm |  |  |  |  | X | 22-2 |
|  | EXP | Exponent |  |  |  |  | X | 22-3 |
|  | POW | Power |  |  |  |  | X | 22-4 |
| File Data Processing | FIFOF | FIFO Format | X |  |  |  |  | 23-1 |
|  | FIEX | First-In Execute | X |  |  |  |  | 23-3 |
|  | FOEX | First-Out Execute | X |  |  |  |  | 23-3 |
|  | NDSRC | N Data Search | X | X | X | X | X | 23-5 |
| Clock | TADD | Time Addition |  |  |  |  |  | 24-1 |
|  | TSUB | Time Subtraction |  |  |  |  |  | 24-5 |
|  | HTOS | HMS to S |  |  |  |  |  | 24-9 |
|  | STOH | S to HMS |  |  |  |  |  | 24-10 |
|  | HOUR | Hour Meter |  |  |  |  |  | 24-11 |
| Data Logging | DLOG | Data Logging |  |  |  |  |  | 25-1 |
|  | TRACE | Data Trace |  |  |  |  |  | 25-7 |
| Script | SCRPT | Script | X | X | X | X | X | 26-1 |
| Flow Volume Calculation | SCALE | Convert Analog Input | X | X |  |  |  | 27-1 |
|  | FLWA | Analog Flow Totalizer |  |  |  |  |  | 27-9 |
|  | FLWP | Pulse Flow Totalizer | X |  | X |  |  | 27-18 |
| User Communication | TXD2 | Transmit 2 |  |  |  |  |  | Communication Manual 5-2 |
|  | TXD3 | Transmit 3 |  |  |  |  |  | Communication Manual 5-2 |
|  | RXD2 | Receive 2 |  |  |  |  |  | Communication Manual 5-10 |
|  | RXD3 | Receive 3 |  |  |  |  |  | Communication Manual 5-10 |
| PING | PING | Ping |  |  |  |  |  | Communication Manual 9-1 |
| E-mail | EMAIL | Send E-mail |  |  |  |  |  | Communication Manual 10-1 |

## Structure of an Advanced Instruction



## Repeat Designation

Specifies whether repeat is used for the device or not.
Repeat Cycles
Specifies the quantity of repeat cycles: 1 through 99.

## Opcode

The opcode is a symbol used to identify the advanced instruction. Data Type
Specifies word (W), integer (I), double word (D), long (L), or float (F) data.

## Source Device

The source device specifies the 16 - or 32 -bit data to be processed by the advanced instruction. Some advanced instructions require two source devices.

## Destination Device

The destination device specifies the 16 - or 32 -bit data to store the result of the advanced instruction. Some advanced instructions require two destination devices.

## Input Condition for Advanced Instructions

Almost all advanced instructions must be preceded by a contact, except NOP (no operation), LABEL (label), and LRET (label return) instructions. The input condition can be programmed using a bit device such as input, output, internal relay, or shift register. Timer and counter can also be used as an input condition to turn on the contact when the timer times out or the counter counts out.

While the input condition is on, the advanced instruction is executed in each scan. To execute the advanced instruction only at the rising or falling edge of the input, use the SOTU or SOTD instruction.


While the input condition is off, the advanced instruction is not executed and device statuses are held.

## Source and Destination Devices

The source and destination devices specify 16 - or 32-bit data, depending on the selected data type. When a bit device such as input, output, internal relay, or shift register is designated as a source or destination device, 16 or 32 points starting with the designated number are processed as source or destination data. When a word device such as timer or counter is designated as a source device, the current value is read as source data. When a timer or counter is designated as a destination device, the result of the advanced instruction is set to the preset value for the timer or counter. When a data register is designated as a source or destination device, the data is read from or written to the designated data register.

## Using Timer or Counter as Source Device

Since all timer instructions-TML (1-s timer), TIM (100-ms timer), TMH (10-ms timer), and TMS (1-ms timer)-subtract from the preset value, the current value is decremented from the preset value and indicates the remaining time. As described above, when a timer is designated as a source device of an advanced instruction, the current value, or the remaining time, of the timer is read as source data. Adding counters CNT start counting at 0 , and the current value is incremented up to the preset value. Reversible counters CDP and CUD start counting at the preset value and the current value is incremented or decremented from the preset value. When any counter is designated as a source device of an advanced instruction, the current value is read as source data.

## Using Timer or Counter as Destination Device

As described above, when a timer or counter is designated as a destination device of an advanced instruction, the result of the advanced instruction is set to the preset value of the timer or counter. Timer and counter preset values can be 0 through 65,535. When a timer or counter preset value is designated using a data register, the timer or counter cannot be designated as a destination of an advanced instruction. When executing such an advanced instruction, a user program execution error will result. For details of user program execution error, see "User Program Execution Errors" on page 3-10.
Note: When a user program execution error occurs, the result is not set to the destination.

## Data Types for Advanced Instructions

When using move, data comparison, binary arithmetic, Boolean computation, bit shift/rotate, data conversion, and coordinate conversion instructions, data types can be selected from word (W), integer (I), double word (D), long (L), or float (F). For other advanced instructions, the data is processed in units of 16 -bit word.

| Data Type | Symbol | Bits | Quantity of Data <br> Registers Used | Range of Decimal Values |
| :--- | :---: | :---: | :---: | :---: |
| Word (Unsigned 16 bits) | $\mathbf{W}$ | 16 bits | 1 | 0 to 65,535 |
| Integer (Signed 16 bits) | $\mathbf{I}$ | 16 bits | 1 | $-32,768$ to 32,767 |
| Double Word (Unsigned 32 bits) | $\mathbf{D}$ | 32 bits | 2 | 0 to $4,294,967,295$ |
| Long (Signed 32 bits) | $\mathbf{L}$ | 32 bits | 2 | $-2,147,483,648$ to $2,147,483,647$ |
| Float (Floating point) | $\mathbf{F}$ | 32 bits | 2 | $-3.402823 \times 10^{38}$ to $3.402823 \times 10^{38}$ |

## Decimal Values and Hexadecimal Storage (Word, Integer, Double, and Long Data)

The following table shows hexadecimal equivalents which are stored in the CPU, as a result of addition and subtraction of the decimal values shown:

| Data Type | Result of Addition | Hexadecimal Storage | Result of Subtraction | Hexadecimal Storage |
| :---: | :---: | :---: | :---: | :---: |
| Word | $\begin{gathered} 0 \\ 65,535 \\ 131,071 \end{gathered}$ | 0000 <br> FFFF <br> (CY) FFFF | 65,535 0 -1 $-65,535$ $-65,536$ | FFFF 0000 (BW) FFFF (BW) 0001 (BW) 0000 |
| Integer | 65,534 32,768 32,767 0 -1 $-32,767$ $-32,768$ $-32,769$ $-65,535$ | (CY) 7FFE (CY) 0000 7FFF 0000 FFFF 8001 8000 (CY) FFFF (CY) 8001 | $\begin{gathered} \hline 65,534 \\ 32,768 \\ 32,767 \\ 0 \\ -1 \\ -32,767 \\ -32,768 \\ -32,769 \\ -65,535 \end{gathered}$ | $\begin{gathered} \hline(\mathrm{BW}) 7 \text { 7FFE } \\ \text { (BW) } 0000 \\ 7 F F F \\ 0000 \\ \text { FFFF } \\ 8001 \\ 8000 \\ \text { (BW) FFFF } \\ \text { (BW) } 8001 \\ \hline \end{gathered}$ |
| Double Word | $\begin{gathered} 0 \\ 4,294,967,295 \\ 8,589,934,591 \end{gathered}$ | 00000000 <br> FFFFFFFF <br> (CY) FFFFFFFFF | $\begin{gathered} \hline 4,294,967,295 \\ 0 \\ -1 \\ -4,294,967,295 \\ -4,294,967,296 \end{gathered}$ | FFFFFFFF 00000000 (BW) FFFFFFFF (BW) 00000001 (BW) 00000000 |
| Long | $\begin{gathered} 4,294,967,294 \\ 2,147,483,648 \\ 2,147,483,647 \\ 0 \\ -1 \\ -2,147,483,647 \\ -2,147,483,648 \\ -2,147,483,649 \\ -4,294,967,295 \end{gathered}$ | (CY) 7FFFFFFE (CY) 00000000 7FFFFFFF 00000000 FFFFFFFF 80000001 80000000 (CY) FFFFFFFF (CY) 80000001 | $\begin{gathered} 4,294,967,294 \\ 2,147,483,648 \\ 2,147,483,647 \\ 0 \\ -1 \\ -2,147,483,647 \\ -2,147,483,648 \\ -2,147,483,649 \\ -4,294,967,295 \end{gathered}$ | (BW) 7FFFFFFE (BW) 00000000 7FFFFFFF 00000000 FFFFFFFF 80000001 80000000 (BW) FFFFFFFF (BW) 80000001 |

## 3: Instructions Reference

## Floating-Point Data Format

The FC6A Series MicroSmart can specify floating-point data (F) for advanced instructions. Like double word (D) and long integer (L) data, floating-point data also uses two consecutive data registers to execute advanced instructions. The FC6A Series MicroSmart supports the floating-point data based on the single storage format of the IEEE (The Institute of Electrical and Electronics Engineers) Standard 754.

## Single Storage Format

The IEEE single storage format consists of three fields: a 23-bit fraction, $f$; an 8 -bit biased exponent, e; and 1-bit sign, $s$. These fields are stored contiguously in one 32-bit word, as shown in the figure below. Bits 0:22 contain the 23-bit fraction, f, with bit 0 being the least significant bit of the fraction and bit 22 being the most significant; bits $23: 30$ contain the 8 -bit biased exponent, e, with bit 23 being the least significant bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31 contains the sign bit, s.


The table below shows the correspondence between the values of the three constituent fields s , e , and f and the value represented by the single storage format bit pattern. When any value out of the bit pattern is entered to the advanced instruction or when execution of advanced instructions, such as division by zero, has produced any value out of the bit pattern, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

| Value | Exponent Field e | Fraction Field f | Representation in WindLDR |
| :--- | :--- | :--- | :--- |
| $\pm 0$ | $\mathrm{e}=0$ | $\mathrm{f}=0$ | 0.0 |
| Denormal numbers | $\mathrm{e}=0$ | $\mathrm{f} \neq 0$ | $-1.175494 \mathrm{E}-38$ to $1.175494 \mathrm{E}-38$ |
| Normal numbers | $0<\mathrm{e}<255$ | Arbitrary | $-3.402823 \mathrm{E}+38$ to $-1.175494 \mathrm{E}-38$ |
|  |  |  |  |

## Carry and Borrow in Floating-Point Data Processing

When advanced instructions involving floating-point data are executed, special internal relay M8003 (carry and borrow) is updated.

| M8003 | Execution Result | Value |
| :---: | :---: | :--- |
| 1 | $\neq 0$ | Overflow (exceeds the range between $-3.402823 \times 10^{38}$ and $3.402823 \times 10^{38}$ ) |
| 1 | 0 | Not zero (within the range between $-1.175495 \times 10^{-38}$ and $1.175495 \times 10^{-38}$ ) |
| 0 | 0 | Zero |



## 32-bit Data Storage

The 32-bit data for D (double word) and L (long word) is stored in devices according to the method selected in WindLDR under Device Settings in Function Area Settings.
For applicable devices and instructions, see Chapter 5 "32-bit Data Storage Setting" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

Word devices ${ }^{* 1}$ : The data storage when From Upper Word is selected under Device Settings
When D0 is specified as the source or destination device, the upper word is stored in D0 and the lower word is stored in D1.

Double word data (constant)


The data storage when From Lower Word is selected under Device Settings
When D0 is specified as the source or destination device, the lower word is stored in D0 and the upper word is stored in D1.

Double word data (constant)


Bit devices ${ }^{* 1}$ : The data storage when From Upper Word is selected under Device Settings
When R0 is specified as the source or destination device, the upper word is stored in R0 to R15 and the lower word is stored in R16 to R31.

Double word data (constant)


The data storage when From Lower Word is selected under Device Settings
When R0 is specified as the source or destination device, the lower word is stored in R0-R15 and the upper word is stored in R16-R31.
Double word data (constant)


[^0]
## 3: Instructions Reference

## User Program Execution Errors

When an advanced instruction is executed, a user program execution error occurs when any of the following conditions are met.

- the result of the adavnced instruction is invalid
- source or destination device that is indirectly specified in the advanced instruction exceeds the valid device range
- the advanced instruction does not operate correctly

For example, the data in the source device does not comply with the normal floating-point format when the data type is Float (F). For details about device ranges, see "Devices" on page 2-1.
When a user program execution error occurs, special internal relay M8004 turns on and the corresponding error code is stored in special data register D8006. For details about the error codes, see Chapter 13 "User Program Execution Error" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

When a user program execution error occurs, instructions operate as follows:

- When the source data is invalid, the execution of the advanced instruction is canceled and the data in the destination device is not changed.
- When the execution result is invalid, a value is stored in the destination device.

For details on stored values, see the descriptions of relevant instructions.

- If a user program execution error occurred during a repeat operation, the operation is canceled and the next repeat operation is executed. M8004 is retained even when no further user program execution errors occur during subsequent repeat operations.


## Example: User program execution error during a repeat operation

When the source data does not comply with the normal floating-point format.
When the second repeat operation is executed, special internal relay M8004 turns on because the source data is not a normal number in floating-point format.
The second repeat operation is canceled and the third repeat operation is executed.


## Carry and Borrow

When the result of an operation exceeds the valid device range, a carry (CY) or borrow (BW) occurs.
Carrying and borrowing occur in the following conditions according to the data type:

| Data Type |  |
| :--- | :--- |
| Word | Exceeds range between 0 and 65,535 |
| Integer | Exceeds range between $-32,768$ and 32,767 |
| Double Word | Exceeds range between 0 and 4,294,967,295 |
| Long | Exceeds range between $-2,147,483,648$ and 2,147,483,647 |
| Float | If an overflow or underflow occurs <br> For details on overflow and underflow, see "Carry and Borrow in Floating-Point Data Processing" on <br> page 3-8. |

When a carry or borrow occurs, special internal relay M8003 (carry and borrow) turns on.
For example, when DO has a value of FFFF (hex) and +1 is added using an INC instruction, the result is 10000 (hex), but when the data type is Word (W), 0000 (hex) is stored in D0 and 1 is stored in M8003.

## Discontinuity of Device Areas

Each device area is discrete and does not continue, for example, from input to output or from output to internal relay. In addition, special internal relays M8000 through M8177 are in a separate area from internal relays M0 through M1277. Data registers D0 through D999, non-retentive data registers D1000 through D1999, and special data registers D8000 through D8199 are in separate areas and do not continue with each other.


The internal relay ends at M1277. Since the MOV (move) instruction reads 16 internal relays, the last internal relay exceeds the valid range, resulting in a user program syntax error.
$\left.\left.\right|_{\text {IO }} ^{10} 1 \begin{array}{|lllll|}\text { DIV(W) } & \text { S1- } & \text { S2 - } & \text { D1- } & \text { REP } \\ & \text { D100 } & \text { D200 } & \text { D999 }\end{array}\right]$

This program results in a user program syntax error. The destination of the DIV (division) instruction requires two data registers D999 and D1000. Since D1000 exceeds the valid range, a user program syntax error occurs.

Advanced instructions execute operation only on the available devices in the valid area. If a user program syntax error is found during programming, WindLDR rejects the program instruction and shows an error message.


The MOV (move) instruction sets data of data register D0 to 16 internal relays M1260 through M1277 in the first repeat cycle. The destination of the second cycle is the next 16 internal relays M1280 through M1297, which are invalid, resulting in a user program syntax error.
For details about repeat operations of each advanced instruction, see the following chapters.

## NOP (No Operation)



No operation is executed by the NOP instruction.
The NOP instruction may serve as a place holder. It can also be used to add a delay to the CPU scan time, in order to simulate communication with a machine or application, for debugging purposes.
The NOP instruction does not require an input and device.
Details of the other advanced instructions are described in the following chapters.

## Introduction

This chapter describes the basic instructions that perform sequence control.

## LOD (Load) and LODN (Load Not)

The LOD instruction starts the logical operation with a NO (normally open) contact. The LODN instruction starts the logical operation with a NC (normally closed) contact.
A total of eight LOD and/or LODN instructions can be programmed consecutively.

## Ladder Diagram



Valid Devices

| Instruction | I | Q | M | T | C | R | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-27 | 0-17 |  | 0-1023 | 0-511 | 0-225 |  |
| LOD | 30-307 | 30-307 | 0-7997 |  |  |  | 0.0-7999.15 |
| LODN | $310-627$ | $310-627$ | 10000-17497 |  |  |  | 10000.15-55999.15 |

The valid device range depends on the FC6A Series MicroSmart type. For details, see "Device Addresses" on page 2-1. Specify the bit by inserting a "." between the data register number and the bit position.

## OUT (Output) and OUTN (Output Not)

The OUT instruction outputs the result of bit logical operation to the specified device. The OUTN instruction outputs the inverted result of bit logical operation to the specified device.

Ladder Diagram


Valid Devices

| Instruction | I | $\mathbf{c}$ Q | $\mathbf{M}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{R}$ | D |
| :--- | :---: | ---: | ---: | :---: | :---: | :---: | :---: |
| OUT |  | $0-17$ | $0-7997$ |  |  |  | $0.0-7999.15$ |
| OUTN | - | $30-307$ | $10000-17497$ |  | - | - | $10000.15-55999.15$ |

The valid device range depends on the FC6A Series MicroSmart type. For details, see "Device Addresses" on page 2-1. Specify the bit by inserting a "." between the data register number and the bit position.

Note: For restrictions on ladder programming of OUT and OUTN instructions, see "Restriction on Ladder Programming" on page 4-31.

## 4: BASIC Instructions

## Multiple OUT and OUTN

There is no limit to the number of OUT and OUTN instructions that can be programmed into one rung.

## Ladder Diagram



Ladder Diagram


## Examples: LOD (Load), OUT (Output), and NOT


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| OUT | Q0 |
| LOD | I1 |
| OUTN | Q1 |

## Program List

| Instruction | Data |
| :---: | :---: |
| LOD | M2 |
| OUT | Q0 |

Program List

| Instruction | Data |
| :---: | :---: |
| LODN | Q0 |
| OUT | Q1 |

## Program List

| Instruction | Data |
| :---: | :---: |
| LOD | T0 |
| OUTN | Q2 |

Program List

| Instruction | Data |
| :---: | :---: |
| LODN | C1 |
| OUT | Q10 |

## Ladder Diagram



## Ladder Diagram



## Ladder Diagram



## Ladder Diagram



## Timing Chart



## 4: Basic Instructions

## AND and ANDN (And Not)

The AND instruction is used for programming a NO contact in a series. The ANDN instruction is used for programming a NC contact in a series. The AND or ANDN instruction is entered after the first set of contacts.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| AND | I1 |
| OUT | Q0 |
| LOD | I0 |
| ANDN | I1 |
| OUT | Q1 |

Timing Chart


When both inputs I0 and I1 are on, output Q0 is on. When either input IO or I1 is off, output Q0 is off. When input IO is on and input I1 is off, output Q1 is on. When either input IO is off or input I1 is on, output Q1 is off.

## Valid Devices

| Instruction | $\mathbf{I}$ | $\mathbf{c}$ Q | $\mathbf{M}$ | $\mathbf{T}$ | $\mathbf{C}$ | R | D |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AND | $0-27$ | $0-17$ | $0-7997$ |  |  |  | $0.0-7999.15$ |
| ANDN | $30-307$ | $30-307$ | $10000-17497$ | $0-1023$ | $0-511$ | $0-225$ | $10000.15-55999.15$ |

The valid device range depends on the FC6A Series MicroSmart type. For details, see "Device Addresses" on page 2-1.
Specify the bit by inserting a "." between the data register number and the bit position.

## OR and ORN (Or Not)

The OR instruction is used for programming a NO contact in parallel. The ORN instruction is used for programming a NC contact in parallel. The OR or ORN instruction is entered after the first set of contacts.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| OR | I1 |
| OUT | Q0 |
| LOD | IO |
| ORN | I1 |
| OUT | Q1 |

Timing Chart


When either input I0 or I1 is on, output Q0 is on. When both inputs I0 and I1 are off, output Q0 is off.
When either input I0 is on or input I1 is off, output Q1 is on. When input I0 is off and input I1 is on, output Q1 is off.

Valid Devices

| Instruction | $\mathbf{I}$ | $\mathbf{C}$ | $\mathbf{M}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{R}$ | $\mathbf{D}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| OR | $0-27$ | $0-17$ | $0-7997$ |  |  |  |  |
| ORN | $30-307$ | $30-307$ | $0-1023$ | $0-511$ | $0-225$ | $0.0-7999.15$ |  |

[^1]
## AND LOD (Load)

The AND LOD instruction is used to connect, in a series, two or more circuits starting with the LOD instruction. The AND LOD instruction is the equivalent of a "node" on a ladder diagram.
When using WindLDR, the user does not need to program the AND LOD instruction. The circuit in the ladder diagram shown below is converted into AND LOD when the ladder diagram is compiled.

## Ladder Diagram



Program List

| Instruction | Data |
| :--- | :---: |
| LOD | IO |
| LOD | I2 |
| OR | I3 |
| ANDLOD |  |
| OUT | Q0 |

## Timing Chart



When input I0 is on and either input I2 or I3 is on, output Q0 is on.
When input IO is off or both inputs I2 and I3 are off, output Q0 is off.

## OR LOD (Load)

The OR LOD instruction is used to connect, in parallel, two or more circuits starting with the LOD instruction. The OR LOD instruction is the equivalent of a "node" on a ladder diagram.
When using WindLDR, the user does not need to program the OR LOD instruction. The circuit in the ladder diagram shown below is converted into OR LOD when the ladder diagram is compiled.

Ladder Diagram


## Program List

| Instruction | Data |
| :--- | :---: |
| LOD | IO |
| AND | I1 |
| LOD | I2 |
| AND | I3 |
| ORLOD |  |
| OUT | Q0 |

## Timing Chart



When both inputs IO and I1 are on or when both inputs I2 and I3 are on, output Q0 is on.

When either input IO or I1 is off and either input I2 or I3 is off, output Q0 is off.

## 4: BASIC Instructions

## BPS (Bit Push), BRD (Bit Read), and BPP (Bit Pop)

The BPS (bit push) instruction is used to temporarily save the result of bit logical operation.
The BRD (bit read) instruction is used to read the result of the temporarily saved bit logical operation.
The BPP (bit pop) instruction is used to restore the result of the temporarily saved bit logical operation.
When using WindLDR, the user does not need to program the BPS, BRD, and BPP instructions. The circuit in the ladder diagram shown below is converted into BPS, BRD, and BPP when the ladder diagram is compiled.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| BPS |  |
| AND | I1 |
| OUT | Q1 |
| BRD |  |
| AND | I2 |
| OUT | Q2 |
| BPP |  |
| AND | I3 |
| OUT | Q3 |

## Timing Chart



When both inputs I0 and I1 are on, output Q1 is turned on.
When both inputs IO and I2 are on, output Q2 is turned on.
When both inputs I0 and I3 are on, output Q3 is turned on.

## TML, TIM, TMH, and TMS (Timer)

Four types of on-delay timers are available; $1-\mathrm{s}$ timer TML, $100-\mathrm{ms}$ timer TIM, $10-\mathrm{ms}$ timer TMH, and $1-\mathrm{ms}$ timer TMS. A total of 1024 on- and off-delay timers can be programmed in a user program. Each timer must be allocated to a unique number T0 through T1023.

| Timer | Device Address | Range | Increments | Preset Value |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TML (1-s timer) | T0 to T1023 | 0 to 65,535 s | 1 s | Constant: | 0 to 65,535 |
| TIM (100-ms timer) | T0 to T1023 | 0 to 6,553.5 s | 100 ms | Data registers: | D0 to D7999 <br> D10000 to D55999 |
| TMH (10-ms timer) | T0 to T1023 | 0 to 655.35 s | 10 ms |  |  |
| TMS (1-ms timer) | T0 to T1023 | 0 to 65.535 s | 1 ms |  |  |

For details about device ranges, see "Device Addresses" on page 2-1.
To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 65,535 .

## TML (1-s Timer)

## Ladder Diagram (TML)



## TIM (100-ms Timer)

Ladder Diagram (TIM)


TMH (10-ms Timer)

## Ladder Diagram (TMH)



TMS (1-ms Timer)


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| TML | T0 |
|  | 4 |
| LOD | I1 |
| AND | T0 |
| OUT | Q0 |

Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| TIM | T1 |
|  | 20 |
| LOD | I1 |
| AND | T1 |
| OUT | Q1 |

Timing Chart


Timing Chart


Timing Chart


Timing Chart

## 4: Basic Instructions

## Timer Circuit

The preset value 0 through 65,535 can be designated using a data register D0 thorough D7999 or D10000 through D55999; then the data of the data register becomes the preset value. Directly after the TML, TIM, TMH, or TMS instruction, the OUT, OUTN, SET, RST, TML, TIM, TMH, TMS, TMLO, TIMO, TMHO, or TMSO instruction can be programmed.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I1 |
| TIM | T5 |
|  | D10 |
| OUT | Q0 |

Note: For restrictions on ladder programming of timer instructions, see "Restriction on Ladder Programming" on page 4-31.

- Countdown from the preset value is initiated when the operation result directly before the timer input is on.
- The timer output turns on when the current value (timed value) reaches 0.
- The current value returns to the preset value when the timer input is off.
- Timer preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online > Monitor > Monitor, then Online > Custom > New Custom Monitor.
- If a timer preset value is changed during countdown, the timer remains unchanged for that cycle. The change will be reflected in the next time cycle.
- If a timer preset value is changed to 0 , then the timer stops operation, and the timer output is turned on immediately.
- If a current value is changed during countdown, the change becomes effective immediately.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17. Preset values can also be changed and confirmed using the LCD screen and pushbuttons.
- WindLDR ladder diagrams show TP (timer preset value) and TC (timer current value) in advanced instruction devices.
- The timer instructions (TML, TIM, TMH, TMS) and off-delay timer instructions (TMLO, TIMO, TMHO, TMSO) cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Timer Accuracy

Timer accuracy due to software configuration depends on three factors: timer input error, timer counting error, and timeout output error. These errors are not constant but vary with the user program and other causes.

## Timer Input Error

The input status is read at the END processing and stored to the input RAM. So, an error occurs depending on the timing when the timer input turns on in a scan cycle. The same error occurs on normal input and catch input. The timer input error shown below does not include input delay caused by the hardware.


When the input turns on immediately before END processing, Tie is almost 0 . Then the timer input error is only Tet (behind error) and is at its minimum.

Tie: Time from input turning on to END processing
Tet: Time from END processing to the timer instruction execution

Maximum Error


When the input turns on immediately after END processing, Tie is almost equal to one scan time. Then the timer input error is Tie + Tet $=$ one scan time + Tet (behind error) and is at its maximum.

## Timer Counting Error

Every timer instruction operation is individually based on asynchronous 16 -bit reference timers. Therefore, an error can occur depending on the status of the asynchronous 16 -bit timer when the timer instruction is executed. Use of a TMS (1-ms timer) is recommended to reduce advance errors.

| Error |  | TML <br> (1-s timer) | TIM <br> (100-ms timer) | TMH <br> (10-ms timer) | TMS <br> (1-ms timer) |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Maximum | Advance error | $1,000 \mathrm{~ms}$ | 100 ms | 10 ms | 1 ms |
|  | Behind error | 1 scan time | 1 scan time | 1 scan time | 1 scan time |

## Timeout Output Error

The output RAM status is set to the actual output when the END instruction is processed. When timeout output turns from off to on, an error occurs depending on the position where the timer instruction is programmed in the user program. The timeout output error shown below does not include output delay caused by the hardware.


## Error Maximum and Minimum

| Error |  | Timer Input Error | Timer Counting <br> Error | Timeout Output <br> Error | Total Error |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Minimum | Advance error | 0 (Note) | 0 | 0 (Note) | 0 |
|  | Behind error | Tet + Tie | 0 | Tte | 0 |
| Maximum | Advance error | 0 (Note) | Increment | 0 (Note) | Increment $-($ Tet + Tte) |
|  | Behind error | 1 scan time + <br> Tet (1 scan time) | 1 scan time | Tte (1 scan time) | 2 scan times + (Tet + Tte) |

Notes: Advance error does not occur at the timer input and timeout output.
Tet + Tte $=1$ scan time
Increment is 1 s (TML), 100 ms (TIM), 10 ms (TMH), or 1 ms (TMS).
The maximum advance error is: Increment - 1 scan time
The maximum behind error is: 3 scan times
The timer input error and timeout output error shown above do not include the input response time (behind error) and output response time (behind error) caused by hardware.

## Power Failure Memory Protection

Timers TML, TIM, TMH, and TMS do not have power failure protection. To provide a timer with this protection use a counter instruction and special internal relay M8121 (1-s clock), M8122 (100-ms clock), or M8123 (10-ms clock).

Ladder Diagram
(10-s Timer)


Program List

| Instruction | Data |
| :--- | :--- |
| LODN | I1 |
| LOD | M8123 |
| CNT | C2 |
|  | 1000 |

## Timing Chart

I1


Note: Designate counter C2 used in this program as a keep type counter. See Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## 4: Basic Instructions

## TMLO, TIMO, TMHO, and TMSO (Off-Delay Timer)

Four types of on-delay off-delay timers are available; 1-s off-delay timer TMLO, 100 -ms off-delay timer TIMO, 10 -ms off-delay timer TMHO, and 1-ms off-delay timer TMSO. A total of 1024 on- and off-delay timers can be programmed in a user program. Each timer must be allocated to a unique number T0 through T1023.

| Timer | Device Address | Range | Increments | Preset Value |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TMLO (1-s off-delay timer) | T0 to T1023 | 0 to 65,535 s | 1 s | Constant: <br> Data registers: | 0 to 65,535 |
| TIMO (100-ms off-delay timer) | T0 to T1023 | 0 to 6,553.5 s | 100 ms |  | D0 to D7999 <br> D10000 to D55999 |
| TMHO (10-ms off-delay timer) | T0 to T1023 | 0 to 655.35 s | 10 ms |  |  |
| TMSO (1-ms off-delay timer) | T0 to T1023 | 0 to 65.535 s | 1 ms |  |  |

For details about device ranges, see "Device Addresses" on page 2-1.
To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 65,535 .

## TMLO (1-s Off-delay Timer)

Ladder Diagram (TMLO)


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| TMLO | T0 |
|  | 4 |
| LOD | I1 |
| AND | T0 |
| OUT | Q0 |

## TIMO (100-ms Off-delay Timer)

## Ladder Diagram (TIMO)



TMHO (10-ms Off-delay Timer)

## Ladder Diagram (TMHO)



TMSO (1-ms Off-delay Timer)
Ladder Diagram (TMSO)


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| TIMO | T1 |
|  | 20 |
| LOD | I1 |
| AND | T1 |
| OUT | Q1 |

Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| TMHO | T2 |
|  | 100 |
| LOD | I1 |
| AND | T2 |
| OUT | Q2 |

## Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| TMSO | T3 |
|  | 500 |
| LOD | I1 |
| AND | T3 |
| OUT | Q3 |

Timing Chart


Timing Chart


Timing Chart


Timing Chart


## CNT, CDP, and CUD (Counter)

Three types of counters are available; adding (up) counter CNT, dual-pulse reversible counter CDP, and up/down selection reversible counter CUD. A total of 512 counters can be programmed in a user program. Each counter must be allocated to a unique number C0 through C511.

| Counter | Device Address | Preset Value |  |
| :--- | :---: | :--- | :--- |
| CNT (adding counter) | C0 to C511 | Constant: | 0 to 65,535 |
| CDP (dual-pulse reversible counter) | C0 to C511 | Data registers: | D0 to D7999 |
| CUD (up/down selection reversible counter) | C0 to C511 |  | D10000 to D55999 |

For details about device ranges, see "Device Addresses" on page 2-1.
To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 65,535 .

## CNT (Adding Counter)

When counter instructions are programmed, two addresses are required. The circuit for an adding (UP) counter must be programmed in the following order: reset input, pulse input, the CNT instruction, and a counter number C0 through C511, followed by a counter preset value from 0 to 65,535 .
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value.

## Ladder Diagram



## Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| LOD | I1 |
| CNT | C0 |
|  | 5 |
| LOD | I2 |
| AND | C0 |
| OUT | Q0 |

## Timing Chart



- The preset value 0 through 65,535 can be designated using a data register D0 thorough D7999 or D10000 through D55999; then the data of the data register becomes the preset value.
- Directly after the CNT instruction, the OUT, OUTN, SET, RST, TML, TIM, TMH, or TMS instruction can be programmed.

- A single counter number cannot be programmed more than once.
- While the reset input is off, the counter counts the leading edges of pulse inputs and compares them with the preset value.
- When the current value reaches the preset value, the counter turns output on. The output stays on until the reset input is turned on.
- When the reset input changes from off to on, the current value is reset.
- When the reset input is on, all pulse inputs are ignored.
- The reset input must be turned off before counting may begin.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online > Monitor > Monitor, then Online > Custom > New Custom Monitor. Change the current value while the counter reset input is off.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the preset values that were changed are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17. Preset values can also be changed and confirmed using the LCD screen and pushbuttons.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices.
- The CNT instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## 4: Basic Instructions

## CDP (Dual-Pulse Reversible Counter)

The dual-pulse reversible counter CDP has up and down pulse inputs, so the three inputs are required. The circuit for a dual-pulse reversible counter must be programmed in the following order: preset input, up-pulse input, down-pulse input, the CDP instruction, and a counter number C0 through C511, followed by a counter preset value from 0 to 65,535 .
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value.

Program List

| Instruction | Data |
| :---: | :--- |
| LOD | I0 |
| LOD | I1 |
| LOD | I2 |
| CDP | C1 |
|  | 500 |
| LOD | I3 |
| AND | C1 |
| OUT | Q1 |

## Timing Chart

- A single counter number cannot be programmed more than once.
- The preset input must be turned on initially so that the current value returns to the preset value.
- The preset input must be turned off before counting may begin.
- When the up pulse and down pulses are on simultaneously, no pulse is counted.
- The counter output is on only when the current value is 0 .
- After the current value reaches 0 (counting down), it changes to 65,535 on the next count down.
- After the current value reaches 65,535 (counting up), it changes to 0 on the next up count.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using the Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online >
Monitor > Monitor, then Online > Custom > New Custom Monitor. Change the current value while the counter preset input is off.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the changed preset values are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17. Preset values can also be changed and confirmed using the LCD screen and pushbuttons.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices. The CDP instruction cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Note: For restrictions on ladder programming of counter instructions, see "Restriction on Ladder Programming" on page 4-31.

## Counter Operation after Count out

| Condition | Counter Output |
| :--- | :--- |
| When the counter has counted out, either the current value or preset <br> value is changed. | The counter maintains the counted out status. |
| Before the counter has counted out, the current value is changed to a <br> larger value than the preset. | The counter output is turned on. |
| The preset value is changed to 0. | The counter output is turned on without regard to the current value. |
| When the reset input is on, the preset value is changed to 0. | The counter output is not turned on. |

## CUD (Up/Down Selection Reversible Counter)

The up/down selection reversible counter CUD has a selection input to switch the up/down gate, so the three inputs are required. The circuit for an up/down selection reversible counter must be programmed in the following order: preset input, pulse input, up/ down selection input, the CUD instruction, and a counter number C0 through C511, followed by a counter preset value from 0 to 65,535.
The preset value can be designated using a decimal constant or a data register. When a data register is used, the data of the data register becomes the preset value.

Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| LOD | I1 |
| LOD | I2 |
| CUD | C2 |
|  | 500 |
| LOD | I3 |
| AND | C2 |
| OUT | Q2 |

## Timing Chart



## Valid Pulse Inputs

The reset or preset input has priority over the pulse input. One scan after the reset or preset input has changed from on to off, and the counter starts counting the pulse inputs as they change from off to on.


- A single counter number cannot be programmed more than once.
- The preset input must be turned on initially so that the current value returns to the preset value.
- The preset input must be turned off before counting may begin.
- The up mode is selected when the up/down selection input is on.
- The down mode is selected when the up/down selection input is off.
- The counter output is on only when the current value is 0 .
- After the current value reaches 0 (counting down), it changes to 65,535 on the next count down.
- After the current value reaches 65,535 (counting up), it changes to 0 on the next count up.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using the Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online >
Monitor > Monitor, then Online > Custom > New
Custom Monitor. Change the current value while the counter preset input is off.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the changed preset values are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17. Preset values can also be changed and confirmed using the LCD screen and pushbuttons.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices. The CUD instruction cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Note: For restrictions on ladder programming of counter instructions, see "Restriction on Ladder Programming" on page 4-31.

## 4: Basic Instructions

## CNTD, CDPD, and CUDD (Double-Word Counter)

Three types of double-word counters are available; adding (up) counter CNTD, dual-pulse reversible counter CDPD, and up/down selection reversible counter CUDD. A total of 512 double-word counters can be programmed in a user program. Each double-word counter uses 2 consecutive devices starting with the allocated device, which can be C0 through C510. Once used in a user program, counters cannot be used in any other counter instructions.

| Counter | Device Address | Preset Value |  |
| :--- | :---: | :--- | :---: |
| CNTD (double-word adding counter) | C0 to C510 | Constant: | 0 to 4,294,967,295 |
|  | CDPD (double-word dual-pulse reversible counter) | C0 to C510 | Data registers: |
|  | D0 to D7999 |  |  |
| CUDD (double-word up/down selection reversible counter) | D1000 to D55999 |  |  |

For details about device ranges, see "Device Addresses" on page 2-1.
The preset value can be 0 through 4,294,967,295 and designated using a constant or a data register. If a data register is designated as the preset value, two consecutive data registers are used.

## CNTD (Double-Word Adding Counter)

For a constant, specify the value in the range of 0 to 4,294,967,295.
To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 4,294,967,295.
The preset value can be designated using a constant or a data register. When a data register is used, the double-word data of two consecutive data registers becomes the preset value. For 32-bit data storage setting, see Chapter 5 "32-bit Data Storage Setting" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Ladder Diagram



Program List

| Instruction | Data |
| :--- | :--- |
| LOD | IO |
| LOD | I1 |
| CNTD | C0 |
|  | 100000 |
| LOD | I2 |
| AND | C0 |
| OUT | Q0 |

Timing Chart


- The preset value 0 through $4,294,967,295$ can be designated using a data register D0 through D1998; then the data of the data registers becomes the preset value.
- Directly after the CNTD instruction, the OUT, OUTN, SET, RST, TML, TIM, TMH, TMS, TMLO, TIMO, TMHO, or TMSO instruction can be programmed.

- Double-word counter instructions use two consecutive counters, and counters cannot be used more than once in a user program.
- While the reset input is off, the counter counts the leading edges of pulse inputs and compares them with the preset value.
- When the current value reaches the preset value, the counter turns output on. The output stays on until the reset input is turned on.
- When the reset input changes from off to on, the current value is reset.
- When the reset input is on, all pulse inputs are ignored.
- The reset input must be turned off before counting may begin.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online > Monitor > Monitor, then Online > Custom > New Custom Monitor. To change a counter preset value, select DEC(D) in the pull-down list box.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the changed preset values are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices.
- The CNTD instruction cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## CDPD (Double-Word Dual-Pulse Reversible Counter)

The double-word dual-pulse reversible counter CDPD has up and down pulse inputs, so the three inputs are required. The circuit for a double-word dual-pulse reversible counter must be programmed in the following order: preset input, up-pulse input, downpulse input, the CDPD instruction, and a counter number C0 through C198, followed by a counter preset value from 0 to 4,294,967,295.
The preset value can be designated using a constant or a data register. When a data register is used, the double-word data of two consecutive data registers becomes the preset value. For 32-bit data storage setting, see Chapter 5 "32-bit Data Storage Setting" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

Ladder Diagram


## Timing Chart



- Double-word counter instructions use two consecutive counters, and counters cannot be used more than once in a user program.
- The preset input must be turned on initially so that the current value returns to the preset value.
- The preset input must be turned off before counting may begin.
- When the up and down pulses are on simultaneously, no pulse is counted.
- The counter output is on only when the current value is 0 .
- After the current value reaches 0 (counting down), it changes to 4,294,967,295 on the next count down.
- After the current value reaches $4,294,967,295$ (counting up), it changes to 0 on the next count up.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using the Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu bar, select Online > Monitor > Monitor, then Online > Custom > New Custom Monitor. To change a counter preset value, select $\operatorname{DEC}(D)$ in the pull-down list box.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the changed preset values are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices. The CNPD instruction cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## 4: Basic Instructions

## CUDD (Double-Word Up/Down Selection Reversible Counter)

The double-word up/down selection reversible counter CUDD has a selection input to switch the up/down gate, so the three inputs are required. The circuit for a double-word up/down selection reversible counter must be programmed in the following order: preset input, pulse input, up/down selection input, the CUDD instruction, and a counter number C0 through C198, followed by a counter preset value from 0 to 4,294,967,295.
The preset value can be designated using a constant or a data register. When a data register is used, the double-word data of two consecutive data registers becomes the preset value. For 32-bit data storage setting, see Chapter 5 "32-bit Data Storage Setting" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Ladder Diagram



Timing Chart


- Double-word counter instructions use two consecutive counters, and counters cannot be used more than once in a user program.
- The preset input must be turned on initially so that the current value returns to the preset value.
- The preset input must be turned off before counting may begin.
- The up mode is selected when the up/down selection input is on.
- The down mode is selected when the up/down selection input is off.
- The counter output is on only when the current value is 0 .
- After the current value reaches 0 (counting down), it changes to 4,294,967,295 on the next count down.
- After the current value reaches $4,294,967,295$ (counting up), it changes to 0 on the next count up.
- When power is off, the counter's current value is held, and can also be designated as "clear" type counters using the Function Area Settings (see Chapter 5 "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".).
- Counter preset and current values can be changed using WindLDR without downloading the entire program to the CPU again. From the WindLDR menu
bar, select Online > Monitor > Monitor, then
Online > Custom > New Custom Monitor. To change a counter preset value, select DEC(D) in the pull-down list box.
- When the preset or current value is changed during counter operation, the change becomes effective immediately.
- When power is off, the changed preset values are cleared and the original preset values are loaded.
- For data movement when changing, confirming, and clearing preset values, see "Changing, Confirming, and Clearing Preset Values for Timers and Counters" on page 4-17.
- WindLDR ladder diagrams show CP (counter preset value) and CC (counter current value) in advanced instruction devices. The CUDD instruction cannot be used in an interrupt program.
- If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Changing, Confirming, and Clearing Preset Values for Timers and Counters

Preset values for timers and counters can be changed by selecting Online > Monitor > Monitor, followed by Online > Custom
$>$ New Custom Monitor on WindLDR for transferring a new value to the FC6A Series MicroSmart RAM as described on preceding pages. After changing the preset values temporarily, the changes can be written to the user program in the FC6A Series MicroSmart ROM or cleared from the RAM.
When the power is off, the temporarily changed preset values in the RAM are cleared and the original preset values are loaded. Confirm the changed preset values to store them in the ROM. The timer/counter preset values can be confirmed only when FC6A Series MicroSmart is stopped.

To access the PLC Status dialog box from the WindLDR menu bar, select Online > Monitor > Monitor, then Online > Status.

After pressing the Clear or Confirm button, the display changes to "Unchanged."

## Data movement when changing a timer/counter preset value

When changing a timer/counter preset value using Custom Monitor on WindLDR, the new preset value is written to the FC6A Series MicroSmart RAM. The user program and preset values in the ROM are not changed.
Note: The LCD screen and pushbuttons can also be used to change preset values and confirm changed preset values.

WindLDR


## Data movement when confirming changed preset values

When the Confirm button is pressed before pressing the Clear button, the changed timer/counter preset values in the FC6A Series MicroSmart RAM are written to the ROM.
When uploading the user program after confirming, the user program with changed preset values is uploaded from the FC6A Series MicroSmart ROM to WindLDR.


## Data movement when clearing changed preset values to restore original values

Changing preset values for timers and counters in the FC6A Series MicroSmart RAM does not automatically update preset values in the user memory, ROM. This is useful for restoring original preset values. When the Clear button is pressed before pressing the Confirm button, the changed timer/counter preset values are cleared from the RAM and the original preset values are loaded from the ROM to the RAM.


## 4: BASIC Instructions

## $\mathrm{CC}=$ and $\mathrm{CC}>=$ (Counter Comparison)

The CC= instruction is an equivalent comparison instruction for counter current values. This instruction will constantly compare current values to the value that has been programmed in. When the counter value equals the given value, the desired output will be initiated.

The CC> = instruction is an equal to or greater than comparison instruction for counter current values. This instruction will constantly compare current values to the value that has been programmed in. When the counter value is equal to or greater than the given value, the desired output will be initiated.
When a counter comparison instruction is programmed, two addresses are required. For a constant, specify the value in the range of 0 to 65,535 .

To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 65,535.
The preset value can be designated using a decimal constant or a data register D0 through D1999. When a data register is used, the data of the data register becomes the preset value.

## Ladder Diagram (CC=)



## Ladder Diagram (CC>=)



Program List

| Instruction | Data |
| :---: | :---: |
| $\mathrm{CC}=$ | C 2 |
|  | 10 |
| OUT | Q 0 |

Program List

| Instruction | Data |
| :---: | :---: |
| CC>= | C3 |
|  | D15 |
| OUT | Q1 |

- The $\mathrm{CC}=$ and $\mathrm{CC}>=$ instructions can be used repeatedly for different preset values.
- The comparison instructions only compare the current value. The status of the counter does not affect this function.
- The comparison instructions also serve as an implicit LOD instruction.
- The comparison instructions can be used with internal relays, which are ANDed or ORed at a separate program address.
- Like the LOD instruction, the comparison instructions can be followed by the AND and OR instructions.


## Ladder Diagram



## Program List

| Instruction | Data |
| :---: | :---: |
| $\mathrm{CC}=$ | C5 |
|  | 10 |
| OUT | MO |
| LOD | IO |
| AND | MO |
| OUT | Q0 |

Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| CC $=$ | C5 |
|  | 10 |
| AND | IO |
| OUT | Q0 |

Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| CC $=$ | C5 |
|  | 10 |
| OR | IO |
| OUT | Q0 |

## Examples: $\mathrm{CC}=$ and $\mathrm{CC}>=$ (Counter Comparison)

Ladder Diagram 1


## Timing Chart

Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| LOD | I1 |
| CNT | C2 |
|  | 10 |
| CC $=$ | C2 |
|  | 5 |
| OUT | Q0 |
| CC $^{3}$ | C2 |
|  | 3 |
| OUT | Q1 |



## Ladder Diagram 2

## Ladder Diagram 3

Ladder Diagram 4


Program List

| Instruction | Data |
| :---: | :--- |
| LOD | I1 |
| LOD | I2 |
| CNT | C30 |
|  | 1000 |
| CC= | C30 |
| OUT | 500 |
|  | Q0 |

Program List

| Instruction | Data |
| :---: | :--- |
| LOD | I3 |
| LOD | I4 |
| CNT | C31 |
|  | 500 |
| CC>= | C31 |
| OUT | 350 |
|  | Q1 |

Program List

| Instruction | Data |
| :--- | :--- |
| LOD | I5 |
| LOD | I6 |
| CNT | C20 |
|  | 500 |
| CC>= | C20 |
|  | 150 |
| OUT | Q2 |
| CC>= | C20 |
|  | 100 |
| ANDN | Q2 |
| OUT | Q3 |

Output Q0 is on when counter C2 current value is 5 .
Output Q1 is turned on when counter C2 current value reaches 3 and remains on until counter C 2 is reset.

## Timing Chart



Output Q0 is on when counter C30 current value is 500.

## Timing Chart

Pulse Input I4

Output Q1


Output Q1 is turned on when counter C31 current value reaches 350 and remains on until counter C31 is reset.

## Timing Chart

Pulse Input I6

C20 (100)
Output Q2

Output Q3


Output Q3 is on when counter C20 current value is between 100 and 149.

When the current value of C20 is between 150 and $500, \mathrm{Q} 2$ is on.

## DC= and DC>= (Data Register Comparison)

The DC= instruction is an equivalent comparison instruction for data register values. This instruction will constantly compare data register values to the value that has been programmed in. When the data register value equals the given value, the desired output will be initiated.
The DC> = instruction is an equal to or greater than comparison instruction for data register values. This instruction will constantly compare data register values to the value that has been programmed in. When the data register value is equal to or greater than the given value, the desired output will be initiated.
When a data register comparison instruction is programmed, two addresses are required. For a constant, specify the value in the range of 0 to 65,535 .
To indirectly specify the value, specify it with a data register number, and specify the value of the data register in the range of 0 to 65,535.
The preset value can be designated using a decimal constant or a data register D0 through D1999. When a data register is used, the data of the data register becomes the preset value.
For LC (Load Compare) instructions, see "LC= (Load Compare Equal To)" on page 6-8.

## Ladder Diagram ( $\mathrm{DC}=$ )

Data register \# to compare with


## Ladder Diagram (DC>=)



## Program List

| Instruction | Data |
| :---: | :---: |
| DC $=$ | D2 |
|  | 50 |
| OUT | Q0 |

## Program List

| Instruction | Data |
| :---: | :---: |
| DC>= | D3 |
|  | D15 |
| OUT | Q1 |

- The $D C=$ and $D C>=$ instructions can be repeated for different preset values.
- The comparison instructions also serve as an implicit LOD instruction.
- The comparison instructions can be used with internal relays, which are ANDed or ORed at a separate program address.
- Like the LOD instruction, the comparison instructions can be followed by the AND and OR instructions.


## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| DC= | D5 |
|  | 10 |
| OUT | M0 |
| LOD | IO |
| AND | M0 |
| OUT | Q0 |

Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| DC $=$ | D5 |
|  | 10 |
| AND | IO |
| OUT | Q0 |

Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| DC $=$ | D5 |
|  | 10 |
| OR | IO |
| OUT | Q0 |

## Examples: DC= and DC>= (Data Register Comparison)



## Timing Chart

Inar

Program List

| Instruction | Data |
| :--- | :--- |
| LOD | I1 |
| MOV(W) |  |
|  | D10 - |
| DC $=$ | D2 - |
|  | D2 |
| OUT | 5 |
| DC3 | Q0 |
|  | D2 |
| OUT | 3 |
|  | Q1 |

Output Q0 is on when data register D2 value is 5 . Output Q1 is on when data register D2 value is 3 or more.

## Ladder Diagram 2



## Ladder Diagram 3



## Ladder Diagram 4



Timing Chart


Output Q0 is on when data register D30 value is 500 .

## Timing Chart



Output Q1 is on when data register D15 value is 350 or more.

## Timing Chart



Output Q2 is on while data register D20 value is between 149 and 100 . When the value of D20 is 150 or higher, output Q0 is on.

## 4: BASIC Instructions

## SFR and SFRN (Forward and Reverse Shift Register)

FC6A Series MicroSmart have a shift register consisting of 256 bits which are allocated to R0 through R255. Any number of available bits can be selected to form a train of bits which store on or off status. The on/off data of constituent bits is shifted in the forward direction (forward shift register) or in the reverse direction (reverse shift register) when a pulse input is turned on.

## Forward Shift Register (SFR)

When SFR instructions are programmed, two addresses are always required. The SFR instruction is entered, followed by a shift register number selected from appropriate device addresses. The shift register number corresponds to the first, or head bit. The number of bits is the second required address after the SFR instruction.
The SFR instruction requires three inputs. The forward shift register circuit must be programmed in the following order: reset input, pulse input, data input, and the SFR instruction, followed by the first bit and the number of bits.


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| LOD | I1 |
| LOD | I2 |
| SFR | R0 |
|  | 4 |

## Structural Diagram



## Reset Input

The reset input will cause the value of each bit of the shift register to return to zero. Initialize pulse special internal relay, M8120, may be used to initialize the shift register at start-up.

## Pulse Input

The pulse input triggers the data to shift. The shift is in the forward direction for a forward shift register and in reverse for a reverse shift register. A data shift will occur upon the leading edge of a pulse; that is, when the pulse turns on. If the pulse has been on and stays on, no data shift will occur.

## Data Input

The data input is the information which is shifted into the first bit when a forward data shift occurs, or into the last bit when a reverse data shift occurs.

Note: When power is turned off, the statuses of all shift register bits are normally cleared. It is also possible to maintain the statuses of shift register bits by using the Function Area Settings as required. See Chapter 5 "Functions and Settings" - "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
Note: The SFR instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Note: For restrictions on ladder programming of shift register instructions, see "Restriction on Ladder Programming" on page 4-31.


## Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| LOD | I1 |
| LOD | I2 |
| SFR | R0 |
|  | 4 |
| LOD | R0 |
| OUT | Q0 |
| LOD | R1 |
| OUT | Q1 |
| LOD | R2 |
| OUT | Q2 |
| LOD | R3 |
| OUT | Q3 |

Timing Chart


Ladder Diagram


Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I1 |
| LOD | I2 |
| LOD | I3 |
| SFR | R0 |
|  | 4 |
| OUT | Q3 |
| LOD | R0 |
| OUT | Q0 |
| LOD | R1 |
| OUT | Q1 |

- The last bit status output can be programmed directly after the SFR instruction. In this example, the status of bit R3 is read to output Q3.
- Each bit can be loaded using the LOD R\# instruction.


## Setting and Resetting Shift Register Bits



- Any shift register bit can be turned on using the SET instruction.
- Any shift register bit can be turned off using the RST instruction.
- The SET or RST instruction is actuated by any input condition.


## 4: Basic Instructions

## Reverse Shift Register (SFRN)

For reverse shifting, use the SFRN instruction. When SFRN instructions are programmed, two addresses are always required. The SFRN instructions are entered, followed by a shift register number selected from appropriate device addresses. The shift register number corresponds to the lowest bit number in a string. The number of bits is the second required address after the SFRN instructions.
The SFRN instruction requires three inputs. The reverse shift register circuit must be programmed in the following order: reset input, pulse input, data input, and the SFRN instruction, followed by the last bit and the number of bits.


Program List

| Instruction | Data |
| :--- | :--- |
| LOD | I0 |
| LOD | I1 |
| LOD | I2 |
| SFRN | R20 |
|  | 7 |
| OUT | Q0 |
| LOD | R21 |
| OUT | Q1 |
| LOD | R23 |
| OUT | Q2 |
| LOD | R25 |
| OUT | Q3 |

- The last bit status output can be programmed directly after the SFRN instruction. In this example, the status of bit R20 is read to output Q0.
- Each bit can be loaded using the LOD R\# instructions.
- For details of reset, pulse, and data inputs, see "Forward Shift Register (SFR)" on page 4-22.


## Structural Diagram



Note: Output is initiated only for those bits highlighted in bold print.
Note: When power is turned off, the statuses of all shift register bits are normally cleared. It is also possible to maintain the statuses of shift register bits by using the Function Area Settings as required. See Chapter 5 "Functions and Settings" - "Memory Backup" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

Note: The SFRN instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Note: For restrictions on ladder programming of shift register instructions, see "Restriction on Ladder Programming" on page 4-31.

## Bidirectional Shift Register

A bidirectional shift register can be created by first programming the SFR instruction as detailed in the Forward Shift Register section on page 4-22. Next, the SFRN instruction is programed as detailed in the Reverse Shift Register section on page 4-24.

## Ladder Diagram



Program List

| Instruction | Data |
| :--- | :--- |
| LOD | I1 |
| LOD | I2 |
| LOD | I3 |
| SFR | R22 |
|  | 6 |
| LOD | I4 |
| LOD | I5 |
| LOD | I6 |
| SFRN | R22 |
|  | 6 |
| LOD | R23 |
| OUT | Q0 |
| LOD | R24 |
| OUT | Q1 |
| LOD | R26 |
| OUT | Q2 |

## Structural Diagram



Note: Output is initiated only for those bits highlighted in bold print.

## 4: BASIC Instructions

## SOTU and SOTD (Single Output Up and Down)

The SOTU instruction "looks for" the transition of a given input from off to on. The SOTD instruction looks for the transition of a given input from on to off. When this transition occurs, the desired output will turn on for the length of one scan. The SOTU or SOTD instruction converts an input signal to a "one-shot" pulse signal.
A total of 1,024 SOTU and SOTD instructions can be used in a user program.
If operation is started while the given input is already on, the SOTU output will not turn on. The transition from off to on is what triggers the SOTU instruction.
The SOTU or SOTD instructions cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
When a CPU relay is defined as the SOTU or SOTD output, it may not operate if the scan time is not compatible with relay requirements.

## Ladder Diagram

Program List


| Instruction | Data |
| :--- | :---: |
| LOD | IO |
| SOTU |  |
| OUT | Q0 |
| LOD | IO |
| SOTD |  |
| OUT | Q1 |

Note: For restrictions on ladder programming of SOTU and SOTD instructions, see "Restriction on Ladder Programming" on page 4-31.

Timing Chart


Note: " $T$ " equals one scan time (one-shot pulse).

There is a special case when the SOTU and SOTD instructions are used between the MCS and MCR instructions (see "MCS and MCR (Master Control Set and Reset)" on page 4-27). If input I2 to the SOTU instruction turns on while input I1 to the MCS instruction is on, then the SOTU output turns on. If input I2 to the SOTD instruction turns off while input I1 is on, then the SOTD output turns on. If input I1 turns on while input I2 is on, then the SOTU output turns on. However, if input I1 turns off while input I2 is on, then the SOTD output does not turn on as shown below.

## Ladder Diagram



## Timing Chart



## MCS and MCR (Master Control Set and Reset)

The MCS (master control set) instruction is usually used in combination with the MCR (master control reset) instruction. The MCS instruction can also be used with the END instruction, instead of the MCR instruction.
When the input preceding the MCS instruction is off, the MCS is executed so that all inputs to the portion between the MCS and the MCR are forced off. When the input preceding the MCS instruction is on, the MCS is not executed so that the program following it is executed according to the actual input statuses.
When the input condition to the MCS instruction is off and the MCS is executed, other instructions between the MCS and MCR are executed as follows:

| Instruction | Status |
| :--- | :--- |
| SOTU | Rising edges (ON pulses) are not detected. |
| SOTD | Falling edges (OFF pulses) are not detected. |
| OUT | All are turned off. |
| OUTN | All are turned on. |
| SET and RST | All are held in current status. |
| TML, TIM, TMH, and TMS | Current values are reset to zero. <br> Timeout statuses are turned off. |
| CNT, CDP, and CUD | Current values are held. <br> Pulse inputs are turned off. <br> Countout statuses are turned off. |
| SFR and SFRN | Shift register bit statuses are held. <br> Pulse inputs are turned off. <br> The output from the last bit is turned off. |

Input conditions cannot be set for the MCR instruction.
More than one MCS instruction can be used with one MCR instruction.
Corresponding MCS/MCR instructions cannot be nested within another pair of corresponding MCS/MCR instructions.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| MCS |  |
| LOD | I1 |
| OUT | Q0 |
| MCR |  |

Timing Chart


When input IO is off, MCS is executed so that the subsequent input is forced off.
When input IO is on, MCS is not executed so that the following program is executed according to the actual input statuses.

## 4: Basic Instructions

## Multiple Usage of MCS instructions

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I1 |
| MCS |  |
| LOD | I2 |
| OUT | Q0 |
| LOD | I3 |
| MCS |  |
| LOD | I4 |
| OUT | Q1 |
| LOD | I5 |
| MCS |  |
| LOD | I6 |
| OUT | Q2 |
| MCR |  |

This master control circuit will give priority to $\mathrm{I} 1, \mathrm{I} 3$, and I 5 , in that order.
When input I1 is off, the first MCS is executed so that subsequent inputs I2 through I6 are forced off.
When input I1 is on, the first MCS is not executed so that the following program is executed according to the actual input statuses of I2 through I6.
When I1 is on and I3 is off, the second MCS is executed so that subsequent inputs I4 through I6 are forced off.
When both I1 and I3 are on, the first and second MCSs are not executed so that the following program is executed according to the actual input statuses of I4 through I6.

## Counter and Shift Register in Master Control Circuit

## Ladder Diagram



When input I1 is on, the MCS is not executed so that the counter and shift register are executed according to the actual status of subsequent inputs I2 through I4.
When input I1 is off, the MCS is executed so that subsequent inputs I2 through I4 are forced off.
When input I1 is turned on while input I2 is on, the counter and shift register pulse inputs are turned on as shown below.


## JMP (Jump) and JEND (Jump End)

The JMP (jump) instruction is usually used in combination with the JEND (jump end) instruction. At the end of a program, the JMP instruction can also be used with the END instruction, instead of the JEND instruction.
These instructions are used to proceed through the portion of the program between the JMP and the JEND without processing. This is similar to the MCS/MCR instructions, except that the portion of the program between the MCS and MCR instruction is executed.

When the operation result immediately before the JMP instruction is on, the JMP is valid and the program is not executed. When the operation result immediately before the JMP instruction is off, the JMP is invalid and the program is executed.
When the input condition to the JMP instruction is on and the JMP is executed, other instructions between the JMP and JEND are executed as follows:

| Instruction |  |
| :--- | :--- |
| SOTU | Rising edges (ON pulses) are not detected. |
| SOTD | Falling edges (OFF pulses) are not detected. |
| OUT and OUTN | All are held in current status. |
| SET and RST | All are held in current status. |
| TML, TIM, TMH, and TMS | Current values are held. <br> Timeout statuses are held. |
| CNT, CDP, and CUD | Current values are held. <br> Pulse inputs are turned off. <br> Countout statuses are held. |
| SFR and SFRN | Shift register bit statuses are held. <br> Pulse inputs are turned off. <br> The output from the last bit is held. |

Input conditions cannot be set for the JEND instruction.
More than one JMP instruction can be used with one JEND instruction.
Corresponding JMP/JEND instructions cannot be nested within another pair of corresponding JMP/JEND instructions.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | IO |
| JMP |  |
| LOD | I1 |
| OUT | Q0 |
| JEND |  |

## Timing Chart



When input IO is on, JMP is executed so that the subsequent output status is held.

When input IO is off, JMP is not executed so that the following program is executed according to the actual input statuses.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I1 |
| JMP |  |
| LOD | I2 |
| OUT | Q0 |
| LOD | I3 |
| JMP |  |
| LOD | I4 |
| OUT | Q1 |
| LOD | I5 |
| JMP |  |
| LOD | I6 |
| OUT | Q2 |
| JEND |  |

This jump circuit will give priority to $\mathrm{I} 1, \mathrm{I} 3$, and I 5 , in that order.
When input I1 is on, the first JMP is executed so that subsequent output statuses of Q0 through Q2 are held.
When input I1 is off, the first JMP is not executed so that the following program is executed according to the actual input statuses of I2 through I6.
When I1 is off and I3 is on, the second JMP is executed so that subsequent output statuses of Q1 and Q2 are held.
When both I1 and I3 are off, the first and second JMPs are not executed so that the following program is executed according to the actual input statuses of I4 through I6.

## END

The END instruction is always required at the end of a program; however, it is not necessary to program the END instruction after the last programmed instruction. WindLDR automatically appends the END instruction at the end of a program.
A scan is the execution of all instructions from address zero to the END instruction. The time required for this execution is referred to as one scan time. The scan time varies with respect to program length, which corresponds to the address where the END instruction is found.
During the scan time, program instructions are processed sequentially. This is why the output instruction closest to the END instruction has priority over a previous instruction for the same output. No output is initiated until all logic within a scan is processed.
Output occurs simultaneously, and this is the first part of the END instruction execution. The second part of the END instruction execution is to monitor all inputs, also done simultaneously. Then program instructions are ready to be processed sequentially once again.

## Ladder Diagram



Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I0 |
| OUT | Q0 |
| LOD | I1 |
| OUT | Q1 |
| END |  |

## Restriction on Ladder Programming

Due to the structure of WindLDR, the following ladder diagram cannot be programmed - a closed circuit block is formed by vertical lines, except for right and left power rails, and the closed circuit block contains one or more prohibited instructions shown in the table below.


| Prohibited Instructions | OUT, OUTN, SET, RST, TML, TIM, TMH, TMS, TMLO, TIMO, TMHO, TMSO, CNT, CDP, CUD, CNTD, CDPD, <br> CUDD, SFR, SFRN, SOTU, SOTD |
| :--- | :--- |
| Error Detection | When converting the ladder program, an error message is shown, such as "TIM follows an invalid device." <br> Conversion fails to create mnemonics and the program is not downloaded to the FC6A Series MicroSmart. |

## Modifying Prohibited Ladder Programs

Intended operation can be performed by modifying the prohibited ladder program as shown in the examples below:

Prohibited Ladder Program 1



Prohibited Ladder Program 2


Modified Ladder Program 1


Modified Ladder Program 2


## 5: Move Instructions

## Introduction

Data can be moved using the MOV (move), MOVN (move not), IMOV (indirect move), or IMOVN (indirect move not) instruction. The moved data is 16 - or 32 -bit data, and the repeat operation can also be used to increase the quantity of data moved. In the MOV or MOVN instruction, the source and destination device are designated by S1 and D1 directly. In the IMOV or IMOVN instruction, the source and destination device are determined by the offset values designated by S2 and D2 added to source device S1 and destination device D1.

The BMOV (block move) instruction is useful to move consecutive blocks of timer, counter, and data register values.
The IBMV (indirect bit move) and IBMVN (indirect bit move not) instructions move one bit of data from a source device to a destination device. Both devices are determined by adding an offset to the device.

NSET (N data set) and NRS (N data repeat set) instructions can be used to set values to a group of devices. The XCHG (exchange) instruction is used to swap word or double-word data between two devices. The current timer or counter values can be changed using the TCCST (timer/counter current value store) instruction.

Since the move instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## MOV (Move)



S1 $\rightarrow$ D1
When input is on, 16- or 32-bit data from device assigned by S 1 is moved to device assigned by D1.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | First device address to move | $X$ | $X$ | $X$ | $X$ | $X$ | X | X | X | $1-99$ |
| D1 (Destination 1) | First device address to move to | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | $1-99$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
Both internal relays M0 through M1277 and special internal relays M8000 through M8177 can be designated as source devices.
When $T$ (timer) or $C$ (counter) is used as S 1 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D 1 , the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

When F (float) data is selected, only data register and constant can be designated as S 1 , and only data register can be designated as D1.
When F (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | $X$ |
| $D$ (double word) | $X$ |
| $L$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word or integer data) or 32 points (double-word or long data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Examples: MOV

## Data Type: Word



$$
\text { D10 } \rightarrow \text { MO }
$$

When input I2 is on, data in data register D10 assigned by source device S1 is moved to 16 internal relays starting with M0 assigned by destination device D1.

D10 $12345 \longrightarrow$ M0 through M7, M10 through M17
Data in the source data register is converted into 16-bit binary data, and the ON/ OFF statuses of the 16 bits are moved to internal relays M0 through M7 and M10 through M17. M0 is the LSB (least significant bit). M17 is the MSB (most significant
 bit).

## Data Type: Word

$\left.\left.\right|_{\mathrm{IO}} ^{1}-\begin{array}{|llll|}\mathrm{MOV}(\mathrm{W}) & \mathrm{S} 1- & \mathrm{D} 1- & \text { REP } \\ & 810 & \mathrm{D} 2\end{array}\right] \mid$
$810 \rightarrow$ D2
When input IO is on, constant 810 assigned by source device S 1 is moved to data register D2 assigned by destination device D1.


Data move operation for integer data is the same as for word data.

## Data Type: Double Word



$$
810 \rightarrow \mathrm{D} 2 \cdot \mathrm{D} 3
$$

When input IO is on, constant 810 assigned by source device S1 is moved to data registers D2 and D3 assigned by destination device D1.


Data move operation for the long data type is the same as for the double-word data type.

## Data Type: Word



D10 $\rightarrow$ D2
When input I1 is on, data in data register D10 assigned by source device S 1 is moved to data register D2 assigned by destination device D1.


## Data Type: Double Word



$$
\mathrm{D} 10 \cdot \mathrm{D} 11 \rightarrow \mathrm{D} 2 \cdot \mathrm{D} 3
$$

When input I1 is on, data in data registers D10 and D11 assigned by source device S 1 is moved to data registers D2 and D3 assigned by destination device D1.


## Double-word Data Move in Data Registers

When a data register, timer, or counter is selected as a double-word device, the upper-word data is loaded from or stored to the first device selected. The lower-word data is loaded from or stored to the subsequent device.

Double-word Destination Device: Data Register


## Repeat Operation in the Move Instructions

## Repeat Source Device

When the S 1 (source) is set to repeat, as many devices as the repeat cycles, starting with the device designated by S 1 , are moved to the destination. As a result, only the last of the source devices is moved to the destination.

- Data Type: Word


| Source | pe | Destinat | (Re |
| :---: | :---: | :---: | :---: |
| D10 | 110 | $\rightarrow$ D20 | 11 |
| D11 | 111 | D21 |  |
| D12 | 112 | D22 |  |

- Data Type: Double Word




## Repeat Destination Device

When the D1 (destination) is designated to repeat, the source device designated by S 1 is moved to all destination devices as many times as the repeat cycles, starting with the destination designated by D1.

- Data Type: Word



## - Data Type: Double Word

| Source | pe | Destinat | (Rep |
| :---: | :---: | :---: | :---: |
| D10 | 110 | $\rightarrow$ D20 | 110 |
| D11 | 111 | $\rightarrow$ D21 | 110 |
| D12 | 112 | $\longrightarrow$ D22 | 110 |




## Repeat Source and Destination Devices

When both S1 (source) and D1 (destination) are set to repeat, as many devices as the repeat cycles, starting with the device designated by S 1 , are moved to the same quantity of devices starting with the device designated by D1.
Note: The BMOV (block move) instruction has the same effect as the MOV instruction with both the source and destination designated to repeat.

- Data Type: Word


| Source (Repeat = 3) |  | Destination (Repeat $=3$ ) |  |
| :---: | :---: | :---: | :---: |
| D10 | 110 | $\rightarrow$ D20 | 110 |
| D11 | 111 | $\rightarrow$ D21 | 111 |
| D12 | 112 | $\rightarrow$ D22 | 112 |

- Data Type: Double Word


Source (Repeat $=3) \quad$ Destination $($ Repeat $=3)$


## - Data Type: Float

When the source data does not comply with the normal floating-point format in any repeat operation, a user program execution error occurs, and the source data is not moved to the destination.

|  | I1 | SOV(F) | S1 R |
| :--- | :--- | :--- | :---: |
|  | D1 R | REP |  |
|  | D20 | 3 |  |$|$



## Repeat Bit Devices

The MOV (move) instruction moves 16-bit data (word or integer data) or 32-bit data (double-word or integer data). When a bit device such as input, output, internal relay, or shift register is designated as the source or destination device, 16 or 32 bits starting with the one designated by S 1 or D 1 are the target data. If a repeat operation is designated for a bit device, the target data increases in 16- or 32-bit increments, depending on the selected data type.

## - Data Type: Word



Source (Repeat $=0$ ) Destination (Repeat $=3$ )


## - Data Type: Double Word



Source (Repeat $=\mathbf{0})$
Destination (Repeat = 3)


## Overlapped Devices by Repeat

If the repeat operation is set for both the source and destination and if a portion of the source and destination areas overlap each other, then the source data in the overlapped area also changes.


Before Execution


## After Execution

| D10 | 1 |
| :---: | :---: |
| D11 | 2 |
| D12 | 1 |
| D13 | 2 |
| D14 | 1 |
| D15 | 2 |

## MOVN (Move Not)



S1 NOT $\rightarrow$ D1
When input is on, 16- or 32-bit data from device assigned by S 1 is inverted bit by bit and moved to device assigned by D1.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | First device address to move | X | X | X | X | X | X | X | X | 1-99 |
| D1 (Destination 1) | First device address to move to | - | X | ( | X | X | X | X | - | 1-99 |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D 1 , the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word or integer data) or 32 points (double-word or long data) are used. When repeat is set for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word or long data) are used. When repeat is set for a word device, the quantity of device words increases in 1- or 2-point increments.

## Examples: MOVN



## M10 NOT $\rightarrow$ M50

When input IO is on, the 16 internal relays, starting with M10 assigned by source device S1, are inverted bit by bit and moved to 16 internal relays starting with M50 assigned by destination device D1.

M10 through M17, M20 through M27 NOT $\longrightarrow$ M50 through M57, M60 through M67


The ON/OFF statuses of the 16 internal relays M10 through M17 and M20 through M27 are inverted and moved to 16 internal relays M50 through M57 and M60 through M67. M50 is the LSB (least significant bit), and M67 is the MSB (most significant bit).


810 NOT $\rightarrow$ D2
When input I1 is on, decimal constant 810 assigned by source device S 1 is converted into 16-bit binary data, and the ON/OFF statuses of the 16 bits are inverted and moved to data register D2 assigned by destination device D1.




D30 NOT $\rightarrow$ D20
When input I2 is on, the data in data register D30, assigned by S 1 , is inverted bit by bit and moved to data register D20 assigned by D1.


## 5: Move Instructions

## IMOV (Indirect Move)



S1 + S2 $\rightarrow$ D1 + D2
When input is on, the values contained in devices assigned by S1 and S2 are added together to determine the data source. The $16-$ or $32-$ bit data is then moved to the destination, which is determined by the sum of values contained in devices assigned by D1 and D2.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Base address to move from | X | X | X | X | X | X | X | - | $1-99$ |
| S2 (Source 2) | Offset for S1 | X | X | X | X | X | X | X | - | - |
| D1 (Destination 1) | Base address to move to | - | X | $\mathbf{A}$ | X | X | X | X | - | $1-99$ |
| D2 (Destination 2) | Offset for D1 | X | X | X | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as $\mathrm{S} 1, \mathrm{~S} 2$, or D 2 , the device data is the timer/counter current value (TC or CC). When T (timer) or C (counter) is used as D1, the device data is the timer/counter preset value (TP or CP) which can be 0 through 65,535.

When F (float) data is selected, only data register can be designated as S1 or D1.
When $F$ (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart

Source device S2 or destination device D2 does not have to be assigned. If S2 or D2 is not assigned, the source or destination device is determined by S1 or D1 without offset.

Make sure that the source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the destination data determined by $\mathrm{D} 1+\mathrm{D} 2$ are within the valid device range. If the derived source or destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | $X$ |

When S 1 (source 1) is a word device and D1 (destination 1 ) is a $\mathrm{Q}, \mathrm{M}$, or R bit device, the data is transferred as 16 points or 32 bits, depending on the data type. When repeat is assigned for a bit device, the quantity of device bits increases in 16 - or 32 -point increments.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word or float data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Example: IMOV

## - Data Type: Word

| I0 | IMOV(W) | S1- | S2 | D1- | D2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | D20 | C10 | D10 | D25 |  |

$\mathrm{D} 20+\mathrm{C} 10 \rightarrow \mathrm{D} 10+\mathrm{D} 25$
Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.

If the current value of counter C10 assigned by source device S 2 is 4 , the source data is determined by adding the offset value to data register D20 assigned by source device S 1 :
$D(20+4)=D 24$
If data register D25 contains a value of 20, the destination is determined by adding the offset value to data register D10 assigned by destination device D1:

$$
D(10+20)=D 30
$$

As a result, when input IO is on, the data in data register D24 is moved to data register D30.

## - Data Type: Float



$$
\mathrm{D} 20+\mathrm{D} 50 \rightarrow \mathrm{D} 10+\mathrm{D} 51
$$

If data register D50 contains a value of 2, the source data is determined by adding the offset value to data register $D 20$ assigned by source device $S 1: D(20+2)=D 22$

If data register D51 contains a value of 20, the destination is determined by adding the offset value to data register D10 assigned by destination device $D 1: D(10+20)=D 30$

As a result, when input I0 is on, the data in data registers D22•D23 is moved to data registers D30•D31.


## IMOVN (Indirect Move Not)



S1 + S2 NOT $\rightarrow$ D1 + D2
When input is on, the values contained in devices assigned by S 1 and S2 are added together to determine the data source. The 16- or 32-bit data is then inverted and moved to the destination, which is determined by the sum of values contained in devices assigned by D1 and D2.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Base address to move from | X | X | X | X | X | X | X | - | 1-99 |
| S2 (Source 2) | Offset for S1 | X | X | X | X | X | X | X | - | - |
| D1 (Destination 1) | Base address to move to | - | X | ( | X | X | X | X | - | 1-99 |
| D2 (Destination 2) | Offset for D1 | X | X | X | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as $\mathrm{S} 1, \mathrm{~S} 2$, or D 2 , the device data is the timer/counter current value (TC or CC). When T (timer) or C (counter) is used as D1, the device data is the timer/counter preset value (TP or CP), 0 through 65,535.
Source device S2 or destination device D2 does not have to be assigned. If S2 or D2 is not assigned, the source or destination device is determined by S1 or D1 without offset.
Make sure that the source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the destination data determined by $\mathrm{D} 1+\mathrm{D} 2$ are within the valid device range. If the derived source or destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When S 1 (source 1) is a word device and D1 (destination 1 ) is a $\mathrm{Q}, \mathrm{M}$, or R bit device, the data is transferred as 16 points or 32 bits, depending on the data type. When repeat is set for a bit device, the quantity of device bits increases in 16 - or 32 -point increments.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Example: IMOVN


$\mathrm{C} 10+\mathrm{D} 10$ NOT $\rightarrow \mathrm{D} 30+\mathrm{D} 20$
Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values used to determine the source and destination devices.

If the data of data register D10 assigned by source device $S 2$ is 4 , then the source data is determined by adding the offset value to counter C10 assigned by source device S 1 :
$C(10+4)=C 14$
If data register D20 assigned by destination device D2 contains a value of 15 , then the destination is determined by adding the offset value to data register D30 assigned by destination device D1:
$D(30+15)=D 45$
As a result, when input I0 is on, the current value of counter C14 is inverted and moved to data register D45.


## BMOV (Block Move)



$$
\mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \ldots, \mathrm{~S} 1+\mathrm{N}-1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \ldots, \mathrm{D} 1+\mathrm{N}-1
$$

When input is on, N blocks of 16 -bit word data starting with device assigned by S 1 are moved to N blocks of destinations, starting with device assigned by D1. N-W specifies the quantity of blocks to move.


Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | First device address to move | X | X | X | X | X | X | X | - | - |
| N-W (N words) | Quantity of blocks to move | X | X | X | X | X | X | X | X | - |
| D1 (Destination 1) | First device address to move to | - | X |  | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 1 or $\mathrm{N}-\mathrm{W}$, the timer/counter current value (TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.
Make sure that the last source data determined by $\mathrm{S} 1+\mathrm{N}-1$ and the last destination data determined by $\mathrm{D} 1+\mathrm{N}-1$ are within the valid device range. If the derived source or destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, N-W, or destination, 16 points (word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, $\mathrm{N}-\mathrm{W}$, or destination, 1 point (word data) is used.

## Special Internal Relay M8024: BMOV/WSFT Executing Flag

While the BMOV or WSFT is executed, M8024 turns on. When completed, M8024 turns off. If the CPU is powered down while executing BMOV or WSFT, M8024 remains on when the CPU is powered up again.

## Example: BMOV



D10 through D14 $\rightarrow$ D20 through D24
When input IO is turned on, data of 5 data registers, starting with D10 assigned by source device S 1 , is moved to 5 data registers starting with D20 assigned by destination device D1.

| D10 | 2005 | D20 | 2005 |
| :---: | :---: | :---: | :---: |
| D11 | 12 | D21 | 12 |
| D12 | 25 | D22 | 25 |
| D13 | 12 | D23 | 12 |
| D14 | 30 | D24 | 30 |

## 5: Move Instructions

## IBMV (Indirect Bit Move)


$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1+\mathrm{D} 2$
When input is on, the values contained in devices assigned by S1 and S2 are added together to determine the source of data. The 1bit data is then moved to the destination, which is determined by the sum of values contained in devices assigned by D1 and D2.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Base address to move from | $X$ | $X$ | $X$ | $X$ | - | - | $X$ | 0 or 1 | $1-99$ |
| S2 (Source 2) | Offset for S1 | $X$ | $0-65,535$ | - |
| D1 (Destination 1) | Base address to move to | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | $1-99$ |
| D2 (Destination 2) | Offset for D1 | $X$ | $0-65,535$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
a Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2 or D2, the timer/counter current value (TC or CC) is displayed.
Make sure that the last source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the last destination data determined by D1+D2 are within the valid device range. If the derived source or destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Source device S2 or destination device D2 does not have to be assigned. If S2 or D2 is not assigned, the source or destination device is determined by S1 or D1 without offset.

## Examples: IBMV



Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values to determine the source and destination devices.

If the value of data register D10 assigned by source device S 2 is 5 , the source data is determined by adding the offset value to internal relay M10 assigned by source device S 1 .

If the current value of counter C5 assigned by destination device D2 is 12, the destination is determined by adding the offset value to output Q0 assigned by destination device D1.


As a result, when input IO is on, the ON/OFF status of internal relay M15 is moved to output Q14.

| 10 | SOTU |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | IBMV | S1- | S2 | D1- | D2 | REP |
|  | D10 | 5 | D20 | 12 |  |  |

$$
\mathrm{D} 10+5 \rightarrow \mathrm{D} 20+12
$$

Since source device S1 is a data register and the value of source device S 2 is 5 , the source data is bit 5 of data register D10 assigned by source device S1.

Since destination device D1 is a data register and the value of source device D2 is 12 , the destination is bit 12 of data register D20 assigned by destination device D1.
As a result, when input IO is on, the ON/OFF status of data register D10 bit 5 is moved to data register D20 bit 12.


## Repeat Operation in the Indirect Bit Move Instructions

## Repeat Bit Devices (Source and Destination)

If a repeat operation is set for bit devices such as input, output, internal relay, or shift register, as many bit devices as the repeat cycles are moved.


Since source device S 1 is internal relay M10 and the value of source device S 2 is 5 , the source data is 3 internal relays starting with M15.
Since destination device D1 is output Q0 and the value of destination device D2 is 9 , the destination is 3 outputs starting with Q11.
As a result, when input I1 is on, the ON/OFF statuses of internal relays M15 through M17 are moved to outputs Q11 through Q13.


## Repeat Word Devices (Source and Destination)

If a repeat operation is for word devices such as data register, as many bit devices as the repeat cycles in the designated data register are moved.


D10 + 5 $\rightarrow$ D20 + 12
Repeat $=3$

Since source device S1 is data register D10 and the value of source device $S 2$ is 5 , the source data is 3 bits starting with bit 5 of data register D10.
Since destination device D1 is data register D20 and the value of destination device D2 is 12, the destination is 3 bits starting with bit 12 of data register D20.
As a result, when input I2 is on, the ON/OFF statuses of data register D10 bits 5 through 7 are moved to data register D20 bits 12 through 14.


## 5: Move Instructions

## IBMVN (Indirect Bit Move Not)



S1 + S2 NOT $\rightarrow$ D1 + D2
When input is on, the values contained in devices assigned by S1 and S2 are together added to determine the data source. The 1-bit data is then inverted and moved to the destination, which is determined by the sum of values contained in devices assigned by D1 and D2.

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Base address to move from | $X$ | $X$ | $X$ | $X$ | - | - | $X$ | 0 or 1 | $1-99$ |
| S2 (Source 2) | Offset for S1 | $X$ | $0-65,535$ | - |
| D1 (Destination 1) | Base address to move to | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | $1-99$ |
| D2 (Destination 2) | Offset for D1 | $X$ | $0-65,535$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.

- Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

When T (timer) or C (counter) is used as S2 or D2, the timer/counter current (TC or CC) value is displayed.
Make sure that the last source data determined by $\mathrm{S} 1+\mathrm{S} 2$ and the last destination data determined by D1+D2 are within the valid device range. If the derived source or destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Source device S2 or destination device D2 does not have to be used. If S2 or D2 are not used, the source or destination device is determined by S1 or D1 without offset.

## Examples: IBMVN



Source device S1 and destination device D1 determine the type of device. Source device S2 and destination device D2 are the offset values used to determine the source and destination devices.

If the value of data register D10 assigned by source device S2 is 8 , the source data is determined by adding the offset value to internal relay M20 assigned by source device S 1 .

If the current value of counter C5 assigned by destination device D2 is 10 , the destination is determined by adding the offset value to output Q0 assigned by destination device D1.


As a result, when input IO is on, the ON/OFF status of internal relay M30 is inverted and moved to output Q12.

## NSET (N Data Set)


$\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \ldots, \mathrm{Sn} \rightarrow \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \ldots$, Dn
When input is on, N blocks of 16 - or 32-bit data in devices assigned by $\mathrm{S} 1, \mathrm{~S} 2$, S3, ... , Sn are moved to N blocks of destinations, starting with device assigned by D1.


Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First device address to move | X | X | X | X | X | X | X | X | - |
| D1 (Destination 1) | First device address to move to | - | X | $\mathbf{A}$ | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).

When F (float) data is selected, only data register and constant can be designated as S 1 , and only data register can be designated as D1.
When F (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart.

Make sure that the last destination data determined by D1+N-1 (word or integer data) or D1+2N-2 (double-word, long, or float data) is within the valid device range. If the derived destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word or integer data) or 32 points (double-word or long data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Example: NSET(F)



Five constants $0.51,2.34,7.89,3.33$, and $10.0 \rightarrow$ D20 through D29
When input I0 is turned on, 5 constants assigned by source devices S 1 through S 5 are moved to 10 data registers starting with D20 assigned by destination device D1.

| 0.51 $\longrightarrow \mathrm{D} 20 \cdot \mathrm{D} 21$ | 0.51 |
| :---: | :---: |
| $2.34 \longrightarrow \mathrm{D} 22 \cdot \mathrm{D} 23$ | 2.34 |
| $7.89 \longrightarrow \mathrm{D} 24 \cdot \mathrm{D} 25$ | 7.89 |
| $3.33 \longrightarrow \mathrm{D} 26 \cdot \mathrm{D} 27$ | 3.33 |
| $10.0 \longrightarrow$ D28.D29 | 10.0 |

## 5: Move Instructions

## NRS (N Data Repeat Set)



S1 $\rightarrow$ D1, D2, D3, ..., Dn-1
When input is on, 16- or 32-bit data assigned by S 1 is set to N blocks of destinations, starting with device assigned by D1.


## Valid Devices

| Device | Function | I | Q | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N-W (N blocks) | Quantity of blocks to move | $X$ | - |
| S1 (Source 1) | First device address to move | $X$ | - |
| D1 (Destination 1) | First device address to move to | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
For the N-W, 1 word (16 bits) is always used without regard to the data type.
( Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as N -W or S 1 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).
When F (float) data is selected, only data register and constant can be designated as S1, and only data register can be designated as D1.
When F (float) data is selected and S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart.

Make sure that the last destination data determined by D1+N-1 (word or integer data) or D1+2N-2 (double-word, long, or float data) is within the valid device range. If the derived destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word or integer data) or 32 points (double-word or long data) are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Example: NRS(F)



D25•D26 $\rightarrow$ D30 through D39
When input I0 is turned on, data of data registers D25•D26 assigned by source device S1 is moved to 10 data registers starting with D30 assigned by destination device D1.


## XCHG (Exchange)


Word data:
D1 $\leftrightarrow$ D2
Double-word data:
D1•D1+1 $\rightarrow$ D2, D2+1

When input is on, the 16- or 32-bit data in devices assigned by D1 and D2 are exchanged with each other.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D1 (Destination 1) | First device address to exchange | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | - |
| D2 (Destination 2) | First device address to exchange | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Internal relays M0 through M1277 can be designated as D1 or D2. Special internal relays cannot be designated as D1 or D2.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as Q (output), M (internal relay), or R (shift register) is assigned as the destination, 16 points (word data) or 32 points (double-word data) are used.

When a word device such as $D$ (data register) is assigned as the destination, 1 point (word data) or 2 points (double-word data) are used

## Examples: XCHG

- Data Type: Word

D21 $\leftrightarrow$ D24
When input IO is turned on, data of data registers D21 and D24 assigned by devices D1 and D2 are exchanged with each other.

- Data Type: Double Word


D31•D32 $\leftrightarrow$ D37•D38
When input I1 is turned on, data of data registers D31•D32 and D37•D38 assigned by devices D1 and D2 are exchanged with each other.


| Before Exchange |  | After Exchange |  |
| :---: | :---: | :---: | :---: |
| D31-D32 | 1234567890 | D31.D32 | 9876543 |
| D33.D34 |  | D33.D34 |  |
| D35-D36 |  | D35.D36 |  |
| D37-D38 | 9876543 | D37-D38 | 1234567890 |

## 5: Move Instructions

## TCCST (Timer/Counter Current Value Store)



S1 $\rightarrow$ D1
When input is on, 16- or 32-bit data assigned by S 1 is displayed and stored to the current value of device assigned by D1.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| S1 (Source 1) | First device address to move | X | X | X | X | X | X | X | X | $1-99$ |
| D1 (Destination 1) | First device address to move to | - | - | - | - | X | X | - | - | $1-99$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC) is displayed. T (timer) or C (counter) is used as D1, and the data is written in as a current value (TP or CP).

Since the TCCST instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | X |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a bit device such as I (input), Q (output), $M$ (internal relay), or $R$ (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Example: TCCST

When input I2 is turned on, 99,998 is written to the current value of counter C23.

## Ladder Diagram



## Timing Chart



## 6: Data Comparison Instructions

## Introduction

Data can be compared using data comparison instructions, such as equal to, unequal to, less than, greater than, less than or equal to, and greater than or equal to. When the comparison result is true, an output or internal relay is turned on. The repeat operation can also be used to compare more than one set of data.
When the repeat operation is enabled, repeated comparison results of CMP instructions can be selected from AND or OR operation, and the result is outputted to an output or internal relay.
Three values can also be compared using the ICMP>= instruction.
Load comparison instructions load comparison results so that the following instructions can be initiated.
Since the data comparison instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## CMP = (Compare Equal To)

$-1 \longmapsto$| $\mathrm{CMP}=(*)$ | $\mathrm{S} 1(\mathrm{R})$ | $\mathrm{S} 2(\mathrm{R})$ | $\mathrm{D} 1(\mathrm{R})$ | REP |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{AND} / \mathrm{OR}$ | $* * * * *$ | $* * * * *$ | $* * * * *$ | $* *$ |

## CMP<> (Compare Unequal To)



## CMP< (Compare Less Than)



## CMP> (Compare Greater Than)



CMP<= (Compare Less Than or Equal To)


Data type W or I: $\quad \mathrm{S} 1 \leq \mathrm{S} 2 \rightarrow \mathrm{D} 1$ on
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1$ on
When input is on, 16- or 32-bit data assigned by source devices S1 and S2 are compared. When S1 data is less than or equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

## CMP> $=$ (Compare Greater Than or Equal To)


$\begin{array}{ll}\text { Data type W or I: } & \mathrm{S} 1 \geq \mathrm{S} 2 \rightarrow \mathrm{D} 1 \text { on } \\ \text { Data type } \mathrm{D}, \mathrm{L} \text {, or } \mathrm{F}: & \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \geq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \text { on }\end{array}$
When input is on, 16 - or 32-bit data assigned by source devices S 1 and S 2 are compared. When S1 data is greater than or equal to S2 data, destination device D1 is turned on. When the condition is not met, D1 is turned off.

## 6: Data Comparison Instructions

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Repeat Result | Logical AND or OR operation | - | - | - | - | - | - | - | - | - |
| S1 (Source 1) | Data to compare | $X$ | $1-99$ |
| S2 (Source 2) | Data to compare | $X$ | $1-99$ |
| D1 (Destination 1) | Comparison output | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | $1-99$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
When only S1 and/or S2 is repeated, the logical operation type can be selected from AND or OR.
( Internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1. When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value (TC or CC ) is displayed.

When F (float) data is selected, only data register and constant can be designated as S1 and S2.
When F (float) data is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| F (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word or integer data) or 32 points (double-word or long data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32-point increments.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

When an output or internal relay is assigned as the destination, only 1 point is used regardless of the selected data type. When repeat is assigned for the destination, outputs or internal relays as many as the repeat cycles are used.

## Special Internal Relays M8150, M8151, and M8152 in CMP=

Three special internal relays are available to indicate the comparison result of the CMP= instruction. Depending on the result, one of the three special internal relays turns on.

```
When S1 > S2, M8150 turns on.
When S1 = S2, M8151 turns on.
When S1 < S2, M8152 turns on.
```



| S2 Value | M8150 | M8151 | M8152 | D1 <br> Status |
| :---: | :---: | :---: | :---: | :---: |
| $(1) \mathrm{S} 1>\mathrm{S} 2$ | ON | OFF | OFF | OFF |
| $(2) \mathrm{S} 1=\mathrm{S} 2$ | OFF | ON | OFF | ON |
| $(3) \mathrm{S} 1<\mathrm{S} 2$ | OFF | OFF | ON | OFF |

When repeat is designated, the comparison result of the last repeat cycle turns on one of the three special internal relays.

When more than one CMP = or ICMP>= instruction is used, M8150, M8151, or M8152 indicates the result of the instruction that was executed last.

## Examples: CMP>=

The following examples are described using the CMP $\geq$ instruction. Data comparison operation for all other data comparison instructions is the same for the CMP $\geq$ instruction.

## - Data Type: Word



## - Data Type: Integer



- Data Type: Double Word
|- 1

| S1 |  | S2 |  |  | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D50•D51 | 23456789 |  | D60•D61 | 12345678 | Q2 turned on |
| D50.D51 | 23456789 | $\longleftrightarrow$ | D60.D61 | 34567890 | Q2 turned off |

## - Data Type: Long

$\left|\begin{array}{lllll|}\hline \text { I3 } & \text { CMP>=(L) } & \text { S1- } & \text { S2 - } & \text { D1- } \\ & \text { D70 } & \text { D80 } & \text { Q3 } & \\ \hline\end{array}\right|$


## - Data Type: Float

$|$| $\mathrm{CMP}>=(\mathrm{F})$ | $\mathrm{S} 1-$ | $\mathrm{S} 2-$ | $\mathrm{D} 1-$ | REP |
| :--- | :--- | :--- | :--- | :--- |
|  | D 90 | D 95 | Q 4 |  |


| S1 |  |  | S2 |  | D1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D90•D91 | 12.4 | $\longleftrightarrow$ | D95•D96 | 12.345 | Q4 turned on |
| D90•D91 | -1 | $\longleftrightarrow$ | D95.D96 | -0.99 | Q4 turned off |

## 6: DATA COMPARISON Instructions

## Repeat Operation in the Data Comparison Instructions

The following examples use the CMP $\geq$ instruction of word and double word data. Repeat operation for all other data comparison instructions and other data types is the same as the following examples.
When the repeat operation is enabled, repeated comparison results of CMP instructions can be selected from AND or OR operation, and the result is output to an output or internal relay.

## Repeat One Source Device

When only S 1 (source) is designated to repeat, source devices (as many as the repeat cycles, starting with the device designated by S 1 ) are compared with the device designated by S 2 . The comparison results are ANDed or ORed and set to the destination device designated by D1.

## - Data Type: Word (Repeat Logical Operation AND)



- Data Type: Word (Repeat Logical Operation OR)

- Data Type: Double Word (Repeat Logical Operation AND)

$|$| IO | CMP $>=(D)$ S1 R S2 - D1 - REP <br> AND D20 D30 M50 3$\|$ |
| :--- | :--- | :--- | :--- | :---: |



## Repeat Two Source Devices

When S1 (source) and S2 (source) are designated to repeat, source devices (as many as the repeat cycles, starting with the devices designated by S1 and S2) are compared with each other. The comparison results are ANDed or ORed and set to the destination device designated by D1.

- Data Type: Word (Repeat Logical Operation AND)

- Data Type: Word (Repeat Logical Operation OR)



## - Data Type: Double Word (Repeat Logical Operation AND)




## Repeat Source and Destination Devices

When S1, S2 (source), and D1 (destination) are designated to repeat, source devices (as many as the repeat cycles, starting with the devices designated by S1 and S2) are compared with each other. The comparison results are set to destination devices (as many as the repeat cycles, starting with the device designated by D1).

- Data Type: Word

- Data Type: Double Word



## Comparison Output Status

The comparison output is usually maintained while the input to the data comparison instruction is off. If the comparison output is on, the on status is maintained when the input is turned off as demonstrated by this program.


This program turns the output off when the input is off.



## 6: Data Comparison Instructions

## ICMP> $=$ (Interval Compare Greater Than or Equal To)



Data type W or I: $\quad \mathrm{S} 1 \geq \mathrm{S} 2 \geq \mathrm{S} 3 \rightarrow \mathrm{D} 1$ on
Data type D, L, F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \geq \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \geq \mathrm{S} 3 \cdot \mathrm{~S} 3+1 \rightarrow \mathrm{D} 1$ on When input is on, the 16 - or 32 -bit data assigned by $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 are compared. When the condition is met, destination device D1 is turned on. When the condition is not met, D1 is turned off.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Data to compare | X | X | X | X | X | X | X | X | - |
| S2 (Source 2) | Data to compare | X | X | X | X | X | X | X | X | - |
| S3 (Source 3) | Data to compare | X | X | X | X | X | X | X | X |  |
| D1 (Destination 1) | Comparison output | - | X | $\mathbf{A}$ | - | - | - | - | - | - |

For the valid device address range, see "Device Addresses" on page 2-1.
A Internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1. When T (timer) or C (counter) is used as $\mathrm{S} 1, \mathrm{~S} 2$, or S 3 , the timer/counter current value (TC or CC ) is displayed.

When F (float) data is selected, only data register and constant can be designated as S1, S2, and S3.
When $F$ (float) data is selected and $S 1, S 2$, or $S 3$ does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart.

When the data of S1 is smaller than that of S3 $(S 1<S 3)$, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

| W (word) | $X$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word or integer data) or 32 points (double-word or long data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

The destination uses only one output or internal relay regardless of the selected data type.

## Special Internal Relays M8150, M8151, and M8152 in ICMP>=

Three special internal relays are available to indicate the comparison result of the ICMP>= instruction. Depending on the result, one of the three special internal relays turns on. S1 must always be greater than or equal to S 3 ( $\mathrm{S} 1 \geq \mathrm{S} 3$ ).

When S2 > S1, M8150 turns on.
When S2 < S3, M8151 turns on.
When S1 > S2 > S3, M8152 turns on.


| S2 Value | M8150 | M8151 | M8152 | D1 <br> Status |
| :---: | :---: | :---: | :---: | :---: |
| $(1) \mathrm{S} 2<$ S3 | OFF | ON | OFF | OFF |
| $(2) \mathrm{S2} \mathrm{=} \mathrm{S3}$ | OFF | OFF | OFF | ON |
| $(3) \mathrm{S} 3<$ S2 < S1 | OFF | OFF | ON | ON |
| $(4)$ S2 = S1 | OFF | OFF | OFF | ON |
| $(5)$ S2 > S1 | ON | OFF | OFF | OFF |

When more than one ICMP>= or CMP= instruction is used, M8150, M8151, or M8152 indicates the result of the instruction that was executed last.

## Example: ICMP>=



When input I0 is turned on, data of data registers D10, D11, and D12 assigned by source devices $\mathrm{S} 1, \mathrm{~S} 2$, and S 3 are compared. When the condition is met, internal relay Q1 assigned by destination device D1 is turned on. When the condition is not met, Q1 is turned off.

| S1 |  | S2 |  |  | S3 |  |  | D1 | M8150 | M8151 | M8152 | M8004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D10 | 17 | > | D11 | 15 | = | D12 | 15 | Q1 goes on | OFF | OFF | OFF | OFF |
| D10 | 15 | < | D11 | 18 | < | D12 | 19 | Q1 goes off | ON | ON | OFF | ON |

## LC= (Load Compare Equal To)



Data type W or I: $\quad \mathrm{S} 1=\mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1=\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32-bit data assigned by S1 and S2. When S1 data is equal to S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## LC<> (Load Compare Unequal To)



Data type W or I: $\quad \mathrm{S} 1 \neq \mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \neq \mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32- bit data assigned by S1 and S2. When S1 data is not equal to S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## LC $<$ (Load Compare Less Than)



Data type W or I: $\quad \mathrm{S} 1<\mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1<\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32 - bit data assigned by S 1 and S 2 . When S 1 data is less than S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## LC> (Load Compare Greater Than)



Data type W or I:
S1 > S2
Data type D, L, or F:
$\mathrm{S} 1 \cdot \mathrm{~S} 1+1>\mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32 - bit data assigned by S1 and S2. When S1 data is greater than S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## LC<= (Load Compare Less Than or Equal To)



Data type W or I: $\quad \mathrm{S} 1 \leq \mathrm{S} 2$ Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq \mathrm{S} 2 \cdot \mathrm{~S} 2+1$ This instruction constantly compares 16 - or 32- bit data assigned by S1 and S2. When S1 data is less than or equal to S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## LC> $=$ (Load Compare Greater Than or Equal To)



Data type W or I:
$\mathrm{S} 1 \geq \mathrm{S} 2$
Data type D, L, or F: $\quad \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \geq \mathrm{S} 2 \cdot \mathrm{~S} 2+1$
This instruction constantly compares 16 - or 32-bit data assigned by S1 and S2. When S1 data is greater than or equal to S2 data, the output to the following instructions is turned on. When the condition is not met, the output is turned off.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Data to compare | $X$ | - |
| S2 (Source 2) | Data to compare | $X$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When $T$ (timer) or $C$ (counter) is used, the timer/counter current value (TC or CC) is displayed.
When F (float) data is selected, only data register and constant can be designated.
When $F$ (float) data is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. The output to the following instructions is turned off. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), $Q$ (output), $M$ (internal relay), or $R$ (shift register) is assigned, 16 points (word or integer data) or 32 points (double-word or long data) are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Examples: LC



## Timing Chart



## Ladder Diagram 2



## Timing Chart



Output Q0 is on when counter C2 current value is 99,997.

Output Q1 is turned on when counter C2 current value reaches 99,996 and remains on until counter C2 is reset.

Program List

| Instruction | Data |
| :---: | :---: |
| LOD | I2 |
| SOTU |  |
| ADD(I) | D10 |
|  | 1 |
| LC<=(I) | D10 |
|  | D10 |
| LC<=(I) | 3 |
|  | D10 |
| ORLOD | Q2 |
| OUT | -3 |
| LC<=(I) | D10 |
| LC<=(I) | D10 |
| ANDLOD | 5 |
| OUT | Q3 |

Output Q2 is on when data register D10 is less than or equal to -2 and greater than or equal to 3 .

Output Q3 is on while data register D10 is between 3 and 5.

## 7: Binary Arithmetic Instructions

## Introduction

This chapter describes the arithmetic operation instructions that perform arithmetic based on specified data and store those results in devices. For addition and subtraction devices, internal relay M8003 is used to carry or to borrow.
The ROOT instruction can be used to calculate the square root of the value stored in one or two data registers.

## ADD (Addition)



## SUB (Subtraction)



MUL (Multiplication)


## DIV (Division)



| Data type W or I: | $\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{CY}$ |
| :--- | :--- |
| Data type D, L, or F: | $\mathrm{S} 1 \cdot \mathrm{~S} 1+1+\mathrm{S} \cdot \mathrm{S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1, \mathrm{CY}$ |

When input is on, 16 - or 32-bit data assigned by source devices S1 and S2 are added together. The result is set to destination device D1 and internal relay M8003 (carry or borrow).

| Data type W or I: | $\mathrm{S} 1-\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{BW}$ |
| :--- | :--- |
| Data type D, L, or F: | $\mathrm{S} 1 \cdot \mathrm{~S} 1+1-\mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1, \mathrm{BW}$ |

When input is on, 16- or 32-bit data assigned by source device S 2 is subtracted from 16 - or 32-bit data assigned by source device S 1 . The result is set to destination device D1 and internal relay M8003 (carry or borrow).

$$
\begin{array}{ll}
\text { Data type W or I: } & \mathrm{S} 1 \times \mathrm{S} 2 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \\
\text { Data type D, L, or F: } & \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \times \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1
\end{array}
$$

When input is on, 16- or 32 -bit data assigned by source device S 1 is multiplied by 16- or 32 -bit data assigned by source device S 2 . The result is set to destination device D1.

When the result exceeds the valid range for data types $D$ or $L$, the ERR LED and special internal relay M8004 (user program execution error) are turned on.

| Data type W or I: | $\mathrm{S} 1 \div \mathrm{S} 2 \rightarrow \mathrm{D} 1$ (quotient), $\mathrm{D} 1+1$ (remainder) |
| :--- | :--- |
| Data type D or L: | $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \div \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$ (quotient), |
|  | $\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$ (remainder) |
| Data type F: | $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \div \mathrm{S} 2 \cdot \mathrm{~S} 2+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$ (quotient) |

When input is on, 16- or 32-bit data assigned by source device $S 1$ is divided by 16 - or 32 -bit data assigned by source device S 2 . The quotient is set to 16or 32-bit destination device D1, and the remainder is set to the next 16- or $32-$ bit data. Data type F does not generate a remainder.

When S2 is 0 (dividing by 0 ), the ERR LED and special internal relay M8004 (user program execution error) are turned on.

A user program execution error also occurs in the following division operations.

$$
\begin{array}{ll}
\text { Data type I: } & -32768 \div(-1) \\
\text { Data type L: } & -2147483648 \div(-1)
\end{array}
$$

## 7: Binary Arithmetic Instructions

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Data for calculation | X | X | X | X | X | X | X | X | 1-99 |
| S2 (Source 2) | Data for calculation | X | X | X | X | X | X | X | X | 1-99 |
| D1 (Destination 1) | Destination to store results | - | X | ( | X | X | X | X | - | 1-99 |

For valid device address ranges, see "Device Addresses" on page 2-1.
Anternal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as $S 1$ or S 2 , the timer/counter current value (TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.
When F (float) data is selected, only data register and constant can be designated as S1 and S2.
When F (float) data is selected and S1 or S2 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the binary arithmetic instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :--- |
| I (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| F (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word or integer data) or 32 points (double-word, long, or float data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32-point increments.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Using Carry or Borrow Signals

When the D1 (destination) data exceeds the valid data range as a result of any binary arithmetic operation, a carry or borrow occurs, and special internal relay M8003 is turned on.

| Data Type | Carry/borrow Occurs when D1 Exceeds the Range between |
| :--- | :---: |
| W (word) | 0 and 65,535 |
| I (integer) | $-32,768$ and 32,767 |
| D (double word) | 0 and $4,294,967,295$ |
| L (long) | $-2,147,483,648$ and $2,147,483,647$ |
| F (float) | $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ |
|  | $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$ |

## Examples: ADD

## - Data Type: Word

This example demonstrates the use of a carry signal from special internal relay M8003 to set an alarm signal.

$\mathrm{D} 2+500 \rightarrow \mathrm{D} 2$
When a carry occurs, output Q0 is assigned as a warning indicator.

When the acknowledge pushbutton (input I1) is pressed, the warning indicator is reset.

- Data Type: Integer

D10 $\square$ $+\quad$ D20 $\qquad$ D30 $\qquad$
- Data Type: Double Word


D10•D11 $\square$ $+\quad D 20 \cdot D 21$


## - Data Type: Long



D10•D11 $\square$ $+D 20 \cdot D 21$ $\square$ D30•D31 $\qquad$

- Data Type: Float



## Example: SUB

- Data Type: Word

The following example demonstrates the use of special internal relay M8003 to process a borrow.


D12 - $7000 \rightarrow$ D12
Borrow is processed so that the number of times a borrow occurs is subtracted from D13.

When a borrow occurs, D13 is decremented by one.

## 7: Binary Arithmetic Instructions

## Examples: MUL

- Data Type: Word


D10•D11 $\square$ $\times \quad D 20 \cdot D 21$ $\square$ $\longrightarrow D 30 \cdot D 31$ 500000000

Note: In multiplication of double word data, the lower 32-bit data of the result is set to destination device D1•D1+1.

- Data Type: Long


Note: In multiplication of long data, the lower 32-bit data of the result is set to destination device D1•D1 +1 .

## - Data Type: Float



Note: Since the destination uses two word devices in the multiplication operation, data register D7999 or D55999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 32 internal relays are required; so internal relay M7966 through M9999, M17466 or a larger number cannot be used as destination device D1.

## Examples: DIV

## - Data Type: Word



When input I2 is on, D10 data is divided by D20 data. The quotient is set to D30, and the remainder is set to D31.

Note: Since the destination uses two word devices in the division operation of word data, data register D7999 or D55999 cannot be used as destination device D1. When using a bit device, such as internal relay for destination, 32 internal relays are required; so M7966 through M9999, M17466 or a larger number cannot be used as destination device D1.

- Data Type: Integer


Note: Since the destination uses two word devices in the division operation of integer data, data register D7999 or D55999 cannot be used as destination device D1. When using a bit device, such as internal relay for destination, 32 internal relays are required; so M7966 through M9999, M17466 or a larger number cannot be used as destination device D1.

- Data Type: Double Word


Note: Since the destination uses four word devices in the division operation of double-word data, data registers D7999 or D55999 cannot be used as destination device D1. When using a bit device such as internal relay for destination, 64 internal relays are required; so M7934 trough M9999, 17434 or a larger number cannot be used as destination device D1.


## - Data Type: Long



Note: Since the destination uses four word devices in the division operation of long data, data registers D7999 or D55999 cannot be used as destination device D1. When using a bit device, such as internal relay for destination, 64 internal relays are required; so M7934 trough M9999, 17434 or a larger number cannot be used as destination device D1.

- Data Type: Float


Note: Since the destination uses two word devices in the division operation of float data, data register D7999 or D55999 cannot be used as destination device D1.

## 7: Binary Arithmetic Instructions

## Repeat Operation in the ADD and SUB Instructions

Source devices S 1 and S 2 and destination device D 1 can be assigned to repeat individually or in combination. When destination device D1 is not set to repeat, the final result is set to destination device D1. When repeat is assigned, as many consecutive devices as the repeat cycles, starting with the designated device, are used. Since the repeat operation works similarly on the ADD (addition) and SUB (subtraction) instructions, the following examples are described using the ADD instruction.

## Repeat One Source Device

## - Data Type: Word and Integer

When only S 1 (source) is assigned to repeat, the final result is set to destination device D1.


## - Data Type: Double Word, Long, and Float

When only S 1 (source) is assigned to repeat, the final result is set to destination device $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

|  |  |  |  |  |  | S1 (Repeat |  | S2 (Repeat = 0) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ADD( ${ }^{\text {( }}$ | $\begin{aligned} & \text { S1 R } \\ & \text { D10 } \end{aligned}$ | S2- D20 | $\begin{aligned} & \text { D1 - } \\ & \text { D30 } \end{aligned}$ | $\begin{gathered} \text { REP } \\ 3 \end{gathered}$ |  |  |  | (D30.D31) |
|  |  |  |  |  |  | D12.D13 | + |  | D20.D21 | $\rightarrow$ | (D30-D31) |
|  |  |  |  |  |  | D14.D15 | + | D20.D21 | $\longrightarrow$ | D30.D31 |

## Repeat Destination Device Only

## - Data Type: Word and Integer

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with D1.



## - Data Type: Double Word, Long, and Float

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.


## Repeat Two Source Devices

- Data Type: Word and Integer

When S 1 and S 2 (source) are assigned to repeat, the final result is set to destination device D1.

$\mathrm{H}_{\mathrm{I} 1} 1$| SOTU | $\mathrm{ADD}(\mathrm{W})$ | S 1 R | S 2 R |
| :--- | :--- | :--- | :--- |
| D 10 | $\mathrm{D} 1-$ | REP |  |
|  | D 20 | D 30 | 3 |

## - Data Type: Double Word, Long, and Float

When S1 and S2 (source) are assigned to repeat, the final result is set to destination device D1•D1+1.


| S1 (Repeat = 3) |  | S2 (Repeat = 3) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $+$ | D20.D21 | $\rightarrow$ | (D30•D31) |
| D12•D13 | + | D22.D23 | $\rightarrow$ | (D30-D31) |
| D14-D15 | + | D24.D25 | $\longrightarrow$ | D30•D31 |

## Repeat Source and Destination Devices

## - Data Type: Word and Integer

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with D1.
-

| S1 (Repeat = 3) |  |  | $\mathbf{S 2}$ (Repeat = 0) |  | D1 (Repeat $=3$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D10 | 10 | + | D20 | 25 | $\rightarrow$ | D30 | 35 |
| D11 | 15 | + | D20 | 25 | $\rightarrow$ | D31 | 40 |
| D12 | 20 | + | D20 | 25 | $\longrightarrow$ | D32 | 45 |

## - Data Type: Double Word, Long, and Float

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.


| S1 $($ Repeat $=3)$ |  | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 $($ Repeat $=3)$ |
| :---: | :---: | :---: | :---: | :---: |
| D10.D11 | + | D20.D21 | $\bigcirc$ | D30.D31 |
| D12.D13 | + | D20.D21 | $\longrightarrow$ | D32-D33 |
| D14.D15 | + | D20.D21 | $\longrightarrow$ | D34-D35 |

## Repeat All Source and Destination Devices

## - Data Type: Word and Integer

When all devices are assigned to repeat, different results are set to 3 devices starting with D1.


## - Data Type: Double Word, Long, and Float

When all devices are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.


Note: Special internal relay M8003 (carry/borrow) is turned on when a carry or borrow occurs in the last repeat operation. When a user program execution error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERR LED are turned on and maintained while operations for other instructions continues.

## 7: Binary Arithmetic Instructions

## Repeat Operation in the MUL Instruction

Since the MUL (multiplication) instruction uses two destination devices, the result is stored to destination devices as described below. Source devices S1 and S2 and destination device D1 can be designated to repeat individually or in combination. When destination device D1 is not assigned to repeat, the final result is set to destination device D1 and D1 +1 . When repeat is designated, consecutive devices as many as the repeat cycles starting with the designated device are used.
Since the repeat operation works similarly on word and integer data, the following examples are described using word data.

## Repeat One Source Device

When only S 1 (source) is assigned to repeat, the final result is set to destination device $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

- Data Type: Word and Integer


| S1 (Repeat = 3) |  | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: |
| D10 | $\times$ | D20 | $\rightarrow$ | (D30•D31) |
| D11 | $\times$ | D20 | $\longrightarrow$ | (D30-D31) |
| D12 | $\times$ | D20 | $\longrightarrow$ | D30•D31 |

- Data Type: Double Word, Long, and Float


| S1 (Repeat = 3) |  | S2 (Repeat $=0$ ) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: |
| D10.D11 | $\times$ | D20.D21 | $\rightarrow$ | (D30•D31) |
| D12-D13 | $\times$ | D20.D21 | $\rightarrow$ | (D30-D31) |
| D14•D15 | $\times$ | D20.D21 | $\longrightarrow$ | D30.D31 |

## Repeat Destination Device Only

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with D1•D1+1.

- Data Type: Word and Integer

- Data Type: Double Word, Long, and Float



## Repeat Two Source Devices

When S1 and S2 (source) are assigned to repeat, the final result is set to destination device D1•D1+1.

## - Data Type: Word and Integer



- Data Type: Double Word, Long, and Float


| S1 (Repeat = 3) |  | S2 (Repeat = 3) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $\times$ | D20•D21 | $\longrightarrow$ | (D30•D31) |
| D12•D13 | $\times$ | D22.D23 | $\longrightarrow$ | (D30-D31) |
| D14•D15 | $\times$ | D24-D25 | $\longrightarrow$ | D30•D31 |

## Repeat Source and Destination Devices

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.

## - Data Type: Word and Integer



| S1 (Repeat = 3) |  | S2 (Repeat = 0) |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: | :---: |
| D10 | $\times$ | D20 | $\rightarrow$ | D30•D31 |
| D11 | $\times$ | D20 | $\longrightarrow$ | D32-D33 |
| D12 | $\times$ | D20 | $\longrightarrow$ | D34-D35 |

- Data Type: Double Word, Long, and Float


| S1 (Repeat = 3) |  | $\mathbf{S 2}$ (Repeat $=0$ ) |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $\times$ | D20.D21 | $\rightarrow$ | D30•D31 |
| D12•D13 | $\times$ | D20.D21 | $\longrightarrow$ | D32-D33 |
| D14•D15 | $\times$ | D20.D21 | $\longrightarrow$ | D34-D35 |

## Repeat All Source and Destination Devices

When all devices are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.

## - Data Type: Word and Integer



| S1 $($ Repeat $=\mathbf{3 )}$ |  |
| :---: | :---: |
| D10 | $\times$ |
| D11 | $\times$ |
| D12 | $\times$ |

$\mathbf{S 2}($ Repeat $=\mathbf{3})$
D20
D21
D22

D1 (Repeat $=3$ )
D30•D31
D30.D31
D32.D33
D34•D35

- Data Type: Double Word, Long, and Float

|  | MUL(D) | S1 R | S2 R | D1 R | REP | S1 (Repeat = 3) |  | $\mathbf{S 2}$ (Repeat $=3$ ) |  | D1 (Repeat $=3$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I1 |  | D10 | D20 | D30 | 3 | D10•D11 | $x$ | D20•D21 | $\longrightarrow$ | D30•D31 |
|  |  |  |  |  |  | D12•D13 | $\times$ | D22.D23 | $\rightarrow$ | D32.D33 |
|  |  |  |  |  |  | D14•D15 | $\times$ | D24-D25 | $\longrightarrow$ | D34-D35 |

## 7: Binary Arithmetic Instructions

## Repeat Operation in the DIV Instruction

Since the DIV (division) instruction (except float data) uses two destination devices, the quotient and remainder are stored as described below. Source devices S1 and S2 and destination device D1 can be assigned to repeat individually or in combination. When destination device D1 is not assigned to repeat, the final result is set to destination device D1 (quotient) and D1+1 (remainder). When repeat is assigned, assigned as many consecutive devices as the repeat cycles starting with the designated device are used.
Division instructions in float data do not generate remainders and use two consecutive data registers to store quotients. When repeat is assigned for destination of float data, as many consecutive data registers as the repeat cycles are used.

## Repeat One Source Device

- Data Type: Word and Integer

When only S 1 (source) is assigned to repeat, the final result is set to destination devices D1 and D1+1.


## - Data Type: Double Word and Long

When only S 1 (source) is assigned to repeat, the final result is set to destination devices $\mathrm{D} 1 \cdot \mathrm{D} 1+1$ and $\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$.



## - Data Type: Float

When only S 1 (source) is assigned to repeat, the final result is set to destination devices $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.


## Repeat Destination Device Only

## - Data Type: Word and Integer

When only D1 (destination) is assigned to repeat, the same result is set to 6 devices starting with D1.


## - Data Type: Double Word and Long

When only D1 (destination) is assigned to repeat, the same result is set to 6 devices starting with $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.



## - Data Type: Float

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with D1•D1+1.

| $\mathrm{H}_{\mathrm{I} 1}$ | DIV(F) | S1- |  |  |  | S1 $($ Repeat $=0)$ | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat = 3) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D10 | D20 | D30 | 3 | D10.D11 | $\div$ | D20.D21 | $\longrightarrow$ | D30.D31 |
|  |  |  |  |  |  | D10.D11 | $\div$ | D20.D21 | $\longrightarrow$ | D32.D33 |
|  |  |  |  |  |  | D10•D11 | $\div$ | D20.D21 | $\longrightarrow$ | D34-D35 |
|  |  |  |  |  |  |  |  |  |  | Quotient |

## Repeat Two Source Devices

## - Data Type: Word and Integer

When S1 and S2 (source) are assigned to repeat, the final result is set to destination devices D1 and D1+1.

S1 (Repeat $=3$ ) $\mathbf{S 2}$ (Repeat $=3$ )


## - Data Type: Double Word and Long

When S1 and S2 (source) are assigned to repeat, the final result is set to destination devices D1•D1+1 and D1+2•D1+3.


| S1 (Repeat = 3) |  | S2 (Repeat = 3) |  | D1 | at $=0$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $\div$ | D20.D21 | $\rightarrow$ | (D30.D31) | (D32-D33) |
| D12.D13 | $\div$ | D22.D23 | $\rightarrow$ | (D30.D31) | (D32-D33) |
| D14-D15 | $\div$ | D24.D25 | $\rightarrow$ | D30•D31 | D32-D33 |
|  |  |  |  | Quotient | Remainder |

## - Data Type: Float

When S1 and S2 (source) are assigned to repeat, the final result is set to destination devices D1•D1+1.

|  | DIV(F) | $\begin{gathered} \text { S1 R } \\ \text { D10 } \end{gathered}$ | $\begin{aligned} & \hline \text { S2 R } \\ & \text { D20 } \end{aligned}$ | D1- REP <br> D30 3 |  | S1 $($ Repeat $=3)$ |  | S2 (Repeat = 3) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\div$ | D20•D21 | $\rightarrow$ | (D30•D31) |
|  |  |  |  |  |  | $\div$ | D22.D23 | $\longrightarrow$ | (D30.D31) |
|  |  |  |  |  |  |  | $\div$ | D24-D25 | $\longrightarrow$ | D30-D31 |
|  |  |  |  |  |  |  |  |  |  |  | Quotient |

## Repeat Source and Destination Devices

## - Data Type: Word and Integer

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 6 devices starting with D1.

| $\mathrm{H}_{\mathrm{I} 1}$ | DIV(W) | S1 RD10 | S2- | D1 RD30 | REP3 | S1 (Repeat = 3) | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat $=3$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\div$ | D20 | $\rightarrow$ | D30 | D33 |
|  |  |  |  |  |  | D11 | $\div$ | D20 | $\rightarrow$ | D31 | D34 |
|  |  |  |  |  |  | D12 | $\div$ | D20 | $\longrightarrow$ | D32 | D35 |
|  |  |  |  |  |  |  |  |  |  | Quotient | Remainder |

## - Data Type: Double Word and Long

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 6 devices starting with $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.



## - Data Type: Float

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

|  | DIV(F) |  |  |  |  | S1 (Repeat = 3) |  | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S1 R | S2- | D1 R | REP | D10•D11 | $\div$ |  | $\longrightarrow$ | D30.D31 |
|  |  |  |  |  |  | D12.D13 | $\div$ | D20.D21 | $\rightarrow$ | D32.D33 |
|  |  |  |  |  |  | D14.D15 | $\div$ | D20.D21 | $\rightarrow$ | D34.D35 |
|  |  |  |  |  |  |  |  |  |  | Quotient |

## 7: Binary Arithmetic Instructions

## Repeat All Source and Destination Devices

## - Data Type: Word and Integer

When all devices are assigned to repeat, different results are set to 6 devices starting with D1.


## - Data Type: Double Word and Long

When all devices are assigned to repeat, different results are set to 6 devices starting with D1•D1+1.


| S1 (Repeat = 3) |  | $\mathbf{S 2}($ Repeat $=3)$ |  | D1 (Repeat $=3$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $\div$ | D20•D21 | $\rightarrow$ | D30.D31 | D36•D37 |
| D12•D13 | $\div$ | D22-D23 | $\rightarrow$ | D32-D33 | D38-D39 |
| D14•D15 | $\div$ | D24•D25 | $\rightarrow$ | D34.D35 | D40•D41 |
|  |  |  |  | Quotient | Remainder |

## - Data Type: Float

When all devices are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.


| S1 (Repeat = 3) |  | S2 (Repeat = 3) |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: | :---: |
| D10•D11 | $\div$ | D20•D21 | $\longrightarrow$ | D30-D31 |
| D12.D13 | $\div$ | D22.D23 | $\rightarrow$ | D32-D33 |
| D14•D15 | $\div$ | D24-D25 | $\longrightarrow$ | D34-D35 |
|  |  |  |  | Quotient |

Note: When a user program execution error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERR LED are turned on and maintained while operations for other instructions continues.

## INC (Increment)


Data type W or I: $\quad$ S/D $+1 \rightarrow$ S/D
Data type D or L:
$S / D \cdot S / D+1+1 \rightarrow S / D \cdot S / D+1$

When input is on, one is added to the 16 - or 32 -bit data assigned by device $S / D$ and the result is stored to the same device.

## DEC (Decrement)


Data type W or I:
S/D - $1 \rightarrow$ S/D Data type D or L:
$S / D \cdot S / D+1-1 \rightarrow S / D \cdot S / D+1$

When input is on, one is subtracted from the 16- or 32-bit data assigned by device S/D and the result is stored to the same device.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Repeat |  |  |  |  |  |  |  |  |  |
| S/D (Source/Destination) | Device to increment data | - | - | - | - | - | - | $X$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the INC and DEC instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| F (float) | - |

When a word device such as D (data register) is assigned as the source/destination, 1 point (word or integer data) or 2 points (double-word or long data) are used.

## Increment beyond Limits

When the S/D value is at its maximum and is incremented by one, the value returns to 0 , turning on the carry (M8003).

## Decrement beyond Limits

When the $\mathrm{S} / \mathrm{D}$ value is at its minimum and is decremented by one, the value returns to its maximum value (word or double-word data) or to -1 (integer or long data), turning on the internal relay M8003 (carry or borrow).

## Example: INC



When input IO is turned on, the data of D10 is incremented by one. If SOTU is not programmed, the data of D10 is incremented in each scan.

## Example: DEC



When input I1 is turned on, the data of D20 is decremented by one. If SOTU is not programmed, the data of D20 is decremented in each scan.

## ROOT (Root)



Data type W:
$\sqrt{\mathrm{S} 1} \rightarrow \mathrm{D} 1$
When input is on, the square root of the device assigned by S 1 is extracted and stored to the destination assigned by D1.

The square root is calculated to two decimals, omitting the figures below the second place of decimals, and multiplied by 100.
$\sqrt{\mathrm{S} 1 \cdot \mathrm{~S} 1+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the square root of the device assigned by $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ is extracted and is stored to the destination assigned by $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

The square root is calculated to two decimals, omitting the figures below the second place of decimals, and multiplied by 100 .
$\sqrt{\mathrm{S} 1 \cdot \mathrm{~S} 1+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the square root of the device assigned by $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ is extracted and is stored to the destination assigned by $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data | - | - | - | - | - | - | $X$ | X | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ |  | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When $F$ (float) data is selected and source device S 1 contains a negative value, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When $F$ (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the ROOT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | $X$ |

When a word device such as D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word or float data) are used.

## Examples: ROOT

$\left.\right|_{\text {I0 }} 1-$| ROOT(W) | S1 | D1 |
| :--- | :--- | :--- |
|  | D10 | D20 |

Before Execution After Execution

$\sqrt{4294967295}=65535.99999$

$\sqrt{20.738916}=4.554 \ldots$

## SUM (Sum)



Calculates the total of assigned data, depending on the calculation option.
ADD:
When input is on, N blocks of 16 - or 32-bit data starting at device assigned by S 1 are added together and the result is stored to the device assigned by D1. S2 specifies the quantity of data blocks.
XOR:
When input is on, N blocks of 16-bit data starting at the device assigned by S 1 are XORed and the result is stored to the device assigned by D1. S2 specifies the quantity of data blocks.

Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First device address to calculate | - | - | - | - | X | X | X | - | - |
| S2 (Source 2) | Quantity of data blocks | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC ) is displayed.
When F (float) data is selected, only a data register can be designated as S1.
For source S2, 1 word is always used without regard to the data type.
When F (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart.

When S 2 is 0 or exceeds the correct value range for the selected device, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| Calculation | ADD | XOR |
| :--- | :---: | :---: |
| W (word) | X | X |
| I (integer) | X | - |
| D (double word) | X | - |
| L (long) | X | - |
| F (float) | X | - |

When ADD is selected, all data types can be used.
When XOR is selected, only W (word) data can be used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Quantity of Source and Destination Devices

Depending on the ADD or XOR operation for W (word) and I (integer) data, the destination uses a different quantity of devices.

| Operation |  | W (word), I (integer) | D (double word), L (long), F (float) |  |
| :--- | :--- | :--- | :--- | :---: |
| ADD | S1, S2: | 1 word device | S1, D1: | 2 word devices |
|  | D1: | 2 word devices | S2: | word device |
| XOR | S1, S2, D1: | 1 word device | - |  |

## 7: Binary Arithmetic Instructions

## Carry and Borrow

In advanced instructions involving $D$ (double word), $L$ (long), or F (floating point) data, special internal relay M8003 (carry and borrow) is turned on when the execution of the instruction results in the following value.

| Data Type | M8003 |  |
| :--- | :---: | :--- |
| $\mathbf{D}$ (double word) | 1 | Exceeds the range between 0 to 4,294,967,295 |
| $\mathbf{L}$ (long) | 1 | Exceeds the range between $-2,147,483,648$ to $2,147,483,647$ |
| F (float) | 1 | See the figure below. |

## Carry and Borrow in Floating-Point Data Processing

When advanced instructions involving floating-point data are executed, special internal relay M8003 (carry and borrow) is updated.


## Examples: SUM

- Data Type: Word


XOR Operation

|  | D0 | $(0105 h)$ | 0000000100000101 |
| :---: | :---: | :---: | :---: |
|  | D1 | $(02 F 6 \mathrm{~h})$ | 0000001011110110 |
|  | D2 | $(0307 \mathrm{~h})$ | 0000001100000111 |
| XOR | D3 | $(0408 \mathrm{~h})$ | 0000010000001000 |
|  | D100 | $(04 \mathrm{FCh})$ | 0000010011111100 |

## - Data Type: Integer



- Data Type: Double Word

- Data Type: Long

| IO | SOTU  <br> SUM(L) S1 <br> ADD S2 | D1 |
| :--- | :--- | :---: | :---: |



- Data Type: Float

| IO | SUM(F) S1 <br> SOTU S2 | D1 |  |
| :---: | :---: | :---: | :---: |
| ADD | D0 | 4 | D100 |



## 7: Binary Arithmetic Instructions

## RNDM (Random)



Generates pseudorandom numbers.
When the input is on, a pseudorandom number is generated with the data specified t S 1 as the lower limit and the data specified by S 2 as the upper limit, and that value i : stored in D1.

The result is stored to the destination designated by device D1.
This instruction is available on upgraded CPU modules with system program version 2 : or higher.

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Minimum value of pseudorandom numbers | - | - | - | - | - | - | X | $\mathrm{X}^{* 1}$ | - |
| S2 (Source 2) | Maximum value of pseudorandom numbers | - | - | - | - | - | - | X | $\mathrm{X}^{* 1}$ | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | X | - | - |

${ }^{*} 10$ to 32,767 can be input.
For the valid device address range, see "Device Addresses" on page 2-1.

- When the data in S 1 or S 2 is outside the range of 0 to 32,767 , the result is a user program execution error.
- When the data specified by S1 is the same value as the data specified by S2 or a larger value, the result is a user program execution error. For user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a word device such as D (data register) is designated as the source or destination, 1 point (word) is used.

## Example: RNDM



When the input is turned on, a pseudorandom number is generated in the range of 1 to 6 , and the result is stored in D0010.

## 8: Boolean Computation Instructions

## Introduction

Boolean computations use the AND, OR, and exclusive OR statements as carried out by the ANDW, ORW, and XORW instructions in the word or double-word data, respectively.

## ANDW (AND Word)



$$
\begin{aligned}
& \left.\mathbf{S 1}=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 0 \\
\hline
\end{array} \right\rvert\, \begin{array}{|l|l|l|}
\hline
\end{array} \\
& \left.\mathbf{S 2}=\begin{array}{|l|l|l|l|}
\hline 1 & 0 & 0 & 0 \\
\hline
\end{array}\right\rangle \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array} \\
& \left.\mathbf{D 1}=\begin{array}{|l|l|l|l|}
\hline 1 & 0 & 0 & 0 \\
\hline
\end{array} \right\rvert\,\langle | \begin{array}{ll}
0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

S1 $\cdot \mathrm{S} 2 \rightarrow$ D1
When input is on, 16 - or 32-bit data assigned by source devices S1 and S2 are ANDed, bit by bit. The result is set to destination device D1.

| AND Truth Table |  |  |
| :---: | :---: | :---: |
| $\mathbf{S 1}$ | $\mathbf{S 2}$ | D1 |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

$$
\begin{aligned}
& \mathbf{S 1}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & \mid & \mid \\
\hline
\end{array} \\
& \mathbf{S 2}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & \mid & \mid \\
\hline
\end{array}
\end{aligned}
$$

## XORW (Exclusive OR Word)


$\mathrm{S} 1 \oplus \mathrm{~S} 2 \rightarrow \mathrm{D} 1$
When input is on, 16- or 32-bit data assigned by source devices S1 and S2 are exclusive ORed, bit by bit. The result is set to destination device D1.

$$
\begin{aligned}
& \left.\mathbf{S 1}=\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 0 \\
\hline
\end{array}\right\rangle \left\lvert\, \begin{array}{ll|l|l|}
\hline
\end{array}\right. \\
& \mathbf{S 2}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 0 & \mid & |l| l|l| l \mid \\
\hline
\end{array} \\
& \left.\mathbf{D 1}=\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 1 & 0 \\
\hline
\end{array}\right\rangle \left\lvert\, \begin{array}{ll}
1 & 0 \\
\hline
\end{array}\right.
\end{aligned}
$$

When input is on, 16- or 32-bit data assigned by source devices S1 and S2 are ORed, bit by bit. The result is set to destination device D1.

| AND Truth Table |  |  |
| :---: | :---: | :---: |
| $\left.\begin{array}{\|c\|c\|}\hline \text { S1 } & \mathbf{S 2} \\ \hline 0 & 0 \\ 0 \\ \hline 0 & 1 \\ 1 \\ \hline 0 & 0 \\ 1 & 1\end{array}\right] 1$ |  |  |
| 1 |  |  |

$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1$

| S1 | $\mathbf{S 2}$ | D1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

## 8: Boolean Computation Instructions

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Data for computation | X | X | X | X | X | X | X | X | $1-99$ |
| S2 (Source 2) | Data for computation | X | X | X | X | X | X | X | X | $1-99$ |
| D1 (Destination 1) | Destination to store results | - | $X$ | $\mathbf{A}$ | X | X | X | X | - | $1-99$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7977 and M10000 through M17497 can be assigned as D1. Special internal relays cannot be assigned as D1.
When $T$ (timer) or C (counter) is used as S1 or S2, the timer/counter current value (TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.
Since the Boolean computation instructions are executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word data) or 32 points (double-word data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32 -point increments.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## Example: XORW

To convert optional output status among a series of 10 output points, use the XORW instruction in combination with 10 internal relay points.


This program will invert the status of the shaded outputs on the left from on to off, and those not shaded from off to on.


Ten outputs Q0 through Q11 are assigned to 10 internal relays M0 through M11.

Five internal relays M0, M2, M4, M6, and M10 are set by initialize pulse special internal relay M8120.

When input I1 is turned on, the XORW instruction is executed to invert the status of outputs Q0, Q2, Q4, Q6, and Q10.

## Repeat Operation in the ANDW, ORW, and XORW Instructions

Source devices S1 and S2 and destination device D1 can be assigned to repeat individually or in combination. When destination device D1 is not designated set to repeat, the final result is set to destination device D1. When repeat is assigned, consecutive devices as many as the repeat cycles starting with the designated device are used. Since the repeat operation works similarly on the ANDW (AND word), ORW (OR word), and XORW (exclusive OR word) instructions, the following examples use the ANDW instruction.

## Repeat One Source Device <br> - Data Type: Word

When only S1 (source) is assigned to repeat, the final result is set to destination device D1.
$\left.\begin{array}{|llllc|}\hline \text { SOTU } & \text { ANDW(W) } & \text { S1 R } & \text { S2 - } & \text { D1- } \\ & \text { D10 } & \text { D20 } & \text { D30 } & 3\end{array}\right]$

| S1 (Repeat = 3) | $\mathbf{S 2}$ (Repeat = 0) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: |
| D10 | D20 | $\longrightarrow$ | (D30) |
| D11 | D20 | $\rightarrow$ | (D30) |
| D12 | D20 | $\longrightarrow$ | D30 |

## - Data Type: Double Word

When only S 1 (source) is assigned to repeat, the final result is set to destination device $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.


## Repeat Destination Device Only

## - Data Type: Word

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with D1.


## - Data Type: Double Word

When only D1 (destination) is assigned to repeat, the same result is set to 3 devices starting with D1•D1+1.

| H1 |  |  |  |  |  | $\begin{gathered} \mathbf{S 1}(\text { Repeat }=\mathbf{0}) \\ \text { D10•D11 } \\ \text { D10 } \end{gathered}$ | $\mathbf{S 2}($ Repeat $=0)$ |  |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ANDW(D) | $\begin{aligned} & \text { S1 - } \\ & \text { D10 } \end{aligned}$ | $\begin{aligned} & \mathrm{S} 2- \\ & \mathrm{D} 20 \end{aligned}$ | $\begin{aligned} & \text { D1 R } \\ & \text { D30 } \end{aligned}$ | $\begin{gathered} \text { REP } \\ 3 \end{gathered}$ |  | - | D20•D21 | $\longrightarrow$ | D30.D31 |
|  |  |  |  |  |  |  | - | D20•D21 | $\longrightarrow$ | D32-D33 |
|  |  |  |  |  |  | D10•D11 | - | D20.D21 | $\longrightarrow$ | D34•D35 |

## Repeat Two Source Devices

## - Data Type: Word

When S1 and S2 (source) are assigned to repeat, the final result is set to destination device D1.


| S1 (Repeat = 3) | S2 (Repeat = 3) |  | D1 (Repeat $=0$ ) |
| :---: | :---: | :---: | :---: |
| D10 | D20 | $\longrightarrow$ | (D30) |
| D11 | D21 | $\rightarrow$ | (D30) |
| D12 | D22 | $\longrightarrow$ | D30 |

## - Data Type: Double Word

When S1 and S2 (source) are assigned to repeat, the final result is set to destination device D1•D1+1.


| $\mathbf{S 1}($ Repeat $=\mathbf{3 )}$ |  | $\mathbf{S 2}($ Repeat $=\mathbf{3 )}$ |  | D1 (Repeat $=\mathbf{0})$ |
| :---: | :---: | :---: | :---: | :---: |
| D10.D11 | $\cdot$ | $D 20 \cdot D 21$ | $\longrightarrow$ | $(D 30 \cdot D 31)$ |
| D12.D13 | $\cdot$ | $D 22 \cdot D 23$ | $\longrightarrow$ | $(D 30 \cdot D 31)$ |
| $D 14 \cdot D 15$ | $\cdot$ | $D 24 \cdot D 25$ | $\longrightarrow$ | $D 30 \cdot D 31$ |

## 8: Boolean Computation Instructions

## Repeat Source and Destination Devices

## - Data Type: Word

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with D1.


| S1 (Repeat = 3) | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat $=3$ ) |
| :---: | :---: | :---: | :---: |
| D10 | D20 | $\longrightarrow$ | D30 |
| D11 | D20 | $\longrightarrow$ | D31 |
| D12 | D20 | $\longrightarrow$ | D32 |

## - Data Type: Double Word

When S1 (source) and D1 (destination) are assigned to repeat, different results are set to 3 devices starting with $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.


| S1 (Repeat = 3) | $\mathbf{S 2}($ Repeat $=0)$ |  | D1 (Repeat = 3) |
| :---: | :---: | :---: | :---: |
| D10•D11 | D20-D21 | $\rightarrow$ | D30-D31 |
| D12•D13 | D20.D21 | $\rightarrow$ | D32-D33 |
| D14.D15 | D20.D21 | $\longrightarrow$ | D34.D35 |

## Repeat All Source and Destination Devices <br> - Data Type: Word

When all devices are assigned to repeat, different results are set to 3 devices starting with D1.


| S1 (Repeat $=3$ ) | $\mathbf{S 2} \mathbf{( R e p e a t ~}=3$ ) |  | D1 (Repeat $=3$ ) |
| :---: | :---: | :---: | :---: |
| D10 | D20 | $\rightarrow$ | D30 |
| D11 | D21 | $\rightarrow$ | D31 |
| D12 | D22 | $\longrightarrow$ | D3 |

## - Data Type: Double Word

When all devices are assigned to repeat, different results are set to 3 devices starting with D1•D1+1.

$\left.$| SOTU |
| :---: | :---: | :---: | :---: | :---: |$\rightarrow$| ANDW(D) | S1 R | S2 R | D1 R |
| :---: | :---: | :---: | :---: |
| D10 | D20 | D30 | 3 | \right\rvert\,


| S1 (Repeat = 3) | S2 (Repeat = 3) |  | D1 (Repeat $=3$ ) |
| :---: | :---: | :---: | :---: |
| D10.D11 | D20-D21 | $\longrightarrow$ | D30.D31 |
| D12•D13 | D22.D23 | $\rightarrow$ | D32-D33 |
| D14.D15 | D24•D25 | $\longrightarrow$ | D34-D35 |

Note: When a user program error occurs in any repeat operation, special internal relay M8004 (user program execution error) and the ERROR LED are turned on and maintained while operations for other instructions continues. For an advanced instruction that has caused a user program execution error due to an error in the source devices, results are not set to any destination.

## 9: Shift / Rotate Instructions

## Introduction

Bit shift instructions are used to shift the data string starting with source device $S 1$ to the left or right by 1 to 15 bits as designated. The data string can be 1 to 65,535 bits. The result is set to the source device S 1 and special internal relay M8003 (carry or borrow). The LSB or MSB is filled with 0 or 1 as designated.
Bit shift and rotate instructions are used to shift the 16 - or 32 -bit data string in the designated source device S 1 to the left or right by the quantity of bits designated. The result is set to the source device S 1 and special internal relay M8003 (carry or borrow).
The BCD left shift instruction shifts the BCD digits in two consecutive data registers to the left.
The word shift instruction is used to move 16-bit data to a destination data register and shifts down the data of subsequent data registers as many as designated.

## SFTL (Shift Left)


$\mathrm{CY} \leftarrow \mathrm{S} 1$
When input is on, $\mathrm{N} \_\mathrm{B}$-bit data string starting with source device S 1 is shifted to the left by the quantity of bits assigned by device Bits.
The result is set to source device S 1 , and the last bit status shifted out is set to special internal relay M8003 (carry or borrow). Zero or 1 assigned by source device S 2 is set to the LSB.


## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | First data for bit shift | - | X | ( | X | - | - | X | - | - |
| S2 (Source 2) | Data to shift into the LSB | X | X | X | X | - | - | - | 0 or 1 | - |
| N_B | Number of bits in the data string | - | - | - | - | - | - | X | 1-65,535 | - |
| Bits | Quantity of bits to shift | - | - | - | - | - | - | X | 1-15 | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
(internal relays M0 through M7977 and M10000 through M17497 can be designated as S1. Special internal relays cannot be designated as S1. Since the SFTL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: SFTL

## - N_B = 16 bits



M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 43,690 to data register D10.

Each time input IO is turned on, 16-bit data of data register D10 is shifted to the left by 1 bit as assigned by device Bits. The last bit status shifted out is set to special internal relay M8003 (carry or borrow). Zeros are set to the LSB.

## Bits to shift = 1



- N_B = 32 bits


M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 0 and 65,535 to data registers D10 and D11, respectively.
Each time input IO is turned on, 32-bit data of data registers D10 and D11 is shifted to the left by 2 bits as assigned by device Bits. D10 is the low word, and D11 is the high word.

The last bit status shifted out is set to a carry (special internal relay M8003). Ones are set to the LSBs.

Bits to shift $=2$
Before shift:


After shift:


## SFTR (Shift Right)


$\mathrm{S} 1 \rightarrow \mathrm{CY}$
When input is on, N_B-bit data string starting with source device $S 1$ is shifted to the right by the quantity of bits assigned by device Bits.

The result is set to source device S 1 , and the last bit status shifted out is set to a carry (special internal relay M8003). Zero or 1 assigned by source device $\operatorname{S2}$ is set to the MSB.

- $S 2=0, N_{-} B=16$, Bits $=1$



## After shift:

$$
\begin{aligned}
& \text { MSB } \\
& \text { MSB } \\
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array} 1 \\
& \hline
\end{aligned}
$$

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First data for bit shift | - | $X$ | $\mathbf{1}$ | $X$ | - | - | $X$ | - | - |
| S2 (Source 2) | Data to shift into the MSB | $X$ | $X$ | $X$ | $X$ | - | - | - | 0 or 1 | - |
| N_B | Number of bits in the data string | - | - | - | - | - | - | $X$ | $1-65,535$ | - |
| Bits | Quantity of bits to shift | - | - | - | - | - | - | $X$ | $1-15$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the SFTR instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Example: SFTR

- Data Type: Word


M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 29 to data register D10.

Each time input IO is turned on, 16-bit data of data register D10 is shifted to the right by 2 bits as assigned by device Bits. The last bit status shifted out is set to special internal relay M8003 (carry or borrow). Zeros are set to the MSB.

## Bits to shift = 2



## - Data Type: Double Word



M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 65,535 and 0 to data registers D10 and D11, respectively.
Each time input IO is turned on, 32-bit data of data registers D10 and D11 is shifted to the right by 1 bit as assigned by device Bit. D10 is the low word, and D11 is the high word.

The last bit status shifted out is set to special internal relay M8003 (carry or borrow). Ones are set to the MSB.

## Bits to shift = 1

## Before shift:



After shift:


## BCDLS (BCD Left Shift)



When input is on, the 32-bit binary data assigned by S 1 is converted into 8 BCD digits, shifted to the left by the quantity of digits assigned by S2, and converted back to 32-bit binary data.

Valid values for each of S1 and S1+1 are 0 through 9,999.
The number of digits that can be shifted is 1 through 7.
Zero is set to the lowest digit after each shift.
When S2 = $\mathbf{1}$ (digits to shift)

## Before shift:



## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Data for BCD shift | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Quantity of digits to shift | $X$ | $1-7$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When $T$ (timer) or $C$ (counter) is used as $S 2$, the timer/counter current value (TC or CC) is displayed.
The number of digits that can be shifted as S2 are 1 through 7.
Make sure that the source data determined by S 1 and $\mathrm{S} 1+1$ is between 0 and 9,999 for each data register. If either source data is over 9,999, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. When S2 is higher than 7 , a user program execution error will also result.

When a user program execution error occurs, the execution of the instruction is canceled. The data in S 1 and $\mathrm{S} 1+1$ is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

When a word device such as D (data register) is assigned as source $\mathrm{S} 1,2$ points (double-word data) are used.
When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as source S2, 16 points are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as source $\mathrm{S} 2,1$ point is used.

## Example: BCDLS



When S2 = 1 (digits to shift)
Before shift:

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instructions set 123 and 4,567 to data registers D10 and D11, respectively.
Each time input IO is turned on, the 32-bit binary data of data registers D10 and D11 assigned by S 1 is converted into 8 BCD digits, shifted to the left by 1 digit as assigned by device S 2 , and converted back to 32-bit binary data.
Zero is set to the lowest digit after each shift.


Shift to the left


After second shift:

## WSFT (Word Shift)



When input is on, N blocks of 16-bit word data, starting with device assigned by D1, are shifted up to the next 16-bit positions. At the same time, the data assigned by device S1 is moved to the device assigned by D1. S2 specifies the quantity of blocks to move.

When S2 = 3 (quantity of blocks to shift)


Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Source data for word shift | $X$ | - |
| S2 (Source 2) | Quantity of blocks to shift | $X$ | - |
| D1 (Destination 1) | First device address to shift | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value (TC or CC ) is displayed.

## Valid Data Types

When a bit device such as I (input), Q (output), $M$ (internal relay), or R (shift register) is assigned as source S 1 or $\mathrm{S} 2,16$ points are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as source S1 or S2, 1 point is used.

## Special Internal Relay M8024: BMOV/WSFT Executing Flag

While the BMOV or WSFT is executed, M8024 turns on. When completed, M8024 turns off. If the CPU is powered down while executing BMOV or WSFT, M8024 remains on when the CPU is powered up again.

## Example: WSFT



D100 through D102 $\rightarrow$ D101 through D103
D10 $\rightarrow$ D100
When input IO is turned on, data of 3 data registers, starting with D100 assigned by destination device D1, is shifted to the next data registers. Data of data register D10, assigned by source device S1, is moved to D100 assigned by destination device D1.


## 9: Shift / Rotate Instructions

## ROTL (Rotate Left)



When input is on, 16- or 32-bit data of the assigned source device S 1 is rotated to the left by the quantity of bits assigned by device bits.

The result is set to the source device S 1 , and the last bit status rotated out is set to a carry (special internal relay M8003).

- Data Type: Word (bits to rotate =1)

- Data Type: Double Word (bits to rotate = 1)


## Before rotation:



## After rotation:



## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Data for bit rotation | - | $X$ | $\mathbf{A}$ | $X$ | - | - | X | - | - |
| bits | Quantity of bits to rotate | - | - | - | - | - | - | - | $1-15,1-31$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7977 and M10000 through M17497 can be designated as S1. Special internal relays cannot be designated as S1. The quantity of bits to rotate can be 1 through 15 for word data, or 1 through 31 for double-word data.

Since the ROTL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a bit device such as Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used.

When a word device such as D (data register) is assigned as the source, 1 point (word data) or 2 points (doubleword data) are used.

## Example: ROTL

## - Data Type: Word

| $\underset{\text { M }}{-12120}$ | MOV(W) | $\begin{array}{r} \mathrm{S} 1- \\ 40966 \end{array}$ | $\begin{aligned} & \text { D1 - } \\ & \text { D10 } \end{aligned}$ | REP |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}_{10}$ | SOTU | ROTL(W) | $\begin{gathered} \text { S1 } \\ \text { D10 } \end{gathered}$ | bits 1 |

M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 40,966 to data register D10.

Each time input IO is turned on, 16-bit data of data register D10 is rotated to the left by 1 bit as assigned by device bits.

The status of the MSB is set to special internal relay M8003 (carry or borrow).


- Data Type: Double Word


Each time input I1 is turned on, 32-bit data of data registers D10 and D11 is rotated to the left by 1 bit as assigned by device bits.

The status of the MSB is set to special internal relay M8003 (carry or borrow).

## Bits to rotate = 1

Before rotation: D10•D11 = 2,684,788,742


After rotation: D10•D11 = 1,074,610,189


## ROTR (Rotate Right)



When input is on, 16 - or 32-bit data of the assigned source device S 1 is rotated to the right by the quantity of bits assigned by device bits.

The result is set to the source device S 1 , and the last bit status rotated out is set to special internal relay M8003 (carry or borrow).

- Data Type: Word (bits to rotate =1)


## Before rotation:

## After rotation:



- Data Type: Double Word (bits to rotate = 1)

Before rotation:


## After rotation:



## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Data for bit rotation | - | $\mathbf{X}$ | $\mathbf{1}$ | $\mathbf{X}$ | - | - | $X$ | - | - |
| bits | Quantity of bits to rotate | - | - | - | - | - | - | - | $1-15$, |  |
|  |  |  |  |  |  |  |  |  |  |  |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7977 and M10000 through M17497 can be designated as S1. Special internal relays cannot be designated as S1.
The number of bits that can be rotated is 1 through 15 for word data, or 1 through 31 for double-word data.
Since the ROTR instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| L (long) | - |
| F (float) | - |

When a bit device such as $Q$ (output), $M$ (internal relay), or $R$ (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used.
When a word device such as D (data register) is assigned as the source, 1 point (word data) or 2 points (doubleword data) are used.

## Example: ROTR

## - Data Type: Word



M8120 is the initialize pulse special internal relay.
When the CPU starts operation, the MOV (move) instruction sets 13 to data register D20.

Each time input I1 is turned on, 16-bit data of data register D20 is rotated to the right by 2 bits as assigned by device bits.

The last bit status rotated out is set to special internal relay M8003 (carry or borrow).


- Data Type: Double Word


Each time input I1 is turned on, 32-bit data of data registers D20 and D21 is rotated to the right by 1 bit as assigned by device bits.

The last bit status rotated out is set to special internal relay M8003 (carry or borrow).

Bits to rotate $=\mathbf{1}$
Before rotation: D20•D21 = 851,981


After rotation: D20•D21 = 2,147,909,638

a


M8003

## 10: Data Conversion Instructions

## Introduction

This chapter describes the data conversion instructions that convert data to the specified format.
The ENCO (encode), DECO (decode), and BCNT (bit count) instructions processes bit device data.
The ALT (alternate output) instruction turns an output on and off each time an input button is pressed.
The CVDT (convert data) instruction converts data types among W (word), I (integer), D (double word), L (long), and F (float). The DTDV and DTCB instructions convert data between two one-byte data and one word data. The SWAP exchanges upper and lower byte- or word-data for word- or double-word-data respectively.

## HTOB (Hex to BCD)



S1 $\rightarrow$ D1
When input is on, the 16- or 32-bit data assigned by S 1 is converted into BCD and stored to the destination assigned by device D1.

Valid values for the source device are 0 through 9,999 for word data, and 0 through 99,999,999 for double-word data.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data to convert | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Anternal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as S 1 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.
When the data type is W (word), the valid range of S 1 (binary data) is 0 to 9,999.
When the data type is $D$ (double word), the valid range of $S 1$ (binary data) is 0 to 99,999,999.
Make sure that the source designated by $S 1$ is within the valid value range. If the source data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the HTOB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | X |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word data) or 2 points (double-word data) are used.

## 10: Data Conversion Instructions

## Examples: HTOB

- Data Type: Word

- Data Type: Double Word



## BTOH (BCD to Hex)



S1 $\rightarrow$ D1
When input is on, the BCD data assigned by S1 is converted into 16 - or 32-bit binary data and stored to the destination assigned by device D1.

Valid values for the source device are 0 through 9,999 (BCD) for word data, and 0 through 99,999,999 (BCD) for double-word data.

Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | BCD data to convert | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC) is displayed. When T (timer) or C (counter) is used as D 1 , the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

When the data type is W (word), the valid range of S 1 (BCD data) is 0 to 9,999.
When the data type is $D$ (double word), the valid range of $S 1$ (BCD data) is 0 to 99,999,999.
Make sure that each digit of the source designated by $S 1$ is 0 through 9 . If the source data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the BTOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word data) or 2 points (double-word data) are used.

## 10: Data Conversion Instructions

## Examples: BTOH

- Data Type: Word

- Data Type: Double Word


D10 \begin{tabular}{cc}

| 39321 |
| :---: |
| $(9999 h)$ |
| 39321 |
| $(9999 h)$ | <br>

\hline
\end{tabular}

## HTOA (Hex to ASCII)



S1 $\rightarrow$ D1, D1+1, D1+2, D1+3
When input is on, the 16-bit binary data assigned by S 1 is read from the lowest digit as many times as the quantity of digits assigned by S2, converted into ASCII data, and stored to the destination starting with the device assigned by D1.

The quantity of digits to convert can be 1 through 4.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| S1 (Source 1) | Binary data to convert | $X$ | - |
| S2 (Source 2) | Quantity of digits to convert | $X$ | $1-4$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value (TC or CC ) is displayed.
Make sure that the quantity of digits designated by S 2 is within the valid range. If the S 2 data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the HTOA instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) is used.

## Examples: HTOA

- Quantity of Digits: 4

- Quantity of Digits: 3

- Quantity of Digits: 2

- Quantity of Digits: 1



## ATOH (ASCII to Hex)



S1, S1+1, S1+2, S1+3 $\rightarrow$ D1
When input is on, the ASCII data, assigned by S 1 , is converted into 16 -bit binary data. The number of times is determined by the quantity of digits assigned by S 2 . The data is then stored to the destination assigned by device D1.

Valid values for source data to convert are 30 h to 39 h and 41 h to 46 h .
The quantity of digits to convert can be 1 through 4.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | ASCII data to convert | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Quantity of digits to convert | $X$ | $1-4$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S2, the timer/counter current value (TC or CC) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

Valid values for source S1 data to convert are 30 h to 39 h and 41 h to 46 h . Make sure that the values for each source designated by S 1 and the quantity of digits designated by $S 2$ are within the valid range. If the S 1 or S 2 data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the ATOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) is used.

## Examples: ATOH

- Quantity of Digits: 4



## - Quantity of Digits: 3



- Quantity of Digits: 2

- Quantity of Digits: 1




## BTOA (BCD to ASCII)



| Word data: | $\mathrm{S} 1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \mathrm{D} 1+3, \mathrm{D} 1+4$ |
| :--- | :--- |
| Double-word data: | $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1, \mathrm{D} 1+2, \ldots, \mathrm{D} 1+9$ |

When input is on, the 16- or 32-bit binary data assigned by $S 1$ is converted into BCD, and converted into ASCII data. The data is read from the lowest digit as many times as the quantity of digits assigned by S 2 . The result is stored to the destination starting with the device assigned by D1.

The number of digits that can be converted is 1 through 5 for word data, and 1 through 10 for double-word data.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Binary data to convert | X | X | X | X | X | X | X | X | - |
| S2 (Source 2) | Quantity of digits to convert | X | X | X | X | X | X | X | $1-5,1-10$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as S 1 or S 2 , the timer/counter current value ( TC or CC ) is displayed.
When the data type is W (word), the valid range of S 2 (quantity of digits to convert) is 1 to 5
When the data type is D (double word), the valid range of S 2 (quantity of digits to convert) is 1 to 10 .
Make sure that the quantity of digits designated by S 2 is within the valid range. If the S 2 data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

Make sure that the last destination data determined by D1+S2-1 is within the valid device range. If the derived destination device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the BTOA instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) or 32 points (double-word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used.

## Examples: BTOA(W)

- Quantity of Digits: 5



## - Quantity of Digits: 4



- Quantity of Digits: 3

- Quantity of Digits: 2

- Quantity of Digits: 1



## Examples: BTOA(D)

- Quantity of Digits: 10

- Quantity of Digits: 6

- Quantity of Digits: 3




## ATOB (ASCII to BCD)



Word data:
Double-word data:

$$
\begin{aligned}
& \mathrm{S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \mathrm{~S} 1+3, \mathrm{~S} 1+4 \rightarrow \mathrm{D} 1 \\
& \mathrm{~S} 1, \mathrm{~S} 1+1, \mathrm{~S} 1+2, \ldots, \mathrm{~S} 1+9 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1
\end{aligned}
$$

When input is on, the ASCII data assigned by S1 as many times as the quantity of digits assigned by S 2 is converted into BCD , and converted into 16-or 32-bit binary data. The result is stored to the destination assigned by device D1.
Valid values for source data to convert are 30h through 39h.
The number of digits that can be converted is through 5 for word data, and 1 through 10 for double-word data.

## Valid Devices

| Device | Function | I | Q | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | ASCII data to convert | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Quantity of digits to convert | $X$ | $1-5,1-10$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1.
When $T$ (timer) or $C$ (counter) is used as S 2 , the timer/counter current value (TC or CC) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP).

Valid values for source S1 data to convert are 30h through 39h. When the data type is W (word), the valid range of S2 (quantity of digits to convert) is 1 to 5 .

When the data type is D (double word), the valid range of S 2 (quantity of digits to convert) is 1 to 10 .
Make sure that the values for each source designated by S 1 and the quantity of digits designated by S 2 are within the valid range. If the S 1 or S 2 data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

Make sure that the last source data determined by S1+S2-1 is within the valid device range. If the derived source device exceeds the valid device range, a user program execution error will result, turning on special internal relay M8004 and ERROR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the ATOB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), $Q$ (output), $M$ (internal relay), or $R$ (shift register) is assigned as the source or destination, 16 points (word data) or 32 points (double-word data) are used.
When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used.

## Examples: ATOB(W)

- Quantity of Digits: 5


- Quantity of Digits: 4


- Quantity of Digits: 3

- Quantity of Digits: 2

- Quantity of Digits: 1



## Examples: ATOB(D)

- Quantity of Digits: 10

- Quantity of Digits: 6

- Quantity of Digits: 3



## ENCO (Encode)



When input is on, a search begins for the first bit that is set to on. The search begins at S 1 until the first set (on) point is located. The number of points from S1 to the first set point (offset) is stored to the destination assigned by device D1.
If no point is on in the searched area, 65,535 is stored to D1.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First bit to start search | $X$ | $X$ | $X$ | $X$ | - | - | $X$ | - | - |
| D1 (Destination 1) | Destination to store search results | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | - |
| Bits | Quantity of bits searched | - | - | - | - | - | - | - | $1-256$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
Make sure that the search area designated by S 1 plus Bits is within the valid value range. If the source data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the ENCO instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: ENCO



When input IO is on, a search begins for a bit that is set on in an array of 64 bits starting at internal relay M4 assigned by device S1.

Since internal relay M30 is the first point that is on, the offset from the first search point is 20 , and 20 is stored to data register D100 assigned by device D1.


When input I1 is on, a search begins for a bit that is set on in an array of 64 bits starting at bit 0 of data register D10 assigned by device S1.

Since bit 8 of data register D11 is the first point that is on, the offset from the first search point is 24 , and 24 is stored to data register D100 assigned by device D1.


## DECO (Decode)



When input is on, the values contained in devices assigned by S1 and D1 are added together to determine the destination, and the bit is then turned on.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Offset | $X$ | $X$ | $X$ | $X$ | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | First bit to count offset | - | $X$ | $\mathbf{A}$ | $X$ | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1. Valid values for the offset designated by source device S 1 are 0 through 255 . Make sure that the offset designated by S 1 and the last bit of destination data determined by the sum of S 1 and D 1 are within the valid value range. If the offset or destination data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D 1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the DECO instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: DECO


$\square$ First
ON


When input I 1 is on, the destination bit is determined by adding the value contained in data register D10 assigned by device S1 to data register D30 assigned by destination device D1.
Since the 39th bit from data register D30 bit 0 is data register D32 bit 7, the bit is then turned on.


## BCNT (Bit Count)



When input is on, a search begins for the total number of bits that are on an array of consecutive bits starting at the point assigned by source device S1. Source device S2 assigns the quantity of bits searched. The quantity of bits which are on is stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First bit to start search | X | X | X | X | - | - | X | - | - |
| S2 (Source 2) | Quantity of bits searched | X | X | X | X | X | X | X | X | - |
| D1 (Destination 1) | Destination to store quantity of ON bits | - | X | $\mathbf{A}$ | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When T (timer) or C (counter) is used as S 2 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D 1 , the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

The valid range of S 2 (quantity of bits searched) is 1 to 256 . Make sure that the search area designated by S 1 plus S 2 is within the valid value range. If the source data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the BCNT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: BCNT



When input is on, a search begins for the total number of bits that are on in an array of 64 bits starting at internal relay M4 assigned by source device S 1 .
Since 3 bits are on in the searched area, the quantity is stored to data register D100 assigned by destination device D1.


When input IO is on, a search begins for the total number of bits that are on in an array of 60 bits starting at bit 0 of data register D10 assigned by device S1.
Since 2 bits are on among the 60 bits, 2 is stored to data register D100 assigned by device D1.


## 10: Data Conversion Instructions

## ALT (Alternate Output)



When input is turned on, output, internal relay, or shift register bit assigned by D1 is turned on and remains on after the input is turned off.

When input is turned on again, the assigned output, internal relay, or shift register bit is turned off. The ALT instruction must be used with a SOTU or SOTD instruction, otherwise the assigned output, internal relay, or shift register bit repeats to turn on and off in each scan.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D1 (Destination 1) | Bit to turn on and off | - | X | X | X | - | - | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the ALT instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction must be used. For the SOTU instruction and the SOTD instruction, see "SOTU and SOTD (Single Output Up and Down)" on page 4-26.

## Example: ALT



When input IO is turned on, output Q0 assigned by device D1 is turned on and remains after input IO is turned off.
When input IO is turned on again, output Q0 is turned off.


## CVDT (Convert Data Type)



S1 $\rightarrow$ D1
When input is on, the data type of the 16 - or 32-bit data assigned by S 1 is converted and stored to the destination assigned by device D1.

Data types can be assigned for the source and destination, separately

| Data Type | W, I | D, L, F |
| :--- | :---: | :---: |
| Source | S1 | S1 S1+1 |
| Destination | D1 | D1•D1+1 |

When the same data type is assigned for both source and destination, the CVDT instruction has the same function as the MOV instruction.

Unless F (float) data is selected for both source and destination, only the integral number is moved, omitting the fraction.

When the source data exceeds the range of destination data, the destination stores a value closest to the source data within the destination data.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | First device address to convert data type | $\mathrm{X}^{* 1}$ | ${ }^{* 1}$ | ${ }^{* 1}$ | $\mathrm{X}^{* 1}$ | $\mathrm{X}^{* 1 * 2}$ | $\mathrm{X}^{* 2}$ | X | X | 1-99 |
| D1 (Destination 1) | First device address to store converted data | - | $\chi^{* 1}$ | $\mathrm{X}^{* 1 * 3}$ | $\mathrm{X}^{* 1}$ | $\mathrm{X}^{* 1 * 4}$ | $\mathrm{X}^{* 1^{*} 4}$ | X | - | 1-99 |

For valid device address ranges, see "Device Addresses" on page 2-1.
*1 Cannot be used with data type $F$ (float).
*2 When $\mathrm{T} / \mathrm{C}$ is used as S 1 , this is the current value area.
*3 Internal relays M0 through M7977 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
*4 When T (timer) or C (counter) is used as S 1 , the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.
When a user program execution error occurs, the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| F (float) | $X$ |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source or destination, 16 points (word or integer data) or 32 points (double-word, long, or float data) are used. When repeat is assigned for a bit device, the quantity of device bits increases in 16- or 32-point increments.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used. When repeat is assigned for a word device, the quantity of device words increases in 1- or 2-point increments.

## 10: Data Conversion Instructions

## Examples: CVDT

- Data Type: Either S1 or D1 is not F (float)

Unless F (float) data is selected for both source and destination, only the integral number is moved, omitting the fraction.


| Device | Data Type | Value |
| :--- | :---: | :---: |
| Source | F | 3.141593 |
| Destination | W | 3 |

When input IO is turned on, 3 is stored to data register D2.


- Data Type: S1 has a larger data range than D1

When the source data exceeds the range of destination data type, the destination stores a value closest to the source data within the destination data type.

| IO | CVDT S1- D1- REP <br> DTOW D0 D2  |
| :--- | :--- | :--- | :--- |


| Device | Data Type | Value |
| :--- | :---: | :---: |
| Source | D | $4,294,967,295$ |
| Destination | W | 65,535 |

When input I0 is turned on, 65,535 is stored to data register D2.


## DTDV (Data Divide)


$\mathrm{S} 1 \rightarrow \mathrm{D} 1, \mathrm{D} 1+1$
When input is on, the 16-bit binary data assigned by S 1 is divided into upper and lower bytes. The upper byte data is stored to the destination assigned by device D1. The lower byte data is stored to the device next to D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data to divide | X | X | X | X | X | X | X | X | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When $T$ (timer) or $C$ (counter) is used as $S 1$, the timer/counter current value (TC or $C C$ ) is displayed.
Destination device D1 uses 2 data registers starting with the device assigned by D1.
Since the DTDV instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as the source, 16 points (word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) is used.

## Example: DTDV



## 10: Data Conversion Instructions

## DTCB (Data Combine)


$\mathrm{S} 1, \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1$
When input is on, the lower-byte data is displayed from 2 consecutive sources starting with device assigned by S1 and combined to make 16-bit data. The lower byte data from the first source device is moved to the upper byte of the destination assigned by device D1, and the lower byte data from the next source device is moved to the lower byte of the destination.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data to combine | - | - | - | - | - | - | X | - | - |
| D1 (Destination 1) | Destination to store results | - | X | $\mathbf{A}$ | X | X | X | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535 .
Source device S 1 uses 2 data registers starting with the device assigned by S 1 .
Since the DTCB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | - |
| L (long) | - |
| F (float) | - |

When a bit device such as I (input), $Q$ (output), $M$ (internal relay), or $R$ (shift register) is assigned as the destination, 16 points (word data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source or destination, 1 point (word data) is used.

## Example: DTCB



## SWAP (Data Swap)



S1 $\rightarrow$ D1
When input is on, upper and lower byte- or word-data of a word- or double-word-data assigned by S1 are exchanged, and the result is stored to destination assigned by D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Binary data to swap | - | - | - | - | - | - | X | - | $1-99$ |
| D1 (Destination 1) | Destination to store conversion result | - | - | - | - | - | - | X | - | $1-99$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the SWAP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a $D$ (data register) is assigned as the source or destination, 1 point (word data) or 2 points (double-word data) are used. When repeat is assigned, the quantity of device words increases in 1- or 2-point increments.

## Examples: SWAP

## - Data Type: W (word)

When input IO is turned on, upper- and lower-byte data of the 16-bit data in data register D10 assigned by source device S1 are exchanged, and the result is stored to data register D20 assigned by destination device D1.


## - Data Type: D (double-word)

When input I1 is turned on, upper- and lower-word data of the 32-bit data in data registers D10 and D11 assigned by source device S1 are exchanged, and the result is stored to data registers D20 and D21 assigned by destination device D1.

$|$| $\operatorname{SWAP}(D)$ | S1 <br> D10 | D1 <br> D20 | REP |
| :---: | :---: | :---: | :---: |
|  |  |  |  |


| Before Execution |  | After Execution |  |
| :---: | :---: | :---: | :---: |
| D10 | 100 | D20 | 200 |
| D11 | 200 | D21 | 100 |

## 11: Week Programmer Instructions

This chapter describes the week programmer instructions that are used to turn outputs on and off on the specified days of the week or dates and times.

## WKTIM (Week Timer)

Compares the specified day of the week, start time, and end time with the current time and outputs that result.


Note: The WKTIM instruction is compatible with the FC5A MicroSmart WKTIM instruction. For details on the WKTIM instruction, see Chapter 9 "WKTIM (Week Timer)" in the "FC5A Series MicroSmart Pentra User's Manual Advanced Volume".

## WKTBL (Week Table)

Sets the specified month and day as a special date.


Note: The WKTBL instruction is compatible with the FC5A MicroSmart WKTBL instruction. For details on the WKTBL instruction, see Chapter 9 "WKTBL (Week Table)" in the "FC5A Series MicroSmart Pentra User's Manual Advanced Volume".

## WEEK (Weekly Timer)

Compares the specified day of the week, ON time, and OFF time with the current time and outputs that result.


Note: For details on the WEEK instruction, see "WEEK (Weekly Timer)" on page 11-3.

## YEAR (Yearly Timer)

Compares the specified date with the current date and outputs that result. This allows the special dates within a one-year period to be specified.


Note: For details on the YEAR instruction, see "YEAR (Yearly Timer)" on page 11-16.

## 11: Week Programmer Instructions

## Differences in the week programmer instructions

There are four types of week programmer instructions: the WKTIM instruction, the WKTBL instruction, the WEEK instruction, and the YEAR instruction. The initial values of the WEEK and YEAR instructions, such as the day of the week, ON time, OFF time, and special dates, can be easily configured in the dialog box for the instruction. The initial values of the WKTIM and WKTBL instructions must be configured using data registers.

## Comparing the WKTIM and WEEK instructions

| Item | WKTIM Instruction | WEEK Instruction |
| :--- | :--- | :--- |
| Number of instructions that can be <br> used in one ladder program | No limit | 10 |
| Number of patterns that can be <br> configured in one instruction | 1 pattern | 20 patterns |
| Pulse output function | No | Yes |
| Initial value configuration method | Configure initial values using data registers | Configure initial values using the dialog box <br> in WindLDR |
| Configuration pattern preview function | No | Yes |

## Comparing the WKTBL and YEAR instructions

| Item | WKTBL Instruction | YEAR Instruction |
| :--- | :--- | :--- |
| Number of instructions that can be <br> used in one ladder program | No limit | 10 |
| Number of patterns that can be <br> configured in one instruction | 20 patterns | 20 patterns |
| Pulse output function | No | Yes <br> Calendar specification methods date <br> Specify day of the week <br> Specify end of the month |
| Initial value configuration method | Configure initial values using <br> data registers in the ladder program | Configure initial values using the dialog box <br> in WindLDR |
| Configuration pattern preview function | No | Yes |

## WEEK (Weekly Timer)



The WEEK instruction compares the specified day of the week, ON time, and OFF time with the current time and outputs that result.

When the input is on, the output specified by D1 is turned on when the day of the week and the time specified by the ON settings match the current day of the week and time.

The output specified by D1 is also turned off when the day of the week and the time specified by the OFF settings match the current day of the week and time.

If the ON settings are Monday 00:00 and the OFF settings are Wednesday 18:00, output D1 turns on and off as follows.
When the WEEK instruction input is ON on Monday 13:00, output D1 turns ON on Monday 13:00 and it turns OFF on Wednesday 18:00.
(In this diagram the WEEK instruction input is turned on at 0:00 on Monday)


## Notes:

- A maximum of 10 WEEK instructions can be used in a user program.
- Normally the output is only updated when the current time and the time for the ON/OFF settings matches, but when the WEEK instruction input changes from off to on, the output state at the current time is determined according to the ON/OFF settings and the output is turned on or off. For details, see "Timing Chart when the Input Turns On during the Configured Interval" on page 11-10.
- When pulse output is enabled, output is turned on for one scan at the ON settings time. For pulse output, see "6. Pulse Output" on page 115 or "6. Pulse Output" on page 11-8.
- When the ON time is set to a value larger than 2,359 , the OFF time is set to a value larger than 2,400 , or the lower 2 digits of ON/OFF time is set to a value larger than 59, a user program execution error will occur.
- When the day of the week is not specified, a user program execution error will occur.
- The WEEK instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First data register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| S2 (Source 2) | Initialization input | - | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Number of parameter tabs | - | - | - | - | - | - | - | $X$ | - |
| D1 (Destination 1) | Output port | - | $X$ | $\mathbf{1}$ | - | - | - | - | - | - |

L Special data registers cannot be designated as S1. Internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.

## Settings

There are two methods to configure the day of the week and the time for the WEEK instruction. Specify the method on the Devices tab with Data register settings.

- Configuring the day of the week and the time as fixed settings The day of the week and the time for the ON/OFF settings are uniquely determined. The day of the week and the time for the ON/OFF settings cannot be changed while the FC6A Series MicroSmart is running. For details, see "To configure the day of the week and the time as fixed settings" on page 11-4.
- Configuring the day of the week and the time by specifying data registers

The day of the week and the time for the ON/OFF settings are configured according to the values stored in the specified data registers. The day of the week and the time for the ON/OFF settings can be changed while the FC6A Series MicroSmart is running. For details, see "To configure the days of the week and the time by specifying data registers" on page 11-7.
To configure the day of the week and the time as fixed settings
The day of the week and the time for the ON/OFF settings are uniquely determined. The day of the week and the time for the ON/OFF settings cannot be changed while the FC6A Series MicroSmart is running.

- Devices tab



## 1. Data register settings

This setting determines whether to configure the day of the week and the time as fixed settings or to indirectly specify them with data registers.
To configure the day of the week and the time as fixed settings, clear this check box.

## Unselected check box

The day of the week and the time are fixed settings. The day of the week and the time are configured on the parameter tabs. The day of the week and the time cannot be changed while the FC6A Series MicroSmart is running. For the settings, see "Parameter tab" on page 11-5.
Note: When this check box is selected, the settings for the day of the week and the time are indirectly specified with data registers. Configure the day of the week and the time by using data registers. The day of the week and the time can be changed while the FC6A Series MicroSmart is running. For directions specific to data registers, see "To configure the days of the week and the time by specifying data registers" on page 11-7.

## 2. S1 (source 1): First Data Register

This setting is not configured when configuring the day of the week and the time as fixed settings.

## 3. S2 (source 2): Initialization Input

This setting is not configured when configuring the day of the week and the time as fixed settings.

## 4. S3 (source 3): Number of parameter tabs

This setting configures the number of parameter tabs. When this value is increased or decreased, the number of parameter tabs displayed on the dialog box increases or decreases. 6 bytes of the user program region are used for each parameter tab. For the settings, see "Parameter tab" on page 11-5.

## 5. D1 (destination 1): Output

This setting configures the output for the results when the configured day of the week and time and the current day of the week and time are compared.

| Setting | Description |
| :--- | :--- |
| Tag Name | Specifies the tag name or the device address for each device. |
| Device Address | Shows the device address that corresponds to the tag name. |
| Comment | Shows the comment for the device address. This item can be edited. |

6. Pulse Output

This setting configures the operation for D1 (output). This setting is applied to all parameter tabs.Selected check box
When the day of the week and the time configured in the ON settings matches the current day of the week and the time, the output is turned on for only one scan.Unselected check box
The output is turned on and off according to the ON settings and the OFF settings.

## - Parameter tab

This tab configures the ON/OFF settings for the output. A maximum of 20 parameter tabs can be configured for one WEEK instruction.


## 1. ON settings

This section configures the day of the week and the time to turn on the output. The output is turned on at the specified time for the specified day of the week.

| Setting | Description | Range |
| :--- | :--- | :---: |
| Day of the week | Specifies the days of the week. | - |
| ON time | Used to enter the time. Set the time in a range from 00:00 to 23:59. | Hour: 0 to 23 |
|  |  | Minute: 0 to 59 |

## 2. OFF settings

This section configures the day of the week and the time to turn off the output. The output is turned off at the specified time for the specified day of the week.

| Setting | Description | Range |
| :--- | :--- | :---: |
| Day of the week | Specifies the days of the week. | - |
| OFF time | Used to enter the time. Set the time in a range from 00:00 to 24:00. | Hour: 0 to 24 |
|  |  | Minute: 0 to 59 |

## 11: Week Programmer Instructions

Note: When the time is duplicated in the settings on other tabs, the settings on the tab with the larger tab number are valid.
For example, if ON time is 8:00 and OFF time is 9:00 on the $\mathbf{P} \mathbf{1}$ tab and $\mathbf{O N}$ time is 9:00 and OFF time is 10:00 on the $\mathbf{P} \mathbf{2}$ tab, the 9:00 setting is duplicated on the two tabs and OFF time for the $\mathbf{P} \mathbf{1}$ tab is disabled. In this situation, the output is on from 8:00 to 10:00.


If ON time is 9:00 and OFF time is 10:00 on the $\mathbf{P} \mathbf{1}$ tab and $\mathbf{O N}$ time is 8:00 and OFF time is 9:00 on the $\mathbf{P} \mathbf{2}$ tab, the 9:00 setting is duplicated on the two tabs and $\mathbf{O N}$ time for the $\mathbf{P} \mathbf{1}$ tab is disabled. In this situation, the output is on from 8:00 to 9:00.


## - Preview



The preview shows the ON/OFF state for the output based on the settings configured on the parameter tabs as a time chart. The preview can be shown as a week or a day.

| Setting |  |
| :--- | :--- |
| Week | Select this radio button when showing the preview as a week. |
| Day | Select this radio button when showing the preview as a day. |

## To configure the days of the week and the time by specifying data registers

The day of the week and the time for the ON/OFF settings are configured according to the values stored in the specified data registers. The day of the week and the time for the ON/OFF settings can be changed while the FC6A Series MicroSmart is running.
Note: When the day of the week or time in the ON/OFF settings is modified with the WEEK instruction input turned on, it is not reflected in the output operation until the current day of the week and time match the day of the week and time in the changed ON/OFF settings.
To immediately reflect this in the output operation, turn the WEEK instruction off and then on again after changing the day of the week or time.

## - Devices tab



## 1. Data register settings

This setting selects whether to configure the day of the week and the time as fixed settings or to indirectly specify them with data registers. To configure the day of the week and the time by specifying data registers, select this check box.

## Selected check box

The day of the week and the time settings are indirectly specified by data registers. Configure the day of the week and the time by using data registers. The day of the week and the time can be changed while the FC6A Series MicroSmart is running. For allocating the data register region, see "Data Register Allocation" on page 11-9.
The data registers can be initialized with the days of the week and the times configured on the parameter tabs by turning on the initialization input. For initialization, see "3. S2 (source 2): Initialization Input" on page 11-8.

Note: When this check box is not selected, the day of the week and the time are fixed settings. The day of the week and the time are configured on the parameter tabs. The day of the week and the time cannot be changed while the FC6A Series MicroSmart is running. For fixed settings, see "To configure the day of the week and the time as fixed settings" on page 11-4.

## 2. S1 (source 1): First Data Register

This setting specifies the start of the data register region to store the days of the week and time settings for the WEEK instruction.
This setting is only used when indirectly specifying the settings for the WEEK instruction with data registers.

| Setting | Description |
| :--- | :--- |
| Tag Name | Specifies the tag name or the device address for the device. |
| Device Address | Shows the device address that corresponds to the tag name. |
| Used Data Registers | Shows the range of data registers used to store the settings. This item changes when the device address or the <br> number of parameter tabs changes. |
| Comment | Shows the comment for the device address. This item can be edited. |

For allocating the data register region, see "Parameter tab" on page 11-8.

## 3. S2 (source 2): Initialization Input

This setting specifies the device to initialize the days of the week and the times stored in the data register region that starts from S1 (source 1).
The values configured on the parameter tabs are stored in the data registers by turning on the initialization input.
This setting is only used when indirectly specifying the settings for the WEEK instruction with data registers.
4. S3 (source 3): The number of parameter tabs

This setting configures the number of parameter tabs.
This setting is shared in common with "To configure the day of the week and the time as fixed settings". See "4. S3 (source $3)$ : Number of parameter tabs" on page 11-4.

## 5. D1 (destination 1): Output

This setting configures the output for the results when the configured day of the week and time and the current day of the week and time are compared.
This setting is shared in common with "To configure the day of the week and the time as fixed settings". See "5. D1 (destination 1): Output" on page 11-5.

## 6. Pulse Output

This setting configures the operation for D1 (output). This setting is applied to all parameter tabs and is shared in common with "To configure the day of the week and the time as fixed settings". See "6. Pulse Output" on page 11-5.

## 7. Data Register Allocation

Click this button to display the Data Register Allocation dialog box. As shown below, a table showing the data registers and their corresponding WEEK instruction settings is displayed on the dialog box (8). Click Allocate Comments (9) and you can configure the comments for the data registers that correspond to the names of the settings.
This button is only used when indirectly specifying the settings for the WEEK instruction with data registers.

- Data Register Allocation dialog box



## - Parameter tab

This tab configures the ON/OFF settings for the output. A maximum of 20 parameter tabs can be configured for 1 WEEK instruction.
If indirectly specifying the settings for the WEEK instruction with data registers, the settings configured on the parameter tabs are stored in the data registers when the initialization input is turned on.

This setting is shared in common with "To configure the day of the week and the time as fixed settings". See "Parameter tab" on page 11-5.

## - Preview

The preview shows the ON/OFF state for the output based on the settings configured on the parameter tabs as a time chart. This function is shared in common with "To configure the day of the week and the time as fixed settings". See "Preview" on page 11-6.

## Data Register Allocation

If indirectly specifying the settings for the WEEK instruction with data registers, the settings are allocated to the data registers as follows.

| Storage Destination | Data Size (word) | R (Read)/W (Write) | Setting |  |
| :---: | :---: | :---: | :---: | :---: |
| Start address+0 | 1 | R/W | P 1 tab | Day of the week |
| Start address+1 | 1 | R/W |  | ON time |
| Start address+2 | 1 | R/W |  | OFF time |
| Start address+3 | 1 | R/W | P 2 tab | Day of the week |
| Start address+4 | 1 | R/W |  | ON time |
| Start address+5 | 1 | R/W |  | OFF time |
| - | - | - |  | - |
| - | - | - |  | - |
| $\bullet$ | - | - |  | - |
| Start address+57 | 1 | R/W | P 20 tab | Day of the week |
| Start address+58 | 1 | R/W |  | ON time |
| Start address+59 | 1 | R/W |  | OFF time |

## - Day of the week data register allocation

The day of the week for the ON settings and the day of the week for the OFF settings are allocated as bits in 1 data register as follows.


## Example day of the week settings

[To configure the output to turn on Monday and to turn off Friday]

$$
\begin{aligned}
& \text { Monday is enabled in the ON settings, Friday is enabled in the OFF settings } \\
& \text { Reserved Saturday Friday Thursday Wednesday Tuesday Monday Sunday Reserved Saturday Friday Thursday Wednesday Tuesday Monday Sunday } \\
& \text { Day of the week setting (ON): } 0000010 \\
& \text { Day of the week setting (OFF): } 0100000 \\
& \text { The value of the data register is } 1000100000 \text { (binary) }=544 \text { (decimal). }
\end{aligned}
$$

[To configure the output to turn on Monday and Thursday and to turn off Tuesday and Saturday]
Monday and Thursday are enabled in the ON settings, Tuesday and Saturday are enabled in the OFF settings

| ON settings |  |  |  |  |  |  |  | OFF settings |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
|  | 0 | 0 | 1 | 0 | 0 | 1 | 0 |  | 1 | 0 | 0 | 0 | 1 | 0 | 0 |

Reserved Saturday Friday Thursday Wednesday Tuesday Monday Sunday Reserved Saturday Friday Thursday Wednesday Tuesday Monday Sunday Day of the week setting (ON): 0010010
Day of the week setting (OFF): 1000100
The value of the data register is 1001001000100 (binary) $=4676$ (decimal).
The ON time and the OFF time are stored in the data register as follows.


## 11: Week Programmer Instructions

## Timing Chart when the Input Turns On during the Configured Interval

When the input turns on or off during the interval between the ON settings and the OFF settings, and when the input is turns on or off after 0:00 on the date configured by the ON settings while pulse output is enabled, the timing chart is as follows.

## - When pulse output is disabled

| Setting details |  |
| :--- | :--- |
| ON <br> Settings | Monday 13:00 |
| OFF | Wednesday 18:00 |
| Settings |  |
| Output | Q0 |


[When the input is on before the day of the week and time specified by the ON settings]
On Monday at 00:00 when input M0000 is turned on, the result of the current date compared with the ON and OFF settings is not within the ON and OFF settings (Monday 13:00 to Wednesday 18:00). Therefore, the output remains off.
Afterward, on Monday at 13:00, output Q0 turns on, and it turns off on Wednesday at 18:00.


## [When the input is turned on or off during the interval between the ON and OFF settings]

On Tuesday at 6:00 when input M0000 is turned on, the result of the current date compared with the ON and OFF settings is within the ON and OFF settings (Monday 13:00 to Wednesday 18:00). Therefore, the output turns on. Afterward, if input M0000 is turned off before the OFF settings, the output also turns off at the same time.


## - When pulse output is enabled

## Setting details

| ON settings | Sunday 0:00 |
| :--- | :--- |
| Output | Q0 |



## [When the input turns on before the day of the week and time specified by the ON settings]

On Sunday at 0:00, input M0000 is on, so output Q0 turns on for one scan only on Sunday at 0:00.

[When the input turns on during the day of the week and time specified by the ON settings]
On Sunday at 0:00:30 (between Sunday 0:00:00 and 0:00:59), when input M0000 changes from off to on, output Q1 turns on for one scan only.


## 11: Week Programmer Instructions

## Examples: WEEK

[To turn on output Q0 Monday to Friday each week from 8:30 to 17:15]

## Parameter tab



Configure the tab as shown above and set D1 to Q0.

[To turn on output Q0 Tuesday, Wednesday, and Saturday each week from 20:30 to 1:15 the next day] Parameter tab


Configure the tab as shown above and set D1 to Q0.

[To turn on output Q0 Monday, Wednesday, and Friday each week from 6:00 to 9:00, 15:00 to 18:00, and 22:00 to 0:00 the next day]

## Parameter tab

Configure the settings using three tabs.
On P 1 tab, configure the output to turn on Monday, Wednesday, and Friday from 6:00 to 9:00.


On P 2 tab, configure the output to turn on Monday, Wednesday, and Friday from 15:00 to 18:00.


## 11: Week Programmer Instructions

On P 3 tab, configure the output to turn on Monday, Wednesday, and Friday from 22:00 to 0:00 the next day.


Configure the tabs as shown above and set D1 to Q0.
$\left|\begin{array}{|llll|} & \text { WEEK } & \text { S1 } & \text { S2 } \\ & & \text { S3 } & \text { D1 } \\ & & & \\ & & \text { Q0 }\end{array}\right|$

## [To indirectly specify the settings with data registers]

This example describes turning on output M0100 Monday to Friday each week from 8:30 to 17:15 as an example.
Select the Data register settings check box and set S1 to D0000 and S2 to M0000.

## Parameter tab



## Data register allocation

The settings on the $\mathbf{P} \mathbf{1}$ tab are allocated to data registers D0 to D2 as shown in the table below. The settings configured on the parameter tab are stored in D0 to D2 by turning on initialization input S2.

| Data Register | Setting |  | Initial Setting |
| :---: | :---: | :---: | :---: |
| D0 | P 1 tab | Day of the week setting | 15934 (Monday to Friday, both ON settings and OFF settings) |
|  |  | ON time | 830 |
|  |  | OFF time | 1715 |
| D2 |  |  |  |



- The initialization input (M1) turns on with the first scan and the initial settings configured on the $\mathbf{P} \mathbf{1}$ tab are stored in D0 to D2.
- The WEEK instruction starts operating according to the values of data registers D0 to D2.
- When M10 turns on, the ON time (D1) changes to 9:00 and the OFF time (D2) changes to 17:00.
- When M1 turns on, all of the WEEK instruction settings (D0 to D2) return to the initial settings.


## 11: Week Programmer Instructions

## YEAR (Yearly Timer)



The YEAR instruction compares the specified date with the current date and outputs that result. With this instruction you can specify special dates within a one year period (A "special date" is a date configured with ON/OFF settings specified by the YEAR instruction).

When the input is on, the output specified by D1 is turned on when the date specified by the ON settings matches the current date.

The output is turned off when the date specified by the OFF settings matches the current date.

When the ON settings are December 15, 2012 and the OFF settings are January 20, 2013, output D1 turns on and off as follows.


## Notes:

- A maximum of 10 YEAR instructions can be used in a user program.
- Normally the output is only updated when the current date and the date for the ON/OFF settings matches, but when the YEAR instruction input changes from off to on, the output state at the current date is determined according to the ON/OFF settings and the output is turned on or off.
For details, see "Timing Chart when the Input Turns On during the Configured Interval" on page 11-25.
- When pulse output is enabled, output is turned on for one scan at the instant $(0: 00)$ the date changes to the ON date.

When the YEAR instruction input changes from off to on, the output state at the current date is judged according to the ON/OFF settings, and the output is turned on for 1 scan only.
For pulse output, see "6. Pulse Output" on page 11-18 or "6. Pulse Output" on page 11-22.

- When the year data is outside the range of 2000 to 2099 , the month data is outside the range of 1 to 12 , the day data is outside the range of 1 to 31 , the week data is outside the range of 1 to 5 , and the day of the week data is outside the range of 0 to 6 , a user program execution error will occur.
- The YEAR instruction cannot be used in an interrupt program.

If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

- When the yearly setting or monthly setting is enabled and a date that does not exist according to the month or year is set for the ON setting or the OFF setting, the output turns on or off on the first day of the next month.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | First data register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| S2 (Source 2) | Initialization input | - | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Number of parameter tabs | - | - | - | - | - | - | - | $X$ | - |
| D1 (Destination 1) | Output port | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | - |

( Special data registers cannot be designated as S1. Internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.

## Settings

There are two methods to configure dates for the YEAR instruction. Specify the method on the Devices tab with Data register settings.

- Configure the dates as a fixed setting

The dates for the ON/OFF settings are uniquely determined. The dates for the ON/OFF settings cannot be changed while the FC6A Series MicroSmart is running. For details, see "To configure the dates as a fixed setting" on page 11-17.

- Configuring the dates by specifying data registers

The dates for the ON/OFF settings are configured according to the values stored in the specified data registers. The dates for the ON/OFF settings can be changed while the FC6A Series MicroSmart is running. For details, see "To configure the dates by specifying data registers" on page 11-21.

## To configure the dates as a fixed setting

The dates for the ON/OFF settings are uniquely determined. The dates for the ON/OFF settings cannot be changed while the FC6A Series MicroSmart is running.

## - Devices tab



## 1. Data register settings

This setting selects whether to configure YEAR instruction dates as fixed settings or to indirectly specify them with data registers.
To configure the dates as fixed settings, clear this check box.

## $\square$ Unselected check box

The dates are fixed settings.
The dates are configured on the parameter tabs. The dates cannot be changed while the FC6A Series MicroSmart is running. For the settings, see "Parameter tab" on page 11-5.
Note: When this check box is selected, the settings for dates are indirectly specified with data registers. Configure the dates by using data registers. The dates can be changed while the FC6A Series MicroSmart is running. For indirection specification with data registers, see "To configure the dates by specifying data registers" on page 11-21.

## 2. S1 (source 1): First Data Register

This setting is not configured when configuring the dates as fixed settings.

## 3. S2 (source 2): Initialization Input

This setting is not configured when configuring the dates as fixed settings.
4. S3 (source 3): Number of parameter tabs

This setting configures the number of parameter tabs. When this value is increased or decreased, the number of parameter tabs displayed on the dialog box increases or decreases. 10 bytes of the user program region are used for each Parameter tab. For the settings, see "Parameter tab" on page 11-18.

## 11: WeEk Programmer Instructions

## 5. D1 (destination 1): Output

This setting configures the output for the results when the configured dates and the current date are compared.

| Setting | Description |
| :--- | :--- |
| Tag Name | Specifies the tag name or the device address for each device. |
| Device Address | Shows the device address that corresponds to the tag name. |
| Comment | Shows the comment for the device address. This item can be edited. |

6. Pulse Output

This setting configures the operation for D1 (output). This setting is applied to all parameter tabs.

## Selected check box

When the current date changes to the date in the ON settings, the output is turned on for only one scan.Unselected check box
The output is turned on and off according to the ON settings and the OFF settings.

- Parameter tab

This tab configures the settings for the output. A maximum of 20 parameter tabs can be configured for 1 YEAR instruction.


## 1. Yearly

When Yearly is selected, the Month and Day settings are valid every year.
At this time, you can configure whether or not to make the Month and Day settings valid yearly from a year until another year with Year.

## 2. Monthly

The settings for the selected tab are valid each month. At this time, Month is disabled.

## 3. ON settings

This section configures the date to turn on the output. The output is turned on at 0:00 on the configured date.

| Setting |  | Description | Range |
| :--- | :--- | :--- | :--- |
| Year | Month | Specifies the year to turn on the output. | 2000 to 2099 |
|  | Day | Specifies the month to turn on the output. | 1 to 12 |
| Month and Day <br> Setting | Day of the week | Specifies the day to turn on the output. <br> Spe range of the 1st to the 5th (or the last) week and set the day of the week. | 1 to 61 |
|  | End of month | Specify the end of month to turn on the output on the last day of the month. | - |

## 4. OFF settings

This section configures the date to turn off the output. The output is turned off at 0:00 on the configured date.

| Setting |  | Description | Range |
| :---: | :---: | :---: | :---: |
| Year |  | Specifies the year to turn off the output. | 2000 to 2099 |
| Month and Day Setting | Month | Specifies the month to turn off the output. | 1 to 12 |
|  | Day | Specifies the day to turn off the output. | 1 to 31 |
|  | Day of the week | Specifies the day as the day of the week to turn on the output. Specify the week in the range of the 1st to the 5th (or the last) week and set the day of the week. | 1 to 6 |
|  | End of month | Specify the end of month to turn off the output on the last day of the month. | - |
| Specify ON duration |  | This item specifies whether or not to turn off the output after the number of specified days from when it was turned on. If this setting is enabled, the OFF settings are disabled. This setting can be set in a range from 1 day to 30 days. | 1 to 30 |

Note: When the date is duplicated in the settings on other tabs, the settings on the tab with the larger tab number are valid.
For example, if the ON date is the 8th of every month and the OFF date is the 16th of every month on the $\mathbf{P} \mathbf{1}$ tab and the ON date is the 16th of every month and the OFF date is the 22nd of every month on the $\mathbf{P} \mathbf{2}$ tab, the 16 th of every month setting is duplicated on the two tabs and the ON settings for the $\mathbf{P} \mathbf{2}$ tab are valid. In this situation, the output is on from the 8th to the 22nd of every month.


If the ON date is the 16th of every month and the OFF date is the 22 nd of every month on the $\mathbf{P} \mathbf{1}$ tab and the ON date is the 8 th of every month and the OFF date is the 16th of every month on the $\mathbf{P} \mathbf{2}$ tab, the 16th of every month setting is duplicated on the two tabs and the ON settings for the $\mathbf{P} \mathbf{1}$ tab are disabled. In this situation, the output is on from the 8th to the 16th of every month.


## 11: Week Programmer Instructions

- Preview


The preview shows the ON/OFF state for the output based on the settings configured on the parameter tabs in a calendar. The dates that are set to ON are highlighted in orange. Three months are shown at one time.

| Setting | Description |
| :--- | :--- |
| Year | Specifies the year to show in the preview. |
| Scrollbar | You can change the month shown in the preview by moving the scrollbar. |

## To configure the dates by specifying data registers

The dates for the ON/OFF settings are configured according to the values stored in the specified data registers.
The dates for the ON/OFF settings can be changed while the FC6A Series MicroSmart is running.
Note: When a special date in the ON/OFF settings is modified with the YEAR instruction input turned on, it is not reflected in the output operation until the current date and time match the changed special date.
To immediately reflect this in the output operation, turn the YEAR instruction off and then on again after changing the special date.

## - Devices tab



1. Data register settings

This setting selects whether to configure YEAR instruction dates as fixed settings or to indirectly specify them with data registers.
To configure the dates by specifying data registers, select this check box.
回 Selected check box
The date settings are indirectly specified by data registers. Configure the dates by using data registers. The dates can be changed while the FC6A Series MicroSmart is running. For allocating the data register region, see "Data Register Allocation" on page 11-23.
The data registers can be initialized with the days of the week and the times configured on the parameter tabs by turning on the initialization input. For initialization, see "3. S2 (source 2): Initialization Input" on page 11-21.
Note: When this check box is not selected, the dates are fixed settings. The dates are configured on the parameter tabs. The dates cannot be changed while the FC6A Series MicroSmart is running. For fixed settings, see "To configure the dates as a fixed setting" on page 11-17.

## 2. S1 (source 1): First Data Register

This setting specifies the start of the data register region to store the dates for the YEAR instruction.
This setting is only used when indirectly specifying the dates with data registers.

| Setting | Description |
| :--- | :--- |
| Tag Name | Specifies the tag name or the device address for the device. |
| Device Address | Shows the device address that corresponds to the tag name. |
| Used Data Registers | Shows the range of data registers used to store the settings. This item changes when the device address or the number <br> of parameter tabs changes. |
| Comment | Shows the comment for the device address. This item can be edited. |

For allocating the data register region, see "Data Register Allocation" on page 11-23.

## 3. S2 (source 2): Initialization Input

This setting specifies the device to initialize the dates stored in the data register region that starts from S1 (source 1). The values configured on the parameter tabs are stored in the data registers by turning on the initialization input. This setting is only used when indirectly specifying the settings for the YEAR instruction with data registers.

## 4. S3 (source 3): The number of parameter tabs

This setting configures the number of parameter tabs.
This setting is shared in common with "To configure the dates as a fixed setting". See "4. S3 (source 3): Number of parameter tabs" on page 11-17.

## 5. D1 (destination 1): Output

This setting configures the output for the results when the configured dates and the current date are compared.
This setting is shared in common with "To configure the dates as a fixed setting". See "5. D1 (destination 1): Output" on page 11-18.

## 6. Pulse Output

This setting configures the operation for D1 (output). This setting is applied to all parameter tabs.
This setting is shared in common with "To configure the dates as a fixed setting". See "6. Pulse Output" on page 11-18.

## 7. Data Register Allocation

Click this button to display the Data Register Allocation dialog box. As shown below, a table of the data registers and their corresponding YEAR instruction settings is displayed on the dialog box (8). Click Allocate Comments (9) and you can configure the comments for the data registers that correspond to the names of the settings.
This button is only used when indirectly specifying the settings for the YEAR instruction with data registers.

## - Data Register Allocation dialog box



## - Parameter tab

This tab configures the settings for the output. A maximum of 20 parameter tabs can be configured for 1 YEAR instruction. If indirectly specifying the settings for the YEAR instruction with data registers, the settings configured on the parameter tabs are stored in the data registers when the initialization input is turned on.
This setting is shared in common with "To configure the dates as a fixed setting". See "Parameter tab" on page 11-18.

## - Preview

The preview shows the ON/OFF state for the output based on the settings configured on the parameter tabs in a calendar. This function is shared in common with "To configure the dates as a fixed setting". See "Preview" on page 11-20.

## Data Register Allocation

The settings configured on the Parameter tabs are allocated to the data registers as follows.

| Storage destination | Data size (word) | R (Read)/W (Write) |  |  | Setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Start address+0 | 1 | R/W | P 1 tab | ON setting | Year |
| Start address+1 | 1 | R/W |  |  | Month, Day or Day of the week |
| Start address+2 | 1 | R/W |  |  | Year |
| Start address+3 | 1 | R/W |  | OFF setting | Month, Day or Day of the week (number of days when specified to remain on) |
| Start address+4 | 1 | R/W | P 2 tab | ON setting | Year |
| Start address+5 | 1 | R/W |  |  | Month, Day or Day of the week |
| Start address+6 | 1 | R/W |  | OFF setting | Year |
| Start address+7 | 1 | R/W |  |  | Month, Day or Day of the week (number of days when specified to remain on) |
| - | $\bullet$ | - |  |  | - |
| - | - | - |  |  | - |
| $\bullet$ | - | - |  |  | - |
| Start address+76 | 1 | R/W | P 20 tab | ON setting | Year |
| Start address+77 | 1 | R/W |  |  | Month, Day or Day of the week |
| Start address+78 | 1 | R/W |  | OFF setting | Year |
| Start address+79 | 1 | R/W |  |  | Month, Day or Day of the week (number of days when specified to remain on) |

- Month, Day or Day of the week data register allocation

The Month, Day or Day of the week are allocated as bits in 1 data register as follows.


- Month, Week, Day of the week

Data register (1 word)


- Month, End of month

| 1st to 5th (or the last) | Sunday to Saturday |
| :---: | :---: |
| Week setting assignments | Day of the week assignments |
| (Binary) (Decimal) (Binary) (Decimal) <br> $001000=8: 1$ st $000=0:$ Sunday <br> $010000=16: 2$ nd $001=1:$ Monday <br> $011000=24: 3$ rd $010=2:$ Tuesday <br> $100000=32: 4$ th $011=3:$ Wednesday <br> $101000=40: 5$ th $100=4:$ Thursday <br> $110000=48:$ Last $101=5:$ Friday <br>  $110=6:$ Saturday |  |



## 11: Week Programmer Instructions

## Example day of the week settings

[When configured to turn on the output on January 1st]

| January 1st |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved |  |  |  | Month setting |  |  |  | Reserved |  |  | Day setting |  |  |  |  |
| Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Month setting: $0001=1$
Day setting: $00001=1$
The value of the data register is 100000001 (binary) $=257$ (decimal).
[When configured to turn on the output on December 31st]

| December 31st |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved |  |  |  | Month setting |  |  |  | Reserved |  |  | Day setting |  |  |  |  |
| $\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$ | 14 | 13 | 12 | 11 | 10 | 9 | $\begin{gathered} \hline \text { Bit } \\ 8 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 7 \end{gathered}$ | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |

Month setting: $1100=12$
Day setting: $11111=31$
The value of the data register is 110000011111 (binary) $=3103$ (decimal).
[When configured to turn on the output on the 1st Monday of January]

| 1st Monday of January |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved |  |  |  | Month setting |  |  |  | Reserved |  | Week setting |  |  | Day of the week setting |  |  |
| $\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$ | 14 | 13 | 12 | 11 | 10 | 9 | $\begin{aligned} & \text { Bit } \\ & 8 \end{aligned}$ | $\begin{gathered} \text { Bit } \\ 7 \end{gathered}$ | 6 | 5 | 4 | 3 | 2 | 1 | $\begin{gathered} \hline \text { Bit } \\ 0 \end{gathered}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |

Month setting: $0001=1$ (January)
Week setting: $001=1$ (1st)
Day of the week setting: $001=1$ (Monday)
The value of the data register is 100001001 (binary) $=265$ (decimal).
[When configured to turn on the output on the 4th Thursday of June]

| 4th Thursday of June |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reserved |  |  |  | Month setting |  |  |  | Reserved |  | Week setting |  |  | Day of the week setting |  |  |
| $\begin{aligned} & \text { Bit } \\ & 15 \\ & \hline \end{aligned}$ | 14 | 13 | 12 | 11 | 10 | 9 | $\begin{gathered} \hline \text { Bit } \\ 8 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 7 \end{gathered}$ | 6 | 5 | 4 | 3 | 2 | 1 | $\begin{gathered} \text { Bit } \\ 0 \end{gathered}$ |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |

Month setting: $0110=6$ (June)
Week setting: $100=4$ (4th)
Day of the week setting: $100=4$ (Thursday)
The value of the data register is 11000100100 (binary) $=1572$ (decimal).
[When configured to turn on the output on the Final]

| Final |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reserved |  |  | Month setting |  |  |  | Reserved |  | Week setting |  |  | Day of the week setting |  |  |
| $\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$ | 14 | 13 | 12 | 11 | 10 | 9 | $\begin{gathered} \hline \text { Bit } \\ 8 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 7 \end{gathered}$ | 6 | 5 | 4 | 3 | 2 | 1 | $\begin{gathered} \text { Bit } \\ 0 \end{gathered}$ |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |

Month setting: $0110=6$ (June)
Week setting: $110=6$ (final)
Day of the week setting: $100=4$ (Thursday)
The value of the data register is 11000110100 (binary) $=1588$ (decimal).

## Timing Chart when the Input Turns On during the Configured Interval

When the input turns on or off during the interval between the ON settings and the OFF settings, and when the input turns on or off after 0:00 on the date configured by the ON settings when pulse output is enabled, the timing chart is as follows.

- When pulse output is disabled

When the input is turned on, the current date and the ON and OFF settings are compared and the output turns on or off.

## Settings

| ON settings | February 15, 2012 |
| :--- | :--- |
| OFF settings | February 17, 2012 |
| Output port | Q0 |



## [When the input is on before the day specified by the ON settings]

On February 13, 2012, when the input is turned on, the result of the current date compared with the ON and OFF settings is not within the ON and OFF settings (February 15 to February 17, 2012). Therefore, the output remains off.


## [When the input is turned on or off during the interval between the ON and OFF settings]

On February 15, 2012, when the input is turned on, the result of the current date compared with the ON and OFF settings is within the ON and OFF settings (February 15 to February 17, 2012). Therefore, the output turns on. The output turns off when the input is turned off.
On February 16, 2012, when the input is turned on, the result of the current date compared with the ON and OFF settings is that the output is turned on.


## 11: Week Programmer Instructions

## - When pulse output is enabled

The input is determined to be on or off at 0:00 on the date of the ON settings and the output is turned on. The current date is not compared with the ON settings when the input is turned on.

## Settings

| P 1 tab ON settings | July 2, 2012 |
| :--- | :--- |
| P 2 tab ON settings | July 4, 2012 |
| Output port | Q0 |


[When the input turns on before the day specified by the ON settings]
The result of the input being determined at 0:00 on July 2, 2012 is to turn on the output for one scan. The result of the input being determined at 0:00 on July 4,2012 is to turn on the output for one scan.

[When the input turns on exactly on the day specified by the ON settings]
When the input turns on at 0:00 on July 2, 2012, the output turns on for one scan.
When the input turns on after 0:00 on July 4, 2012, the output turns on for one scan.


## Examples: YEAR

- To configure the dates as fixed settings
[To turn on Q0 from 0:00 on September 1, 2011, to 0:00 on June 25, 2013]



## Parameter tab



Configure the tab as shown above and set D1 to Q0.

|  | YEAR | S1 | S2 | S3 |
| :--- | :--- | :--- | :--- | :--- |
| M8125 | D1 |  |  |  |
|  |  |  | Q0 |  |
| 1 |  |  |  |  |

## 11: Week Programmer Instructions

[To turn on output Q0 from 0:00 on August 12 to 0:00 on August 15 every year]


## Parameter tab



Configure the tab as shown above and set D1 to Q0.

$|$| YEAR | S1 | S2 | S3 | D1 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | Q0 |  |
| M8125 |  |  |  |  |

[To turn on output Q0 only on the 2nd Monday of each month from 2000 to 2099]

ON date : 2000/**/2nd Monday
OFF date : 2099/**/2nd Monday + 1 day
Yearly : ON
Monthly: ON


## Parameter tab



Configure the tab as shown above and set D1 to Q0.


## 11: Week Programmer Instructions

[To turn on output Q0 on the last day of every month between 2013 and 2020]


## Parameter tab



Configure the tab as shown above and set D1 to Q0.

$|$| YEAR | S1 | S2 | S3 | D1 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1 | Q0 |
| M8125 |  |  |  |  |

## - To configure the dates by specifying data registers

[To turn on M100 from 0:00 on September 1, 2011, to 0:00 on June 25, 2013]


## Devices tab



## Parameter tab



## Data register allocation

The settings on the $\mathbf{P} \mathbf{1}$ tab are allocated to data registers D0 to D3 as shown in the table below. The settings configured on the P 1 tab are stored in D0 to D3 by turning on initialization input S2.

| Data register | Setting |  |  | Initial setting |
| :--- | :--- | :--- | :--- | :--- |
| D0 | ON settings | Year | 2011 |  |
|  |  |  | Month, Day | 2305 (September 1st) |
|  |  | OFF settings |  | Year |
|  |  |  | 1561 (June 25th) |  |
| D3 |  |  |  |  |



- The initial settings configured on the $\mathbf{P} \mathbf{1}$ tab are stored in D0 to D3 at the first scan.
- When M1 turns on, all of the YEAR instruction settings (D0 to D3) return to the initial settings.
- The YEAR instruction starts operating according to the values of data registers D0 to D3.
- When M10 turns on, the ON settings year changes to 2013 (DO) and the OFF settings year changes to 2020 (D2).


## 12: Display Instructions

## Introduction

This chapter describes the display instructions that display specified data on the HMI module LCD and external devices.

## MSG (Message)

Displays the specified data on the HMI module LCD.


When the input is on, a message is displayed on the HMI module LCD according to the content configured in the MSG (Message) dialog box.
The MSG instruction functions are as follows.

## Device values can be displayed.

- Word device values can be displayed as numeric values according to the specified data type. For details, see "Insert Word Device" on page 12-4.
- Word device values can be displayed as bar graphs For details, see "Insert Bar Graph" on page 12-8.
- Text can be displayed and switched according to the value of a bit device (input/output, internal relay, shift register, timer contact, or counter contact).
For details, see "Insert Bit Device" on page 12-6.


## Arbitrary text can be displayed.

- The specified text can be displayed.

For details, see "MSG (Message) dialog box" on page 12-2.

## The text display effects can be configured.

- Text can be scrolled, blinked, or inverted.

For details, see "Insert Text with Effect" on page 12-7.

## Date/time data can be displayed.

- The current date/time and the date/time when the input to the MSG instruction is turned on can be displayed on the LCD. For details, see "7. Special Data" on page 12-3.


## The language for displayed text can be selected from 9 languages.

- Text can be displayed in 9 languages using 4 types of character sets. For details, see "MSG Instruction Common Settings" on page 12-9.


## The text display settings can be configured.

- The scroll unit, scroll speed, and blinking speed can be configured. For details, see "MSG Instruction Common Settings" on page 12-9.


## Device values can be modified.

- Device values displayed with the MSG instruction can be modified on the HMI module. For details, see "Modifying Device Values on the HMI Module" on page 12-17.


## Notes:

- A maximum of 50 MSG instructions can be entered in a user program, but only one MSG instruction message can be displayed on the HMI module LCD. S1 for the MSG instruction stores the MSG instruction priority. When the display conditions for multiple MSG instructions are satisfied, the messages are displayed according to the priority set for the MSG instruction. For MSG instruction priority, see "10. Priority" on page 12-3.
- The MSG instruction cannot be used during an interrupt program. If it is used during an interrupt program, a user program execution error occurs, the execution of the instruction is canceled, and the next instruction is executed. For user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Priority | - | - | - | - | - | - | - | $X$ | - |

## Settings

For the MSG instruction settings, there are settings for the individual MSG instruction and settings that are common to all the MSG instructions.

Note: Settings that are common to all the MSG instructions are modified in the Function Area Settings dialog box of WindLDR. For details, see "MSG Instruction Common Settings" on page 12-9.

- MSG Instruction Individual Settings

The individual settings configure items such as the text to display, the devices, and the priority.
The individual settings are configured in the MSG (Message) dialog box.

## MSG (Message) dialog box



## 1. LCD Display

Configures the screen that is displayed on the HMI module LCD by placing text and devices in the selected area with the mouse cursor. Enter the text with the keyboard at the cursor position. The character input method (insert/overwrite) is changed by clicking Insert (9).
Note: Text entered on the LCD Display (1) with the keyboard cannot be set to scroll, blink, or invert. To scroll, blink, or invert the text, enter the text with Text with Effect (5) and configure the display options. For details on inserting text with effects, see "Insert Text with Effect" on page 12-7.

## 2. Work Area

This area is used when editing the LCD display. This area is for temporarily relocating text and device data.
Text and device data at the cursor position can be moved between the LCD Display and the Work Area with or (12). When the dialog is closed, the work area data is discarded.

## 3. Word Device

Inserts a word device at the cursor position. The value of the specified word device is displayed on the HMI module LCD. For details, see "Insert Word Device" on page 12-4.

## 4. Bit Device

Inserts a bit device in the area specified by the cursor. Two different items of text can be switched between and displayed on the HMI module LCD according to the value of the specified bit device. For details, see "Insert Bit Device" on page 12-6.

## 5. Text with Effect

Inserts text in the area specified by the cursor. The specified text is displayed on the HMI module LCD. For details, see "Insert Text with Effect" on page 12-7.

## 6. Bar Graph

Inserts a bar graph in the area specified by the cursor. The value of the specified device is displayed as a bar graph on the HMI module LCD. For details, see "Insert Bar Graph" on page 12-8.

## 7. Special Data

Special data such as the current date and time can be entered at the cursor position. Select the data to enter on the special data list window popped up when Special Data is pressed. Size of the area used on the LCD display varies based on the selected special data.

| Special Data |  | Display |  |
| :--- | :--- | :--- | :---: |
|  |  |  |  |
| Current date | YYYY/MM/DD | $2015 / 12 / 01$ | $1 \times 10$ |
| Current time | HH:MM | $13: 30$ | $1 \times 5$ |
| Date the input to the MSG instruction is turned on | YYYY/MM/DD | $2015 / 12 / 01$ | $1 \times 10$ |
| Time the input to the MSG instruction is turned on | HH:MM | $13: 30$ | $1 \times 5$ |

## 8. Special Character

A special character can be entered at the cursor position. Select the character to enter on the special characters list window popped up when Special Character is pressed. The special characters that can be used are as follows.

| Special Characters List |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\nabla}$ | $\mathbf{\Delta}$ | $\boldsymbol{4}$ | $\boldsymbol{\circ}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ}$ | $\pm$ |  |

## 9. Insert/Overwrite

Selects insert or overwrite as the character input mode. Click this button to switch the input mode.

## 10. Priority

The priority of the MSG instruction can be configured between 0 to 49.0 is the highest priority and 49 is the lowest priority.

- The same priority cannot be set for multiple MSG instructions.
- When inputs to two or more MSG instructions turns on, the message of the MSG instruction with the highest priority is displayed, out of all the MSG instructions with inputs that are on.
- When the MSG instruction input with the highest priority changes from on to off, the message for the MSG instruction with the next highest priority is displayed (the priority is checked when the input changes).
Note: When you press the $\diamond$ (up) or $\diamond$ (down) button on the HMI module, the messages are switched between the MSG instructions that have inputs that are on. Messages are also switched when the acknowledgement for the MSG instruction is enabled.

| Motor 5 |
| :---: |
| STOP AT |
| $10: 12$ |
| $!!$ ACTION !! |

```
Example: Message output
```

in Priority 30

| Motor 2 |
| :---: | :---: |
| 3000 |
| hours |
| !! MAINTENANCE !! |

Example: Message output
Example: Message output
in Priority 10

| Running |
| :---: |
| 2015/DEC/01/TUE |
| 09:00:12 |

Date and current time

## 11. Acknowledgment

When acknowledgment is enabled, the message continues to be displayed even when the MSG instruction input turns off. The message is closed when the ©r (OK) button on the HMI module is pressed, and then the message for the MSG instruction with the next highest priority is displayed, out of all the MSG instructions with inputs that are on at that time.

If the input is on for the MSG instruction that had acknowledgment enabled, the message is not closed even when the $\Delta$ button is pressed

## 12. $⿴$ / 固 buttons

Text and device data at the cursor position are moved between the LCD Display and the Work Area.

## Insert Word Device

The value of the specified word device can be displayed on the HMI module LCD.


## 1. Device

Enter the device to display.
Valid Devices

| $\mathbf{W}$ (word) | $\mathrm{TC}, \mathrm{TP}, \mathrm{CC}, \mathrm{CP}, \mathrm{D}$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | D |
| $\mathbf{D}$ (double word) | $\mathrm{CC}, \mathrm{CP}, \mathrm{D}$ |
| $\mathbf{L}$ (long) | D |
| $\mathbf{F}$ (float) | D |

2. Data Type and Conversion Type

Select the display type for the specified device. The size of the area used on the LCD display varies based on the specified data type and conversion type.

| Data Type | Conversion Type | Occupied Area | Example on LCD |
| :---: | :---: | :---: | :---: |
| W (word) | Decimal | 5 | 65535 |
|  | Hexadecimal | 4 | FFFF |
| I (integer) | Decimal | 6 | -32768 |
| D (double word) | Decimal | 10 | 4294967295 |
|  | Hexadecimal | 8 | FFFFFFFF |
| F (flong) | Decimal | Decimal | 11 |

3. Option

Configure the options for the specified device to blink, invert the text, or allow/prohibit value editing. For the blinking speed, see "MSG Instruction Common Settings" on page 12-9.

| Display Options | Description |
| :---: | :--- |
| Blinking | Blinks the value of the specified device. |
| Invert | Inverts the display of the specified value. |
| Disable Editing Value | Prohibits editing the specified device value using the HMI module. |

## 4. Occupied Area

Shows the size of the area to be used on the LCD display (rows: 1, columns: 4 to 13). The area is determined by the selected data type and conversion type.

## Floating Point Value Notation on LCD

Whether or not $F$ (float) LCD notation uses decimal notation or exponent notation is determined according to the singleprecision floating point definition in IEEE 754 and the internal system function included in the CPU module.

The IEEE 754 single precision format consists of three fields: a 23-bit fraction, f; an 8-bit biased exponent, e; and 1-bit sign, s. These fields are stored contiguously in one 32-bit word, as shown in the figure below. Bits 0:22 contain the 23-bit fraction, f, with bit 0 being the least significant bit of the fraction and bit 22 being the most significant; bits 23:30 contain the 8-bit biased exponent, e, with bit 23 being the least significant bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31 contains the sign bit, s.


The table below shows the correspondence between the values of the three constituent fields $s$, $e$, and $f$ and the value represented by the single precision format bit pattern.

When the value is $\pm 0$, denormalized number, or normalized number, the value is displayed according to the internal system function of the CPU module.

| Value | Exponent Field e | Fraction Field f | Representation |
| :--- | :--- | :--- | :--- |
| $\pm 0$ | $\mathrm{e}=0$ | $\mathrm{f}=0$ | 0 |

Example: This table shows the representation on the LCD for the following floating-point values.

| Value |  |
| :--- | :--- |
| 1234567 | 1234567 |
| 12345678 | $1.234568 \mathrm{E}+07$ |
| 1234567.8 | 1234568 |
| 0.0001 | 0.0001 |
| 0.00001 | $1 \mathrm{E}-05$ |
| 0.000001 | $1 \mathrm{E}-06$ |
| 0.0000001 | $1 \mathrm{E}-07$ |
| 0.123456 | 0.123456 |
| 0.1234567 | 0.1234567 |
| 0.12345678 | 0.1234568 |
| 0.0000012 | $1.2 \mathrm{E}-06$ |
| 1.2345678 | 1.234568 |
| 0 | 0 |
| 0.0001234568 | 0.0001234568 |

## Insert Bit Device

Two different items of text can be switched between and displayed on the HMI module LCD according to the value of the specified bit device (when on/when off).


## 1. Device

Enter the device to display.
Valid Devices

| $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | X | X | X | X | X | - |

## 2. Display Option

Configure the options to blink or invert the text. For the blinking speed, see "MSG Instruction Common Settings" on page 12-9.

| Display Option | Description |
| :---: | :--- |
| Blinking | Blinks the specified text. |
| Invert | Inverts the display of the specified text. |

## 3. Occupied Area

Shows the size of the area to be used on the LCD display (rows: 1 , columns: 1 to 24 ). The display size is determined by the selected range on the LCD display area (or work area). If multiple rows are selected, the area at the top line in the selected range is used.

## 4. ON Text

Enter the text to display when the specified device is on. Up to 24 single-byte characters can be entered. A space is also counted as one character.

## 5. OFF Text

Enter the text to display when the specified device is off. Up to 24 single-byte characters can be entered. A space is also counted as one character.

## 6. Special Character

Enters a special character at the cursor position. Select the character to enter on the special characters list window popped up when Special Character is pressed. For the special characters, see "8. Special Character" on page 12-3.

## 7. Insert/Overwrite

Selects whether to insert or overwrite characters when entering new characters.

## Insert Text with Effect

The specified text can be displayed on the HMI module LCD.


## 1. Display Option

Configure the options to scroll, blink, or invert the specified text. For the scroll unit, scroll speed, and blinking speed, see "MSG Instruction Common Settings" on page 12-9.

| Display Options |  | Description |
| :---: | :--- | :--- |
| Scroll | Scrolls the specified text. |  |
| Blinking | Blinks the specified text. |  |
| Invert | Invert the display of the specified text. |  |

2. Occupied Area

Shows the size of the area to be used on the LCD display (rows: 1, columns: 1 to 24). The occupied area is determined by the selected range on the LCD display area (or work area). If multiple rows are selected, the area at the top line in the selected range is used.

## 3. Input Text Directly

Directly enter the characters to display. A space is also counted as one character. If scrolling is disabled, the message can be entered up to 24 single-byte characters. However, you cannot enter a number of characters that exceeds the occupied area. If scrolling is enabled, the message can be entered up to 48 single-byte characters.

## 4. Select from Text Manager

Select the text to display from the text manager. This can be selected only when the scroll is enabled.

## 5. Special Character

Enters a special character at the cursor position. Select the character to enter on the special characters list window popped up when Special Character is pressed. For the special characters, see " 8 . Special Character" on page 12-3.

## 6. Insert/Overwrite

Selects whether to insert or overwrite characters when entering new characters.

## Insert Bar Graph

The value of the specified device can be displayed as a bar graph on the HMI module LCD.


## 1. Device

Enter the device to display as a bar graph. Valid Devices

| W (word) | $\mathrm{TC}, \mathrm{TP}, \mathrm{CC}, \mathrm{CP}, \mathrm{D}$ |
| :--- | :--- |
| $\mathbf{I}$ (integer) | D |
| $\mathbf{D}$ (double word) | $\mathrm{CC}, \mathrm{CP}, \mathrm{D}$ |
| $\mathbf{L}$ (long) | D |
| F (float) | - |

2. Data Type

Selects the data type for the specified device.
Data Type

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| $\mathbf{I}$ (integer) | X |
| $\mathbf{D}$ (double word) | X |
| $\mathbf{L}$ (long) | X |
| $\mathbf{F}$ (float) | - |

For data types, see "Data Types for Advanced Instructions" on page 3-7.

## 3. Maximum

Enter the maximum value for the bar graph. If the device value is larger than the maximum value, the bar graph is displayed as the maximum value. The valid range varies based on the data type. For data types, see "Data Types for Advanced Instructions" on page 3-7.

## 4. Minimum

Enter the minimum value for the bar graph. If the device value is smaller than the minimum value, the bar graph is displayed as the minimum value. The valid range varies based on the data type. For data types, see "Data Types for Advanced Instructions" on page 3-7.

## 5. Origin

Enter the value to be the origin of the bar graph. If the device value is larger than the origin value, the bar graph is displayed on the right side of the origin value. If the device value is smaller than the origin value, the bar graph is displayed on the left side of the origin value. The valid range varies based on the data type. For data types, see "Data Types for Advanced Instructions" on page 3-7. The origin value must satisfy the condition of Minimum $\leq$ Origin $\leq$ Maximum.


## 6. Occupied Area

The occupied area is determined by the selected range on the LCD display area (or work area). If multiple rows are selected, the area at the top line in the selected range is used (rows: 1 , columns: 1 to 24 ).

## 7. Blinking Settings

Blink the bar graph when the value of the specified device exceeds the upper or lower limit.
For the blinking speed, see "MSG Instruction Common Settings" on page 12-9.

| Blinking Settings | Description |
| :---: | :--- |
| Upper limit | The bar graph is blinked when the value of the specified device is larger than the upper limit. |
| Lower limit | The bar graph is blinked when the value of the specified device is smaller than the lower limit. |

Maximum, minimum, upper limit, and lower limit values must satisfy the following condition.


## - MSG Instruction Common Settings

The common settings, character set, scroll unit, scroll speed, and blinking speed, for the message to display can be configured. The common settings are configured in the LCD tab of the HMI Module Configuration dialog box that is displayed from the WindLDR Expansion Modules Configuration.
Note: The common settings for the MSG instructions are applicable for all MSG (message) instructions in the user program. For the MSG instruction individual settings, see "MSG Instruction Individual Settings" on page 12-2.

## HMI Module Configuration dialog box LCD tab



1. Character Set

The character set used for the messages can be configured from the following.

| Selection | Character Set | Languages Usable in the MSG Instruction |
| :--- | :--- | :--- |
| European | ISO-8859-1 (Latin 1) | Italian, English, Dutch, Spanish, German, French |
| Japanese | Shift-JIS | Japanese |
| Chinese | GB2312 | Chinese (simplified) |
| Cyrillic | ANSI 1251 | Russian |

2. Scroll Unit

The unit to scroll the texts can be configured.

| One character | Scrolls the text in 1 character units. |
| :--- | :--- |
| One dot | Scrolls the text in 1 dot units. |

## 3. Scroll Speed

The speed to scroll the texts can be configured. The setting range is 500 to $1,000 \mathrm{~ms}$.

## 4. Blink Speed

The speed to blink the texts can be configured. The setting range is 500 to $1,000 \mathrm{~ms}$.
Note: The MSG instruction character set can be configured irrespective of the HMI module system menu language.

## MSG Instruction Configuration Example

[Display the room temperature when M0000 is on and the outdoor temperature when M0000 is off]
The room temperature/outdoor temperature value is stored in D0002. Create a ladder program that stores the room temperature value when M0000 is on and the outside temperature value when M0000 is off.


Displays the current date.

## - Settings

Configure the following items.


| Setting Items |  |  |
| :--- | :--- | :--- |
| 1. Bit Device | Device | M0000 |
|  | Display Options | All disabled (scroll, blink, invert) |
|  | ON Text | IDEC room temp is: |
|  | OFF Text | IDEC outdoor temp is: |
| 2. Text with Effect | Text | Now: |
|  | Display Options | All disabled (scroll, blink, invert) |
| 3. Word Device | Device | D0002 |
|  | Data Type | I (integer) |
|  | Conversion Type | Decimal |
| 4. Special Character | Device | ${ }^{\circ} \mathrm{C}$ |
| 5. Bar Graph | Data Type | I (integer) |
|  | Max | 50 |
|  | Min | -20 |
|  | Origin | 0 |
|  | Blinking Settings | Disabled |
| 6. Special Data |  | Current date |

## - Operation Procedure

1. Right-click at the location to insert the MSG instruction, and click Advanced Instructions > Display > MSG (Message). The MSG (Message) dialog box is displayed.

## Configuring the bit device

2. Select the area to insert the parameter and click Bit Device.


The Insert Bit Device dialog box opens.
3. Configure the parameters so that the room temperature is displayed when M0000 is on and the outdoor temperature is displayed when M0000 is off. Set Device to "M0000". Using the keyboard, enter "IDEC room temp is" as the ON Text and "IDEC outdoor temp is" as the OFF Text. Under Display Option, disable all of the options.

4. After the settings are configured, click OK.

The configured content is displayed on the LCD display area.


## Configuring the text with effect

5. Select the six-column area from the start of the second row and click Text with Effect.


Note: The text can also be entered directly on the LCD display area. In the sample above, move the cursor to the start of the second line and enter "Now:" with the keyboard. When you directly enter the text, proceed to "Configuring the word device" on page 12-13, step 8.
The Insert Text with Effect dialog box is displayed.
6. In Text, enter "Now:" with the keyboard. Under Display Option, disable all of the options.

7. After the settings are configured, click OK.

The configured content is displayed on the LCD display area.


## Configuring the word device

8. Select the area at the ninth column on the second row and click Word Device.


The Insert Word Device dialog box is displayed.
9. Set Device to "D0002", Data Type to "Integer (I)", and Conversion Type to "Decimal". Under Display Option, disable all of the options.

10. After the settings are configured, click OK.

The configured content is displayed on the LCD display area.


## Configuring the special character

11. Select the area at the 15th column on the second row and click Special Character.


The Special Characters popup window is displayed.
12. Double-click on ${ }^{\circ} \mathbf{C}$.


The configured content is displayed on the LCD display area.


## Configuring the bar graph

13. Select the entire area on the third line and click Bar Graph.


The Insert Bar Graph popup window is displayed.
14. Set Device to "D0002", Data Type to "Integer (I)", Max to "50", Min to "-20", and Origin to "0". Disable the blinking settings.

15. After the settings are configured, click OK.

The configured content is displayed on the LCD screen area.


## Configuring the special data

16. Select the left edge of the fourth line and click Special Data.


The Special Data window is poped up.
17. Double-click on the Current date.

18. After the settings are configured, click OK.

The configured content is displayed on the LCD display area.


This concludes configuring the settings.

## LCD display

When M0000 is on, the room temperature stored in D0002 is displayed as the numeric value $\left({ }^{\circ} \mathrm{C}\right)$ and bar graph.

| IDEC | room temp is |
| :--- | ---: |
| Now: | $28^{\circ} \mathrm{C}$ |
|  |  |
| $2015 / 12 / 01$ |  |

When M0000 is off, the outdoor temperature stored in D0002 is displayed as the numeric value $\left({ }^{\circ} \mathrm{C}\right)$ and bar graph.

| IDEC outdoor temp is |  |
| :--- | :--- |
| Now: | $-5^{\circ} \mathrm{C}$ |
|  |  |
| $2015 / 12 / 01$ |  |

## Modifying Device Values on the HMI Module

The values of the word devices displayed on the HMI module LCD can be modified using the HMI module operation buttons. The values cannot be modified when the user program is stopped.
[To modify the value of word device CP0]

| Line A monitor |  |  |
| :--- | :--- | :--- |
| P1an: | CPO | Actua1 $:$ CCO |
| Diff: | D0 |  |
| Bar Graph CCO |  |  |

When the user program is running and the input to the MSG instruction is turned on, the following screen will be displayed on the LCD.

Line A monitor
P1an: 60000 Actua1: 20000
Diff: 40000

While the above message is displayed, press and hold the Ø (OK) button and the cursor is displayed on the devices that can be modified.


Move the cursor to the device you wish to edit using the $\diamond(\mathrm{up}) \diamond($ down $) \leftrightarrow($ left $) \leftrightarrow$ (right) buttons and press the ๔ (OK) button to change the device in the editable state.


Press the $\diamond$ (right) button to move the cursor to the fourth digit, and then use the $\Delta$ (up) button to modify the target value to "65000".


Press the Ø (OK) button to confirm the modifications.
Line A monitor
P1an: 65000 Actua1 : 20000
Diff: 40000

## Scrolling text example

## [Character Set: European scroll speed: $\mathbf{5 0 0} \mathbf{~ m s}]$

When a text with effect is set to scroll, the text is displayed on the HMI module LCD as follows.

When scrolling a text longer than the specified area on the LCD

Text: "IDEC Corporation MICRO Smart"


500 msec

$\div$


When scrolling a text shorter than or equal to the specified area on the LCD

Text: "IDEC Corporation"


## [Character Set: European, Scroll speed: $\mathbf{5 0 0} \mathbf{~ m s}$, Scroll unit: 1-dot]

When a text with effect is set to scroll, the text is displayed on the LCD of the HMI module as follows.
Text: "IDEC Corporation"


- 62.5 msec



## DISP (Display)



Displays the specified data on a 7 -segment display.
When the input is on, the data specified by S 1 is displayed on the 7 -segment display.
Display data can be 0 through 65535 (FFFFh).

Note: Always use transistor output to display data using the DISP instruction.
Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Data to display | - | - | - | - | $\mathrm{X}^{* 1}$ | $\mathrm{X}^{* 1}$ | X | - | - |
| Q (Output) | Display data output | - | X | $\mathrm{X}^{* 2}$ | - | - | - | - | - | - |

For the valid device address range, see "Device Addresses" on page 2-1.
*1 When T (timer) or C (counter) is used as S 1 , the timer/counter current value (TC or CC) is read out.
*2 Internal relays M0 through M7997 and M10000 through M17497 can be designated as Q. Special internal relays cannot be designated as Q.

## Conversion

BCD:To connect BCD (decimal) display units
BIN:To connect BIN (hexadecimal) display units

## Latch Phase*1 and Data Phase*1

Select the latch and data phases to match the phases of the display units in consideration of sink or source output of the output module.
*1 The LAT (latch phase) and DAT (data phase) settings will differ depending on the 7-segment display sink output specification and source output specification. Configure these settings according to the specifications of the 7 -segment display.

Specify the data to display on the 7-segment display with S 1 (the display data). Specify the output for the display data with Q . Starting from the device specified with Q , the specified data (4 points + number of digits) is sequentially allocated by the display data and the number of display digits.
For example, if the number of display digits is 4 digits and the display data output is set to Q0, Q0 to Q7 are allocated (Q0 to Q3 are allocated to the data signal to the display, Q 4 to Q7 are allocated to the digit selection signal).

## Notes:

- A maximum of 8 DISP instructions can be entered in a user program.
- The displayable range is 0 to 65535 (FFFFh).
- Displaying one digit of data requires 3 scan times after the input to the DISP instruction is turned on. Keep the input to the DISP instruction for the period of time shown below to process all digits of the display data.

Display Processing Time
3 scan times $\times$ Quantity of digits
When the scan time is less than 2 ms , the data cannot be displayed correctly. When the scan time is too short to ensure normal display, set a value of 3 or more (in ms ) to data register D8022 (constant scan time preset value).

## Operation Example

To display the 4-digit current value of counter C010 on a 7-segment display (IDEC DD3S-F31N) connected to the transistor sink output module.

$\left\lvert\,-$| DISP | S1 | Q | LAT |
| :---: | :---: | :---: | :---: |
| DAT |  |  |  |
| BCD4 | C10 | Q30 | L |\right.

When input IO is on, the 4-digit current value of counter C10 is displayed on 7 -segment digital display units.

## Output Wiring Diagram



## DGRD (Digital Read)



When input is on, the setting values for the connected digital switch are stored in the device specified by D1.
This instruction can be used to change preset values for timer and counter instructions using digital switches.

Note: Always use transistor output to display data using the DGRD instruction.
Valid Devices

| Device |  | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Repeat |  |  |  |  |  |  |  |  |  |  |
| I | First input number to read | X | - | - | - | - | - | - | - | - |
| Q | First output number for digit selection | - | X | - | - | - | - | - | - | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | X | - |  |

For the valid device address range, see "Device Addresses" on page 2-1.
The DGRD instruction can read 65535 ( 5 digits) at the maximum. When the read value exceeds 65,535 with the quantity of digits set to 5 , a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the CPU module.

Note: When transferring a user program containing more than 16 DGRD instructions to the CPU, a user program syntax error occurs, turning on the ERR LED. The user program cannot be executed.

## Conversion

BCD:To connect BCD (decimal) digital switches
BIN:To connect BIN (hexadecimal) digital switches
Four points from the input specified by I are allocated as the reading inputs.
For example, when I is set to IO, IO to I3 are allocated.
The number of digits specified by the number of display digits from the output specified by Q are allocated as the digit selection outputs.
For example, if the number of display digits is three digits, and Q is set to $\mathrm{Q} 0, \mathrm{Q} 0$ to Q 2 are allocated.

## Notes:

- A maximum of 16 DGRD instructions can be entered in a user program.
- Reading digital switch data requires the following time after the input to the DGRD instruction is turned on. Keep the input to the DGRD instruction for the period of time shown below to read the digital switch data. For example, when reading data from 5 digital switches to the destination device, 14 scans are required.

Digital Switch Data Reading Time
2 scan times $\times$ (Quantity of digits +2 )
The DGRD instruction requires a scan time longer than the filter time plus 6 ms .
Minimum Required Scan Time
(Scan time) $\geq$ (Filter time) +6 ms

- As necessary, adjust the scan time using the constant scan time (D8022) function. The filter time differs according to the input that is used as the reading input.

When specifying CPU module inputs as the reading inputs: IO to $\mathbf{I 2 7}$
See the input filter time configured in the WindLDR Function Area Settings. The initial value is 3 ms .
When specifying input module inputs as the reading inputs: From I30
There is no filter time, so calculate the value by replacing the filter time with the input delay time.

- The data that can be read using this instruction is 0 through 65535 ( 5 digits), or FFFFh. A user program execution error will occur when a value of 65,536 or greater is specified as a five digit decimal code and the processing will not be executed.
For user program execution errors, see "User Program Execution Errors" on page 3-10.


## Operation Example

The following example demonstrates a program where digital switches (IDEC DFBN-031D-B) have been connected to the 16-I/O type transistor sink output module and those setting values are read into D0010.

$\left\lvert\,-$| DGRD | I | Q | D1 |
| :---: | :---: | :---: | :---: |
| BCD4 | I30 | Q30 | D10 |\right.

When input I5 is on, the 4-digit value from BCD digital switches is read to data register D10.

## I/O Wiring Diagram



## 13: Program Branching Instructions

## Introduction

This chapter describes the ladder program branching instructions that are used for branching program execution, looping ladder program execution, and creating ladder program subroutines.
Ladder program instruction execution branches from the LJMP (label jump) instruction and the DJNZ (decrement jump non-zero) instruction to the location where the LABEL instruction has been entered. Programming tools include "either/or" options between numerous portions of a program and the ability to call one of several subroutines which return execution to where the normal program stopped.

## LABEL (Label)



This instruction sets the label number.
The label number that can be specified is 0 to 255 .
An END instruction may be used to separate a tagged portion of the program from the main program. In this way, scan time is minimized by not executing the program branch unless input conditions are satisfied.
Note: A single label number cannot be used more than once.

## Valid Devices

| Device | Function | I | Q | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Label number | Tag for LJMP and LCAL | - | - | - | - | - | - | - | $0-255$ |

## LJMP (Label Jump)



When input is on, jump to the address with label 0 through 255 assigned by S1.
When input is off, no jump takes place, and program execution proceeds with the next instruction.
The LJMP instruction is used as an "either/or" choice between two portions of a program. Program execution does not return to the instruction following the LJMP instruction, after the program branch.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Label number | - | - | - | - | - | - | X | $0-255$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the LJMP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.
Note: Make sure that a LABEL instruction of the label number used for a LJMP instruction is programmed. When designating S1 using other than a constant, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## 13: Program Branching Instructions

## Example: LJMP and LABEL

The following example demonstrates a program that jumps to three different portions of the program depending on the input.


When input IO is on, program execution jumps to label 0 .

When input I1 is on, program execution jumps to label 1.

When input I 2 is on, program execution jumps to label 2.

M8121 is the 1-s clock special internal relay.
When jump occurs to label 0, output Q0 oscillates in 1-s increments.

M8122 is the 100 -ms clock special internal relay.
When jump occurs to label 1, output Q1 oscillates in 100-ms increments.

M8123 is the $10-\mathrm{ms}$ clock special internal relay.
When jump occurs to label 2, output Q2 oscillates in 10-ms increments.

## Using the Timer Instruction with Program Branching

When the timer start input of the TML, TIM, TMH or TMS instruction is already on, countdown begins immediately at the location jumped to, starting with the timer current value. When using a program branch, it is important to make sure that timers are initialized when desired, after the jump. If it is necessary to initialize the timer instruction (set to the preset value) after the jump, the timer's start input should be kept off for one or more scan cycles before initialization. Otherwise, the timer input on will not be recognized.

## Using the SOTU/SOTD Instructions with Program Branching

Check that pulse inputs of counters and shift registers, and inputs of single outputs (SOTU and SOTD) are maintained during the jump, if required. Hold the input off for one or more scan cycles after the jump for the rising or falling edge transition to be recognized.


Although normally, the SOTU instruction produces a pulse for one scan, when used in a program branch the SOTU pulse will last only until the next time the same SOTU instruction is executed.

In the example on the left, the program branch will loop as long as internal relay MO remains on. However, the SOTU produces a pulse output only during the first loop.


Since the END instruction is not executed as long as M0 remains on, output Q1 is not turned on even if input I1 is on.

## LCAL (Label Call)



When input is on, the address with label 0 through 255 assigned by S 1 is called. When input is off, no call takes place, and program execution proceeds with the next instruction.

The LCAL instruction calls a subroutine, and returns to the main program after the branch is executed. A LRET instruction (see below) must be placed at the end of a program branch which is called, so that normal program execution resumes by returning to the instruction following the LCAL instruction.
Note: The END instruction must be used to separate the main program from any subroutines called by the LCAL instruction.
A maximum of four LCAL instructions can be nested. When more than four LCAL instructions are nested, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Label number to call | - | - | - | - | - | - | $X$ | $0-255$ | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the LCAL instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.
Note: Make sure that a LABEL instruction of the label number used for a LCAL instruction is programmed. When designating S1 using other than a constant, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

## LRET (Label Return)



This instruction returns to the address of the LCAL (label call) instruction.
This instruction is placed at the end of a subroutine called by the LCAL instruction. When the subroutine is completed, normal program execution resumes by returning to the instruction following the LCAL instruction.
The LRET must be placed at the end of the subroutine starting with a LABEL instruction. When the LRET is programmed at other places, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

## Valid Devices

| Device | Function |  | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | - | - | - | - | - | - | - | - | - | - |

## 13: Program Branching Instructions

## Correct Structure for Calling Subroutine

When a LCAL instruction is executed, the remaining program instructions on the same rung may not be executed upon return, if input conditions are changed by the subroutine. After the LRET instruction of a subroutine, program execution begins with the instruction following the LCAL instruction, depending on current input condition.
When instructions following a LCAL instruction must be executed after the subroutine is called, make sure the subroutine does not change input conditions unfavorably. In addition, include subsequent instructions in a new ladder line, separated from the LCAL instruction.


Separate the ladder line for each LCAL instruction.


IO status may be changed by the subroutine upon return.

## Example: LCAL and LRET

The following example demonstrates a program that calls three different portions of program depending on the input. When the subroutine is complete, program execution returns to the instruction following the LCAL instruction.


When input IO is on, program execution jumps to label 0 .

When input I1 is on, program execution jumps to label 1.

When input I2 is on, program execution jumps to label 2.

M8121 is the 1 -s clock special internal relay.
When jump occurs to label 0 , output Q0 oscillates in 1-s increments.

Program execution returns to the address of input I1.

M8122 is the $100-\mathrm{ms}$ clock special internal relay.
When jump occurs to label 1 , output Q1 oscillates in 100 -ms increments.

Program execution returns to the address of input I2.

M8123 is the $10-\mathrm{ms} \mathrm{clock} \mathrm{special} \mathrm{internal} \mathrm{relay}$.
When jump occurs to label 2, output Q2 oscillates in $10-\mathrm{ms}$ increments.
Program execution returns to the address of END.

## DJNZ (Decrement Jump Non-zero)



When input is on, the value stored in the data register assigned by S 1 is decremented by one and is checked. If the resultant value is not 0 , program execution jumps to address with label 0 through 255 assigned by S2. If the decrement results in 0 , no jump takes place, and program execution proceeds with the next instruction.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Repeat |  |  |  |  |  |  |  |  |  |
| S1 (Source 1) | Decrement value | - | - | - | - | - | - | X | - |
| S2 (Source 2) | Label number to jump to | - | - | - | - | - | - | $X$ | $0-255$ |

For valid device address ranges, see "Device Addresses" on page 2-1.
Since the DJNZ instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.
The label number can be 0 through 255. Make sure that a LABEL instruction of the label number used for a DJNZ instruction is programmed. When designating S2 using a data register, the value for the label is a variable. When using a variable for a label, make sure that all probable LABEL numbers are included in the user program. If a matching label does not exist, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

## 13: Program Branching Instructions

## Example: DJNZ and LABEL

The following example demonstrates a program to store consecutive values 1,000 through 1,049 to data registers D100 through D149, respectively.


M8120 is the initialize pulse special internal relay. At start-up, MOV instructions store initial data.
$1049 \rightarrow$ D0 to store the value for the first cycle.
$50 \rightarrow$ D1 to determine the jump cycles.

IMOV moves D0 data 1049 to D1049 in the first cycle.

DEC decrements DO data to 1048 .

DJNZ jumps to label 255 until D1 value reduces to 0.



## 14: Refresh Instructions

## Introduction

This chapter describes the refresh instructions that update the status of input contacts, external output, and the current value of the high-speed counter, to the latest value during a ladder scan.

## IOREF (I/O Refresh)



When input is on, 1-bit I/O data assigned by source device S 1 is refreshed immediately regardless of the scan time.
When I (input) is used as S1, the actual input status is immediately read into an internal relay starting with M300 allocated to each input available on the FC6A Series MicroSmart.

When $Q$ (output) is used as S1, the output data in the RAM is immediately written to the actual output available on the FC6A Series MicroSmart.

Refresh instructions are useful when a real-time response is required in a user program which has a long scan time. The refresh instruction is most effective when using the refresh instruction at a ladder step immediately before using the data.

The IOREF instruction can be used with an interrupt input or timer interrupt to refresh data.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | I/O for refresh | $X$ | $X$ | - | - | - | - | - | - | - |

Only inputs and outputs available on the CPU module can be specified for S1 of the IOREF instruction. Input and output numbers for remote I/O slaves cannot be designated as S 1 . For valid device address ranges, see "Device Addresses" on page 2-1.

## Input Device Addresses and Allocated Internal Relays

Internal relays for storage are allocated by input device. For example, when I10 is designated as S 1 , the latest value of I10 is set to M310.

| Input Device | Internal <br> Relay |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I0 | M300 | I10 | M310 | I20 | M320 | I30 | M330 |
| I1 | M301 | I11 | M311 | I21 | M321 | I31 | M331 |
| I2 | M302 | I12 | M312 | I22 | M322 | I32 | M332 |
| I3 | M303 | I13 | M313 | I23 | M323 | I33 | M333 |
| I4 | M304 | I14 | M314 | I24 | M324 | I34 | M334 |
| I5 | M305 | I15 | M315 | I25 | M325 | I35 | M335 |
| I6 | M306 | I16 | M316 | I26 | M326 |  |  |
| I7 | M307 | I17 | M317 | I27 | M327 |  |  |

During normal execution of a user program, I/O statuses are refreshed simultaneously when the END instruction is executed at the end of a scan. When a real-time response is needed to execute an interrupt, the IOREF instruction can be used. When the input to the IOREF instruction is turned on, the status of the designated input or output is read or written immediately.

When the IOREF instruction is executed for an input, the filter does not take effect and the input status at the moment is read to a corresponding internal relay

The actual input status of the same input number is read to the internal input memory when the END instruction is executed as in the normal scanning, then the filter value has effect as designated in the Function Area Settings. See Chapter 5 "Functions and Settings" - "Input Filter" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## 14: Refresh Instructions

## Example: IOREF

The following example demonstrates a program that transfers the input IO status to output Q0 using the IOREF instruction. Input I2 is designated as an interrupt input. For the interrupt input function, see Chapter 5 "Functions and Settings" - "Interrupt Input" in the "FC6A Series MicroSmart All-in-One Type User's Manual".


M8120 is the initialize pulse special internal relay.
D8033 stores 0 to designate jump destination label 0 for interrupt input I2.

When input I 2 is on, program execution jumps to label 0 .

M8125 is the in-operation output special internal relay.
IOREF immediately reads input IO status to internal relay M300.

M300 turns on or off the output Q0 internal memory.

Another IOREF immediately writes the output Q0 internal memory status to actual output Q0.

Program execution returns to the main program.

## HSCRF (High-speed Counter Refresh)



When the input is on, the current values of the high-speed counters (select from group 1 to group 6) allocated to special data registers are updated to the latest values. (The group number of the selected high-speed counter is displayed under the advanced instruction symbol.)

The current values of six high-speed counters HSC1 through HSC6 are usually updated in every scan. The HSCRF can be used in any place in the ladder diagram where you want to read the updated high-speed counter current value.

For the high-speed counter function, see Chapter 5 "Functions and Settings" - "High-Speed Counter" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Example: HSCRF

The following example demonstrates a program that updates the current value of high-speed counter HSC1 using the HSCRF instruction. For the timer interrupt, see Chapter 5 "Functions and Settings" - "Timer Interrupt" in the "FC6A Series MicroSmart All-in-One Type User's Manual".


M8120 is the initialize pulse special internal relay.
D8036 stores 0 to designate jump destination label 0 for timer interrupt.

The interrupt program is separated from the main program by the END instruction.

While the CPU is running, program execution jumps to label 0 repeatedly at intervals selected in the Function Area Settings.

M8125 is the in-operation output special internal relay.
HSCRF updates the HSC1 current value in data registers D8050 and D8051.

When D8050/D8051 exceeds 150,000, Q1 is turned on.
IOREF immediately writes the output Q1 internal memory status to actual output Q1.

Each time the interrupt program is completed, program execution returns to the main program at the address where timer interrupt occurred.

## FRQRF (Frequency Measurement Refresh)



When the input is on, the frequency measurement values (select from group 1 to group 4) allocated to special data registers are updated to the latest values. (The group number of the selected high-speed counter is displayed under the advanced instruction symbol.)

Before the measured results are reflected in special data registers, it takes a maximum of approximately $250 \mathrm{~ms}+$ the scan time, but by using the FRQRF instruction, control processing using the latest current values of the frequency measurements can be performed in any location in the user program.

For the frequency measurement function, see Chapter 5 "Frequency Measurement" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Example: FRQRF

Periodically update the current value of the frequency measurement value (D8060, D8061) using the FRQRF instruction in an interrupt program.
When the frequency measurement value becomes 5,000 or greater, turn on the error signal (Q1).


Store 0 in D8036 and specify LABEL 0 as the interrupt program to execute when the timer interrupt occurs.

The interrupt program is separated from the main program by the END instruction.

Interrupt program starts.

Update the current value (D8060, D8061) of the frequency measurement value.

When the frequency measurement value becomes 5,000 or greater, turn on Q1 as the error signal.

The status of output Q1 is reflected in the external output.

Interrupt program ends.

## COMRF (Communication Refresh)



Execute reading of received data and writing of send data for port 2 and 3 (communication port refresh) during user program processing.
When implementing an application that requires a communication response from the communication cartridge in a time interval that is shorter than the scan time of FC6A Series MicroSmart, program it with the COMRF instruction.
Regardless of the presence of the COMRF instruction, reading received data and writing send data for expanded communication port is executed in END processing.

Note: This instruction cannot be used in interrupt programs. If this instruction is used in an interrupt program, a user program execution error will occur.
For user program execution errors, see "User Program Execution Errors" on page 3-10.

## Example: COMRF

The following example demonstrates a program to execute COMRF instructions among other instructions.


Before executing the RXD instruction, COMRF refreshes send and receive data of the expansion communication ports.

After executing the TXD instruction, COMRF refreshes send and receive data of the expansion communication ports.

## 15: Interrupt Control Instructions

## Introduction

This chapter describes interrupt control instructions that prohibit and allow user interrupt operations (interrupt input, timer interrupt).

## DI (Disable Interrupt)



When input is on, interrupt inputs and timer interrupt assigned by source device S 1 are disabled.

## EI (Enable Interrupt)



When input is on, interrupt inputs and timer interrupt assigned by source device S1 are enabled.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Interrupt inputs and timer interrupt | - | - | - | - | - | - | - | $\mathrm{X}^{* 1}$ | - |

*1 Group 1 through Group 6 or Timer Interrupt can be set.
Interrupt inputs IO through I7 and timer interrupt selected in the Function Area Settings are normally enabled when the CPU starts. When the DI instruction is executed, interrupt inputs and timer interrupt designated as source device S1 are disabled even if the interrupt condition is met in the user program area subsequent to the DI instruction. When the EI instruction is executed, disabled interrupt inputs and timer interrupt designated as source device S1 are enabled again in the user program area subsequent to the EI instruction. Different interrupts can be selected for the DI and EI instructions to disable and enable interrupt inputs selectively. For Interrupt Input and Timer Interrupt, see Chapter 5 "Functions and Settings" "Interrupt Input" and "Timer Interrupt" in the "FC6A Series MicroSmart All-in-One Type User’s Manual".

Make sure that interrupt inputs and timer interrupt designated as source device S 1 are selected in the Function Area Settings. Otherwise, when the DI or EI instruction is executed, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart

The DI and EI instructions cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Special Internal Relays M8137-M8143, and M8167: Interrupt Status

Special internal relays M8137 through M8143, M8167, and M8144 are provided to indicate whether interrupt inputs and timer interrupt are enabled or disabled.

| Interrupt | Interrupt Enabled | Interrupt Disabled |
| :---: | :---: | :---: |
| Group 1 (IO/-) | M8137 ON | M8137 OFF |
| Group 2 (I2/I2) | M8140 ON | M8140 OFF |
| Group 3 (I3/I3) | M8141 ON | M8141 OFF |
| Group 4 (I5/I4) | M8142 ON | M8142 OFF |
| Group 5 (I6/I5) | M8143 ON | M8143 OFF |
| Group 6 (I7/-) | M8167 ON | M8167 OFF |
| Timer Interrupt | M8144 ON | M8144 OFF |

## 15: Interrupt Control Instructions

## Programming WindLDR

In the DI (Disable Interrupt) or EI (Enable Interrupt) dialog box, select the check box on the left of Interrupt Groups 1 through 6 or Timer Interrupt to select source device S1. The example below selects interrupt groups 2, 3, and timer interrupt for the DI instruction, and a 22 will be shown as source device S 1 .


## Example: DI and EI

The following example demonstrates a program that will disable and enable interrupt inputs and timer interrupt selectively. For the interrupt input and timer interrupt functions, see Chapter 5 "Functions and Settings" - "Interrupt Input" and "Timer Interrupt" in the "FC6A Series MicroSmart All-in-One Type User's Manual". In this example, inputs I2 and I3 are designated as interrupt inputs and timer interrupt is used with interrupt intervals of 100 ms .


M8120 is the initialize pulse special internal relay.
D8033 stores jump destination label number 0 for interrupt input I2.
D8034 stores jump destination label number 1 for interrupt input I3.
D8036 stores jump destination label number 2 for timer interrupt.
When input I10 is on, DI disables interrupt inputs I2, I3, and timer interrupt, then M8071, M8072, and M8144 turn off.

When input I11 is on and I10 is off, EI enables interrupt inputs I2 and I3, then M8071 and M8072 turn on.

When input I12 is on and I10 is off, EI enables timer interrupt, then M8144 turns on.

End of the main program.

When input I2 is on, program execution jumps to label 0.
M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q2 internal memory.
IOREF immediately writes the output Q2 internal memory status to actual output Q2.
Program execution returns to the main program.

When input I3 is on, program execution jumps to label 1.
M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q3 internal memory.
IOREF immediately writes the output Q3 internal memory status to actual output Q3.

Program execution returns to the main program.

Timer interrupt occurs every 100 ms , then program execution jumps to label 2.

M8125 is the in-operation output special internal relay.
ALT turns on or off the output Q4 internal memory.
IOREF immediately writes the output Q4 internal memory status to actual output Q4. Program execution returns to the main program.

## 16: Coordinate Conversion Instructions

## Introduction

This chapter describes the coordinate conversion instructions that convert one data point to another value using the linear relationship between the values of $X$ and $Y$.


## XYFS (XY Format Set)



When input is on, the format for XY conversion is set. The XY coordinates define the linear relationship between $X$ and $Y$.

| No. of XY Coordinates | $\mathbf{n}$ |
| :---: | :---: |
| 2 to 32 | $0 \leq \mathrm{n} \leq 31$ |

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Format number | - | - | - | - | - | - | - | 0 to 7 | - |
| $X 0$ through Xn | $X$ value | $X$ | 0 to 65,535 | - |
| Y0 through Yn | $Y$ value | $X$ | 0 to 65,535 <br> $-32,768 ~ t o ~$ |  |

For valid device address ranges, see "Device Addresses" on page 2-1.
When T (timer) or C (counter) is used as X0 through Xn or Y0 through Yn, the timer/counter current value (TC or CC) is displayed.

## S1 (Format number)

Select a format number 0 through 7. A maximum of 8 formats for XY conversion can be set.

## $\mathbf{X n}$ ( $X$ value), Yn (Y value)

Enter values for the $X$ and $Y$ coordinates. Two different data ranges are available depending on the data type.

| Data Type | Word |  | Integer |  |
| :---: | :---: | :---: | :---: | :---: |
| Xn (X value) | 0 to 65,535 |  | 0 to 65,535 |  |
| Yn (Y value) | 0 to 65,535 |  | -32,768 to 32,767 |  |
| Valid Coordinates | 65,535 |  | $32,767$ | $\underset{65,535}{\longrightarrow} x$ |

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | X |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as Xn or $\mathrm{Yn}, 16$ points are used

When a word device such as T (timer), C (counter), or D (data register) is assigned as Xn or $\mathrm{Yn}, 1$ point is used.

Note: The XYFS instruction cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## CVXTY (Convert X to Y)



When input is on, the $X$ value assigned by device $S 2$ is converted into the corresponding $Y$ value according to the linear relationship defined in the XYFS instruction. Device S 1 selects a format from a maximum of 8 XY conversion formats. The conversion result is set to the device assigned by D1.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Format number | - | - | - | - | - | - | - | 0 to 7 | - |
| S2 (Source 2) | $X$ value | $X$ | 0 to 65,535 | - |
| D1 (Destination 1) | Destination to store results | - | $X$ | $\mathbf{X}$ | $X$ | $X$ | $X$ | $X$ | - |  |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1.
When $T$ (timer) or $C$ (counter) is used as S2, the timer/counter current value ( TC or CC ) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

## S1 (Format number)

Select a format number 0 through 7 which have been set using the XYFS instruction. When an XYFS instruction with the corresponding format number is not programmed, or when XYFS and CVXTY instructions of the same format number have different data type designations, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## S2 (X value)

Enter a value for the X coordinate to convert, within the range specified in the XYFS instruction.

## D1 (Destination to store results)

The conversion result of the $Y$ value is stored to the destination.


## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | $X$ |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as S 2 or D1, 16 points are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as S 2 or $\mathrm{D} 1,1$ point is used.

## Data Conversion Error

The data conversion error is $\pm 0.5$.
Note: The CVXTY instruction cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## CVYTX (Convert Y to X)



When input is on, the $Y$ value assigned by device $S 2$ is converted into the corresponding $X$ value according to the linear relationship defined in the XYFS instruction. Device S 1 selects a format from a maximum of 8 XY conversion formats. The conversion result is set to the device assigned by D1.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Format number | - | - | - | - | - | - | - | 0 to 7 | - |
| S2 (Source 2) | Y value | $X$ | 0 to 65,535 |  |
|  |  |  |  |  |  |  |  | $-32,768$ to 32,767 | - |  |
| D1 (Destination 1) | Destination to store results | - | $X$ | $\mathbf{A}$ | $X$ | $X$ | $X$ | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( internal relays M0 through M7997 and M10000 through M17497 can be designated as D1. Special internal relays cannot be designated as D1. When T (timer) or C (counter) is used as S 2 , the timer/counter current value (TC or CC) is displayed. When T (timer) or C (counter) is used as D1, the data is written in as a preset value (TP or CP) which can be 0 through 65,535.

## S1 (Format number)

Select a format number 0 through 7 which have been set using the XYFS instruction. When an XYFS instruction with the corresponding format number is not programmed, or when XYFS and CVYTX instructions of the same format number have different data type designations, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## S2 (Y value)

Enter a value for the $Y$ coordinate to convert, within the range specified in the XYFS instruction. Two different data ranges are available depending on the data type.

## D1 (Destination to store results)

The conversion result of the X value is stored to the destination.

| Data Type |  | Word | $\frac{\text { Integer }}{-32,768 \text { to } 32,767}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| S2 (Y value) |  | 0 to 65,535 |  |  |
| D1 (X value) |  | 0 to 65,535 | 0 to 65,535 |  |
| Valid Coordinates |  |  | $32,767$ | $\overrightarrow{65,535}$ |

## Valid Data Types

| W (word) | $X$ |
| :--- | :---: |
| I (integer) | $X$ |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When a bit device such as I (input), Q (output), M (internal relay), or R (shift register) is assigned as S2 or D1, 16 points are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as S2 or D1, 1 point (integer data) is used.

## Data Conversion Error

The data conversion error is $\pm 0.5$.
Note: The CVYTX instruction cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## 16: Coordinate Conversion Instructions

## Example: Linear Conversion

The following example demonstrates setting up two coordinate points to define the linear relationship between X and Y . The two points are $(X 0, Y 0)=(0,0)$ and $(X 1, Y 1)=(8,000,4,000)$. Once these are set, there is an $X$ to $Y$ conversion, as well as a $Y$ to $X$ conversion.


M8120 is the initialize pulse special internal relay.
At startup, XYFS specifies two points.
When input IO is on, CVXTY converts the value in D10 and stores the result in D20

When input I1 is on, CVYTX converts the value in D11 and stores the result in D21.

The graph shows the linear relationship that is defined by the two points:

$$
Y=\frac{1}{2} X
$$

If the value in data register D10 is 2,000 , the value assigned to D20 is 1,000 .

For Y to X conversion, the following equation is used:

$$
X=2 Y
$$

If the value in data register D11 is 2,500 , the value assigned to D21 is 5,000 .

## Example: Overlapping Coordinates

In this example, the XYFS instruction sets up three coordinate points, which define two different linear relationships between X and $Y$. The three points are: $(X 0, Y 0)=(0,100),(X 1, Y 1)=(100,0)$, and $(X 2, Y 2)=(300,100)$. The two line segments define overlapping coordinates for $X$. That is, for each value of $Y$ within the designated range, there would be two $X$ values assigned.


M8120 is the initialize pulse special internal relay.

At startup, XYFS specifies three points.
CVXTY converts the current value in C10 and stores the result in D90.

CVYTX converts the value in D95 and stores the result in D30.


The first line segment defines the following relationship for X to Y conversion:

$$
Y=-X+100
$$

The second line segment defines another relationship for $X$ to $Y$ conversion:

$$
Y=\frac{1}{2} X-50
$$

For X to Y conversion, each value of X has only one corresponding value for Y . If the current value of counter C 10 is 250 , the value assigned to D 90 is 75 .

For $Y$ to $X$ conversion, the XYFS instruction assigns two possible values of $X$ for each value of $Y$. The relationship defined by the first two points has priority in these cases. The line between points ( $\mathrm{X} 0, \mathrm{Y} 0$ ) and ( $\mathrm{X} 1, \mathrm{Y} 1$ ), that is, the line between $(0,100)$ and $(100,0)$, has priority in defining the relationship for $Y$ to $X$ conversion ( $X=-Y+100$ ).
Therefore, if the value in data register D95 is 40 , the value assigned to D30 is 60 , not 180 .
Exactly the same two line segments might also be defined by the XYFS instruction, except that the point $(300,100)$ could be assigned first, as (X0, $Y 0)$, and the point $(100,0)$ could be defined next, as $(X 1, Y 1)$. In this case, this linear relationship would have priority.

In this case, if the value in data register D95 is 40, the value assigned to D30 is 180, not 60.

## 17: Average Instructions

## Introduction

This chapter describes the average instructions that average the specified data.

## AVRG (Average)



When input is on, sampling data assigned by device S 1 is processed according to sampling conditions assigned by devices S2 and S3.

When sampling is complete, average, maximum, and minimum values are stored to 3 consecutive devices starting with device assigned by D1, then sampling completion output assigned by device D2 is turned on.

| Data Type | W, I | D, L, F |
| :--- | :---: | :---: |
| Average | D 1 | $\mathrm{D} 1 \cdot \mathrm{D} 1+1$ |
| Maximum value | $\mathrm{D} 1+1$ | $\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$ |
| Minimum value | $\mathrm{D} 1+2$ | $\mathrm{D} 1+4 \cdot \mathrm{D} 1+5$ |

The AVRG instruction is effective for data processing of analog input values. A maximum of eight AVRG instructions can be programmed in a user program.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Sampling data | $X$ | - | - |
| S2 (Source 2) | Sampling end input | $X$ | $X$ | $X$ | $X$ | - | - | - | - | - |
| S3 (Source 3) | Sampling cycles (scan times) | $X$ | $0-65,535$ | - |
| D1 (Destination 1) | First device address to store results | - | - | - | - | - | - | $X$ | - | - |
| D2 (Destination 2) | Sampling completion output | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
( Internal relays M0 through M7997 and M10000 through M17497 can be designated as D2. Special internal relays cannot be designated as D2. When T (timer) or C (counter) is used as S1 or S3, the timer/counter current value (TC or CC) is displayed.
When $F$ (float) data is selected, only data registers can be designated as S1 and D1.
While input is on, the AVRG instruction is executed in each scan. When the quantity of sampling cycles (scan times) designated by device S 3 is 1 through 65,535 , sampling data designated by device $S 1$ is processed in each scan. When the designated sampling cycles have been completed, the average value of the sampling data is set to the device designated by D 1 (data type W or I ) or $\mathrm{D} 1 \cdot \mathrm{D} 1+1$ (data type $\mathrm{D}, \mathrm{L}$, or F ). The maximum value of the sampling data is set to the next device, $\mathrm{D} 1+1$ (data type W or I) or $\mathrm{D} 1+2 \cdot \mathrm{D} 1+3$ (data type $\mathrm{D}, \mathrm{L}$, or F ). The minimum value of the sampling data is set to the next device, $D 1+2$ (data type $W$ or $I$ ) or $D 1+4 \cdot D 1+5$ (data type $D, L$, or $F$ ). The sampling completion output designated by device D2 is turned on
When the quantity of sampling cycles designated by device S3 is 0 , sampling is started when the input to the AVRG instruction is turned on, and stopped when the sampling end input designated by device S 2 is turned on. Then, the average, maximum, and minimum values are set to 3 devices starting with device designated by D1
When the sampling exceeds 65,535 cycles, the average, maximum, and minimum values at this point are set to 3 devices starting with device designated by D1, and sampling continues.
When the sampling end input is turned on before the sampling cycles designated by device S 3 have been completed, sampling is stopped and the results at this point are set to 3 devices starting with device designated by D1.
The average value is calculated to units, rounding the fractions of one decimal place.
When the sampling end input is not used, designate an internal relay or another valid device as a dummy for source device S2.
When F (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. When an error occurs, incorrect S1 data are skipped. Average, maximum, and minimum values are calculated from correct S1 data, and set to 3 devices starting with the device designated by D1. For details about user program execution errors, see "User Program Execution Errors" on page 3-10.

## 17: Average Instructions

## Valid Data Types

| W (word) | $X$ |
| :--- | :--- |
| I (integer) | $X$ |
| $\mathbf{D}$ (double word) | $X$ |
| $\mathbf{L}$ (long) | $X$ |
| $F$ (float) | $X$ |

When a bit device such as I (input), $Q$ (output), $M$ (internal relay), or $R$ (shift register) is assigned as the source, 16 points (word or integer data) or 32 points (double-word or long data) are used.

When a word device such as T (timer), C (counter), or D (data register) is assigned as the source, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Example: AVRG

The following example demonstrates a program that calculates the average values of data register D100 and store the result to data register D200 every 500 scans.


## When the sampling end input does not turn on

While sampling end input I10 is off, the average, maximum, and minimum values are calculated every 500 scans and stored to data registers D200, D201, and D202, respectively. Sampling completion output M100 is set every 500 scans.


## When the sampling end input turns on

When sampling end input I10 turns on, the average, maximum, and minimum values at this point are stored to data registers D200, D201, and D202, respectively. Sampling completion output M100 is also set. When sampling end input I10 turns off, sampling resumes starting at the first scan.


## 18: Pulse Output Instructions

## Introduction

This chapter describes the pulse output instructions that output pulses of a specified frequency from the pulse output ports.

## PULS (Pulse Output)



The PULS instruction outputs pulses of the specified frequency from the pulse output ports with a fixed duty cycle.

When the input is on, pulses are output with a fixed duty cycle according to the control register settings specified by S 1 .

When the initialization input specified by S 2 is turned on, the initial values configured in the WindLDR PULS dialog box, on the Settings tab, are stored in the control registers.

The pulse control information (output on/output complete/error) is stored in the internal relays specified by D1 as the operation status.

Note: Configure multiple PULS (pulse output), PWM (pulse width modulation), RAMP (trapezoidal control), and ARAMP (RAMP with table) instructions so that they do not share the same pulse output port.
However, the ZRN (zero return) instruction can be configured with the same pulse output port as the PULS (pulse output), PWM (pulse width modulation), RAMP (trapezoidal control), and ARAMP (RAMP with table) instructions.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled.
- The PULS instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 is stored in D8006 and instruction execution is canceled.
- For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | $\mathbf{1}$ | - | - | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Operation status | - | - | $\mathbf{A}$ | - | - | - | - | - | - |

( Special data registers cannot be designated as S1. Internal relays M0000 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

## Settings

- Devices tab



## 1. Select Mode

Selects the configuration mode. FC6A Standard Mode or FC5A (except FC5A-D12X1E) Compatible Mode can be selected.
Select FC5A (except FC5A-D12X1E) Compatible Mode to use the FC5A Series MicroSmart PULS instruction specification. When changing the PLC type from the FC5A/FC4A Series MicroSmart, FC5A (except FC5A-D12X1E) Compatible Mode is automatically selected.
The lowest frequency that can be used with FC5A (except FC5A-D12X1E) Compatible Mode is $20 \mathrm{~Hz}^{* 1}$.
${ }^{*}$ The lower limit value for the frequency that the FC5A Series MicroSmart can output is 10 Hz , but in compatibility mode this is 20 Hz . Notes:

- The lowest frequency of pulses that can be output in FC5A (except FC5A-D12X1E) Compatible Mode is 20 Hz . A frequency lower than 20 Hz cannot be output. If such a value is specified, the pulse frequency designation error will occur.
- The highest frequency of pulses that can be output with PULS3 in FC5A (except FC5A-D12X1E) Compatible Mode is 5 kHz . A frequency higher than 5 kHz cannot be output. If such a value is specified, the pulse frequency error will occur.

The rest of this section is written under the assumption that FC6A Standard Mode has been selected.
Note: For details on the FC5A (except FC5A-D12X1E) Compatible Mode settings, refer to the PULS instruction in Chapter 15 "Pulse Output Instructions" in the "FC5A Series MicroSmart Pentra User's Manual Advanced Volume".

## 2. Select instruction

This item selects which PULS instruction to use ("PULS1", "PULS2", "PULS3", or "PULS4").
The pulse output and the frequency that can be set are determined by the instruction and the CPU module type.

## All-in-One Type

| Instruction | Pulse output | Configurable Frequency |  |
| :---: | :---: | :---: | :---: |
| PULS1 | Q0 | 15 Hz to 100 kHz (increments of 1 Hz ) |  |
| PULS2 | Q1 |  |  |
| PULS3 | Q2 | 15 Hz to 5 kHz (increments of 1 Hz ) |  |
| PULS4 | Q3 |  |  |

## CAN J1939 All-in-One Type

| Instruction | Pulse output |  |
| :---: | :---: | :---: |
| PULS1 | Q0 | Configurable Frequency |
| PULS2 | Q2 |  |
| PULS3 | Q4 |  |
| PULS4 | Q6 |  |

## 3. S1 (source 1): Control register

S1 specifies the starting number for the data registers to use with PULS1, PULS2, PULS3, or PULS4 instructions. Starting from the specified number, 8 consecutive 16 -bit data registers are used.
The range of available data register numbers is D0000 to D7992 and D10000 to D55992.
The operation mode and pulse frequency settings differ by the CPU module type and the instruction.

| Storage destination | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-in-One Type |  |
| Starting number +0 | Output pulse <br> frequency <br> (high word) ${ }^{* 1}$ | PULS1, PULS2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> PULS3, PULS4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | PULS1 to PULS4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "6. Output pulse frequency" on page 18-4 |
| Starting number+1 | Output pulse frequency (low word) ${ }^{* 1}$ | - |  | - |
| Starting number+2 | Preset value (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses |  | "8. Preset value" on page 18-4 |
| Starting number+3 | Preset value (low word) ${ }^{* 1}$ |  |  | 8. Preset value on page 18-4 |
| Starting number+4 | Current value (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses |  | "9. Current value" on page 18-4 |
| Starting number+5 | Current value (low word) ${ }^{* 1}$ |  |  | 9. Current value on page 18-4 |
| Starting number+6 | Error status | 0 to 4 |  | "10. Error status" on page 18-4 |
| Starting number+7 | Reserved |  |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.

## 4. S2 (source 2): Initialization Input

S2 specifies the initialization input. When the initialization input is turned on, the initial values configured in the WindLDR PULS dialog box, on the Settings tab, are stored in the control registers. An external input or an internal relay can be specified. When the initialization input is on, the initial values are written to the data registers with each scan. (Even when the PULS instruction is not executed (when not on), if the initialization input is turned on, the initial values are stored in the data registers.) To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.

## 5. D1 (destination 1): Operation Status

D1 specifies the starting number of the internal relays that store the operation status.
Starting from the specified internal relay, 3 sequential internal relays are used.
The range of available internal relays is M0000 to M7995 and M10000 to M17495.

| Storage <br> Destination | Function | Setting |  |
| :--- | :--- | :--- | :--- |
| Starting <br> number+0 | Pulse output ON | 0: Pulse output OFF <br> $1:$ Pulse output ON | This relay turns on during pulse output. <br> This relay turns off when pulse output stops. <br> This relay turns off when the specified number of pulses are output <br> and output ends. |
| Starting <br> number+1 | Pulse output <br> complete | $0:$ Pulse output not complete <br> $1:$ Pulse output complete | This relay turns on when pulse output is complete. <br> This relay turns off when pulse output starts. |
| Starting <br> number+2 | Overflow | $0:$ None <br> $1:$ An overflow has occurred | When pulse counting is enabled, this relay turns on when a pulse is <br> output that exceeds the configured preset value. |

## 18: Pulse Output Instructions

## - Settings tab

This tab configures the operation of the PULS instruction.

6. Output pulse frequency

Specifies the pulse frequency. The output frequency error is $\pm 5 \%$.
The setting differs by the CPU module type and the instruction.

| CPU Module Type | Instruction | Configurable Range |  |
| :--- | :--- | :--- | :--- |
|  |  | Setting Value | Frequency |
| All-in-One Type | PULS1, PULS2 | 15 to 100,000 | 15 Hz to 100 kHz (increments of 1 Hz$)$ |
|  | PULS3, PULS4 | 15 to 5,000 | 15 Hz to 5 kHz (increments of 1 Hz$)$ |
| CAN J1939 All-in-One Type | PULS1 to PULS4 | 15 to 100,000 | 15 Hz to 100 kHz (increments of 1 Hz$)$ |

## 7. Pulse counting

Enables or disables pulse counting.
If Enable pulse counting is specified, the number of pulses specified by the preset value (8) is output.
If Disable pulse counting is specified, pulses are continuously output while the PULS instruction input is on.

## 8. Preset value

When the setting for 7. Pulse counting is Enable pulse counting, this setting specifies the number of pulses to output.

## 9. Current value

Specifies the device (data register) that will store the number of pulses that were output.
The current value is updated when the PULS instruction is executed at each scan.

## 10. Error status

Outputs the error code that corresponds to the content of an error when there is an error in the settings. If a configuration error occurs when the PULS instruction input changes from off to on, a user program execution error will occur and error code 20 will be stored in D8006.

| Error Code | Status | Description |  |
| :---: | :---: | :---: | :---: |
| 0 | Normal | - |  |
| 2 | Pulse frequency designation error | All-in-One Type | PULS1, PULS2: The pulse frequency was not set between 15 and 100,000. |
|  |  |  | PULS3, PULS4: The pulse frequency was not set between 1 and 5,000. |
|  |  | CAN J1939 All-in-One Type | PULS1 to PULS4: The pulse frequency was not set between 15 and 100,000. |
| 4 | Preset value designation error | If Enable pulse counting is specified, the preset value was not set between 1 and 100,000,000. |  |

## Examples: PULS

## PULS1 instruction (pulse counting enabled) timing chart

[PULS1 instruction, S1 is specified as D0200, D1 is specified as internal relay M0050]


> f1, f2, f3 = frequency
> n1, n2, n3 = output pulse count

When the PULS1 instruction input changes from off to on, M0050 turns on and pulses with the frequency configured by D0200 and D0201 are output. When the number of pulses configured by D202 and D203 are output, pulse output stops. If the value of D0200 and D0201 changes during pulse output, pulses are output with the frequency based on that value.
When the PULS1 instruction input changes from on to off, M0050 turns off and M0051 turns on at the same time.
The changes from the initialization input are not reflected while the PULS1 instruction input is on. If you wish to initialize the data registers with the initialization input, turn the initialization input on after turning off the input.

## 18: Pulse Output Instructions

## PULS2 instruction (pulse counting disabled) timing chart

[PULS2 instruction, S1 is specified as D0100, D1 is specified as internal relay M0200]


$$
\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3=\text { pulse frequency }
$$

When the PULS2 instruction input changes from off to on, M0200 turns on and pulses with the frequency configured by D0101 and D0100 are output. If the value of D0101 and D0100 changes during pulse output, pulses are output with the frequency based on that value.
When the PULS2 instruction input changes from on to off, M0200 turns off and M0201 turns on at the same time.
The changes from the initialization input are not reflected while the PULS2 instruction input is on. If you wish to initialize the data registers with the initialization input, turn the initialization input on after turning off the input.

## Sample program

This section describes an example program that outputs 5,000 pulses (each at 200 Hz ) and then 60,000 pulses (each at 500 Hz ) from output Q0


## Settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Output pulse frequency | D0000, D0001 | 200 | 200 Hz |
| Pulse counting | - | 1 | Enable pulse counting |
| Preset value | D0002, D0003 | 6000 | Preset value $=6,000$ |

## PWM (Variable Duty Cycle Pulse Output)



The PWM instruction outputs pulses of the specified frequency and duty cycle from the pulse output ports.

When the input is on, pulses are output according to the control register settings specified by S 1 .

The pulse control information (output on/output complete/error) is stored in the internal relays specified by D1 as the operation status.

When the initialization input specified by S 2 is turned on, the initial values configured in the WindLDR PWM (Pulse Width Modulation) dialog box, on the Settings tab, are stored in the control registers.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled.
- The PWM instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 is stored in D8006 and instruction execution is canceled.
- For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Operation status | - | - | $\mathbf{A}$ | - | - | - | - | - | - |

L Special data registers cannot be designated as S1. Internal relays M0000 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

## Settings

- Devices tab



## 1. Select Mode

Selects the configuration mode. FC6A Standard Mode, FC4A Compatible Mode, FC5A (except FC5A-D12X1E) Compatible Mode, or FC5A-D12X1E Compatible Mode can be selected.
To use the PWM instruction with the FC4A Series MicroSmart, the FC5A Series MicroSmart, or the FC5A-D12 PWM instruction specification, select one of the FC compatibility modes. When changing the PLC type from the FC4A Series MicroSmart, FC4A Compatible Mode is automatically selected. When changing the PLC type from the FC5A or FC5A-D12, FC5A (except FC5AD12X1E) Compatible Mode or FC5A-D12X1E Compatible Mode is automatically selected.
The frequency that can be specified in FC compatibility mode is an approximate value of the FC4A, FC5A, and FC5A-D12 PWM instruction frequencies.
Note: The pulse frequencies that can be output in FC compatibility mode are as follows.

| Operation Mode | FC4A Compatible Mode | FC5A (except FC5A-D12X1E) <br> Compatible Mode | FC5A-D12X1E Compatible Mode |
| :--- | :--- | :--- | :--- |
| Operation mode 0 | 15 Hz (fixed) | 15 Hz (fixed) | 15 Hz (fixed) |
| Operation mode 1 | 27 Hz (fixed) | 46 Hz (fixed) | 61 Hz (fixed) |
| Operation mode 2 | 218 Hz (fixed) | 366 Hz (fixed) | 488 Hz (fixed) |

The rest of this section is written under the assumption that FC6A Standard Mode has been selected.

## Notes:

- For details on the FC4A Compatible Mode settings, refer to the PWM instruction in Chapter 2 "Instructions" in the "FC4A Series MicroSmart Pentra User's Manual".
- For details on the settings in FC5A (except FC5A-D12X1E) Compatible Mode and FC5A-D12X1E Compatible Mode, refer to the PWM instruction in Chapter 15 "Pulse Output Instructions" in the FC5A Series MicroSmart Pentra User's Manual Advanced Volume.


## 2. Select instruction

This item selects which PWM instruction to use ("PWM1", "PWM2", "PWM3", or "PWM4").
The pulse output that can be set is determined by the instruction and the CPU module type.

## All-in-One Type

| Instruction | Pulse Output | Configurable Range |  |
| :--- | :--- | :---: | :---: |
|  |  | Frequency | Duty Cycle |
| PWM1 | Q0 |  |  |
| PWM2 | Q1 Hz to 5 kHz (increments of 1 Hz ) |  |  |
| PWM3 | Q2 |  |  |
| PWM4 | Q3 |  |  |

CAN J1939 All-in-One Type

| Instruction | Pulse Output | Configurable Range |  |
| :--- | :--- | :---: | :---: |
|  |  | Frequency |  |
| 15 Hz to 5 kHz (increments of 1 Hz ) | Duty Cycle |  |  |
|  | Q0 |  |  |
|  | Q2 |  |  |
| PWM3 | Q4 to 100.0 (increments of $10.1 \%)$ |  |  |
| PWM4 | Q6 |  |  |

## 18: Pulse Output Instructions

## 3. S1 (source 1): Control register

S1 specifies the starting number for the data registers to use with PWM1, PWM2, PWM3, or PWM4 instructions.
Starting from the specified number, 8 consecutive 16-bit data registers are used.
The range of available data register numbers is D0000 to D7992 and D10000 to D55992.

| Storage Destination | Function | Setting | Reference |
| :---: | :---: | :---: | :---: |
| Starting number+0 | Output pulse frequency | 15 to 5,000 (increments of 1 Hz ) | "6. Output pulse frequency" on page 18-11 |
| Starting number+1 | Pulse duty cycle (ON ratio) | 1 to 100\% | "7. Pulse width ratio" on page 18-11 |
| Starting number+2 | Preset value (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses | "9 |
| Starting number+3 | Preset value (low word)* ${ }^{*}$ | 1 to 100,000,000 pulses | 9. Preset value on page 18-11 |
| Starting number +4 | Current value (high word)* ${ }^{\text {¹ }}$ | 1 to 100,000,000 pulses | "10. Current value" on page 18-11 |
| Starting number+5 | Current value (low word) ${ }^{* 1}$ | 1 to 100,000,000 pulses | 10. Current value on page 18-11 |
| Starting number+6 | Error status | 0 to 4 | "11. Error status" on page 18-11 |
| Starting number+7 | Reserved |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.

## 4. S2 (source 2): Initialization Input

S2 specifies the initialization input. When the initialization input S 2 is turned on, the initial values configured in the WindLDR PWM (Pulse Width Modulation) dialog box, on the Settings tab, are stored in the control registers. An external input or an internal relay can be specified.
When the initialization input is on, the initial values are written to the data registers with each scan. To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.
5. D1 (destination 1): Operation Status

D1 specifies the starting number of the internal relays to use with PWM instructions.
Starting from the specified internal relay, 3 sequential internal relays are used.
The range of available internal relay numbers is M0000 to M7995 and M10000 to M17495.

| Storage Destination | Function | Setting |  |
| :--- | :--- | :--- | :--- |
|  |  | This relay turns on during pulse output. |  |
| Starting number+0 | Pulse output ON | 0: Pulse output OFF <br> $1:$ Pulse output ON | This relay turns off when pulse output stops. <br> This relay turns off when the specified number of pulses <br> are output and output ends. |
| Starting number+1 | Pulse output <br> complete | $0:$ Pulse output not complete <br> $1:$ Pulse output complete | This relay turns on when pulse output is complete. <br> This relay turns off when pulse output stops. |
| Starting number+2 | Overflow | 0: None <br> $1:$ An overflow has occurred | When pulse counting is enabled, this relay turns on when <br> a pulse is output that exceeds the configured preset value. |

## - Settings tab



## 6. Output pulse frequency

Specifies the frequency of the pulses to output.
The frequency is specified between 15 Hz and 5 kHz in 1 Hz increments.
The pulse frequency error is within $\pm 5 \%$.

## 7. Pulse width ratio

This setting specifies the ON ratio (duty cycle) for the pulse frequency to output.
The pulse width ratio is specified between $0.1 \%$ and $100.0 \%$ in $0.1 \%$ increments.

## 8. Pulse counting

Enables or disables pulse counting.
If Enable pulse counting is specified, the number of pulses specified by the preset value (9) is output.
If Disable pulse counting is specified, pulses are continuously output while the PULS instruction input is on.
9. Preset value

When the setting for 8. Pulse counting is Enable pulse counting, this setting specifies the number of pulses to output.

## 10. Current value

Specifies the device (data register) that will store the number of pulses that were output.
The current value is updated when the PWM instruction is executed at each scan.

## 11. Error status

Outputs the error code that corresponds to the content of an error when there is an error in the settings. If a configuration error occurs when the PWM instruction input changes from off to on, a user program execution error will occur and error code 20 will be stored in D8006.

| Error Code | Status | Description |
| :---: | :--- | :--- |
| 0 | Normal | - |
| 1 | Output frequency designation error | The pulse frequency was not set between 15 and 5,000. |
| 2 | Pulse width ratio designation error | The pulse width ratio was not set between 1 and 1,000. |
| 4 | Preset value designation error | If Enable pulse counting is specified, the preset value was not set between <br> 1 and 100,000,000. |

## 18: Pulse Output Instructions

## Examples: PWM

## PWM1 instruction (pulse counting enabled) timing chart

[PWM1 instruction, S1 is specified as D200, D1 is specified as internal relay M0050]

w1, w2, w3 = pulse width ratio
n1, n2, n3 = output pulse count
When the PWM1 instruction input changes from off to on, M0050 turns on and pulses with the width ratio configured by D0201 are output. When the number of pulses configured by D0202 and D0203 are output, pulse output stops. If the value of D0201 changes during pulse output, pulses are output with the width ratio based on that value.
When the PWM1 instruction input changes from on to off, M0050 turns off and M0051 turns on at the same time.
The changes from the initialization input are not reflected while the PWM1 instruction input is on. If you wish to initialize the data registers with the initialization input, turn the initialization input on after turning off the input.

## PWM2 instruction (pulse counting disabled) timing chart

[PWM2 instruction, $\mathbf{S 1}$ is specified as D100, D1 is specified as internal relay M0200]


> w1, w2, w3 = pulse width ratio

When the PWM2 instruction input changes from off to on, M0200 turns on and pulses with the width ratio configured by D0101 are output. If the value of D0101 changes during pulse output, pulses are output with the width ratio based on that value. When the PWM2 instruction input changes from on to off, M0200 turns off and M0201 turns on at the same time.
The changes from the initialization input are not reflected while the PWM2 instruction input is on. If you wish to initialize the data registers with the initialization input, turn the initialization input on after turning off the input.

## 18: Pulse Output Instructions

## Sample program

This section describes an example program that outputs a pulse with the pulse width ratio of $30 \%$ when IO is off, and a pulse with the pulse width ratio of $60 \%$ when IO is on.


## Settings



| Function | Device address | Setting value | Details |
| :--- | :--- | :--- | :--- |
| Output pulse frequency | D0000 | 50 | 50 Hz |
| Pulse width ratio | D0001 | 300 | $30 \%$ |
| Pulse counting | - | Disable pulse counting | - |
| Preset value | - | - |  |

## RAMP (Trapezoidal Control)



The RAMP instruction outputs pulses with a frequency change function.
When the input is on, pulses of the initial pulse frequency specified by S 1 are output, and then the pulse frequency is increased by a fixed ratio until it reaches the steady pulse frequency.

After steady pulse output at the steady pulse frequency, the pulse frequency is decreased before the pulse count reaches the preset value specified by S 1 , and then pulse output stops when the preset value is reached.


When the initialization input specified by S 2 is turned on, the initial values configured in the WindLDR RAMP (Trapezoidal Control) dialog box, on the Configuration tab, are stored in the control registers.
The pulse control information (output on/output complete/error) is stored in the internal relays specified by D1 as the operation status.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled.
- The PULS instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 is stored in D8006 and instruction execution is canceled.
- For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | - | $\mathbf{1}$ | - | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Operation status | - | - | $\mathbf{A}$ | - | - | - | - | - | - |

Special data registers cannot be designated as S1. Internal relays M0000 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

## Settings

- Devices tab



## 1. Select Mode

Selects the configuration mode. FC6A Standard Mode or FC5A (except FC5A-D12X1E) Compatible Mode can be selected.
Select FC5A (except FC5A-D12X1E) Compatible Mode to use the FC5A Series MicroSmart PULS instruction specification. When changing the PLC type from the FC5A/FC4A Series MicroSmart, FC5A (except FC5A-D12X1E) Compatible Mode is automatically selected.
The lowest frequency that can be used with FC5A (except FC5A-D12X1E) Compatible Mode is $20 \mathrm{~Hz}^{{ }^{*}}$.
$*_{1}$ The lower limit value for the frequency that the FC5A Series MicroSmart can output is 10 Hz , but in compatibility mode this is 20 Hz .
Notes:

- The lowest frequency of pulses that can be output in FC5A (except FC5A-D12X1E) Compatible Mode is 20 Hz . A frequency lower than 20 Hz cannot be output. If such a value is specified, the pulse frequency designation error will occur.
- The highest frequency of pulses that can be output with RAMP3 in FC5A (except FC5A-D12X1E) Compatible Mode is 5 kHz . A frequency higher than 5 kHz cannot be output. If such a value is specified, the pulse frequency error will occur.

The rest of this section is written under the assumption that FC6A Standard Mode has been selected.
Note: For details on the FC5A (except FC5A-D12X1E) Compatible Mode settings, refer to the RAMP3 instruction in Chapter 15 "Pulse Output Instructions" in the "FC5A Series MicroSmart Pentra User's Manual Advanced Volume".

## 2. Select instruction

This item selects which RAMP instruction to use ("RAMP1", "RAMP2", "RAMP3" or "RAMP4").
The pulse output port and the reversible control mode and frequency that can be set differ by the instruction and CPU module type.
For limitations based on the combination of instruction, reversible control mode, and the pulse output mode, see " 9 . Reversible control enable" on page 18-18.

## 3. S1 (source 1): Control register

S1 specifies the starting number of the data registers to use with RAMP1, RAMP2, RAMP3 or RAMP4 instructions. Starting from the specified number, 12 consecutive 16 -bit data registers are used.
The range of available data register numbers is D0000 to D7988 and D10000 to D55988.

| Storage Destination | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-inOne Type |  |
| Starting number+0 | Steady pulse frequency (high word) ${ }^{* 1}$ | RAMP1, RAMP2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> RAMP3, RAMP4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | RAMP1 to RAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "6. Steady pulse frequency" on page 18-18 |
| Starting number+1 | Steady pulse frequency (low word) ${ }^{* 1}$ |  |  |  |
| Starting number+2 | Initial pulse frequency (high word) ${ }^{*}$ | RAMP1, RAMP2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> RAMP3, RAMP4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | RAMP1 to RAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "7. Initial pulse frequency" on page 18-18 |
| Starting number+3 | Initial pulse frequency (low word) ${ }^{* 1}$ |  |  |  |
| Starting number+4 | Frequency change time | 10 to $10,000 \mathrm{~ms}$ |  | "8. Frequency change time" on page 18-18 |
| Starting number+5 | Control direction | 0: Forward <br> 1: Reverse |  | "10. Control direction" on page 18-19 |
| Starting number+6 | Preset value (high word) ${ }^{* 1}$ | When specify absolute position mode is disabled: 1 to 100,000,000 pulses <br> When specify absolute position mode is enabled: $-2,147,483,648$ to $2,147,483,647$ pulses |  | "12. Preset value" on page 18-19 |
| Starting number+7 | Preset value (low word)*1 |  |  |  |  |
| Starting number+8 | Current value (high word)*1 | 1 to 100,000,000 pulses ${ }^{* 2}$ |  | "13. Current value" on page 18-19 |
| Starting number+9 | Current value (low word)* ${ }^{\text {¹ }}$ |  |  |  |  |
| Starting number+10 | Error status | 0 to 4 |  | "14. Error status" on page 18-20 |
| Starting number+11 | Reserved |  |  |  |

*1 $_{1}$ The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.
*2 Stores the number of pulses that were output, regardless of whether specify absolute position mode is enabled or disabled. For details on specify absolute position mode, see "ABS (Set Absolute Position)" on page 18-59.

## 4. S2 (source 2): Initialization Input

S2 specifies the initialization input.
When the initialization input S2 is turned on, the initial values configured in the WindLDR RAMP (Ramp Pulse Output) dialog box, on the Settings tab, are stored in the control registers.
An external input or an internal relay can be specified.
When the initialization input is on, the initial values are written to the data registers with each scan. To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.

## 5. D1 (destination 1): Operation Status

D1 specifies the starting number of the internal relays to use with the RAMP instructions. Starting from the specified internal relay, 4 sequential internal relays are used. The range of available internal relay numbers is M0000 to M7994 and M10000 to M17494.

| Storage <br> Destination | Function | Setting |  |
| :--- | :--- | :--- | :--- |
| Starting <br> number+0 | Pulse output <br> ON | 0: Pulse output OFF <br> $1:$ Pulse output ON | This relay turns on during pulse output. <br> This relay turns off when pulse output stops. <br> This relay turns off when the specified number of pulses are output <br> and output ends. |
| Starting <br> number+1 | Pulse output <br> complete | 0: Pulse output not complete <br> $1:$ Pulse output complete | This relay turns on when pulse output is complete. <br> This relay turns off when pulse output starts. |
| Starting <br> number+2 | Pulse output <br> status | 0: Steady pulse output <br> $1:$ Changing output pulse frequency | This relay turns off when the pulse output status is steady. <br> This relay turns on when the pulse output is changing. |
| Starting <br> number+3 | Overflow | 0: None <br> $1:$ An overflow has occurred | When pulse counting is enabled, this relay turns on when a pulse is <br> output that exceeds the configured preset value. Pulse output <br> continues even if an the overflow occurs during steady output or <br> while the pulse frequency is changing. <br> However, pulse counting is suspended at the point when the <br> overflow occurred. |

## - Settings tab



## 6. Steady pulse frequency

This setting specifies the steady pulse frequency after the pulse frequency increases. The output frequency error is $\pm 5 \%$. The corresponding instruction and frequency differ by the CPU module type.

| CPU Module Type | Instruction | Configurable Range |  |
| :--- | :--- | :--- | :--- |
|  |  | Setting Value | Frequency |
| All-in-One Type | RAMP1, RAMP2 | 15 to 100,000 | 15 Hz to 100 kHz (increments of 1 Hz$)$ |
|  | RAMP3, RAMP4 | 15 to 50,000 | 15 Hz to 5 kHz (increments of 1 Hz$)$ |
| CAN J1939 All-in-One Type | RAMP1 to RAMP4 | 15 to 100,000 | 15 Hz to 100 kHz (increments of $1 \mathrm{Hz)}$ |

## 7. Initial pulse frequency

This setting specifies the frequency when pulse output starts. The output frequency error is $\pm 5 \%$.
The corresponding instruction and frequency differ by the CPU module type.

| CPU Module Type | Instruction | Configurable Range |  |
| :--- | :--- | :--- | :--- |
|  |  | Setting Value | Frequency |
| All-in-One Type | RAMP1, RAMP2 | 15 to 100,000 | 15 Hz to 100 kHz (increments of 1 Hz$)$ |
|  | RAMP3, RAMP4 | 15 to 50,000 | 15 Hz to 5 kHz (increments of 1 Hz$)$ |
| CAN J1939 All-in-One Type | RAMP1 to RAMP4 | 15 to 100,000 | 15 Hz to 100 kHz (increments of $1 \mathrm{Hz)}$ |

## 8. Frequency change time

This setting specifies the time to increase and decrease the pulse frequency.
Set the time between 10 and $10,000 \mathrm{~ms}$ in increments of 10 ms . The first digit of the setting is ignored. For example, if 144 is entered, the set value is 140 ms .

## 9. Reversible control enable

This setting enables or disables reversible control and selects the reversible control method from the following reversible control modes. There are two modes for the pulse output mode: single-pulse and dual-pulse. They can be combined with reversible control as follows. (This is an example when RAMP1 is used with the All-in-One Type.)

| Reversible Control Enable | Operation | Pattern |
| :--- | :--- | :--- |
| Reversible control disabled | Select this option when using pulse output in a single <br> direction. Pulse A and pulse B can be used independently. | Pulse A is used as pulse output. Pulse B on/off is used as <br> reversible control. |

The ports used on the FC6A Series MicroSmart vary based on the instruction used, the combination of the pulse output mode and reversible control, and the model used.

| Instruction | Operating Condition | Port Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type |  | CAN J1939 All-in-One Type |  |
|  |  | Pulse Output Port | Reversible Control Port | Pulse Output Port | Reversible Control Port |
| RAMP1 | Reversible control disabled | Q0 | - | Q0 | - |
|  | Reversible control (single-pulse output) | Q0 | Q2 ${ }^{\text {¹ }}$ | Q0 | Q1 |
|  | Reversible control (dual-pulse output) | Q0, Q1 ${ }^{* 2}$ | - | Q0, Q1 | - |
| RAMP2 | Reversible control disabled | Q1 | - | Q2 | - |
|  | Reversible control (single-pulse output) | Q1 | Q3*1 | Q2 | Q3 |
|  | Reversible control (dual-pulse output) | - | - | Q2, Q3 | - |
| RAMP3 | Reversible control disabled | Q2 | - | Q4 | - |
|  | Reversible control (single-pulse output) | - | - | Q4 | Q5 |
|  | Reversible control (dual-pulse output) | - | - | Q4, Q5 | - |
| RAMP4 | Reversible control disabled | Q3 | - | Q6 | - |
|  | Reversible control (single-pulse output) | - | - | Q6 | Q7 |
|  | Reversible control (dual-pulse output) | - | - | Q6, Q7 | - |

*1 When using single-pulse output mode with the All-in-One Type, Q2 or Q3 will be used, so an instruction that uses the same pulse output port can no longer be used.
*2 When using dual-pulse output mode with the All-in-One Type, Q1 will be used, so an instruction that uses the same pulse output port can no longer be used.

## 10. Control direction

When reversible control is enabled, store 0 in this data register for forward operation and store 1 in this data register for reverse operation.
This is ignored when specify absolute position mode is Enabled. If the absolute position counter value subtracted from the target position is positive, Forward is automatically selected, and pulses are output. If negative, Reverse is automatically selected, and pulses are output.

## 11. Absolute Position Mode

When the target position is specified with preset count (12), pulses are output by automatically calculating the number of pulses and direction from the difference between the current position stored in the absolute position counter (D8240 to D8247) and the target position.

| Specify Absolute <br> Position | Overview |
| :---: | :--- |
| Disabled | The RAMP instruction will be executed by specifying Control direction and Preset value. <br> The number of pulses specified by Preset value is output. |
| Enabled | The RAMP instruction will be executed by specifying the target absolute position (target position) in Preset value. <br> The instruction will be executed by calculating the number of pulses to output and the direction from the absolute <br> position managed by the absolute position counter and the target position specified by Preset value. <br> The Control direction setting is ignored. |

## Notes:

- If Reversible control disabled is selected for reversible control enable, specify absolute position mode is disabled.
- If the corresponding absolute position counter initialized flag in D8239 (absolute position control status) is 0 (not initialized), a user program execution error will occur even if the instruction is executed with specify absolute position mode set to Enabled. After starting operation of the ladder program, execute the ABS instruction that corresponds to the applicable output port one time.


## 12. Preset value

If specify absolute position mode is Disabled, set the total number of pulses to output between 1 and 100,000,000.
If specify absolute position mode is Enabled, specify the absolute position. The number of pulses will be output in the amount of the absolute value of the value that is the result of subtracting the absolute position counter value from the absolute position.

## 13. Current value

Regardless of whether specify absolute position mode is enabled or disabled, the number of pulses output from the pulse output port is stored in the data registers.
The current value is updated when the RAMP instruction is executed at each scan.

## 18: Pulse Output Instructions

## 14. Error status

If a configuration error occurs when the RAMP instruction input changes from off to on, M8004 (user program execution error) is turned on and this register is set to the error code.

| Error Code | Description | Details |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Normal | - |  |  |
| 2 | Initial pulse frequency designation error | All-in-One Type | RAMP1, RAMP2 | The pulse frequency was not set between 15 and 100,000. |
|  |  |  | RAMP3, RAMP4 | The pulse frequency was not set between 15 and 5,000. |
|  |  | CAN J1939 All-in-One Type | RAMP1 to RAMP4 | The pulse frequency was not set between 15 and 100,000. |
| 3 | Preset value designation error | The preset value was not set between 1 to 100,000,000. |  |  |
| 4 | Steady pulse frequency designation error | All-in-One Type | RAMP1, RAMP2 | The pulse frequency was not set between 15 and 100,000. |
|  |  |  | RAMP3, RAMP4 | The pulse frequency was not set between 15 and 5,000. |
|  |  | CAN J1939 All-in-One Type | RAMP1 to RAMP4 | The pulse frequency was not set between 15 and 100,000. |
| 5 | Frequency change time designation error | The frequency change time was not set between 10 and 10,000. |  |  |
| 7 | Control direction designation error | The control direction was not set to 0 or 1 . |  |  |
| 8 | Exceeded pulse count error | The number of frequency change pulses exceed the total number of output pulses. ${ }^{* 1}$ |  |  |
| 9 | The initial pulse frequency was set to the same frequency as the steady pulse frequency or it was set to a value larger than the steady pulse frequency.*2 |  |  |  |

* $_{1}$ The number of pulses in the frequency change region calculated by the initial pulse frequency, steady pulse frequency, and frequency change time has exceeded the total number of output pulses. Adjust the settings by decreasing the steady or initial pulse frequency or by shortening the frequency change time.
*2 Set the initial pulse frequency so that it is lower than the steady pulse frequency.


## RAMP1 instruction (reversible control disabled) timing chart

RAMP1 instruction, S1 is specified as D0200, D1 is specified as internal relay M0050


When the RAMP instruction input is on, pulses are output according to the settings configured by the control registers. M0050 turns on during pulse output. M0052 turns on or off while increasing or decreasing the pulse frequency. Pulses are output according to the frequency change time, until they reach the steady pulse frequency (from the initial pulse frequency). When the frequency change time is specified as 100, the steady pulse frequency is reached in 100 ms by increasing or decreasing the frequency every 10 ms . Pulse output stops when the pulses configured by the preset value are output. (The number of pulses is also counted while changing the frequency.) At this time, M0050 turns off and M0051 turns on.
If the RAMP instruction input turns off during pulse output, pulse output is canceled. If the RAMP instruction input turns on again, the pulse count is reset and pulse counting starts. Even if the contents of the control registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the RAMP instruction is executed.

## 18: Pulse Output Instructions

RAMP1 instruction (reversible control enabled, single-pulse output mode) timing chart
RAMP1 instruction, S1 is specified as D0200, D1 is specified as internal relay M0050


When the RAMP instruction input is on, pulses are output according to the settings configured by the control registers. The reversible control signal is output from Q2. When pulse output starts, M0050 turns on. M0052 turns on while the pulse frequency is increasing or decreasing. Pulses are output so that the frequency reaches the steady pulse frequency from the initial pulse frequency in the frequency change time. When the frequency change time is specified as 100 , the steady pulse frequency is reached in 100 ms by increasing or decreasing the frequency every 10 ms .
Pulse output stops when the pulses configured by the preset value are output. (The number of pulses is also counted while changing the frequency.) At this time, M0050 turns off and M0051 turns on.
If the RAMP instruction input turns off during pulse output, pulse output is canceled. If this input turns on again, the operation starts from the beginning. Even if the contents of the data registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the RAMP instruction is started.

## RAMP1 instruction (reversible control enabled, dual-pulse output mode) timing chart

RAMP1 instruction, S1 is specified as D0200, D1 is specified as internal relay M0050


When the RAMP instruction input changes from off to on, pulses are output from Q0 or Q1 according to the settings configured by the control registers.
When pulse output starts, M0050 turns on. M0052 turns on while the pulse frequency is increasing or decreasing.
Pulses are output so that the frequency reaches the steady pulse frequency from the initial pulse frequency in the frequency change time. When the frequency change time is specified as 100 , the steady pulse frequency is reached in 100 ms by increasing or decreasing the frequency every 10 ms .
Pulse output stops when the pulses configured by the preset value are output. (The number of pulses is also counted while changing the frequency.) At this time, M0050 turns off and M0051 turns on.
If the RAMP instruction input turns off during pulse output, pulse output is canceled. If this input turns on again, the operation starts from the beginning. Even if the contents of the data registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the RAMP instruction is started.

## 18: Pulse Output Instructions

## Example:

## To output 48,000 pulses with the frequency change function (reversible control disabled) from Q0



## Setting



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0000, D0001 | 600 | 6000 Hz |
| Initial pulse frequency | D0002, D0003 | 30 | 300 Hz |
| Frequency change time | D0004 | 2000 | $2,000 \mathrm{~ms}$ |
| Reversible control enable | - | Disable | - |
| Control direction | D0005 | - | - |
| Absolute Position Mode | - | - | - |
| Preset value | D0006, D0007 | 48000 | Preset value $=48,000$ |

## To output 100,000 pulses with the frequency change function (reversible control by single-pulse output) from Q0

When the RAMP instruction input (I0) changes from off to on, pulse output starts. When I1 is off, the reversible control signal (Q2) turns off (forward).
When I1 is on, the reversible control signal (Q2) turns on (reverse).


Turn on initialization input (M0000)

When the RAMP instruction input (IO) turns on, pulse output starts When I1 is off, store 0 (forward) in control direction (D0003)

When I1 is on, store 1 (reverse) in control direction (D0003)

## Setting



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0000, D0001 | 1000 | 10 kHz |
| Initial pulse frequency | D0002, D0003 | 50 | 500 Hz |
| Frequency change time | D0004 | 2000 | $2,000 \mathrm{~ms}$ |
| Reversible control enable | - | Single-pulse output | - |
| Control direction | D0005 | Forward | Forward=0 |
| Absolute Position Mode | - | Disable | - |
| Preset value | 10000 | Preset value $=100,000$ |  |

## 18: Pulse Output Instructions

## To output 1,000,000 pulses with the frequency change function (reversible control by dual-pulse output)

When the RAMP instruction input (IO) changes from off to on, pulse output starts. For forward when I1 is off, pulses (CW) are output from Q0.
For reverse when I1 is on, pulses (CCW) are output from Q1.


Turn on initialization input (M0000)

When the RAMP instruction input (IO) turns on, pulse output starts

When I1 is off, store 0 (forward) in control direction (D0003), and output pulses from Q0

When I1 is on, store 1 (reverse) in control direction (D0003), and output pulses from Q1

## Setting



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0000, D0001 | 3000 | 30 Hz |
| Initial pulse frequency | D0002, D0003 | 1000 | 10 kHz |
| Frequency change time | D0004 | 2000 | $2,000 \mathrm{~ms}$ |
| Reversible control enable | - | Dual-pulse output | - |
| Control direction | F0005 | Disable | Forward=0 |
| Absolute Position Mode | - | 1000000 | - |
| Preset value | D0006, D0007 | Preset value $=1,000,000$ |  |

## ZRN (Zero Return)



The ZRN instruction outputs pulses while monitoring multiple signals to perform a zero return.

When the input is on, pulses are output according to the frequency change settings stored in the control register specified by S1.

The pulse control information (output on/output complete/error) is stored in the internal relays specified by D2 as the operation status.

When the initialization input specified by S 2 is turned on, the initial values configured in the WindLDR ZRN (Zero Return) dialog box are stored in the control registers.
The zero return method an be selected a ZRN mode 0 or ZRN mode 1.

## ZRN Mode 0

The zero return is performed by monitoring only the proximity signal specified by S 3 .

(1) When a rise in the proximity signal is detected, the frequency changes from the initial pulse frequency to the creep pulse frequency.
(2) When a fall in the proximity signal is detected, pulse output stops.

## ZRN Mode 1

The zero return is performed by monitoring the proximity signal (decrease frequency trigger) specified by S3 and the origin signal (stop trigger) specified by S4.
After stopping pulse output with the origin signal, the complete signal specified by D2 can be output.
For ZRN mode 1, the timing to start monitoring the origin signal can be selected from the following two types.
Start monitoring the origin signal with the rise in the proximity signal

(1) The rise in the proximity signal is detected, the frequency starts being decreased, and at the same time the origin signal starts being monitored.
(2) The rise in the origin signal is detected and pulse output is stopped.
(3) When pulse output stops, the complete signal turns on at the same time.
(4) The on period for the complete signal is one scan or longer but less than two scans.

Start monitoring the origin signal with the fall in the proximity signal

(1) The rise in the proximity signal is detected and the frequency starts being decreased.
(2) The fall in the proximity signal is detected and the origin signal starts being monitored.
(3) The rise in the origin signal is detected and pulse output is stopped.
(4) When pulse output stops, the complete signal turns on at the same time.
(5) The on period for the complete signal is one scan or longer but less than two scans.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled.
- The ZRN instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 will be stored in D8006 and instruction execution will be canceled.
- For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | - | $\mathbf{1}$ | - | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Proximity signal | $X$ | - | $X$ | - | - | - | - | - | - |
| S4 (Source 4) | Origin signal | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Operation status | - | - | $\mathbf{1}$ | - | - | - | - | - | - |
| D2 (Destination 2) | Complete signal | - | $X$ | $\mathbf{1}$ | - | - | - | - | - | - |

( Special data registers cannot be designated as S1. Internal relays M0000 through M1277 can be designated as D1. Special internal relays cannot be designated as D1 and D2.

## Settings

- Devices tab

| ZRN (Zero Return) ? $\times$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices Settings |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2. ZRN 1 (Q0000) | $\square$ | S2 (Initialization Input) |  | S3 (Proximity Signal) |  | 6. <br> S4 (Origin Input) |  | 7. <br> D1 (OperationStatus) |  | 8. D2(Completion Output) |  |  |  |
| Tag Name: |  | M0000 | $\ldots$ | 10002 | ...) | 10003 | $\ldots$ | M0010 | $\ldots$ | M0100 |  |  |  |
| Device Address: |  | M0000 |  | 10002 |  | 10003 |  | M0010 |  | M0100 |  |  |  |
| Comment |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FC6A Standard Mode | $\checkmark$ |  |  |  |  |  |  |  |  | O |  | Canc |  |

## 1. Select Mode

Selects the configuration mode. FC6A Standard Mode or FC5A (except FC5A-D12X1E) Compatible Mode can be selected.
Select FC5A (except FC5A-D12X1E) Compatible Mode to use the FC5A Series MicroSmart ZRN instruction specification. When changing the PLC type from the FC5A/FC4A Series MicroSmart, FC5A (except FC5A-D12X1E) Compatible Mode is automatically selected.
The lowest frequency that can be used with FC5A (except FC5A-D12X1E) Compatible Mode is 20 Hz .
Note: The lowest frequency of pulses that can be output in FC5A (except FC5A-D12X1E) Compatible Mode is 20 Hz . A frequency lower than 20 Hz cannot be output. If such a value is specified, the pulse frequency error will occur.

The rest of this section is written under the assumption that FC6A Standard Mode has been selected.
Note: For details on the FC5A (except FC5A-D12X1E) Compatible Mode settings, refer to the ZRN instruction in Chapter 15 "Pulse Output Instructions" in the "FC5A Series MicroSmart Pentra User's Manual Advanced Volume".

## 2. Select instruction

This item selects which ZRN instruction to use ("ZRN1", "ZRN2", "ZRN3" or "ZRN4").
The pulse output port and the reversible control mode and frequency that can be set differ by the instruction and CPU module type.
For limitations due to the combination of instruction, reversible control mode, and the pulse output mode, see "17. Reversible control enable" on page 18-33.

## 3. S1 (source 1): Control register

S1 specifies the starting number of the data registers to use with ZRN1, ZRN2, ZRN3 or ZRN4 instructions.
Starting from the specified number, 14 consecutive 16 -bit data registers are used.
The range of available data register numbers is D0000 to D7986 and D10000 to D55986.

| Storage Destination | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-inOne Type |  |
| Starting number+0 | Initial pulse frequency (high word) ${ }^{* 1}$ | ZRN1, ZRN2: 15 to 100,000 <br> (increments of 1 Hz ) <br> ZRN3, ZRN4: 15 to 5,000 <br> (increments of 1 Hz ) | ZRN1 to ZRN4: <br> 15 to 100,000 (increments of 1 Hz ) | "10. Initial Pulse <br> Frequency" on page 18-32 |
| Starting number+1 | Initial pulse frequency (low word) ${ }^{* 1}$ |  |  |  |
| Starting number+2 | Creep pulse frequency (high word) ${ }^{* 1}$ | ZRN1, ZRN2: 15 to 100,000 <br> (increments of 1 Hz ) <br> ZRN3, ZRN4: 15 to 5,000 <br> (increments of 1 Hz ) | ZRN1 to ZRN4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "11. Creep Pulse Frequency" on page 18-32 |
| Starting number+3 | Creep pulse frequency (low word) ${ }^{* 1}$ |  |  |  |
| Starting number+4 | Error status | 10 to $10,000 \mathrm{~ms}$ |  | "12. Error status" on page 18-32 |
| Starting number+5 | Reserved |  |  |  |
| Starting number+6 | Steady pulse frequency (high word) ${ }^{*}{ }^{* 2}$ | ZRN1, ZRN2: 15 to 100,000 (increments of 1 Hz ) ZRN3, ZRN4: 15 to 5,000 (increments of 1 Hz ) | ZRN1 to ZRN4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "13. Steady pulse frequency" on page 18-32 |
| Starting number +7 | Steady pulse frequency (low word) ${ }^{* 1}{ }^{* 2}$ |  |  |  |
| Starting number +8 | Acceleration time*2 | 10 to $10,000 \mathrm{~ms}$ |  | "14. Acceleration time" on page 18-32 |
| Starting number+9 | Deceleration time ${ }^{* 2}$ | 10 to $10,000 \mathrm{~ms}$ |  |  |
| Starting number+10 | Control direction ${ }^{* 2 * 3}$ | 0: Forward <br> 1: Reverse |  | "18. Control direction" on page 18-33 |
| Starting number+11 | Reserved |  |  |  |
| Starting number+12 | Reserved |  |  |  |
| Starting number+13 | Reserved |  |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.
*2 When ZRN mode 0 is specified for the zero return method, starting number +6 to +10 are invalid.
*3 Valid only when Reversible control (single-pulse output) or Reversible control (dual-pulse output) is selected for reversible control enable.

## 4. S2 (source 2): Initialization Input

S2 specifies the initialization input. When the initialization input S2 is turned on, the initial values configured in the WindLDR
ZRN (Zero Return) dialog box, on the Settings tab, are stored in the control registers. An external input or an internal relay can be specified.
When the initialization input is on, the initial values are written to the data registers with each scan. (Even when the ZRN instruction is not executed (when not on), if the initialization input is turned on, the initial values are stored in the data registers.) To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.

## 5. S3 (source 3): Proximity Signal

S3 specifies the proximity signal. The pulse frequency starts being decreased with the rise in the proximity signal.
An external input or an internal relay can be specified for the proximity signal.

| Detection Speed | Input Device |  |
| :---: | :---: | :--- |
| High-speed | I0, I1, I3, I4, I6, I7 | An interrupt is used to read the proximity signal. The proximity signal can be read without <br> being affected by the user program scan. |
| Normal | I2, I5, I10 to I27 |  |
|  | I30 to I627 <br> M0000 to M7997 <br> M10000 to M17497 | The information updated in the END processing is read as the proximity signal. It is affected <br> by the user program scan. |

## Notes:

- Do not use the same input or internal relay as the proximity signal for the ZRN1, ZRN2, ZRN3 and ZRN4 instructions. If they operate simultaneously, pulse output may not stop even if the proximity signal changes from on to off.
- To use the high-speed proximity signal, set the relevant input to Normal Input under Special Input on Function Area Settings. Do not use the input as interrupt input, catch input, high-speed counter, or frequency measurement.
- When using the high-speed proximity signal, ensure that no bounce occurs in the proximity signal.


## 6. S4 (source 4): Origin Input

S4 specifies the origin signal. The rise in the origin signal is detected and pulse output is stopped. An external input or an internal relay can be specified. When ZRN mode $\mathbf{0}$ is selected for 9 . Zero return method, the origin signal is ignored, even when specified.

| Detection Speed | Input Device |  |
| :--- | :--- | :--- |
| High-speed | I0, I1, I3, I4, I6, I7 | Description |
| Normal | I2, I5, I10 to I27 <br> The origin signal is read without being affected by the user program scan. |  |
|  | I30 - I627 <br> M0000 to M7997 <br> M10000 to M17497 | The information updated in the END processing is read as the origin signal. <br> It is affected by the user program scan. |

## Notes:

- Do not use the same input or internal relay as the origin signal for the ZRN1, ZRN2, ZRN3, or ZRN4 instructions. If they operate simultaneously, pulse output may not stop even if the origin signal changes from on to off.
- To use a high-speed origin signal, set the relevant input to Normal Input under Special Inputs on Function Area Settings. Do not use the input as interrupt input, catch input, high-speed counter, or frequency measurement.
- When using a high-speed origin signal, ensure that no bounce occurs in the origin signal.


## 7. D1 (destination 1): Operation Status

D1 specifies the starting number of the internal relays that store the operation status.
Starting from the specified relay, 4 sequential relays are used.
The range of available internal relays is M0000 to M7994 and M10000 to M17494.

| Storage <br> Destination | Function |  | Setting |
| :--- | :--- | :--- | :--- |
| Starting number+0 | Pulse output ON | 0: Pulse output OFF <br> 1: Pulse output ON | This relay turns on during pulse output. This relay turns <br> off when ZRN instruction input is turned off or when pulse <br> output is complete. |
| Starting number+1 | Pulse output <br> complete | 0: Pulse output not complete <br> $1:$ Pulse output complete | This relay turns on when pulse output is complete. <br> This relay turns off when pulse output starts. |
| Starting number+2 | Pulse output <br> status | 0: Steady pulse output <br> $1:$ Changing output pulse frequency | This relay turns on when the pulse output status is <br> changing. <br> This relay turns off when the pulse output status is steady. |
| Starting number+3 | Zero return <br> complete | 0: Zero return not complete <br> $1:$ Zero return complete | This relay turns on when the zero return operation is <br> complete. <br> This relay turns off when the zero return operation starts. |

8. D2 (destination 2): Complete Output

D2 specifies the complete signal. When the rise in the complete signal is detected and pulse output is stopped, the complete signal can be output. An external output or an internal relay can be specified.
This can only be set when ZRN mode 1 is specified for the zero return method. This can be omitted if not using the complete signal. When ZRN mode 0 is specified, the complete signal is ignored, even when specified.

Note: When an external output (Q0 to Q17) is specified, the complete signal is turned on regardless of the ZRN instruction execution timing with the ladder and the I/O refresh timing. After the complete signal is turned on, it is reset to off when the ZRN instruction is executed a second time.


## - Settings tab

This tab configures the operation of the ZRN instruction functions.


## 9. ZRN Mode

Select ZRN mode $\mathbf{0}$ or ZRN mode $\mathbf{1}$ for the zero return method according to the applicable system.

| Setting | Description |
| :--- | :--- |
| ZRN mode 0 | The zero return is performed by monitoring only the proximity signal. |
| ZRN mode 1 | The zero return is performed by monitoring the proximity signal and the origin signal. |

## 10. Initial Pulse Frequency

Specifies the frequency when pulse output starts.
Set between 15 Hz and $100,000 \mathrm{~Hz}$ in 1 Hz increments. When using the ZRN3 or ZRN4 instruction with the All-in-One Type, set between 15 Hz and $5,000 \mathrm{~Hz}$ in 1 Hz increments. The output frequency error is within $\pm 5 \%$.

## 11. Creep Pulse Frequency

After decreasing the pulse frequency has completed, this specifies the frequency when the pulses are steady.
Set between 15 Hz and $100,000 \mathrm{~Hz}$ in 1 Hz increments. When using the ZRN3 or ZRN4 instruction with the All-in-One Type, set between 15 Hz and $5,000 \mathrm{~Hz}$ in 1 Hz increments. The output frequency error is within $\pm 5 \%$.

## 12. Error status

Outputs the error code that corresponds to the content of an error when there is an error in the settings. If a configuration error occurs when the ZRN instruction is being executed, M8004 (user program execution error) is turned on and this relay is set to the error code.

| Error Code | Status | Description |
| :---: | :--- | :--- |
| 0 | Normal | - |
| 2 | Pulse frequency designation error | The initial pulse frequency, creep pulse frequency, or steady pulse frequency <br> was not set to a value between 15 to $100,000 \mathrm{~Hz}$. |
| 5 | Frequency change time designation error | The frequency change time was not set between 10 and 10,000. |
| 7 | Control direction designation error | The control direction was not set to 0 or 1. |
| 9 | The initial pulse frequency was set to the same frequency as the steady pulse frequency or it was set to a value larger <br> than the steady pulse frequency. ${ }^{* 1}$ |  |
| 10 | The creep pulse frequency was set to the same frequency as the steady pulse frequency or it was set to a value larger <br> than the steady pulse frequency. ${ }^{* 2}$ |  |

*1 $_{1}$ Set the initial pulse frequency so that it is lower than the steady pulse frequency.
*2 Set the creep pulse frequency so that it is lower than the steady pulse frequency.

## 13. Steady pulse frequency

After increasing the pulse frequency has completed, this specifies the frequency when the pulses are steady.
Set between 15 Hz and $100,000 \mathrm{~Hz}$ in 1 Hz increments. When using the ZRN3 or ZRN4 instruction with the All-in-One Type, set between 15 Hz and $5,000 \mathrm{~Hz}$ in 1 Hz increments. The output frequency error is within $\pm 5 \%$.

## 14. Acceleration time

This setting specifies the time to increase the pulse frequency.
Set the time between 10 and $10,000 \mathrm{~ms}$ in increments of 10 ms . The digit in the ones place of the set value stored in the data register is ignored. For example, if 144 is entered, the set value is 140 ms .

## 15. Deceleration time

This setting specifies the time to decrease the pulse frequency.
Set the time between 10 and $10,000 \mathrm{~ms}$ in increments of 10 ms . The digit in the ones place of the set value stored in the data register is ignored.

## 16. Trigger to start monitoring origin input

Specifies the timing to start the origin signal monitor.

| Timing | Description |
| :--- | :--- |
| Proximity signal OFF $\rightarrow$ ON | After the proximity signal changes from off to on, the change from off to on in the origin signal is monitored. |
| Proximity signal ON $\rightarrow$ OFF | After the proximity signal changes from off to on and then next changes from on to off, the change from off <br> to on in the origin signal is monitored. |

## 17. Reversible control enable

Selects the reversible control method from the following reversible control modes when ZRN mode $\mathbf{1}$ is selected for 9 . Zero return method. (This is an example when ZRN1 is used with the All-in-One Type.)

| Reversible Control Enable | Operation | Pattern |
| :---: | :---: | :---: |
| Reversible control disabled | Select this option when using pulse output in a single direction. Pulse $A$ and pulse $B$ can be used independently. |  |
| Reversible control Single-pulse output | Pulse $A$ is used as pulse output. Pulse B on/off is used as reversible control. |  |
| Reversible control Dual-pulse output | Pulse A is used as forward pulse (CW) output.Pulse B is used as reverse pulse (CCW) output. |  |

The ports used on the FC6A Series MicroSmart vary based on the instruction used, the combination of the pulse output mode and reversible control, and the model used.

| Command | Operating Condition | Port Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type |  | CAN 31939 All-in-One Type |  |
|  |  | Pulse Output Port | Reversible Control Port | Pulse Output Port | Reversible Control Port |
| ZRN1 | Reversible control disabled | Q0 | - | Q0 | - |
|  | Reversible control Single-pulse output mode | Q0 | Q2 | Q0 | Q1 |
|  | Reversible control Dual-pulse output mode | Q0, Q1 | - | Q0, Q1 | - |
| ZRN2 | Reversible control disabled | Q1 | - | Q2 | - |
|  | Reversible control Single-pulse output mode | Q1 | Q3 | Q2 | Q3 |
|  | Reversible control Dual-pulse output mode | - | - | Q2, Q3 | - |
| ZRN3 | Reversible control disabled | Q2 | - | Q4 | - |
|  | Reversible control Single-pulse output mode | - | - | Q4 | Q5 |
|  | Reversible control Dual-pulse output mode | - | - | Q4, Q5 | - |
| ZRN4 | Reversible control disabled | Q3 | - | Q6 | - |
|  | Reversible control Single-pulse output mode | - | - | Q6 | Q7 |
|  | Reversible control Dual-pulse output mode | - | - | Q6, Q7 | - |

## 18. Control direction

When reversible control is enabled, store 0 in this data register for forward operation and store 1 in this data register for reverse operation.

## 18: Pulse Output Instructions

## ZRM Mode 0 (When Using Only the Proximity Signal) Timing Chart

ZRN1 instruction, S1 is specified as data register D0200, S3 is specified as external input I2, D1 is specified as internal relay M0010


- When the ZRN1 instruction changes from off to on, pulses are output at the initial pulse frequency.
- When pulse output starts, M0010 turns on, and M0011 and M0013 turn off.
- The pulses are steady so M0012 turns off.
- When I2 changes from off to on, pulses are output at the creep pulse frequency.
- When I2 changes from on to off, pulse output stops.
- When pulse output stops, M0010 turns off, and M0011 and M0013 turn on.
- If the ZRN1 instruction input turns off during pulse output, pulse output stops. If the input turns on again, the operation starts from the beginning.
- Even if the contents of the data registers are changed during pulse output, the change is not reflected in pulse output operation. The changed content is reflected the next time the ZRN1 instruction is started.


## ZRM Mode 1 (When Using the Proximity Signal and Origin Signal) Timing Chart

## ZRN1 instruction, S1 is specified as data register D0200, S3 is specified as external input I2, D1 is specified as internal relay M0010



- When the ZRN1 instruction changes from off to on, pulses are output at the initial pulse frequency, and then pulses are output so that the frequency reaches the steady pulse frequency from the initial pulse frequency in the frequency change time. When the frequency change time is specified as 100 , the steady pulse frequency is reached in 100 ms by increasing or decreasing the frequency every 10 ms .
- When pulse output starts, M0010 turns on and M0011 turns off.
- While the pulse speed is increasing or decreasing, M0012 turns on.
- When I2 changes from off to on, the pulse speed starts to decrease and reaches the creep pulse frequency.
- When I3 is detected as changing from off to on, pulse output stops.
- When pulse output stops, M0100 turns on. M0100 turns on for one scan or longer but less than two scans.
- When M0100 changes from on to off and the zero return operation has completed, M0013 turns on.
- Then when pulse output stops, M0010 turns off and M0011 turns on.
- If the ZRN1 instruction input turns off during pulse output, pulse output stops. If the input turns on again, the operation starts from the beginning.
- Even if the contents of the data registers are changed during pulse output, the change is not reflected in pulse output operation. The changed content is reflected the next time the ZRN1 instruction is started.


## 18: Pulse Output Instructions

## Example:

To perform a zero return operation with proximity signal $\mathbf{I 2}$, initial pulse frequency $\mathbf{3} \mathbf{~ k H z}$, and creep pulse frequency $800 \mathbf{H z}$


## Setting



| Function | Device Address | Preset Value | Details |
| :--- | :--- | :--- | :--- |
| Initial pulse frequency | D0000 | 3000 | 3 kHz |
| Creep pulse frequency | D 0002 | 800 | 800 Hz |

## ARAMP (RAMP with Table)



The ARAMP instructions output pulses with the frequency change function according to the information in the frequency table.
A frequency change and target frequency are set for each step, and the pulse frequency is controlled through the combination of these steps.
When the number of pulses that were output reaches the preset value, the next step that is specified for each step is executed. You can configure a maximum of 18 steps.
The pulse output operation can be selected from the following two operations with the step option settings.

- The pulse frequency is changed at a constant rate until it reaches the steady pulse frequency, and then a steady frequency of pulses is output at the steady pulse frequency.
(Step 1 to 3 operations in the diagram below)
- After outputting pulses that maintain the frequency in the previous step, the frequency is changed at a constant rate until it reaches the steady pulse frequency.
(Step 4 operation in the diagram below)


When the initialization input specified by S 2 is turned on, the initial values configured in the WindLDR ARAMP (Ramp Pulse Output with Table) are stored in the control registers.
When the interrupt input specified by S 3 is turned on, the step being executed is aborted and the interrupt step is executed.
The preset value and the steady pulse frequency for the running step are stored in the monitor registers specified by D1.
The control status including the pulse output status (output on/output direction/output complete) is stored in the operation status specified by D2.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled.
- The ARAMP instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 is stored in D8006 and instruction execution is canceled.
- For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Interrupt input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Monitor register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| D2 (Destination 2) | Operation status | - | - | $\mathbf{A}$ | - | - | - | - | - | - |

( Special data registers cannot be designated as S1. Internal relays M0000 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

## 18: Pulse Output Instructions

## Settings

- Devices tab



## 1. Select instruction

This item selects which ARAMP instruction to use ("ARAMP1", "ARAMP2", "ARAMP3" or "ARAMP4").
The output port, reversible control mode, and operation mode that can be selected differ by the instruction and CPU module type.
For limitations based on the combination of instruction, reversible control mode, and the pulse output mode, see " 8 . Reversible control enable" on page 18-43.

## 2. S1 (source 1): Control Register

S1 specifies the starting number of the data registers to use with the ARAMP1, ARAMP2, ARAMP3 or ARAMP4 instruction. Starting from the specified data register, " $2+8 \times \mathrm{N}$ ( N : number of steps)" consecutive 16 -bit data registers are used. The range of available data register numbers depends on the number of steps.
If the number of steps is 1,10 words are required, so the range is D0000 to D7990 and D10000 to D55990.
If the number of steps is 18,146 words are required, so the range is D0000 to D7854 and D10000 to D55854.
The steps operate with the settings that are configured when the steps start. If the settings for a step are changed after it starts running, those changes are not reflected while the step is running.

| Storage Destination | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-inOne Type |  |
| Starting number+0 | Interrupt number | 1 to 18 |  | "11. Interrupt step number" on page 18-43 |
| Starting number+1 | Reserved |  |  |  |
| Step 1 (8 words) |  |  |  |  |
| Starting number +2 , <br> Starting number+3 | Steady pulse frequency | ARAMP1, ARAMP2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> ARAMP3, ARAMP4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | ARAMP1 to ARAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "13. Steady pulse frequency" on page 18-44 |
| Starting number+4 | Reserved |  |  |  |
| Starting number+5 | Frequency change time | 10 to $10,000 \mathrm{~ms}$ |  | "14. Frequency change time" on page 18-44 |
| Starting number+6 | Preset value (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses |  | "15. Preset value" on page$18-44$ |
| Starting number+7 | Preset value (low word)*1 |  |  |  |
| Starting number +8 | Step options | 0 to 3 |  | "16. Step options" on page 18-44 |
| Starting number+9 | Next step number | 1 to 18 |  | "17. Next step number" on page 18-45 |
| Step 2 (8 words) |  |  |  |  |
| Starting number +10 , <br> Starting number +11 | Steady pulse frequency | $\begin{aligned} & \hline \text { ARAMP1, ARAMP2: } 15 \text { to } \\ & 100,000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \\ & \text { ARAMP3, ARAMP4: } \\ & 15 \text { to } 5,000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \end{aligned}$ | ARAMP1 to ARAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "13. Steady pulse frequency" on page 18-44 |
| : | : | : |  | : |
| Starting number+17 | Next step number | 1 to 18 |  | "17. Next step number" on page 18-45 |
| : |  |  |  |  |
| Step N (8 words) |  |  |  |  |
| Starting <br> number $+2+\mathrm{N} \times 8$ 8-8 <br> Starting number $+3+N \times 8-8$ | Steady pulse frequency | ARAMP1, ARAMP2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> ARAMP3, ARAMP4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | ARAMP1 to ARAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "13. Steady pulse frequency" on page 18-44 |
| : | : | : |  | : |
| Starting number+9+N x 8-8 | Next step number | 1 to 18 |  | "17. Next step number" on page 18-45 |

*1 The upper and lower data registers change according to the 32-bit data storage method specified.
For details, see "32-bit Data Storage" on page 3-9.

## 3. S2 (source 2): Initialization Input

S2 specifies the initialization input.
When the initialization input S 2 is turned on, the initial values configured in the WindLDR ARAMP (Advanced Ramp) dialog box, on the Settings tab, are stored in the control registers. An external input or an internal relay can be specified.
When the initialization input is on, the initial values are stored in the data registers with each scan. (Even when the ARAMP instruction is not executed (when not on), if the initialization input is turned on, the initial values are stored in the data registers.) To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.

## 4. S3 (source 3): Interrupt Input

S3 specifies the interrupt input.
When the interrupt input changes from off to on, the pulse output process for the running step is aborted, and pulse output starts with the settings for the step configured by the interrupt step number (10). When pulse output for the interrupt step completes, pulse output starts for the next step according to the next step number (16).
The following example shows the interrupt input turning on during step 2 when configured to output pulses in order from step 1 to step 18.


When the interrupt input turns on, step 2 which is currently outputting pulses is aborted, and pulse output starts from the step number set as the interrupt step number (step 12). When step 12 completes, pulses are output for the next step according to the set order of steps.

An external input or internal relay can be specified as the interrupt input.
The detection speed differs by the used device.

| Detection Speed | Device Number | Description |
| :--- | :--- | :--- |
| High-speed | I0, I2, I3, I5, I6, I7 | An interrupt is used to read the interrupt input. <br> The interrupt input can be read without being affected by the user <br> program scan. |
| Normal | I2, I5, I10 to I27, I30 to I627 <br> M0000 to M7997, M10000 to M17497 | The information updated in the END processing is read as the interrupt <br> input. <br> It is affected by the user program scan. |

S 3 is omitted if not using an interrupt input.

## Notes:

- Do not use the same input or internal relay as the interrupt input signal for the ARAMP1, ARAMP2, ARAMP3, or ARAMP4 instructions.
- To use a high-speed interrupt input signal, set the relevant input to Normal Input under Special Inputs on Function Area Settings. Do not use the input as interrupt input, catch input, high-speed counter, or frequency measurement.
- When using the high-speed interrupt input, ensure that no bounce occurs in the interrupt input.
- When the interrupt input is turned on, the control direction (forward or reverse) is unchanged regardless of the control direction of the interrupted step.


## 5. D1 (destination 1): Monitor Register

D1 specifies the starting number of the data registers to use with ARAMP1, ARAMP2, ARAMP3 or ARAMP4. Starting from the specified number, 11 consecutive 16-bit data registers are used. The range of available data register numbers is D0000 to D0991 and D10000 to D55991. The contents of the monitor registers are read-only.

| Address | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-inOne Type |  |
| Starting number+0 | Next step number | 0 to 18 |  | "Next step number" on page 18-41 |
| Starting number+1 | Running step number | 1 to 18 |  | "Running step number" on page 18-41 |
| Starting number+2 | Steady pulse frequency monitor (high word) ${ }^{* 1}$ | ARAMP1, ARAMP2: <br> 15 to 100,000 <br> (increments of 1 Hz ) <br> ARAMP3, ARAMP4: <br> 15 to 5,000 <br> (increments of 1 Hz ) | ARAMP1 to ARAMP4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "Steady pulse frequency monitor" on page 18-41 |
| Starting number+3 | Frequency change time monitor (low word) ${ }^{* 1}$ |  |  |  |
| Starting number+4 | Reserved |  |  |  |
| Starting number+5 | Frequency change time monitor | 10 to 10,000 (increments of 10 ms ) The first digit of the setting is discarded. |  | "Frequency change time monitor" on page 18-41 |
| Starting number+6 | Preset value monitor (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses |  | "Preset value monitor" on page 18-41 |
| Starting number+7 | Preset value monitor (low word) ${ }^{* 1}$ |  |  |  |  |
| Starting number+8 | Current value (high word) ${ }^{* 1}$ | 1 to 100,000,000 pulses |  | "Current value" on page$18-41$ |
| Starting number+9 | Current value (low word) ${ }^{* 1}$ |  |  |  |  |
| Starting number+10 | Error status | 0 to 9 |  | "Error status" on page 1842 |

*1 $_{1}$ The upper and lower data registers change according to the 32-bit data storage method specified.
For details, see "32-bit Data Storage" on page 3-9.

## Next step number

This register stores the number of the step to execute next.
If the next step is 0 , pulse output ends after the currently executed step is complete.

## Running step number

This register stores the number of the step that is currently being executed.

## Steady pulse frequency monitor

This register stores the steady pulse frequency for the step that is currently being executed.

## Frequency change time monitor

This register stores the frequency change time for the step that is currently being executed.
Set the time between 10 and $10,000 \mathrm{~ms}$ in increments of 10 ms . The first digit of the setting is discarded. For example, if 144 is entered, the set value is 140 ms .

## Preset value monitor

This register stores the number of pulses to output for the running step.

## Current value

This register stores the number of pulses that have been output for the step that is currently being executed. The current value is updated when the ARAMP instruction is executed at each scan.

## Error status

Outputs the error code that corresponds to the content of an error when there is an error in the settings. If a configuration error occurs when a step starts executing, a user program execution error will occur, and the error code 20 is stored in D8006.

| Error Code | Status | Description |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Normal | - |  |  |
| 3 | Preset value designation error | The preset value was not set between 1 to 100,000,000. |  |  |
| 4 | Steady pulse frequency designation error | All-in-One Type | ARAMP1, ARAMP2 | The steady pulse frequency was not set between 15 and 100,000. |
|  |  |  | ARAMP3, ARAMP4 | The steady pulse frequency was not set between 15 and 5,000. |
|  |  | CAN J1939 All-in-One Type | ARAMP1 to ARAMP4 | The steady pulse frequency was not set between 15 and 100,000. |
| 5 | Frequency change time designation error | The frequency change time was not set between 10 and 10,000. |  |  |
| 7 | Step options designation error | The step options were not set to a valid value. |  |  |
| 8 | Next step number destination error | The next step number was not set between 0 and 18. |  |  |
| 9 | Interrupt number destination error | The interrupt number was not set between 1 and 18. |  |  |

6. D2 (destination 2): Operation Status

D2 specifies the starting number of the internal relays to use with ARAMP1, ARAMP2, ARAMP3 and ARAMP4 instructions. Starting from the specified internal relay, 5 sequential internal relays are used.
The range of available internal relay numbers is M0000 to M7993 and M10000 to M17493.

| Address | Description |  |  |
| :---: | :---: | :---: | :---: |
| Starting number +0 | Pulse output ON | 0: Pulse output OFF <br> 1: Pulse output ON | This relay turns on during pulse output. <br> This relay turns off when the ARAMP instruction output stops. This relay turns off when the specified number of pulses are output and output ends |
| Starting number+1 | Pulse output complete | 0: Pulse output not complete <br> 1: Pulse output complete | This relay turns on when pulse output completes. <br> This relay turns on when the step number currently being executed is 0 . <br> This relay turns off when the ARAMP instruction output starts. |
| Starting number+2 | Pulse output status | 0: Steady pulse output <br> 1: Changing output pulse frequency | This relay turns off when the pulse output status is steady. This relay turns on when the pulse output is changing. |
| Starting number+3 | Overflow | 0: None <br> 1: An overflow has occurred | This relay turns on when the pulses output exceed the configured preset value. <br> Pulse output continues even if an the overflow occurs during steady output or while the pulse frequency is changing. However, pulse counting (current value data register) is suspended at the point when the overflow occurred. |
| Starting number+4 | Pulse output direction | 0: Forward <br> 1: Reverse | This relay turns off when the output direction of the pulses being output is forward. <br> This relay turns on when the output direction of the pulses being output is reverse. |

## 7. Preview

Displays a preview of the configured ARAMP instruction operation. The change in pulse output frequency, forward/reverse operation, and the execution order of the steps can be checked.
The vertical axis indicates the pulse frequency and the horizontal axis indicates time.
The width of each step is locked, so the actual proportion of the horizontal axis is not accurate.

## - Settings tab

| ARAMP(Ramp Pulse Output with Table) |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Devices Setting Ramp |  |  |  |  |  |
| Function | DR | Setting | Description |  |  |
| 8. Reversible control enable |  | Disabled |  |  |  |
| 9. Number of steps |  | 1 | 1 to 18 steps |  |  |
| 10 Start step number |  | 1 | 1 to 1 (step) |  |  |
| 11 .nterrupt step number | D0000 | 1 | 1 to 1 (step) |  |  |

## 8. Reversible control enable

This setting enables or disables reversible control and selects the reversible control method from the following modes. There are two modes for the pulse output mode: single-pulse and dual-pulse. They can be combined with reversible control as follows. (This is an example when ARAMP is used with the All-in-One Type.)

| Reversible Control Enable | Operation | Pattern |
| :---: | :---: | :---: |
| Reversible control disabled | Select this option when using pulse output in a single direction. Pulse A and pulse B can be used independently. |  |
| Reversible control Single-pulse output mode | Pulse A is used as pulse output. Pulse B on/off is used as reversible control. |  |
| Reversible control <br> Dual-pulse output mode | Pulse A is used as forward pulse (CW) output. Pulse B is used as reverse pulse (CCW) output. | $\qquad$ |

The ports used on the FC6A Series MicroSmart varies based on the instruction used, the combination of the pulse output mode and reversible control, and the model used.

| Instruction | Operating Condition | Port Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type |  | CAN J1939 All-in-One Type |  |
|  |  | Pulse Output Port | Reversible Control Port | Pulse Output Port | Reversible Control Port |
| ARAMP1 | Reversible control disabled | Q0 | - | Q0 | - |
|  | Reversible control (single-pulse output) | Q0 | Q2 ${ }^{\text {* }}$ | Q0 | Q1 |
|  | Reversible control (dual-pulse output) | Q0, Q1 ${ }^{* 2}$ | - | Q0, Q1 | - |
| ARAMP2 | Reversible control disabled | Q1 | - | Q2 | - |
|  | Reversible control (single-pulse output) | Q1 | Q3*1 | Q2 | Q3 |
|  | Reversible control (dual-pulse output) | - | - | Q2, Q3 | - |
| ARAMP3 | Reversible control disabled | Q2 | - | Q4 | - |
|  | Reversible control (single-pulse output) | - | - | Q4 | Q5 |
|  | Reversible control (dual-pulse output) | - | - | Q4, Q5 | - |
| ARAMP4 | Reversible control disabled | Q3 | - | Q6 | - |
|  | Reversible control (single-pulse output) | - | - | Q6 | Q7 |
|  | Reversible control (dual-pulse output) | - | - | Q6, Q7 | - |

*1 When using single-pulse output, Q2 or Q3 will be used, so a Q2 or Q3 pulse output instruction cannot be used.
*2 When using dual-pulse output, Q1 will be used, so a Q1 pulse output instruction cannot be used.

## 9. Number of steps

This setting specifies the number of steps. The maximum is 18 .

## 10. Start step number

When the input changes from off to on, pulse output starts with the settings for the step configured as the start step number.

## 11. Interrupt step number

When the interrupt input changes from off to on, the pulse output process for the running step is aborted, and pulse output restarts with the settings for the step configured by the interrupt step number.

## - Ramp Table tab

| ARAMP(Ramp Pulse Output with Table) |  |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices ${ }^{\text {S }}$ Setting | Ramp Table |  |  |  |  |  |
| $12 \text { step } 1$ | Function | DR | Setting | Description |  |  |
| 13. | Steady pulse frequency | D0002, D0003 | 100 | 15 to 100.000 in increments of 1 Hz |  |  |
| 14. | Frequency change time | D0005 | 100 | 10 to 10,000 in increments of 1 (ms) |  |  |
| 15. | Preset value | D0006, D0007 | 100000000 | 1 to 100,000,000 |  |  |
| 16 | Control direction | D0008 |  |  |  |  |
|  | Acceleration/deceleration contrd | D0008 | Acceleration/deceleration first |  |  |  |
| 17. | Next step number | D0009 | 1 | 1 to 1 (step) |  |  |

## 12. Step numbers

This option selects the step number to configure. The output frequency error is $\pm 5 \%$.

## 13. Steady pulse frequency

This setting specifies the frequency at the steady output state before or after changing the frequency.

| CPU Module Type | Instruction | Steady Pulse Frequency |
| :--- | :--- | :--- |
| All-in-One Type | ARAMP1, ARAMP2 | Set this value in the range of 15 to 100,000 (increments of 1 Hz ). |
|  | ARAMP3, ARAMP4 | Set this value in the range of 15 to 5,000 (increments of 1 Hz ). |
| CAN J1939 All-in-One Type | ARAMP1 to ARAMP4 | Set this value in the range of 15 to 100,000 (increments of $1 \mathrm{Hz)}$. |

## 14. Frequency change time

This setting specifies the time to change the pulses.
Set this value in the range of 10 to 10,000 (increments of 10 ms ).
The first digit of the setting is discarded. For example, if 144 is entered, the set value is 140 ms .

## 15. Preset value

This setting configures the number of pulses to output from 1 to 100,000,000.

## 16. Step options

This setting configures the step direction and the execution timing of the change in the pulses.


## Control direction

When reversible control is enabled, store 0 in this data register for forward operation and store 1 in this data register for reverse operation.

## Acceleration/deceleration control

The frequency changes as shown in the following diagram according to the setting for the execution timing of the change. In the Before column, the frequency changes and then becomes steady. When the number of pulses in the preset value is output, the instruction transitions to the next step. In the After column, the steady pulse frequency is maintained, then the frequency changes, and the instruction transitions to the next step.

|  | Before | After |
| :---: | :---: | :---: |
| Increase | $\sim$ |  |
| Decrease |  | $\square$ |

Note: Depending on the combination of steps and the interrupt input timing, forward and reverse may switch at high frequencies. Program the user program so that forward and reverse can be switched according to the application specifications that will be used.

## 17. Next step number

This setting specifies the number of the next step to be executed after the output for the currently executed step is completed. When the next step number is set to 0 , that step becomes the last step, and when pulse output at that step is complete, pulse output will end.

## ARAMP1 instruction (reversible control disabled) timing chart

ARAMP1 instruction, $\mathbf{S 1}$ is specified as data register D0200, S2 is specified as internal relay M0000, S3 is disabled, D1 is specified as data register D0000, D2 is specified as internal relay M0050


When the ARAMP instruction input changes from off to on, pulses are output according to the settings configured by the data registers. When pulse output starts, M0050 turns on. M0052 turns on while the pulse frequency is increasing or decreasing. When the number of pulses configured for each step is output, the next step is executed. When pulse output is complete for the step where the next step number is set to 0 , then the pulses will stop. In this situation, M0050 turns off and M0051 turns on.
If the ARAMP instruction input turns off during pulse output, pulse output ends. If the ARAMP instruction input turns on again, the operation starts from the beginning. Even if the contents of the data registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the ARAMP instruction is started.

ARAMP1 instruction (single-pulse output reversible control enabled) timing chart
ARAMP1 instruction, $\mathbf{S 1}$ is specified as data register D0200, $\mathbf{S 2}$ is specified as internal relay M0000, S3 is disabled, D1 is specified as data register D0000, D2 is specified as internal relay M0050


When the ARAMP instruction input changes from off to on, pulses are output from Q0 according to the settings configured by the data registers. The reversible control signal is output from Q2 or Q1. When pulse output starts, M0050 turns on. M0052 turns on while the pulse frequency is increasing or decreasing. When the number of pulses configured for each step is output, the next step is executed. When pulse output is complete for the step where the next step number is set to 0 , then the pulses will stop. In this situation, M0050 turns off and M0051 turns on.
If the ARAMP instruction input turns off during pulse output, pulse output ends. If this input turns on again, the operation starts from the beginning. Even if the contents of the data registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the ARAMP instruction is started.
In this application, switching between forward and reverse must be executed when the pulse frequency is decreased to the minimum value, so a step is inserted to decrease the frequency before reversing.

## ARAMP1 instruction (dual-pulse output reversible control enabled) timing chart

All-in-One Type, ARAMP1 instruction, S1 is specified as data register D0200, S2 is specified as internal relay M0000, S3 is disabled, D1 is specified as data register D0000, D2 is specified as internal relay M0050

input


When the ARAMP instruction input changes from off to on, pulses are output from Q0 according to the settings configured by the data registers. The reversible control signal is output from Q0 or Q1. When pulse output starts, M0050 turns on. M0052 turns on while the pulse frequency is increasing or decreasing. The pulses increase and decrease according to the frequency change time until they reach the steady pulse frequency from the current pulse frequency. When the configured number of pulses are output, the pulses stop. In this situation, M0050 turns off and M0051 turns on.
If the ARAMP instruction input turns off during pulse output, pulse output ends. If the ARAMP instruction input turns on again, the operation starts from the beginning. Even if the contents of the data registers are changed during pulse output, the change is not reflected in the pulse output operation. The changed content is reflected the next time the ARAMP instruction is started.
In this application, switching between forward and reverse must be executed when the pulse frequency is decreased to the minimum value, so a step is inserted to decrease the frequency before reversing.

## 18: Pulse Output Instructions

## Sample program

When outputting pulses as shown in the diagram below with the frequency change function (reversible control disabled) using the following settings
The pulses are output from Q0.


Initialize the data registers when the PLC starts

When the ARAMP instruction input (IO) turns on, pulse output starts

## Basic settings



## Step 1 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0002, D0003 | 100 | 100 Hz |
| Frequency change time | D0005 | 2000 | $2,000 \mathrm{~ms}$ |
| Preset value | D0006, D0007 | 4000 | Preset value $=4,000$ |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0008 | Acceleration/deceleration later | After=2 |
| Next step number | 2 | Step 2 |  |

## Step 2 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0010, D0011 | 1000 | $1,000 \mathrm{~Hz}$ |
| Frequency change time | D0013 | 2000 | $2,000 \mathrm{~ms}$ |
| Preset value | D0014, D0015 | 4000 | Preset value=4,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0016 | Acceleration/deceleration later | After=2 |
| Next step number | D0017 | 3 | Step 3 |

## Step 3 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0018, D0019 | 15 | 15 Hz |
| Frequency change time | D0021 | 4000 | $4,000 \mathrm{~ms}$ |
| Preset value | D0022, D0023 | 4000 | Preset value=4,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0024 | Acceleration/deceleration later | After=2 |
| Next step number | D0025 | 0 | $0=$ End output |

When outputting pulses as shown in the diagram below with the frequency change function (single-pulse output reversible control enabled) using the following settings

Pulses are output from Q0 and the reversible control signal is output from Q2.



When I2 turns on, the initialization input (M0000) is turned on and the ARAMP instruction control register values are initialized

When the ARAMP instruction input (IO) turns on, pulse output starts

When the MOV instruction input (I1) turns on, the steady pulse frequencies for step 2 and step 4 (D0002, D0003 and D0018, D0019) are changed to 5 kHz .

## Basic settings



## Step 1 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0002, D0003 | 100 | 1 kHz |
| Frequency change time | D0005 | 3000 | $3,000 \mathrm{~ms}$ |
| Preset value | D0006, D0007 | 5000 | Preset value=5,000 |
| Control direction | - | Forward | Forward |
| Acceleration/deceleration control | D0008 | Acceleration/deceleration later | After=2 |
| Next step number | D0009 | Step 2 |  |

## 18: Pulse Output Instructions

## Step 2 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0010, D0011 | 15 | 15 Hz |
| Frequency change time | D0013 | 3000 | $3,000 \mathrm{~ms}$ |
| Preset value | D0014, D0015 | 5000 | Preset value $=5,000$ |
| Control direction | - | Forward | Forward |
| Acceleration/deceleration control | D0016 | Acceleration/deceleration later | After $=2$ |
| Next step number | D0017 | 3 | Step 3 |

## Step 3 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0018, D0019 | 100 | 1 kHz |
| Frequency change time | D0021 | 3000 | $3,000 \mathrm{~ms}$ |
| Preset value | D0022, D0023 | 5000 | Preset value $=5,000$ |
| Control direction | - | Reverse | Reverse |
| Acceleration/deceleration control | D0024 | Acceleration/deceleration first | Before $=0$ |
| Next step number | D0025 | 4 | Step 4 |

## Step 4 settings

| ARAMP(Ramp Pulse Output with Table) |  |  |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices | Settings | Ramp Table |  |  |  |  |  |
| Step 1 |  | Function | DR | Setting | Description |  |  |
| Step 2 |  | Steady pulse frequency | D0026, D0027 | 15 | 15 to 100.000 in increments of 1 Hz |  |  |
| Step 3 |  | Frequency change time | D0029 | 3000 | 10 to 10,000 in increments of 1 (ms) |  |  |
| Step 4 |  | Preset value | D0030. D0031 | 5000 | 1 to 100,000,000 |  |  |
|  |  | Control direction | D0032 | Reverse |  |  |  |
|  |  | Acceleration/deceleration contrd | D0032 | Acceleration/deceleration first |  |  |  |
|  |  | Next step number | D0033 | 0 | 1 to 4 (step) |  |  |


| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0026, D0027 | 15 | 15 Hz |
| Frequency change time | D0028 | 3000 | $3,000 \mathrm{~ms}$ |
| Preset value | D0029, D0030 | 5000 | Preset value=5,000 |
| Control direction | - | Reverse | Reverse |
| Acceleration/deceleration control | D0032 | Acceleration/deceleration first | Before $=0$ |
| Next step number | D0033 | 0 | Step 0 (end) |

## 18: Pulse Output Instructions

When outputting pulses as shown in the diagram below with the frequency change function (single-pulse output reversible control disabled) using the following settings
The pulses are output from Q0.



When I2 turns on, the initialization input (M0000) is turned on and the ARAMP instruction control register values are initialized

When the ARAMP instruction input (IO) turns on, pulse output starts

When I1 turns on, the interrupt input (M0100) is turned on and the interrupt step is executed

## Basic settings



## Step 1 settings

| ARAMP(Ramp Pulse Output with Table) |  |  |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices | Settings | Ramp Table |  |  |  |  |  |
| Step 1 |  | Function | DR | Setting | Description |  |  |
| Step 2 |  | Steady pulse frequency | D0002. D0003 | 5000 | 15 to 100,000 in increments of 1 Hz |  |  |
| Step 3 |  | Frequency change time | D0005 | 5000 | 10 to 10.000 in increments of 1 (ms) |  |  |
| $\begin{aligned} & \text { Step } 4 \\ & \text { Step } 5 \end{aligned}$ |  | Preset value | D0006, D0007 | 100000 | 1 to 100,000,000 |  |  |
|  |  | Control direction | D0008 |  |  |  |  |
| Step 6 |  | Acceleration/deceleration contrd | D0008 | Acceleration/deceleration later |  |  |  |
|  |  | Next step number | D0009 | 2 | 1 to 6 (step) |  |  |


| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0002, D0003 | 5000 | 5 kHz |
| Frequency change time | D0005 | 5000 | $5,000 \mathrm{~ms}$ |
| Preset value | D0006, D0007 | 100000 | Preset value=100,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0008 | Acceleration/deceleration later | After=2 |
| Next step number | D0009 | 2 | Step 2 |

## 18: Pulse Output Instructions

## Step 2 settings

| ARAMP(Ramp Pulse Output with Table) |  |  |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices | Settings | Ramp Table |  |  |  |  |  |
| Step 1 |  | Function | DR | Setting | Description |  |  |
| Step 2 |  | Steady pulse frequency | D0010, D0011 | 10000 | 15 to 100,000 in increments of 1 Hz |  |  |
| Step 3 |  | Frequency change time | D0013 | 5000 | 10 to 10.000 in increments of 1 (ms) |  |  |
| $\begin{aligned} & \text { Step } 4 \\ & \text { Step } 5 \\ & \text { Step } 6 \end{aligned}$ |  | Preset value | D0014. D0015 | 100000 | 1 to 100,000,000 |  |  |
|  |  | Control direction | D0016 |  |  |  |  |
|  |  | Acceleration/deceleration contrd | D0016 | Acceleration/deceleration later |  |  |  |
|  |  | Next step number | D0017 | 3 | 1 to 6 (step) |  |  |


| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0010, D0011 | 10000 | 10 kHz |
| Frequency change time | D0013 | 5000 | $5,000 \mathrm{~ms}$ |
| Preset value | D0014, D0015 | 100000 | Preset value $=100,000$ |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0016 | Acceleration/deceleration later | After $=2$ |
| Next step number | D0017 | 3 | Step 3 |

## Step 3 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0018, D0019 | 50000 | 50 kHz |
| Frequency change time | D0021 | 8000 | $8,000 \mathrm{~ms}$ |
| Preset value | D0022, D0023 | 1000000 | Preset value=1,000,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0024 | Acceleration/deceleration later | After=2 |
| Next step number | D0025 | 4 | Step 4 |

## Step 4 settings

| ARAMP(Ramp Pulse Output with Table) |  |  |  |  |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Devices | Settings | Ramp Table |  |  |  |  |  |
| Step 1 |  | Function | DR | Setting | Description |  |  |
| Step 2 |  | Steady pulse frequency | D0026, D0027 | 5000 | 15 to 100,000 in increments of 1 Hz |  |  |
| Step 3 |  | Frequency change time | D0029 | 8000 | 10 to 10.000 in increments of 1 (ms) |  |  |
| Step 4 |  | Preset value | D0030, D0031 | 1000000 | 1 to 100,000.000 |  |  |
| Step 5 |  | Control direction | D0032 |  |  |  |  |
|  |  | Acceleration/deceleration contrd | D0032 | Acceleration/deceleration later |  |  |  |
|  |  | Next step number | D0033 | 5 | 1 to 6 (step) |  |  |


| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0026, D0027 | 5000 | 5 kHz |
| Frequency change time | D0028 | 8000 | $8,000 \mathrm{~ms}$ |
| Preset value | D0029, D0030 | 1000000 | Preset value=1,000,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0032 | Acceleration/deceleration later | After=2 |
| Next step number | D0033 | 5 | Step 5 |

## Step 5 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0034, D00035 | 15 | 12 Hz |
| Frequency change time | D0036 | 8000 | $8,000 \mathrm{~ms}$ |
| Preset value | D0037, D0038 | 100000 | Preset value $=100,000$ |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0040 | Acceleration/deceleration later | After=2 |
| Next step number | D0041 | 0 | $0=$ End output |

## 18: Pulse Output Instructions

## Step 6 settings



| Function | Device Address | Setting Value | Details |
| :--- | :--- | :--- | :--- |
| Steady pulse frequency | D0042, D0043 | 15 | 12 Hz |
| Frequency change time | D0044 | 5000 | 5000 ms |
| Preset value | D0045, D0046 | 2000 | Preset value=2,000 |
| Control direction | - | - | - |
| Acceleration/deceleration control | D0048 | Acceleration/deceleration first | Before $=0$ |
| Next step number | D0049 | 0 | $0=$ End output |

## ABS (Set Absolute Position)

The ABS instruction initializes the absolute position counter for pulse output.


## Operation

When the input is on, the values of special data registers D8240 to D8247 (absolute position counters) are updated to the initial values specified by S 1 .
When updated, 1 is stored in the absolute position counter initialized flag in special data register D8239 (absolute position control status).

## Notes:

- Do not execute the ABS instruction while the RAMP, ARAMP, ZRN, or JOG instructions are being executed. The absolute position counters may be initialized with an unintended value.
- Program the user program so that the ABS instruction will be executed after user program execution starts and before specifying the absolute position and executing the RAMP (Trapezoidal Control) instruction.
- When multiple ABS instructions are executed in the same scan, the content of the last executed ABS instruction is reflected in the absolute value counters.
- The ABS instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 will be stored in D8006 and instruction execution will be canceled.
- For user program execution errors, see "User Program Execution Errors" on page 3-10


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 (Source 1) | Initial value | - | - | - | - | - | - | $X$ | $X$ | - |

## Settings

- Devices tab

| ABS (Initialize Absolute Counter) | $?$ |
| :--- | :--- |
| Devices  <br> 1. $\times$ <br> ABS 1 (Q0000) 2. <br> Tag Name: S1 (Initial Value) <br> Device Address:  <br> Comment: 100 | $\square$ |

## 1. Select instruction

This item selects which ABS instruction to use ("ABS1", "ABS2", "ABS3", or "ABS4").
The absolute position counter to be initialized differs with the instruction.

| Command | Absolute Position Counter | Special Data Register ${ }^{* 1 * 2 * 3}$ | Description | Instructions that Update the Absolute Position Counter*4 |
| :---: | :---: | :---: | :---: | :---: |
| ABS1 | Absolute Position Counter 1 | High word D8240 | $\begin{gathered} -2147483648 \\ \text { to } \\ 2147483647 \end{gathered}$ | ABS1/RAMP1*5/ARAMP1/ZRN1/JOG1 |
|  |  | Low word D8241 |  |  |
| ABS2 | Absolute Position Counter 2 | High word D8242 |  | ABS2/RAMP2*5/ARAMP2/ZRN2/JOG2 |
|  |  | Low word D8243 |  |  |
| ABS3 | Absolute Position Counter 3 | High word D8244 |  | ABS3/RAMP3*5/ARAMP3/ZRN3/JOG3 |
|  |  | Low word D8245 |  |  |
| ABS4 | Absolute Position Counter 4 | High word D8246 |  | ABS4/RAMP4*5/ARAMP4/ZRN4/JOG4 |
|  |  | Low word D8247 |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.
*2 The values of the absolute position counters are retained by the backup battery even when the power is turned off. When a keep data error occurs, the values are initialized to 0.
*3 The special data registers are read only. To change the values of D8240 to D8247, use the ABS instruction.
*4 When the RAMP, ARAMP, ZRN, and JOG instructions are used with Reversible control disabled, the absolute position counters are not updated.
*5 When specify absolute position mode is enabled in the RAMP instruction, the target position is specified as the absolute position. When using specify absolute position mode in the RAMP instruction, initialize the corresponding absolute position counter in advance with the ABS instruction. For details, see "RAMP (Trapezoidal Control)" on page 18-15.

The initialized status of D8240 to D8247 can be checked with the absolute position counter initialized flags defined in D8239 (absolute position control status).
When the FC6A Series MicroSmart switches from stop to run, 0 (not initialized) is stored in the absolute position counter initialized flags. Then when the absolute position counters are initialized using the ABS instruction, 1 (initialized) is stored.

| Device Number | Parameter Name | Bit Position | Description |
| :---: | :---: | :---: | :---: |
| D8239 | Absolute Position Control Status | bit0: Absolute Position Counter 1 Initialized Flag | 0 : Not initialized <br> 1: Initialized |
|  |  | bit1: Absolute Position Counter 2 Initialized Flag |  |
|  |  | bit2: Absolute Position Counter 3 Initialized Flag |  |
|  |  | bit3: Absolute Position Counter 4 Initialized Flag |  |
|  |  | bit4 to bit15 | Reserved |

## 2. S1 (source 1): Initial Value

Specifies the starting number of the device that stores the value for initialization or a constant.
Starting from the specified number, 2 continuous words of data registers are used.
The range of available data register numbers is D0000 to D7998, D8000 to D8498, and D10000 to D55998. The data type is L (long).

| Storage Destination | Setting |  |
| :---: | :--- | :--- |
| Starting number+1 | Initial value (high word) ${ }^{* 1}$ | -2147483648 to 2147483647 |
| Starting number+2 | Initial value (low word) ${ }^{* 1}$ |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.

## 18: Pulse Output Instructions

## Example:



After the power is turned on, the ZRN1 instruction is started and a zero return is performed.
After the zero return operation completes, absolute position counter 1 is initialized to 100 with the ABS1 instruction.

## Setting



| Function | Preset Value |
| :---: | :---: |
| Select instruction | ABS1 |
| Tag name | 100 (constant) |

## JOG (JOG Operation)

The JOG instruction output pulses with a frequency change.


## Operation

When the input is on and the JOG input specified by S 3 is turned on, pulses of the initial pulse frequency specified by S1 are output, and then the pulse frequency is increased at a constant rate until it reaches the steady pulse frequency. When the steady pulse frequency is reached, steady pulses are output.

When the JOG input specified by S3 is turned off, the pulses slow at a constant rate until the initial pulse frequency is reached, and when the initial pulse frequency is reached, pulse output stops.
The pulse control information (output on/output complete/error) is stored in the internal relays specified by D1 as the operation status.

When the initialization input specified by S2 is turned on, the initial values configured in the WindLDR JOG (JOG) dialog box, on the Settings tab, are stored in the control registers.

## Notes:

- If a pulse output instruction is simultaneous executed with the same pulse output port, a user program execution will occur. Error code 48 will be stored in D8006 and instructions that were executed after the initial instruction will be canceled
- The JOG instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error will occur. Error code 18 will be stored in D8006 and instruction execution will be canceled.
- If a pulse output instruction is executed with the relay output type, a user program execution will occur. Error code 19 will be stored in D8006 and instruction execution will be canceled.
- For user program execution errors, see "User Program Execution Errors" on page 3-10.

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control register | - | - | - | - | - | - | in | X | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - |  |  |
| S3 (Source 3) | JOG input | $X$ | - | $X$ | - | - | - | - |  |  |
| D1 (Destination 1) | Status code | - | - | $\mathbf{1}$ | - | - | - | - |  |  |

Special data registers cannot be designated as S1. Special internal relays cannot be designated as D1.

## Settings

## - Devices tab



## 1. Select instruction

This item selects which JOG instruction to use ("JOG1", "JOG2", "JOG3", or "JOG4").
The output port and reversible control mode that can be selected differ by the instruction and CPU module type.
For limitations due to the combination of instruction, reversible control mode, and the pulse output mode, see "10. Reversible control enable" on page 18-66.

## 2. S1 (source 1): Control register

S1 specifies the starting number for the data registers to use with the JOG1, JOG2, JOG3, or JOG4 instruction.
Starting from the specified number, 12 continuous words of data registers are used.
The range of available data register numbers is D0000 to D7988 and D10000 to D55988.

| Storage Destination | Function | Setting |  | Reference |
| :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type | CAN J1939 All-inOne Type |  |
| Starting number +0 | Steady pulse frequency (high word) ${ }^{* 1}$ | $\begin{aligned} & \hline \text { JOG1, JOG2: } \\ & 15 \text { to } 100,000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \end{aligned}$ | JOG1 to JOG4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "6. Steady pulse frequency" on page 18-66 |
| Starting number +1 | Steady pulse frequency (low word) ${ }^{* 1}$ | $\begin{aligned} & \text { JOG3, JOG4: } \\ & 15 \text { to } 5,000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \end{aligned}$ |  |  |
| Starting number +2 | Initial pulse frequency (high word) ${ }^{* 1}$ | $\begin{aligned} & \text { JOG1, JOG2: } \\ & 15 \text { to } 100,000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \end{aligned}$ | JOG1 to JOG4: <br> 15 to 100,000 <br> (increments of 1 Hz ) | "7. Initial pulse frequency" on page 18-66 |
| Starting number +3 | Initial pulse frequency (low word) ${ }^{* 1}$ | $\begin{aligned} & \hline \text { JOG3, JOG4: } \\ & 15 \text { to } 5000 \\ & \text { (increments of } 1 \mathrm{~Hz} \text { ) } \end{aligned}$ |  |  |
| Starting number+4 | Acceleration time | 10 to 10000 (ms) |  | "8. Acceleration time" on page $18-66$ |
| Starting number+5 | Deceleration time | 10 to 10000 (ms) |  | "9. Deceleration time" on page $18-66$ |
| Starting number+6 | Control direction | 0: Forward <br> 1: Reverse |  | "11. Control direction" on page 18-67 |
| Starting number +7 | Reserved |  |  |  |
| Starting number+8 | Current value (high word)* ${ }^{\text {¹ }}$ | 1 to 100,000,000 pulses*2 |  | "12. Current value" on page 18-67 |
| Starting number+9 | Current value (low word) ${ }^{* 1}$ |  |  |  |  |
| Starting number+10 | Error status | 0 to 3 |  | "13. Error status" on page 1867 |
| Starting number+11 | Reserved |  |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see "32-bit Data Storage" on page 3-9.
*2 When starting pulse output, the current value is reset.

## 3. S2 (source 2): Initialization Input

S2 specifies the initialization input.
When the initialization input is turned on, the initial values configured in the WindLDR JOG (JOG) dialog box, on the Settings tab, are stored in the control registers. An external input or an internal relay can be specified.
When the initialization input is on, the initial values are stored in the data registers with each scan. (Even when the JOG instruction is not executed (when not on), if the initialization input is turned on, the initial values are stored in the data registers.) To only initialize the values one time, use the initialization input in combination with the SOTU (single output up) instruction or the SOTD (single output down) instruction.

## 4. S3 (source 3): JOG Input

S3 specifies the jog input.
When the JOG input is turned on, pulses of the initial pulse frequency are output, and then the pulse frequency is increased until it reaches the steady pulse frequency.
When the JOG input is turned off, pulse output stops after the pulse frequency is decreased until the initial pulse frequency is reached.
An external input or an internal relay can be specified.
When the JOG input is turned off while the pulse frequency is increasing, pulse output stops after the pulse frequency is decreased until the initial pulse frequency is reached.

When the JOG input is turned on while the pulse frequency is decreasing, the pulse frequency is increased until the steady pulse frequency is reached.

## 5. D1 (destination 1): Operation Status

D1 specifies the starting address of the internal relays to use with the JOG instruction.
Starting from the specified relay, 4 sequential relays are used.
The range of available internal relays is M0000 to M7994 and M10000 to M17494.

| Storage Destination | Function |  | Setting |
| :--- | :--- | :--- | :--- |
| Starting number+0 | Pulse output ON | 0: Pulse output OFF <br> $1: ~ P u l s e ~ o u t p u t ~ O N ~$ | This relay turns on during pulse output. <br> This relay turns off when pulse output stops. |
| Starting number+1 | Pulse output complete | 0: Pulse output not complete <br> $1:$ Pulse output complete | This relay turns on when pulse output completes. <br> This relay turns off when pulse output starts. |
| Starting number+2 | Pulse output status | 0: Steady pulse output <br> $1:$ Changing output pulse <br> frequency | This relay turns on when the pulse output status is <br> steady. <br> This relay turns off when the pulse output status is <br> changing frequency. |
| Starting number+3 | Reserved |  |  |

## Settings tab



## 6. Steady pulse frequency

This setting specifies the steady pulse frequency after the pulse frequency is increased. Set between 15 and 100 kHz in 1 Hz increments. The output frequency error is within $\pm 5 \%$.
For JOG3 and JOG4 with the All-in-One Type, set between 15 and 5 kHz in 1 Hz increments.

## 7. Initial pulse frequency

Specifies the frequency when pulse output starts. Set between 15 and 100 kHz in 1 Hz increments. The output frequency error is within $\pm 5 \%$.
For JOG3 and JOG4 with the All-in-One Type, set between 15 and 5 kHz in 1 Hz increments.

## 8. Acceleration time

Specifies the time to increase the pulse frequency. Set the value in the range of 10 to $10,000 \mathrm{~ms}$ in increments of 10 ms . The digit in the ones place of the set value is discarded. For example, if 144 is entered, the set value is 140 ms .

## 9. Deceleration time

This setting specifies the time to decrease the pulse frequency. Set the value in the range of 10 to $10,000 \mathrm{~ms}$ in increments of 10 ms . The digit in the ones place of the set value is discarded. For example, if 144 is entered, the set value is 140 ms .

## 10. Reversible control enable

This setting enables or disables reversible control and selects the reversible control method from the following reversible control modes. There are two modes for the pulse output mode: single-pulse output mode and dual-pulse output mode. They can be combined with reversible control as follows. (This is an example when JOG1 is used with the All-in-One Type.)

| Reversible Control Enable | Operation | Pattern |
| :--- | :--- | :--- |
| Reversible control disabled | Select this option when using pulse output in a single <br> direction. Pulse A and pulse B can be used independently. | Pulse A is used as pulse output. Pulse B on/off is used as <br> reversible control. |
| Reversible control Single-pulse <br> output | Pulse A is used as forward pulse (CW) output.Pulse B is <br> used as reverse pulse (CW) output. | $\square$ |

The used ports differ by the instruction used, the combination of the pulse output mode and reversible control, and the model used.

| Command | Operating Condition | Port Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type |  | CAN 31939 All-in-One Type |  |
|  |  | Pulse Output Port | Reversible Control Port | Pulse Output Port | Reversible Control Port |
| JOG1 | Reversible control disabled | Q0 | - | Q0 | - |
|  | Reversible control Single-pulse output | Q0 | Q2*1 | Q0 | Q1 |
|  | Reversible control Dual-pulse output | Q0, Q1 ${ }^{* 2}$ | - | Q0, Q1 | - |
| JOG2 | Reversible control disabled | Q1 | - | Q2 | - |
|  | Reversible control Single-pulse output | Q1 | Q3*1 | Q2 | Q3 |
|  | Reversible control Dual-pulse output | - | - | Q2, Q3 | - |


| Command | Operating Condition | Port Used |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | All-in-One Type |  | CAN J1939 All-in-One Type |  |
|  |  | Pulse Output Port | Reversible Control Port | Pulse Output Port | Reversible Control Port |
| JOG3 | Reversible control disabled | Q2 | - | Q4 | - |
|  | Reversible control Single-pulse output | - | - | Q4 | Q5 |
|  | Reversible control Dual-pulse output | - | - | Q4, Q5 | - |
| JOG4 | Reversible control disabled | Q3 | - | Q6 | - |
|  | Reversible control Single-pulse output | - | - | Q6 | Q7 |
|  | Reversible control Dual-pulse output | - | - | Q6, Q7 | - |

*1 When using single-pulse output mode with the All-in-One Type, Q2 or Q3 will be used, so an instruction that uses the same pulse output port can no longer be used.
*2 When using dual-pulse output mode with the All-in-One Type, Q1 will be used, so an instruction that uses the same pulse output port can no longer be used.

## 11. Control direction

When reversible control is enabled, store 0 in this data register for forward operation and store 1 in this data register for reverse operation.

## 12. Current value

The number of pulses output from the pulse output port is stored in the data registers.
The current value is updated when the JOG instruction is executed at each scan.
When starting pulse output, the current value is reset.

## 13. Error status

Outputs the error code that corresponds to the content of an error when there is an error in the settings. If a configuration error occurs when a step starts running, a user program execution error will occur, and error code 20 is stored in D8006.

## Error Code List

| Error Code | Status | Description |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Normal | - |  |  |
| 2 | Initial pulse frequency designation error | All-in-One Type | $\begin{aligned} & \hline \text { JOG1, } \\ & \text { JOG2 } \end{aligned}$ | The initial pulse frequency was not set between 15 and 100,000. |
|  |  |  | $\begin{aligned} & \hline \text { JOG3, } \\ & \text { JOG4 } \end{aligned}$ | The initial pulse frequency was not set between 15 and 5,000. |
|  |  | CAN J1939 All-in-One Type | $\begin{aligned} & \text { JOG1 } \\ & \text { to } \\ & \text { JOG4 } \end{aligned}$ | The initial pulse frequency was not set between 15 and 100,000. |
| 4 | Steady pulse frequency designation error | All-in-One Type | $\begin{aligned} & \text { JOG1, } \\ & \text { JOG2 } \end{aligned}$ | The steady pulse frequency was not set between 15 and 100,000. |
|  |  |  | $\begin{aligned} & \text { JOG3, } \\ & \text { JOG4 } \end{aligned}$ | The steady pulse frequency was not set between 15 and 5,000. |
|  |  | CAN J1939 All-in-One Type | $\begin{aligned} & \text { JOG1 } \\ & \text { to } \\ & \text { JOG4 } \end{aligned}$ | The steady pulse frequency was not set between 15 and 100,000. |
| 5 | Frequency change time designation error | The acceleration time was not set between 10 and 10,000. |  |  |
| 7 | Control direction designation error | The control direction was not set to 0 or 1. |  |  |
| 9 | The initial pulse frequency was set to the same frequency as the steady pulse frequency or it was set to a value larger than the steady pulse frequency. ${ }^{* 1}$ |  |  |  |

[^2]
## JOG1 Instruction (Reversible Control Disabled) Timing Chart

With the All-in-One Type, JOG1 instruction, S1 is specified as D0200, D1 is specified as internal relay M0050


- When the JOG1 input is on, the I4 monitor starts. When I4 is turned on, pulses are output according to the settings configured by the control registers.
- M0050 turns on during pulse output. M0052 turns on while the pulse frequency is increasing, and M0052 turns off while decreasing.
- Pulses are output so that the frequency reaches the steady pulse frequency from the initial pulse frequency in the acceleration time. The frequency increases or decreases every 10 ms .
- When I4 turns off, the frequency starts to decrease, and then when the frequency reaches the initial pulse frequency, pulse output stops. At this time, M0050 turns off and M0051 turns on.
- If I4 turns off while the frequency is increasing, the frequency starts to decrease, and then when the frequency reaches the initial pulse frequency, pulse output stops.
- If I4 turns on while the frequency is decreasing, it once again starts to increase, and pulses are output so the frequency reaches the steady pulse frequency.
- Even if the contents of the control registers are changed during pulse output, the change is not reflected in the operation of pulse output. The changed content will be reflected when pulses are next output after pulse output is first stopped and M0050 is turned off.


## Example:

When performing a JOG operation by outputting pulses with a frequency change (reversible control disabled) from Q0
 Turn on initialization input (M0000)

When the JOG instruction input (M0001) is on and the JOG input (IO) is turned on, pulse output starts.

## Setting



## 19: PID Control Instruction

## Introduction

This chapter describes the PID control instructions that perform auto tuning and PID control for temperature control and other purposes.

## PID (PID Control)

Executes PID control and outputs that result. When auto tuning is performed, the optimal PID parameters (proportional gain, integral time, and derivative time) and control action are automatically calculated.
This instruction is compatible with the FC5A MicroSmart PID instruction. When temperature control is performed using the FC5A MicroSmart PID instruction, the same temperature control can be achieved by replacing it with the FC6A Series MicroSmart and the FC6A Series MicroSmart PID instruction.


## Notes:

- The PID instruction and the PIDA instruction can be mixed in a single program, and a maximum of 32 instructions can be used.
- For details on the PID instruction, see Chapter 16 "PID Instruction" in the "FC5A MicroSmart Pentra User's Manual Advanced Volume".


## PIDA (PID Control)

Executes PID control and outputs that result. When auto tuning is performed, the optimal PID constants are calculated. When auto/manual mode is switched, the balance-less and bumpless function automatically operates to prevent rapid changes in the output manipulated variable.
A maximum of four alarm types, out of nine, can be set to detect process variable errors for multiple conditions.


## Notes:

- The PID instruction and the PIDA instruction can be mixed in a single program, and a maximum of 32 instructions can be used.
- For details on the PIDA instruction, see "PIDA (PID Control)" on page 19-2.


## PID Instruction and PIDA Instruction Differences

There are two types of PID control instructions, the PID instruction and the PIDA instruction. The differences between the PID instruction and the PIDA instruction are as follows.

| Item |  | PID Instruction | PIDA Instruction |
| :---: | :---: | :---: | :---: |
| Auto tuning | method | Step response method | Limit cycle method |
|  | Execution timing | Execute when starting the PID instruction | Execute at any time |
| ARW (anti-reset windup) |  | Yes | Yes |
| Balance-less and bumpless function |  | No | Yes |
| Alarm types | Upper limit alarm Lower limit alarm | Yes | Yes |
|  | Upper/lower limits alarm <br> Upper/lower limits range alarm <br> Process high alarm <br> Process low alarm <br> Upper limit alarm with standby <br> Lower limit alarm with standby <br> Upper/lower limits alarm with standby | No | Yes |
| Parameters |  | PIDST instruction, PID instruction | PIDA instruction |
| Monitor in WindLDR | Check and modify parameters | Use Device Monitor | Use a dedicated monitor screen |
|  | Trend graph display | No | Yes |
| IDEC instruction compatibility |  | FC5A MicroSmart PID instruction | FT1A Touch PID instruction |

## 19: PID Control Instruction

## PIDA (PID Control)

The PID instruction executes PID control and outputs the result. When auto tuning is performed, the optimal PID parameters are calculated.
When auto/manual mode is switched, the balance-less and bumpless function automatically operates to prevent rapid changes in the output manipulated variable.
Four alarm types, out of nine, can be set to detect process variable errors for multiple conditions.


## Operation

When the input is on, auto tuning and PID control are performed.

| ! Warning | - Special technical knowledge about the PID control is required to use the PIDA function of the FC6A Series MicroSmart. Use of the PIDA function without understanding the PID control may cause the FC6A Series MicroSmart to perform unexpected operation, resulting in disorder of the control system, damage, or accidents. <br> - When using the PIDA instruction for feedback control, emergency stop and interlocking circuits must be configured outside the FC6A Series MicroSmart. If these are configured in the internal circuit and the process variable is not input correctly, there is a risk of no longer being able to perform proper feedback control, which may damage connected devices or cause accidents. <br> For PID control, see "PID Control" on page 19-22. |
| :---: | :---: |


| Caution | The PIDA instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution <br> error occurs, the execution of the instruction is canceled, and the next instruction is executed. <br> For user program execution errors, see "User Program Execution Errors" on page 3-10. |
| :--- | :--- |

Note: The PIDA instruction and the PID instruction can be mixed in a single program, and a maximum of 32 instructions can be used.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Control registers | - | - | - | - | - | - | $\mathbf{A}$ | - |
| S2 (Source 2) | Initialization input | $X$ | - | $X$ | - | - | - | - | - |
| S3 (Source 3) | Control relays | - | - | $\mathbf{A}$ | - | - | - | - | - |
| S4 (Source 4) | Set point | - | - | - | - | - | - | $\mathbf{A}$ | - |

i Special data registers cannot be designated as S1 and S4. Special internal relays cannot be designated as S3.

## Settings

The PIDA (PID Control) dialog box contains the Devices tab, Input tab, Control tab, and Output tab.
The Devices tab configures the devices used with the PIDA instruction. The Input, Control, and Output tabs configure the initial values of the parameters for the PIDA instruction.

## -Devices tab



1. S1 (source 1): Control Register

Specify the starting device to store the PIDA instruction parameters.
The devices that can be specified are data registers D0000 to D7960 and D10000 to D55960.
40 words are used starting from the specified data register.
When the initialization input is turned on, the control registers are initialized with the values set on the Input tab, the Control tab, and the Output tab.
For initialization, see "2. S2 (source 2): Initialization Input" on page 19-3.
For the control registers, see " S 1 : Control registers" on page 19-15.

## 2. S2 (source 2): Initialization Input

Specify the device to initialize the control registers.
The values configured on the Input tab, Control tab, and Output tab are stored in the control registers and control relays when the initialization input turns on ${ }^{* 1}$. An external input or an internal relay can be specified.

* $_{1}$ If you want the initialization to be performed just one time, please use a SOTU (single output up) or a SOTD (single output down) instruction.


## 3. S3 (source 3): Control Relay

Specify the device to output control of PID control and the control results of the PIDA instruction.
16 bits are used starting from the specified device.
The devices that can be specified are internal relays M0000 to M7980 and M10000 to M17480. Special internal relays cannot be specified.
The role of each bit is different. You can switch between auto and manual mode for the PIDA instruction and execute auto tuning by turning the bits on and off. The PIDA instruction control result and process variable error are also output as alarms. For tag names, device addresses, and comments, see "1. S1 (source 1): Control Register" on page 19-3.

## 4. S4 (source 4): Set Point

Shows the device that stores the PID control set point. When a data register is specified in S1 (source 1 ), $\mathrm{S} 1+7$ is automatically allocated.

The set point ( $\mathrm{S} 1+7$ ) is one data register out of the 40 words of data registers used by the control registers (1). This is automatically displayed when a starting device is specified in the control registers (1).

## 5. Device Allocation

Click this button to display the Device Allocation dialog box. The table containing the data registers and internal relays and corresponding PIDA instruction settings is displayed in the dialog box (6).
Click Allocate Comments (7) to set the content in the table as the comments of the devices.

## Device Allocation dialog box

| Device Allocation |  | $\times$ |
| :---: | :---: | :---: |
| Data Register Internal Relay |  |  |
| Device Address | Description | , |
| D0000 | Process variable (after conversion) |  |
| D0001 | Output manipulated variable (0 to 100\%) |  |
| D0002 | Operating status |  |
| D0003 | Alam 1 value (process high alam) |  |
| D0004 | Alam 2 value (rocess low alam) |  |
| D0005 | Sampling period |  |
| D0006 | Control mode |  |
| D0007 | Set point |  |
| D0008 | Propotional band |  |
| D0009 | Integral time |  |
| D0010 | Deivative time |  |
| D0011 | Deivative gain |  |
| D0012 | ARW (artireset windup) |  |
| D0013 | AT bias |  |
| D0014 | Output manipulated variable upper linit/p |  |
| Allocate Comments | 7. |  |

## ■Input tab

This tab configures the input parameters for the PIDA instruction.


1. Process Variable ( $\mathbf{S 1 + 0 )}$

Configure the input for the PID control. The process variable is linearly converted and given to the PID control for the input value. The value can be specified as Analog Input or Data Register.

## When Analog Input is specified

Specify the module with the analog input you want to specify as the process variable and its analog input number to set as PID control input.
Analog Module Configure: Select the analog input module.
Select the module as the CPU module, HMI module, or expansion module 1 to 15 .
Analog Input No.: $\quad$ Select the input number on the analog input module.
Select as AIO to AI7.
The analog input value is also stored in a control register ( $\mathrm{S} 1+0$ ) as a read-only value.
For control registers, see "1. S1 (source 1): Control Register" on page 19-3.

## Notes:

- To use an analog input, the analog input must be configured in advance. For details on analog input settings, see Chapter 9 "Analog Module" in the "FC6A Series MicroSmart All-in-One Type User's Manual".
- When using an analog input, the analog volume value cannot be used as the process variable. However, the analog volume value can be used as the process variable by specifying Data Register as the process variable and specifying a special data register that stores the analog volume value.
- When Analog Input is specified, the minimum value and the maximum value of the analog input settings are used as the minimum value and the maximum value for the input.


## When Data Register is specified

The value stored in S1+0 of the control registers is used as the PID control input.
The range of stored values is minimum value (5) $\leq$ process variable $\leq$ maximum value (4). For control registers, see "1. S1 (source 1): Control Register" on page 19-3.
Configure parameters 2. Device Address through 5. Minimum Value when data register is selected as the process variable.

## 2. Device Address

Shows the start data register $(\mathrm{S} 1+0)$ of the control registers configured on the Devices tab.

## 3. Data Type

Select the process variable (1) data type as W (word) or I (integer).

## 4. Maximum Value, 5. Minimum Value

Set the process variable (1) range as a maximum value and a minimum value. Set the input settings in PID control (process variable, Alarm 1 (process high alarm) value, and Alarm 2 (process low alarm) value) and the set point within the maximum and minimum value range. The maximum value and minimum value can be configured within the range of the data type (3).

- When the data type is I (integer): $-32,768$ to $+32,767$.
- When the data type is W (word): 0 to 65,535

Note: If the process variable (1) is larger than the maximum value (4), or if the process variable (1) is smaller than the minimum value (5), status code 109 is stored in the operating status (S1+2) and PID control stops.
For status code details, see "Operation status (S1+2)" on page 19-18.

## 6. Sampling Period (S1+5)

Set the cycle to execute the PID control.
PID control will only be executed at the end of the scan.
When the sampling period is set lower than the scan time, PID control is not executed with the set sampling period, it will be executed with the same period as the scan time.
When the sampling period is set longer than the scan time, if the scan has not finished when the sampling period has elapsed, PID control will wait until the scan ends and then be executed.
Due to the above factors, an error will occur between the sampling period and the actual PID control execution timing.
The sampling period can be set from 0.01 to 100.00 seconds in 0.01 second increments.

## Sampling period $\leq$ Scan time



## Sampling period > Scan time



## 7. Advanced/Basic

Click this button to show or hide the advanced settings.
On the Input tab, Sampling Period (8) can be set as an advanced setting.

## 8. Alarm 1 (Process High Alarm) (S1+3)

Set the upper limit value of the process variable (1).
The alarm 1 value can be set in the range between the alarm 2 value (process low alarm) (7) and the maximum value (4). If the process variable is higher than or equal to the alarm 1 value, the alarm 1 output ( $\mathrm{S} 3+3$ ) turns on. If the process variable is lower than the alarm 1 value, the alarm 1 output ( $\mathrm{S} 3+3$ ) turns off.

## 9. Alarm 2 (Process Low Alarm) (S1+4)

Set the lower limit value of the process variable (1).
The alarm 2 value can be set in the range between the minimum value (5) and the alarm 1 value (process high alarm) (6). If the process variable is lower than or equal to the alarm 2 value, the alarm 2 output ( $\mathrm{S} 3+4$ ) turns on. If the process variable is higher than the alarm 2 value, the alarm 2 output ( $S 3+4$ ) turns off.
A maximum of four alarms (Alarm 3 to Alarm 6) can be configured for the process variable in PID control. Individually configure Alarm Type (10), Alarm Value (11), Hysteresis (12), and Delay Time (13).

## 10. Alarm Type

Select the type of alarm action from the following.


Upper Limit Alarm


- Alarm action point Set point + Alarm action point
- Alarm action point Set point + Alarm action point

When process variable $\geq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON .
When process variable $\leq 193.0^{\circ} \mathrm{C}$, the alarm output is turned OFF.
Set point: $200.0^{\circ} \mathrm{C}$
Alarm value: $5.0^{\circ} \mathrm{C}$
Hysteresis: $2.0^{\circ} \mathrm{C}$


When process variable $\leq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON .
When process variable $\geq 207.0^{\circ} \mathrm{C}$, the alarm output is turned OFF.
Set point: $200.0^{\circ} \mathrm{C}$
Alarm value: $-5.0^{\circ} \mathrm{C}$
Hysteresis: $2.0^{\circ} \mathrm{C}$


When process variable $\leq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When process variable $\geq 197.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. Set point: $200.0^{\circ} \mathrm{C}$
Alarm value: $5.0^{\circ} \mathrm{C}$
Hysteresis: $2.0^{\circ} \mathrm{C}$


When process variable $\geq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON .
When process variable $\leq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON .
When $197.0^{\circ} \mathrm{C} \leq$ process variable $\leq 203.0^{\circ} \mathrm{C}$, the alarm output is turned OFF.

| Type | Action | Example |
| :---: | :---: | :---: |
| Upper/Lower Limit Range Alarm | Turns ON the alarm output when (set point - alarm value) $\leq$ process variable $\leq$ (set point + alarm value). Turns OFF the alarm output when process variable $\geq$ (set point + alarm value + hysteresis). <br> Turns OFF the alarm output when process variable $\leq$ (set point - alarm value - hysteresis). <br> Alarm action point Set point Alarm action point | Set point: $200.0^{\circ} \mathrm{C}$ <br> Alarm value: $5.0^{\circ} \mathrm{C}$ <br> Hysteresis: $2.0^{\circ} \mathrm{C}$ <br> When $195.0^{\circ} \mathrm{C} \leq$ process variable $\leq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When process variable $\geq 207.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. When process variable $\leq 193.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |
| Process High Ala | Turns ON the alarm output when process variable $\geq$ alarm value. <br> Turns OFF the alarm output when process variable $\leq$ (alarm value - hysteresis). | Alarm value: $205.0^{\circ} \mathrm{C}$ Hysteresis: $2.0^{\circ} \mathrm{C}$ <br> When process variable $\geq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON. When process variable $\leq 203.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |
| Process Low Alarm | Turns ON the alarm output when process variable $\leq$ alarm value. <br> Turns OFF the alarm output when process variable $\geq$ (alarm value + hysteresis). <br> Alarm action point | Alarm value: $195.0^{\circ} \mathrm{C}$ <br> Hysteresis: $2.0^{\circ} \mathrm{C}$ <br> When process variable $\leq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When process variable $\geq 197.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |
| Upper Limit Ala with Standby | Turns ON the alarm output when process variable $\geq$ (set point + alarm value). <br> Turns OFF the alarm output when process variable $\leq$ (set point + alarm value - hysteresis). The gray-colored portion is where the standby function operates. | Set point: $200.0^{\circ} \mathrm{C}$ <br> Alarm value: $5.0^{\circ} \mathrm{C}$ <br> Hysteresis: $2.0^{\circ} \mathrm{C}$ <br> When process variable $\geq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When process variable $\leq 203.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |
| Lower Limit Alarm with Standby | Turns ON the alarm output when process variable $\leq$ (set point + alarm value). <br> Turns OFF the alarm output when process variable $\geq$ (set point + alarm value + hysteresis). <br> The gray-colored portion is where the standby function operates. <br> - Alarm action point Set point + Alarm action point | Set point: $200.0^{\circ} \mathrm{C}$ <br> Alarm value: $-5.0^{\circ} \mathrm{C}$ Hysteresis: $2.0^{\circ} \mathrm{C}$ <br> When process variable $\leq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When process variable $\geq 197.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |


| Type | Action | Example |
| :---: | :---: | :---: |
| Upper/Lower Limit Alarm with Standby | Turns ON the alarm output when process variable $\geq$ (set point + alarm value). <br> Turns ON the alarm output when process variable $\leq$ (set point - alarm value). <br> Turns OFF the alarm output when (set point - alarm value + hysteresis) $\leq$ process variable $\leq$ (set point + alarm value - hysteresis). <br> The gray-colored portion is where the standby function operates. <br> Alarm action point Set point Alarm action point | When process variable $\geq 205.0^{\circ} \mathrm{C}$, the alarm output is turned ON. When process variable $\leq 195.0^{\circ} \mathrm{C}$, the alarm output is turned ON . When $197.0^{\circ} \mathrm{C} \leq$ process variable $\leq 203.0^{\circ} \mathrm{C}$, the alarm output is turned OFF. |

## Notes:

- Alarm action point

This indicates the point where the alarm output changes from OFF to ON.

- Standby function

This function does not immediately turn ON the alarm output when starting execution of the PIDA instruction, even when the process variable is in the alarm output ON range.
The standby function is canceled when the process variable enters the alarm output OFF range, and when the process variable enters the alarm output ON range, the alarm output will turn ON.
If the set point is changed, the standby function will be enabled again.


## 11. Alarm Value

Set the value that will be the trigger condition for Alarm Type (10). The value to set differs by the alarm type.
The content for the alarm value is as follows.


| Alarm Type | Alarm Value | Range |
| :--- | :--- | :--- |
| Upper Limit Alarm with Standby | Set the deviation from the set point. | When the process variable is current/voltage <br> or a data register: <br> $-32,768$ to $32,767^{* 1}$ <br> When the process variable is a thermocouple <br> or resistance temperature detector and the <br> data type is set to Celsius or Fahrenheit: <br> $-3,276.8$ to $3,276.7^{\circ} \mathrm{C} / \mathrm{O}^{* 11}$ |
| Lower Limit Alarm with Standby |  | When the process variable is current/voltage <br> or a data register: <br> 0 to $65,535^{* 1}$ <br> When the process variable is a thermocouple <br> or resistance temperature detector and the <br> data type is set to Celsius or Fahrenheit: <br> 0.0 to $6,553.5^{\circ} \mathrm{C} / \mathrm{O}^{* 1}$ |
| Upper/Lower Limit Alarm with Standby | Set the deviation from the set point. |  |

*1 No alarm action when the alarm value is 0 .

## 12. Hysteresis

Set the range from the alarm action point to when the alarm output changes from ON to OFF.
When hysteresis is set to a large value, the alarm output will not change by slight variations. When hysteresis is set to a small value, the alarm output will change by slight variations near the alarm action point, which may negatively impact connected equipment.
The range is 0.1 to $6,553.5\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$ or 1 to 65,535 (voltage/current input).
However, when the alarm type is Upper/Lower Limit Alarm or Upper/Lower Limit Alarm with Standby, you must set hysteresis so that $1 \leq$ hysteresis < Alarm Value (11) is satisfied.

## 13. Delay Time

Set the time until the alarm output is turned ON after the condition to turn the alarm output ON is satisfied.
The delay time prevents the alarm output from turning ON unintentionally when there are fluctuations in the process variable due to the effects of noise.
After the condition to turn the alarm output ON has been satisfied, if it is no longer satisfied by when the delay time elapses, the alarm output does not turn ON.
The range is 0 to $10,000 \mathrm{~s}$. When 0 , the delay time is disabled.

## - Control tab

This tab configures the control parameters for the PIDA instruction.


1. Control Mode (S1+6)

Select PID (PID Control), P (Proportional Control), PI (PI Control) or PD (PD Control) according to the characteristics of the target application.

For details about each control, see "PID Control" on page 19-22.
2. Control Action (S3+0)

- Select the control action from Direct Control Action or Reverse Control Action.
- Direct control action operates to increase the output manipulated variable when the process variable is higher than the set point. Cooling equipment uses this operation. Reverse control action operates to increase the output manipulated variable when the process variable is lower than the set point. Heating furnaces uses this operation. ( $\mathrm{S} 3+0$ ) is read-only.


Direct control action


## 3. Set Point (S1+7)

The set point can be set between the minimum value and the maximum value of the process variable. The setting unit for the set point is as follows.

When Analog Input thermocouple input or resistance temperature detector input is set for the process variable, it can be set in units of $0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$.

When Data Register or Analog Input voltage input, current input, thermistor, or resistance measurement is set for the process variable, it can be set in units of 1 .

## 4. Proportional Band ( $\mathbf{S 1 + 8}$ )

The proportional action changes the output proportional to the deviation between the set point and process variable. If the process variable is in the range of the proportional band, the control output ( $\mathrm{S} 3+6$ ) turns on or in proportional to the deviation. If the process variable is out of the proportional band, the control output ( $\mathrm{S} 3+6$ ) is always on or off.
When the proportional band is made larger, the control output (S3+6) turns on and off from a state where the deviation is large, so overshooting (process variable goes above the set point), undershooting (process variable falls below the set point), and hunting (process variable is in an unstable undulating state) decrease, but it takes time until the process variable reaches the set point and the offset between the set point and the process variable becomes larger.
When the proportional band is made smaller, the control output starts turning on and off at near the set point, so the time until the process variable reaches the set point decreases and the offset also becomes smaller, but hunting increases. If the proportional band is set extremely small, the control is the same as on/off operation.
When auto tuning is used, the appropriate proportional band can be automatically set for the target application. For details, see
"Auto Tuning (AT)" on page 19-23.
The proportional band can be set from $\pm 0.01$ to $\pm 100.00 \%$ in $0.01 \%$ increments.

## 5. Integral Time ( $\mathbf{S} 1+9$ )

With only the proportional action, an offset occurs between the set point and the process variable even when the target application is in a stable state. In order to bring this offset close to 0 , the integral action is required. Integral time is a factor that determines the manipulated variable by the integral action. If the integral time is too short, the integral action becomes too large, which causes hunting of a long cycle. Conversely, if the integral time is too long, the processing until the set point is reached will take time. The integral execution range is - proportional band to + proportional band. If the process variable goes out of the proportional band due to a change in the set point or a disturbance, the integration calculation stops. As a result, the response of the output manipulated variable against the change in set point improves and undershoot and overshoot can be reduced.
When auto tuning is used, the appropriate integral time can be automatically set for the target application. For details, see "Auto Tuning (AT)" on page 19-23.
The integral time can be set from 0.1 to 6553.5 seconds in 0.1 second increments.

## 6. Derivative Time ( $\mathbf{S 1 + 1 0 )}$

When the set point changes or when the difference between the set point and the process variable increases due to a disturbance, the derivative action quickly brings the process variable close to the set point by increasing the manipulated variable. When the derivative time is decreased, the derivative action becomes weaker and the response to rapid temperature changes becomes slower. The action to control rapid temperature increases also becomes weaker, so the time to reach the set point will become shorter, but overshoot will occur more easily. When the derivative time is increased, the derivative action becomes large and the response to rapid temperature changes becomes faster. The action to control rapid temperature increases also becomes more powerful, so the time to reach the set point will become longer, but overshoot will occur less easily. When auto tuning is used, the appropriate derivative time can be automatically set for the target application. For details, see "Auto Tuning (AT)" on page 19-23.
The derivative time can be set from 0.1 to 6553.5 seconds in 0.1 second increments.

## 7. Derivative Gain ( $\mathbf{S 1 + 1 1 \text { ) } ) ~}$

When the derivative gain is set to a small value, the output manipulated variable is more easily affected by noise and changes in the set point. When the derivative gain is set to a large value, the output manipulated variable is less easily affected by noise and changes in the set point, but stability at normal times decreases. When noise or changes in the process variable occur, normally set this to 20 to $30 \%$.
The derivative gain can be set from 0 to $100 \%$ in $1 \%$ increments.

## 8. ARW (Anti-Reset Windup) (S1+12)

Set the point to start the integral action. If the integral term is enabled from the start of execution of the PIDA instruction, overshoot may be caused. Overshoot can be controlled by delaying the integral action with ARW linked to the proportional band. ARW is normally $100 \%$, which results in appropriate control with little overshoot. If ARW is set too small, overshoot can be eliminated, but an offset may occur.
The ARW can be set from 0 to $100 \%$.
For example, when $\operatorname{ARW}=50 \%$ and proportional band $=20.00 \%$, the integral action starts from when the deviation becomes smaller than $10 \%$.

## 9. AT (Auto Tuning) Bias (S1+13)

Set the bias value for the auto tuning.
The auto tuning start point is determined by the AT bias value in 1 increments.

| Process Variable Value | AT Start Point |
| :--- | :---: |
| When process variable $\leq$ (set point - AT bias value) | Set point - AT bias value |
| When process variable $\geq$ (set point + AT bias value) | Set point + AT bias value |
| When (set point - AT bias value) $<$ process variable $<$ (set point + AT bias value) | Set point |

For details, see "Auto Tuning (AT)" on page 19-23.
The AT bias can be set in the range of process variable minimum value < (set point - AT bias setting value) or process variable maximum value $>$ (set point + AT bias setting value) in units of 1 .

## 10. Advanced/Basic

Click this button to show or hide the advanced settings.
On the Control tab, Derivative Gain (7) can be set as an advanced setting.

## -Output tab

This tab configures the output parameters for the PIDA instruction.


1. Output Manipulated Variable (analog value) (S1+19)

Set the output for the PID control. The value can be specified as Analog Output or Data Register. The manipulated variable calculated with the PIDA instruction according to the output manipulated variable limit (6) setting is stored.

## When Analog Output is specified

Configure the module with the analog output you want to configure as the output manipulated variable (analog value) destination and its analog number.
Analog Module Configure Select the analog output module.
Select the module as the CPU module, HMI module, or expansion module 1 to 15 .
Analog Output No.: $\quad$ Select the output number on the analog output module.
Select as AQ0 to AQ7.

- For auto mode, the analog value stored in the output manipulated variable $(\mathrm{S} 1+19)$ undergoes linear conversion in the range of the maximum value and the minimum value of the analog output and is output.
- For manual mode, the value stored in the manual mode output manipulated variable ( $\mathrm{S} 1+17$ ) undergoes linear conversion in the range of the maximum value and the minimum value of the analog output and is output.
For switching between auto/manual mode, see "Auto/manual mode (S3+1)" on page 19-20.
The value of the output manipulated variable is automatically stored in the special data register that corresponds to the analog output.
For allocating special data registers, see "Special Internal Relay Device Addresses" on page 2-3.
Note: To use an analog output, the analog output must be configured in advance.
For details on analog output settings, see Chapter 9 "Analog Module" in the "FC6A Series MicroSmart All-in-One Type User's Manual".


## When Data Register is specified

Specify the device to store the output manipulated variable.

- For auto mode, the output manipulated variable for PID control is stored in output manipulated variable (analog value) ( $\mathrm{S} 1+19$ ) for the control register.
- It is stored in the range of minimum value (5) $\leq$ output manipulated variable $\leq$ maximum value (4).
- For manual mode, the stored value is that the one, stored in the manual mode output manipulated variable ( $\mathrm{S} 1+17$ ), is converted linearly in the range of minimum value (5) and maximum value (4).
Configure parameters 2. Device Address through 5. Minimum Value when data register is selected as the process variable.


## 2. Device Address

Shows the control register $(\mathrm{S} 1+19)$ configured on the devices tab when Data Register is specified as the output manipulated variable (1).

## 3. Data Type

Select the output manipulated variable (6) data type as W (word) or I (integer).

## 4. Maximum Value, 5. Minimum Value

A value that is the PIDA instruction output manipulated variable having undergone linear conversion in the range of maximum value (4) and minimum value (5) is stored in the set data register.

## 6. Output Manipulated Variable Limit

Set the output manipulated variable by restricting the manipulated variable calculated by the PIDA instruction.

## When Disabled

The manipulated variable calculated by the PIDA instruction is the output manipulated variable.

## When Enable (upper and lower limits)

When the manipulated variable calculated by the PIDA instruction exceeds the output manipulated variable upper limit or lower limit, the upper limit value or the lower limit value is set as the output manipulated variable.

## When Enable (percentage)

The result of the manipulated variable calculated by the PIDA instruction multiplied by 1 to $99 \%$ is set as the output manipulated variable. The output manipulated variable lower limit (8) is disabled at this time.

## 7. Output Manipulated Variable Upper Limit/percentage (S1+14)

When Output manipulated variable restriction is Output manipulated variable (upper limit, lower limit)
Set the upper limit value of the output manipulated variable for the control output. When the manipulated variable calculated by the PIDA instruction is higher than or equal to the output manipulated variable upper limit value, the set upper limit value is set as the output manipulated variable for the control output. When setting the output manipulated variable upper limit value, you must set the output manipulated variable upper limit value so that it satisfies output manipulated variable lower limit value < output manipulated variable upper limit value.
The output manipulated variable upper limit value can be set from 0 to $100 \%$ in $1 \%$ increments.

## When Enable (percentage)

The result of the manipulated variable calculated by the PIDA instruction multiplied by 1 to $99 \%$ is set as the output manipulated variable.
Output manipulated variable = manipulated variable calculated by the PIDA instruction x output manipulated variable (scaling factor)

## 8. Output Manipulated Variable Lower Limit (S1+15)

## When Enable (upper and lower limits)

Set the lower limit value of the output manipulated variable for the control output. When the manipulated variable calculated by the PIDA instruction is lower than or equal to the output manipulated variable lower limit value, the set lower limit value is set as the output manipulated variable for the control output. When setting the output manipulated variable lower limit value, you must set the output manipulated variable lower limit value so that it satisfies output manipulated variable lower limit value < output manipulated variable upper limit value. The output manipulated variable lower limit value can be set from 0 to $100 \%$ in $1 \%$ increments.

## When Enable (percentage)

The output manipulated variable lower limit is disabled.
9. Manual Mode Output MV (S1+17)

Set the output manipulated variable for manual mode. To enable this function, Auto/manual mode ( $\mathrm{S} 3+1$ ) must be turned on. The manual mode output manipulated variable is enabled for the output manipulated variable, the output manipulated variable (digital value), and the control output.
For switching between auto/manual mode, see "Auto/manual mode (S3+1)" on page 19-20.
The manual mode output manipulated variable can be set from 0.00 to $100.00 \%$ in $0.01 \%$ increments. When the output manipulated variable limit is Output manipulated variable (upper limit, lower limit), the manual mode output manipulated variable must be set between output manipulated variable lower limit value and output manipulated variable upper limit value.

## 10. Output MV Rate-of-Change (S1+16)

Set the output manipulated variable to change in a second. When the output manipulated variable rate of change is $0 \% /$ second, this function is disabled.
When the difference between the set point and process variable is large, the normal output switches from off to on as shown in the diagram on the next page, but by setting the output manipulated variable rate of change, the rate of change for the output manipulated variable can be changed as shown in the diagram on the next page.
The output manipulated variable rate of change can be set from 0 to $100 \% /$ second in $1 \%$ increments.


This function is suitable for the control of high-temperature heaters (elements composed of molybdenum, tungsten, platinum, used at approximately 1,500 to $1,800^{\circ} \mathrm{C}$ ) that burn out when rapidly energized.

## 11. Proportional Band Offset (S1+20)

The proportional band can be shifted by the value set as the proportional band offset.
For example, if the proportional band offset is set to $20 \%$, the proportional band shifted up by $20 \%$.
The proportional band offset can be set from -100 to $100 \%$.

## 12. Control Period (S1+21)

Set the cycle to perform on/off control of the control output according to the output manipulated variable. The on pulse width for the control period varies according to the output manipulated variable.
The control period can be set from 0.1 to 50.0 seconds in 0.1 second increments.

## When control period: $\mathbf{5}$ seconds (set value 50)



## 13. Advanced/Basic

Click this button and you can show or hide the advanced settings. On the Output tab, Output Manipulated Variable Limit (6), Output Manipulated Variable Upper Limit/Percentage (7), Output Manipulated Variable Lower Limit (8), Manual Mode Output MV (9), Output MV Rate-of-Change (10), Proportional Band Offset (11), and Control Period (12) can be set as advanced settings.

## S1: Control registers

| Storage Destination | Function | Setting Details | R/W |
| :---: | :---: | :---: | :---: |
| S1+0 | Process variable | - When Analog Input is specified AIO to AI5 can be selected. S1+0 is read-only. <br> - When Data Register is specified <br> Store a value that satisfies process variable minimum value $\leq$ process variable $\leq$ process variable maximum value. $\mathrm{S} 1+0$ is readable/writable. | R/W |
| S1+1 | Output manipulated variable | Store a value between 0 and 100 (0\% to 100\%). | R |
| S1+2 | Operation status | Store the PIDA instruction execution status or error status. For details, see "Operation status (S1+2)" on page 19-18. | R |
| S1+3 | Alarm 1 (process high alarm) | Set a value that satisfies alarm 2 value (process low alarm) < alarm 1 value $\leq$ process variable maximum. <br> Operates as process variable maximum value when alarm 1 value $\leq$ alarm 2 value (process low alarm) or alarm 1 value > process variable maximum value. | R/W |
| S1+4 | Alarm 2 (process low alarm) | Set a value that satisfies process variable minimum value $\leq$ alarm 2 value $<$ alarm 1 value (process high alarm) <br> Operates as process variable minimum value when alarm 2 value < process value minimum value or alarm 1 value (process high alarm) $\leq$ alarm 2 value. | R/W |
| S1+5 | Sampling period | Set a value between 1 and 10,000 ( 0.01 to 100.00 seconds). Sampling period of 0 operates as 0.01 seconds and 10,001 or higher operates as 100.00 seconds. | R/W |
| S1+6 | Control mode | Select the control mode. <br> 0 : PID control <br> 1: Proportional control <br> 2: PI control <br> 3: PD control <br> Operates as 0 (PID Control) when a value other than those listed above. | R/W |
| S1+7 | Set point | Set a value that satisfies process variable minimum value $\leq$ set point $\leq$ process variable maximum value. <br> When set point < process variable minimum value or process variable maximum value < set point, a set point configuration error occurs and the previous set point is retained. | R/W |
| S1+8 | Proportional band | Set a value between 1 and 10,000 ( $\pm 0.01$ to $\pm 100.00 \%$ ) <br> Proportional band of 0 operates as $\pm 0.01 \%$ and 10,001 or higher operates as $\pm 100.00 \%$. | R/W |
| S1+9 | Integral time | Set a value between 1 and 65,535 ( 0.1 to 6553.5 seconds). When integral time is 0 , integral time is disabled. | R/W |
| S1+10 | Derivative time | Set a value between 1 and 65,535 ( 0.1 to 6553.5 seconds). When derivative time is 0 , derivative time is disabled. | R/W |


| Storage Destination | Function | Setting Details | R/W |
| :---: | :---: | :---: | :---: |
| S1+11 | Derivative gain | Set a value between 0 and 100 ( 0 to 100\%) <br> Derivative gain of 0 operates as $0 \%$ and 101 or higher operates as $100 \%$. | R/W |
| S1+12 | ARW | Set a value between 0 and 100 ( 0 to $100 \%$ ) ARW of 101 or higher operates as $100 \%$. | R/W |
| S1+13 | AT bias | Set a value that satisfies process variable minimum value < (set point - AT bias setting value) and process variable maximum value > (set point + AT bias setting value). When a value is set that does not satisfy both conditions listed above, 133 is stored in the operation status ( $\mathrm{S} 1+2$ ). | R/W |
| S1+14 | Output manipulated variable upper limit/percentage | - When Enable (upper and lower limits) <br> Set a value between 0 and 100 ( 0 to 100\%) <br> Operates as 100 for a value other than 0 to 100. <br> - When Enable (percentage) <br> Set a value between 10001 and 10099 (1 to 99\%) <br> Operates as the "Output manipulated variable upper limit" for a value other than 10001 to 10099. <br> Output manipulated variable $=$ manipulated variable calculated by the PIDA instruction $x$ scaling factor | R/W |
| S1+15 | Output manipulated variable lower limit | Set a value between 0 and 100 ( 0 to 100\%) Operates as 0 for a value other than 0 to 100 . Set a value that satisfies Output manipulated variable lower limit value < Output manipulated variable upper limit value. | R/W |
| S1+16 | Output manipulated variable rate of change | Set a value between 0 and 100 ( 0 to $100 \% /$ second) If not 0 to 100 , output manipulated variable rate of change is disabled. | R/W |
| S1+17 | Manual mode output manipulated variable | Set a value between 0 and 10000 ( 0.00 to $100.00 \%$ ). Set a value that satisfies output manipulated variable lower limit value $\leq$ manual mode output manipulated variable $\leq$ output manipulated variable upper limit value. When the output manipulated variable limit enable ( $\mathrm{S} 3+2$ ) is ON , this operates as the output manipulated variable lower limit value for a value other than one between the output manipulated variable lower limit value and the output manipulated variable upper limit value. | R/W |
| S1+18 | Output manipulated variable (\% value) | Output manipulated variable is stored as a value between $-32,768$ and $+32,767$ (-327.68 to $+327.67 \%$ ). <br> The output manipulated variable (\% value) is unknown while auto tuning is executing. <br> For manual mode, the manual mode output manipulated variable value is not stored. | R |
| S1+19 | Output manipulated variable (Analog value) | - When Analog Output is specified for the output manipulated variable The S1+1 output manipulated variable (\%) undergoes linear conversion in the range of the minimum and maximum values of the analog output, and that value is stored. <br> - When Data Register is specified for the output manipulated variable The output manipulated variable (\%) stored in S1+1 is linearly converted with the minimum and maximum output values, and the converted value is stored in S1+19. | R |
| S1+20 | Proportional band offset | Set a value between -100 and 100 (-100 to 100\%) <br> Proportional band offset of -101 or lower operates as $-100 \%$ and 101 or higher operates as $100 \%$. | R/W |
| S1+21 | Control period | Set a value between 1 and 500 ( 0.1 to 50.0 seconds) Control period of 0 operates as 0.1 seconds and 501 or higher operates as 50.0 seconds. | R/W |


| Storage Destination | Function | Setting Details | R/W |
| :---: | :---: | :---: | :---: |
| S1+22 | Alarm 3 action | ```Set the Alarm 3 action type. : No Alarm Action Upper Limit Alarm Lower Limit Alarm Upper/Lower Limit Alarm Upper/Lower Limit Range Alarm Process High Alarm Process Low Alarm Upper Limit Alarm with Standby Lower Limit Alarm with Standby 9: Upper/Lower Limit Alarm with Standby Operates as 0 (No Alarm Action) for value other than those listed above.``` | R/W |
| S1+23 | Alarm 3 value | Set the value that will be the trigger condition for the Alarm 3 action. For details, see "Alarm 3 value ( $\mathrm{S} 1+23$ )" on page 19-19. | R/W |
| S1+24 | Alarm 3 hysteresis | Set the range from the alarm action point to when the alarm output changes from ON to OFF. <br> Set a value that satisfies the following conditions in the range of 1 to 65,535 ( 0.1 to $6,553.5\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right.$ ), 1 to 65,535 (voltage/current input)). <br> - When Alarm 3 action is set to Upper/Lower Limit Alarm or Upper/ Lower Limit Alarm with Standby $1 \leq$ Alarm 3 hysteresis < Alarm 3 value <br> - When Alarm 3 action is not set to Upper/Lower Limit Alarm or Upper/ Lower Limit Alarm with Standby $1 \leq$ Alarm 3 hysteresis $\leq 65,535$ <br> When 0 , hysteresis operates as $1\left(0.1\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)\right.$ or 1 (voltage/current input)). | R/W |
| S1+25 | Alarm 3 delay time | Set the time until the alarm output is turned ON after the condition to turn the alarm output ON is satisfied. <br> Set as 0 (delay time disabled) or in the range of 1 to 10,000 (1 to 10,000 seconds). <br> When 10,001 or higher, delay time operates as 10,000 seconds. | R/W |
| S1+26 | Alarm 4 action | Set the Alarm 4 action type. <br> The setting details are the same as Alarm 3 action ( $\mathrm{S} 1+22$ ). | R/W |
| S1+27 | Alarm 4 value | Set the value that will be the trigger condition for the Alarm 4 action. The setting details are the same as Alarm 3 value ( $\mathrm{S} 1+23$ ). | R/W |
| S1+28 | Alarm 4 hysteresis | Set the range from the alarm action point to when the alarm output changes from ON to OFF. <br> The setting details are the same as Alarm 3 hysteresis ( $\mathrm{S} 1+24$ ). | R/W |
| S1+29 | Alarm 4 delay time | Set the time until the alarm output is turned ON after the condition to turn the alarm output ON is satisfied. <br> The setting details are the same as Alarm 3 delay time ( $\mathrm{S} 1+25$ ). | R/W |
| S1+30 | Alarm 5 action | Set the Alarm 5 action type. <br> The setting details are the same as Alarm 3 action ( $\mathrm{S} 1+22$ ). | R/W |
| S1+31 | Alarm 5 value | Set the value that will be the trigger condition for the Alarm 5 action. The setting details are the same as Alarm 3 value ( $\mathrm{S} 1+23$ ). | R/W |
| S1+32 | Alarm 5 hysteresis | Set the range from the alarm action point to when the alarm output changes from ON to OFF. <br> The setting details are the same as Alarm 3 hysteresis ( $\mathrm{S} 1+24$ ). | R/W |
| S1+33 | Alarm 5 delay time | Set the time until the alarm output is turned ON after the condition to turn the alarm output ON is satisfied. <br> The setting details are the same as Alarm 3 delay time ( $\mathrm{S} 1+25$ ). | R/W |
| S1+34 | Alarm 6 action | Set the Alarm 6 action type. <br> The setting details are the same as Alarm 3 action ( $\mathrm{S} 1+22$ ). | R/W |
| S1+35 | Alarm 6 value | Set the value that will be the trigger condition for the Alarm 6 action. The setting details are the same as Alarm 3 value ( $\mathrm{S} 1+23$ ). | R/W |
| S1+36 | Alarm 6 hysteresis | Set the range from the alarm action point to when the alarm output changes from ON to OFF. <br> The setting details are the same as Alarm 3 hysteresis ( $\mathrm{S} 1+24$ ). | R/W |
| S1+37 | Alarm 6 delay time | Set the time until the alarm output is turned ON after the condition to turn the alarm output ON is satisfied. <br> The setting details are the same as Alarm 3 delay time ( $\mathrm{S} 1+25$ ). | R/W |
| $\begin{aligned} & \hline \mathbf{S} 1+38 \\ & \mathrm{~S} 1+39 \end{aligned}$ | - Reserved - | - | - |

## 19: PID Control Instruction

## Operation status ( $\mathbf{S 1 + 2 )}$

Indicates the PIDA instruction execution status or error status.

- X in the table indicates the elapsed time from the start of AT until the set point is reached. X is incremented by 1 every 10 minutes. 9 is stored if the elapsed time is equal to or longer than 90 minutes.
- x in the table indicates the elapsed time from the start of PID instruction until the set point is reached. x is incremented by 1 every 10 minutes. 9 is stored if the elapsed time is equal to or longer than 90 minutes.
- If an error code (status code value is equal to or greater than 100 and less than 120 ) is set for the operation status, execution for PID control is stopped. Set the correct parameters and then turn on the PIDA instruction input once again.

| Status Code | Status Description | Status Classification |
| :---: | :---: | :---: |
| 1x | Auto tuning in progress |  |
| 2x | Auto tuning ended |  |
| 5x | P/PI/PID control in progress |  |
| 6x | Set point is reached (Changes from 5 x to 6 x onace the set point is reached.) |  |
| 103 | Output manipulated variable restriction upper limit value < output manipulated variable restriction lower limit value was set. | PID control execution stop |
| 104 | - Reserved - | - |
| 106 | A value was set for the set point that does not satisfy process variable minimum value $\leq$ set point $\leq$ process variable maximum value. | PID control execution stop |
| 109 | Process variable > process variable maximum value or process variable < process variable minimum value was set. | PID control execution stop |
| 120 | The control mode was set to a value other than 0 to 3 . | PID control execution continues |
| 121 | The sampling period was set to 0 or 10,001 or greater. | PID control execution continues |
| 122 | The proportional band was set to 0 or a value of 10,001 or greater. | PID control execution continues |
| 123 | The derivative gain was set to 0 or a value of 101 or greater. | PID control execution continues |
| 124 | The integral start factor (ARW) was set to a value of 101 or greater. | PID control execution continues |
| 125 | A value was set for the alarm 1 value (process high alarm) that does not satisfy alarm 2 value (process low alarm) < alarm 1 value (process high alarm) $\leq$ process variable maximum value. | PID control execution continues |
| 126 | A value was set for the alarm 2 value (process low alarm) that does not satisfy process variable minimum value $\leq$ alarm 2 value (process low alarm) < alarm 1 value (process high alarm). | PID control execution continues |
| 127 | The output manipulated variable restriction upper limit value was set to a value between 101 to 10,000 or 10,100 to 65,535 . | PID control execution continues |
| 128 | The output manipulated variable restriction lower limit value was set to a value of 101 or higher. PID execution continues | PID control execution continues |
| 129 | The output manipulated variable rate of change was set to a value of 101 or higher. | PID control execution continues |
| 130 | The manual mode output manipulated variable was set to a value that does not satisfy output manipulated variable restriction lower limit value $\leq$ manual mode output manipulated variable $\leq$ output manipulated variable restriction upper limit value. | PID control execution continues |
| 131 | The proportional band offset value was set to a value that is not between -100 to 100. | PID control execution continues |
| 132 | The control cycle was set to 0 or a value of 501 or greater. | PID control execution continues |
| 133 | A value was set that does not satisfy process variable minimum value < (set point - AT bias setting value) and process variable maximum value > (set point + AT bias setting value). | PID control execution continues |
| 134 | The PIDA instruction is executed, and from the second and subsequent scans, a value is set for the set point that does not satisfy minimum value $\leq$ set point $\leq$ maximum value. | PID control execution continues (Maintains the set point in the normal range up to the previous scan.) |
| 135 to 199 | - Reserved - | - |
| 200 | The alarm type for Alarm 3 was set to a value of 10 or higher. | PID control execution continues |
| 201 | The alarm type for Alarm 4 was set to a value of 10 or higher. | PID control execution continues |
| 202 | The alarm type for Alarm 5 was set to a value of 10 or higher. | PID control execution continues |
| 203 | The alarm type for Alarm 6 was set to a value of 10 or higher. | PID control execution continues |
| 204 to 209 | - Reserved - | - |
| 210 | The action point for Alarm 3 with the set alarm value exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 211 | The action point for Alarm 4 with the set alarm value exceeded the process variable minimum value or maximum value. | PID control execution continues |


| Status Code | Status Description | Status Classification |
| :---: | :---: | :---: |
| 212 | The action point for Alarm 5 with the set alarm value exceeded the process variable minimum value or maximum value. | PID control control execution continues |
| 213 | The action point for Alarm 6 with the set alarm value exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 214 to 219 | - Reserved - | - |
| 220 | The action point for Alarm 3 with the set hysteresis exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 221 | The action point for Alarm 4 with the set hysteresis exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 222 | The action point for Alarm 5 with the set hysteresis exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 223 | The action point for Alarm 6 with the set hysteresis exceeded the process variable minimum value or maximum value. | PID control execution continues |
| 224 to 229 | - Reserved - | - |
| 230 | The Alarm 3 delay time was set to a value of 10,001 or higher. | PID control execution continues |
| 231 | The Alarm 4 delay time was set to a value of 10,001 or higher. | PID control execution continues |
| 232 | The Alarm 5 delay time was set to a value of 10,001 or higher. | PID control execution continues |
| 233 | The Alarm 6 delay time was set to a value of 10,001 or higher. | PID control execution continues |
| 234 to 239 | - Reserved - | - |
| 240 | When the Alarm 3 alarm type was set to the upper/lower limit alarm or the upper/ lower limit alarm with standby, the Alarm 3 hysteresis was set to a value that does not satisfy hysteresis < alarm value. | PID control execution continues |
| 241 | When the Alarm 4 alarm type was set to the upper/lower limit alarm or the upper/ lower limit alarm with standby, the Alarm 4 hysteresis was set to a value that does not satisfy hysteresis < alarm value. | PID control execution continues |
| 242 | When the Alarm 5 alarm type was set to the upper/lower limit alarm or the upper/ lower limit alarm with standby, the Alarm 5 hysteresis was set to a value that does not satisfy hysteresis < alarm value. | PID control execution continues |
| 243 | When the Alarm 6 alarm type was set to the upper/lower limit alarm or the upper/ lower limit alarm with standby, the Alarm 6 hysteresis was set to a value that does not satisfy hysteresis < alarm value. | PID control execution continues |
| $\begin{aligned} & 244 \text { to } \\ & 65535 \end{aligned}$ | - Reserved - | - |

## Alarm 3 value ( $\mathbf{S 1 + 2 3 )}$

Set the value that will be the trigger condition for the alarm. The value to set differs by the alarm type.
The content for the alarm value is as follows.

| Alarm Type | Alarm Value | Range |
| :---: | :---: | :---: |
| Upper Limit Alarm | Set the deviation value from the set point. | $-32,768$ to $32,767^{* 1}$ |
| Lower Limit Alarm |  |  |
| Upper/Lower Limit Alarm |  | 0 to $65,535^{* 1}$ |
| Upper/Lower Limit Range Alarm |  |  |
| Process High Alarm | Set the value where the alarm will operate as an absolute value. | Minimum to maximum |
| Process Low Alarm |  |  |
| Upper Limit Alarm with Standby | Set the deviation value from the set point. | $-32,768$ to $32,767^{* 1}$ |
| Lower Limit Alarm with Standby |  |  |
| Upper/Lower Limit Alarm with Standby |  | 0 to 65,535*1 |

*1 No alarm action when the alarm value is 0 .

## S2: Initialization Input

When the initialize input is on, the control registers (data registers) are overwritten with the values configured on the WindLDR input tab, control tab, and output tab. If you want the initialization to be performed just one time, please use a SOTU (shot up) or a SOTD (shot down) instruction.

## S3: Control Relay

| Device | Function | Setting Details | R/W |
| :---: | :---: | :---: | :---: |
| S3+0 | Control action | 0 (OFF): Reverse control action <br> 1 (ON): Direct control action | R |
| S3+1 | Auto/manual mode | $\begin{aligned} & \hline 0 \text { (OFF): Auto } \\ & 1 \text { (ON): Manual } \end{aligned}$ | R/W |
| S3+2 | Output manipulated variable limit enable | 0 (OFF): Disabled <br> 1 (ON): Enabled (operates with $\mathrm{S} 1+14,15$ settings) | R/W |
| S3+3 | Alarm 1 output | Turns on when process variable (S1+0) $\geq$ alarm 1 value (process high alarm) (S1+3). | R |
| S3+4 | Alarm 2 output | Turns on when process variable ( $\mathrm{S} 1+0$ ) $\leq$ alarm 2 value (process low alarm) ( $\mathrm{S} 1+4$ ). | R |
| S3+5 | Control output | Turns on and off according to the control period and output manipulated variable. | R |
| S3+6 | AT execution | Starts auto tuning when execute auto tuning is turned on. Stops auto tuning if execute auto tuning is turned off while auto tuning is executed. | R/W |
| S3+7 | AT complete output | Turns on after auto tuning ends | R |
| S3+8 | Alarm 3 output | Turns ON when the process variable ( $\mathrm{S} 1+0$ ) is outside the Alarm 3 action ( $\mathrm{S} 1+22$ ) range. Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 3 action $(\mathrm{S} 1+22)$ range. | R |
| S3+9 | Alarm 4 output | Turns ON when the process variable ( $\mathrm{S} 1+0$ ) is outside the Alarm 4 action ( $\mathrm{S} 1+26$ ) range. Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 4 action $(\mathrm{S} 1+26)$ range. | R |
| S3+10 | Alarm 5 output | Turns ON when the process variable ( $\mathrm{S} 1+0$ ) is outside the Alarm 5 action ( $\mathrm{S} 1+30$ ) range. Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 5 action $(\mathrm{S} 1+30)$ range. | R |
| S3+11 | Alarm 6 output | Turns ON when the process variable ( $\mathrm{S} 1+0$ ) is outside the Alarm 6 action ( $\mathrm{S} 1+34$ ) range. Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 6 action $(\mathrm{S} 1+34)$ range. | R |
| $\begin{aligned} & \hline S 3+12 \text { to } \\ & \text { S3+15 } \end{aligned}$ | - Reserved - | - | - |

## Operation action (S3+0)

In direct control action, PID instruction operates to increase the output manipulated variable when the process variable is higher than the set point. Cooling equipment uses this operation. In reverse control action, PID instruction operates to increase the output manipulated variable when the process variable is lower than the set point. Heating furnaces uses this operation.


Auto/manual mode (S3+1)
In auto mode, PIDA instruction controls the output according to the manipulated variable calculated by the PID instruction. In manual mode, PIDA instruction controls the output with the manual mode output manipulated variable (S1+17). To use manual mode, you must set the manual mode output manipulated variable in advance.

## Output manipulated variable limit enable (S3+2)

You can enable or disable the output manipulated variable restriction using the output manipulated variable upper limit value $(S 1+14)$ and the output manipulated variable lower limit value $(S 1+15)$.

## Alarm 1 output (S3+3)

Turns on if the process variable $(\mathrm{S} 1+0)$ is higher than or equal to the alarm 1 value (process high alarm) ( $\mathrm{S} 1+3$ ). This is read-only data.

## Alarm 2 output (S3+4)

Turns on if the process variable ( $\mathrm{S} 1+0$ ) is lower than or equal to the alarm 2 value (process low alarm) ( $\mathrm{S} 1+4$ ). This is read-only data.

## Control output (S3+5)

When PIDA instruction is in auto mode, the control output turns on and off according to the manipulated variable calculated by the PIDA instruction and the control period (S1+21). When PIDA instruction is in manual mode, the control output turns on and off according to the manual mode output manipulated variable ( $\mathrm{S} 1+17$ ) and the control period.

## AT execution (S3+6)

When the execute auto tuning is turned on, auto tuning is initiated. Once auto tuning is finished, it is turned off automatically. The auto tuning is terminated if it is turned off while auto tuning is executed.

## AT complete output (S3+7)

The auto tuning completion output is turned on when the auto tuning is successfully completed.

## Alarm 3 output ( $\mathbf{S 3 + 8 )}$

Turns ON when the process variable $(\mathrm{S} 1+0)$ is outside the Alarm 3 action $(\mathrm{S} 1+22)$ range.
Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 3 action ( $\mathrm{S} 1+22$ ) range. This is read-only data.

## Alarm 4 output (S3+9)

Turns ON when the process variable ( $\mathrm{S} 1+0$ ) is outside the Alarm 4 action $(\mathrm{S} 1+26)$ range.
Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 4 action ( $\mathrm{S} 1+26$ ) range. This is read-only data.

## Alarm 5 output ( $\mathbf{S 3 + 1 0 )}$

Turns ON when the process variable $(\mathrm{S} 1+0)$ is outside the Alarm 5 action $(\mathrm{S} 1+30)$ range.
Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 5 action ( $\mathrm{S} 1+30$ ) range. This is read-only data.

## Alarm 6 output ( $\mathbf{S 3 + 1 1 )}$

Turns ON when the process variable $(\mathrm{S} 1+0)$ is outside the Alarm 6 action $(\mathrm{S} 1+34)$ range.
Turns OFF when the process variable ( $\mathrm{S} 1+0$ ) is inside the Alarm 6 action $(\mathrm{S} 1+34)$ range. This is read-only data.

## PID Control

PID control performs adjustment operations to cancel the deviation between a single set point and the process variable that is present in normal temperature control. The types of PID control that can be used with the FC6A Series MicroSmart are as follows.

## - Proportional control

Proportional control outputs the manipulated variable in the proportional band that is proportional to the deviation between the set point and the process variable. The output is turned on until the process variable reaches the A point (the proportional band), and when it exceeds this (it enters the proportional band), the control output starts to be turned on and off at the control cycle, and then when the set point is exceeded, the control output is turned completely off. Along with the rise in temperature from the A point to the set point, the control output on time becomes shorter and the off time becomes longer. An offset always occurs with Proportional control. The $P$ action is suitable for processes with no wasted time such as gas pressure control and level control. When set to Proportional control, integral time and derivative time are automatically ignored.


- When the proportional band is made smaller, the control output turns on or off from near the set point, so the time until the process variable rises in temperature to the set point decreases and the offset also becomes smaller, but hunting increases.
- When the proportional band is made larger, the control output turns on or off from a temperature considerably lower than the target temperature, so auto tuning and hunting eliminate, but it takes time until the process variable rises in temperature to the set point and the offset between the set point and the process variable becomes larger.


## - PI control

The I action automatically corrects the offset generated by Proportional control. However, for rapid changes in temperature due to disturbances, it will take time until the temperature stabilizes. The PI action is suitable for temperature control with a slow rate of change. When set to PI control, derivative time is automatically 0.


- If the integral time is too small, I (integral) control becomes more powerful and the offset can be corrected in a short amount of time, but this may cause long cycles of hunting.
- If the integral time is too large, I (integral) control becomes weaker and it takes time to correct the offset.


## - PD control

Compared to Proportional control, PD control increases the response to rapid temperature changes due to disturbances, stabilizes control in a short amount of time, and attempts to improve the transient response characteristics. PD control is suitable to temperature control with a fast rate of change.
When set to PD control, integral time is automatically 0 .


- When the derivative time is decreased, the D (derivative) control becomes weaker and the response to rapid temperature changes becomes slower. The action to control rapid temperature increases also becomes weaker, so the rise in temperature time to the set point will become faster, but overshooting the set point will occur more easily.
- When the derivative time is increased, the D (derivative) control becomes more powerful and the response to rapid temperature changes becomes faster. The action to control rapid temperature increases also becomes more powerful, so the rise in temperature time to the set point will become slower, but overshooting the set point will occur less easily.


## ■PID control

PID controls overshooting and hunting in Proportional control, corrects the offset in I (integral) control, and makes rapid temperature changes due to disturbances converge on the set point in a short amount of time in D (derivative) control. Ideal temperature control can be performed by using PID control. The parameters for the proportional band, integral time, and derivative time in PID control can be automatically set with auto tuning.


## Auto Tuning (AT)

Optimal temperature control parameters will differ according to the characteristics of the subject to control. When performing PID control, the proportional band (P), integral time (I), and derivative time (D) can be automatically set by executing auto tuning.

- Perform auto tuning during test operation.
- When auto tuning is executed near normal temperatures, temperature fluctuations cannot be imposed, so auto tuning may not end normally. In such cases, set the values for P, I, and D manually.
- When auto turning is executed once, so long as the process is not changed, it is not necessary to execute auto tuning again.


## -Auto tuning (AT)

In order to automatically set the proportional band (P), integral time (I), and derivative time (D), fluctuations must be forcibly imposed on the subject to control to set each value to the optimal value. In order to perform optimal auto tuning, fluctuations must be imposed when the process variable has reached a value near the set point. Fluctuations can be imposed when the process variable is near the set point by setting the AT bias. The relationship between the set point, AT bias, auto tuning start point, and fluctuation start point is as follows.

## Process variable (PV) $\leq$ set point (SP) - AT bias setting value

When the AT bias setting is set to $20^{\circ} \mathrm{C}$, fluctuations will start when the process variable (PV) reaches a temperature $20^{\circ} \mathrm{C}$ lower than the set point (SP).


1. Measuring PID constants
2. Calculate PID constants
3. Control with the PID constants set with AT
4. AT bias setting value (20)

A AT: When the AT execution bit is turned on

Set point (SP) - AT bias setting value < process variable (PV) < set point (SP) + AT bias setting value Fluctuations will start when the process variable (PV) reaches the set point (SP).


1. Measuring PID constants
2. Calculate PID constants
3. Control with the PID constants set with AT
4. AT bias setting value (20)
a AT: When the AT execution bit is turned on

## Process variable (PV) $\geq$ set point (SP) + AT bias setting value

When the AT bias setting is set to $20^{\circ} \mathrm{C}$, fluctuations will start when the process variable (PV) reaches a temperature $20^{\circ} \mathrm{C}$ higher than the set point (SP).


1. Measuring PID constants
2. Calculate PID constants
3. Control with the PID constants set with AT
4. AT bias setting value (20)

AT: When the AT execution bit is turned on

## -To execute auto tuning (AT)

To execute auto tuning, turn on the auto tuning execution flag (S3+6) when the PIDA instruction input is on. The values for P, I, and $D$ will be automatically calculated. While auto tuning is executing, 1 is stored in the operation status ( $\mathrm{S} 1+2$ ).
When auto tuning ends, the auto tuning execution flag $(\mathrm{S} 3+6)$ turns off automatically, 2 is stored in the operation status ( $\mathrm{S} 1+2$ ), and the auto tuning completed output ( $\mathrm{S} 3+7$ ) turns on.

## -To cancel auto tuning (AT) execution

To cancel auto tuning while it is executing, turn off the auto tuning execution flag ( $\mathrm{S} 3+6$ ). When the auto tuning execution flag ( $\mathrm{S} 3+6$ ) is turned off, auto tuning stops, 2 is stored in the operation status ( $\mathrm{S} 1+2$ ), and the auto tuning completed output ( $\mathrm{S} 3+7$ ) turns on.
If auto tuning is canceled without completing, the values for $P, I$, and $D$ are restored to the values before auto tuning was executed.

## PID Monitor

## Function Description

While PID instructions are executed, you can graphically monitor the PIDA instruction parameters. From the PID monitor dialog box, you can directly change the values of data registers and internal relays used by the PIDA instruction, and check the operation of the PIDA instruction while adjusting the PID control parameters.
Note: The PID monitor operates according to the PIDA instruction settings in the ladder program displayed on the WindLDR and not according to the settings in the PLC. If the device allocations for the PIDA instruction in the PLC and the PIDA instruction in WindLDR are different, the PID instruction is not correctly monitored.

## Starting the PID Monitor

## Operation Procedure

1. From the WindLDR menu bar, select Online > Monitor > Monitor. The monitor starts.

2. From the WindLDR menu bar, select Online > Monitor > PID Monitor. The PID Monitor dialog box is displayed.

3. On the PID Monitor dialog box, click $\square$ button (show/hide PID monitor table). The PID monitor table is displayed.


## PID Monitor Dialog Box


12. Apply Tuned Value

## 1. Target

Select the PIDA instruction to monitor. All PIDA instructions in the ladder program opened in WindLDR are displayed. The PIDA instructions can be identified by the program name and line number in which the instruction is used.

## 2. Refer to PID settings

Opens a dialog box for the PIDA instruction being monitored so that you can confirm the settings.

## 3. Jump to target PIDA instruction

Moves the cursor of the ladder editor to the position of the PIDA instruction being monitored.

## 4. Show/hide PID monitor table

You can show or hide PID Monitor Table (11) and Apply Tuned Values button (12).

## 5. PID monitor settings

Opens the PID Monitor Settings dialog box. For details, see "PID Monitor Settings Dialog Box" on page 19-29.

## 6. Primary parameters panel

You can check the values of the process variable (PV), set point (SP), and manipulated variable (MV). For the MV, the analog value can be checked with the horizontal bar graph, and the digital value (on/off) can be checked with the color of the OUT indicator. When the OUT indicator is white, the output is off. When it is green, the output is on.
The colors of the values for the process variable (PV), set point (SP), and manipulated variable (MV) can be changed in the PID Monitor Settings dialog box. For details, see "PID Monitor Settings Dialog Box" on page 19-29.

## 7. PID parameters panel

You can check the values of the proportional band (P), integral time (I), and derivative time (D).

## 8. Send Command

You can send a command to the Touch to execute/stop AT for PID control and to switch manual/auto mode. Click this button to display a popup menu and click the menu to send the command.

9. Status indicators

You can check the primary statuses for PID control with the colored indicators.

| Indicator Name | Background Color | Status |
| :---: | :---: | :---: |
| PID | Gray | PID control stopped |
|  | Green | PID control is executed |
| AT | Gray | AT stopped |
|  | Green | AT is being executed |
| MANUAL | Gray | Auto mode |
|  | Green | Manual mode |
| A1 | Gray | Normal operation |
|  | Red | Alarm 1 output is ON |
| A2 | Gray | Normal operation |
|  | Red | Alarm 2 output is ON |
| A3 | Gray | Normal operation |
|  | Red | Alarm 3 output is ON |
| A4 | Gray | Normal operation |
|  | Red | Alarm 4 output is ON |
| A5 | Gray | Normal operation |
|  | Red | Alarm 5 output is ON |
| A6 | Gray | Normal operation |
|  | Red | Alarm 6 output is ON |

## 10. Trend graph

You can monitor the values of the process variable (PV), set point (SP), manipulated variable (MV), alarm 1 value (process high alarm), and alarm 2 value (process low alarm) with the trend graph. Showing/hiding values, colors, the upper limit value, and the lower limit value can be configured in the PID Monitor Settings dialog box. For details, see "PID Monitor Settings Dialog Box" on page 19-29.
Note: When plots on the trend graph reach the right edge of the graph, the center of the graph moves to the left edge and the new log information is displayed from the center of the graph. You can check the past log information by moving the scrollbar. The log information retains a maximum of 10,000 items of information. When the log information has reached 10,000 items of information, the log information is deleted from the oldest items, and the new log information is recorded. The log information displayed on the trend graph is deleted when the dialog box is closed or when the PIDA instruction being monitored is changed.

## 19: PID Control Instruction

## 11. PID monitor table

You can check the function name, current value, and device address for data registers and internal relays used by the PIDA instruction. The current values displayed in white cells can be changed. Showing/hiding items can be changed in the PID Monitor Settings dialog box. For details, see "PID Monitor Settings Dialog Box" on page 19-29.

## 12. Apply Tuned Values

By clicking this button, you can reflect the PID control parameters adjusted in PID monitor table (11) as the initial setting values for the PIDA instruction selected in PIDA instruction list (1). To store the reflected initial setting values in the module, you must end the monitor and download the program to the module.

## Changing PID Monitor Settings

## Operation Procedure

1. From the WindLDR menu bar, select Online > Monitor > Monitor.

The monitor starts.

2. From the WindLDR menu bar, select Online > Monitor > PID Monitor. The PID Monitor dialog box is displayed.

3. In the PID Monitor dialog box, click button (PID monitor settings). The PID Monitor Settings dialog box is displayed.


## PID Monitor Settings Dialog Box



1. Parameter Settings (Chart)

You can show/hide and specify the color of the process variable (PV), set point (SP), manipulated variable (MV), alarm 1 value (process high alarm), and alarm 2 value (process low alarm) on the trend graph in the PID Monitor dialog box. Select the check box for each item to show it, or clear the check box to hide it. The color of the button on the right side of each item is the display color for that item. Press button to display the list of colors and select the color to change the display color. The selected color is applied to the primary parameters panel in the PID Monitor dialog box.

## 2. Scaling Settings

You can set the scaling for the vertical axis of the trend graph in the PID Monitor dialog box. When the auto scaling check box is selected, the Maximum Value and the Minimum Value for the vertical axis are automatically adjusted for the values displayed on the trend graph. When the check box is cleared, the Maximum Value and the Minimum Value are set according to the entered values.

## 3. PID monitor table settings

You can show or hide the items on the PID monitor table. Select the check box for each item to show it, or clear the check box to hide it.

## 4. Default

All settings are set to their initial values.

## 19: PID Control Instruction

## Application Example

This section describes an application example using the PIDA instruction.
Note: You must change the settings according to the application's actual system configuration and operating status.

The following two system configurations are described for applications that set the set point for the control target temperature to $200^{\circ} \mathrm{C}$ and perform PID control.

- PID control via ON/OFF output
- PID control via analog output


## Operation

- PID control is performed based on the temperature input to the analog cartridge and the manipulated variable is output. The set point is $200^{\circ} \mathrm{C}$.
- The control mode is PID (PID control) and the control action is reverse control action.
- Alarm 1 output $(\mathrm{S} 3+3)$ is turned ON when the process variable reaches $250^{\circ} \mathrm{C}$, and the heater is stopped or the power is adjusted.


## PID control via ON/OFF output

## System configuration



## Ladder program



| Device Address | Comment |
| :--- | :--- |
| D0000 | Process variable (after conversion) |
| D0002 | Operating status |
| D0007 | Set point |
| D8172 | Analog Status to the Analog Cartridge |
| I0000 | PID control enable input |
| Q0000 | Heater output |
| Q0001 | Alarm lamp |


| Device Address | Comment |
| :--- | :--- |
| M0000 | Control action |
| M0003 | Alarm 1 output |
| M0005 | Control output |
| M0020 | Analog input status error |
| M0021 | PIDA error |
| M8120 | Initialize Pulse |

1. The PIDA instruction operates when IO is ON.
2. When M0003 (Alarm 1 output (process high alarm)) is OFF and M0020 is OFF (the analog input status error for the analog cartridge is 0 to 2), Q0 (heater output) turns ON/OFF according to the manipulated variable and control period calculated by PID control. The heater output turns OFF when an error occurs.
3. When the analog input status error for the analog cartridge is 5,6 , or 8 to 11, M0020 turns ON.
4. When M0003 (Alarm 1 output (process high alarm)) is ON or M0020 is ON (when the analog input status error for the analog cartridge is 5,6 , or 8 to 11), Q1 (alarm lamp) turns ON.
5. The operating status of the PIDA instruction is judged, and when an error occurs, M0021 turns ON and Q1 (alarm lamp) turns ON.

## Note:

The analog status for the analog cartridge is as follows.

- Analog input status error

0 : Operating normally
1: Converting data
2: Initializing
5, 6: Wiring error
8 to 11: Analog cartridge error
For details, see Chapter 10 "Analog Cartridge" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

PIDA (PIDA control) instruction dialog box configuration procedure
Use the default value for settings that are not described in this procedure.

1. The Devices tab configures the devices used with the PIDA instruction.

- Set S1 (Control Register) to D0000 (1).
- Set S2 (Initialization Input) to M8120 (2).
- Set S3 (Control Relay) to M0000 (3).
- S4 (Set Point) is automatically set to D0007 (4).


2. Click the Input tab and configure the items.

- For the process variable (PV), select Analog Input, and then select CPU/HMI Module and AIO02 (1).
- For Alarm 1, set the alarm value for the process high alarm to 250.0 (2).
- For Alarm 2, set the alarm value for the process low alarm to $\mathbf{0 . 0}$ (3).


3. Click the Control tab and configure the items.

- For Control Mode, select PID (PID Control) (1).
- For Control Action, select Reverse Control Action (2).
- For Set Point (SP), set 200.0 (3).


4. Click the Output tab and configure the items.

- For Output Manipulated Variable (MV), select Data Register (1).


5. Click OK to close the PIDA (PIDA Control) dialog box.
6. Use the Module Configuration Editor to configure the analog input for the analog cartridge. On the Configuration tab, in the PLCs group, select Expansion Modules.
7. Select FC6A-PJ2CP in the expansion modules and cartridges list and drag and drop it to the module configuration area.

8. Click the FC6A-PJ2CP analog cartridge that was interested in the module configuration area and click Configure. The Analog Parameters Configuration (Cartridge Slot 1) dialog box is displayed.
9. Configure the items.

- For channel INO : AI2 Data Type, select Celsius ( ${ }^{\circ} \mathbf{C}$ ) (1).


10. Click OK to close the Analog Parameters Configuration (Cartridge Slot 1) dialog box.

## PID control via analog output

System configuration


## Ladder program

| Device Address | Comment |  | Comment |  |
| :--- | :--- | :--- | :--- | :--- |
| D0000 | Process variable (after conversion) |  | Device Address | M0000 |

1. When IOOOO is ON and the analog input status error for the analog cartridge is 5,6 , or 8 to 11, M0020 turns ON. When the analog output status error for the analog cartridge is 8 to 11 , M0021 turns ON.
2. The PID instruction operates when IOOOO is ON and both M0020 and M0021 are OFF. The operating status of the PID instruction is judged, and when an error occurs, M0022 turns ON.
3. When M0020 or M0021 is ON, or when IO000 is OFF (when the PID instruction is stopped), 0 is stored in D8186 and 0 V is output from AQ4.
4. The operating status of the PID instruction is judged, and when an error occurs, M0021 turns ON.
5. When either M0020, M0021, M0022, or M0003 (Alarm 1 output (process high alarm)) is ON, Q0001 (alarm lamp) turns ON.

## Note:

The analog status for the analog cartridge is as follows.

- Analog input status error

0 : Operating normally
1: Converting data
2: Initializing
5, 6: Wiring error
8 to 11: Analog cartridge error

- Analog output status error

0 : Operating normally
2: Initializing
3: Parameter setting error
5, 6: Wiring error
8 to 11: Analog cartridge error
For details, see Chapter 10 "Analog Cartridge" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## PID instruction dialog box configuration procedure

Use the default value for settings that are not described in this procedure.

1. The Devices tab configures the devices used with the PID instruction.

- Set S1 (Control Register) to D0000 (1).
- Set S2 (Initialization Input) to M8120 (2).
- Set S3 (Control Relay) to M0000 (3).
- S4 (Set Point) is automatically set to D0007 (4).


2. Click the Input tab and configure the items.

- For Process Variable (PV), select Analog Input, and then select AI002 (1).
- For Alarm 1, set the alarm value for the process high alarm to 250.0 (2).

For Alarm 2, set the alarm value for the process low alarm to $\mathbf{0 . 0}$ (3).

3. Click the Control tab and configure the items.

- For Control Mode, select PID (PID Control) (1).
- For Control Action, select Reverse Control Action (2).
- For Set Point (SP), set 200.0 (3).


4. Click the Output tab and configure the items.

- For Output Manipulated Variable (MV), select Analog Output, and then select AQ004 (1).


5. Use the Module Configuration Editor to configure the analog input for the analog cartridge. On the Configuration tab, in the PLCs group, select Expansion Modules.
6. Select FC6A-PJ2CP in the expansion modules and cartridges list and drag and drop it to the module configuration area.

7. Click the FC6A-PJ2CP analog cartridge that was interested in the module configuration area and click Configure. The Analog Parameters Configuration (Cartridge Slot 1) dialog box is displayed.
8. Configure the items.

- For channel INO : AI2 Data Type, select Celsius ( ${ }^{\circ} \mathbf{C}$ ) (1).


9. Click OK to close the Analog Parameters Configuration (Cartridge Slot 1) dialog box.
10. Select FC6A-PK2AV in the expansion modules and cartridges list and drag and drop it to the module configuration area.

11. Click the FC6A-PK2AV analog cartridge that was interested in the module configuration area and click Configure. The Analog Parameters Configuration (Cartridge Slot 2) dialog box is displayed.
12. Configure the items.

- For channel OUT0 : AQ4 Signal Type, select 0 to 10V DC (1).


13. Click OK to close the Analog Parameters Configuration (Cartridge Slot 2) dialog box.

## 20: Dual / Teaching Timer Instructions

## Introduction

This chapter describes the dual/teaching timer instructions that cyclically turn outputs on and off in the specified time interval. Four dual timers are available and the ON/OFF duration can be selected from 1 ms up to 65,535 s.
Teaching timer instruction measures the ON duration of the start input for the teaching timer instruction and stores the measured data to a designated data register, which can be used as a preset value for a timer instruction.

## DTML (1-s Dual Timer)



## DTIM (100-ms Dual Timer)



## DTMH (10-ms Dual Timer)



## DTMS (1-ms Dual Timer)



While input is on, destination device D1 repeats to turn on and off for a duration assigned by devices S 1 and S 2 , respectively.

When the input is off, D1 turns off.
The time range is 0 through $6,553.5 \mathrm{~s}$.

While input is on, destination device D1 repeats to turn on and off for a duration assigned by devices S1 and S2, respectively.

When the input is off, D1 turns off.
The time range is 0 through 655.35 s .
While input is on, destination device D1 repeats to turn on and off for a duration assigned by devices S1 and S2, respectively.

When the input is off, D1 turns off.
The time range is 0 through $65,535 \mathrm{~s}$.

While input is on, destination device D1 repeats to turn on and off for a duration assigned by devices S 1 and S2, respectively.
When the input is off, D1 turns off.
The time range is 0 through 65.535 s .

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Constant |  |  |  |  |  |  |  |  |
| S1 (Source 1) | ON duration | - | - | - | - | - | - | X |
| S2 (Source 2) | OFF duration | - | - | - | - | - | - | X |
| D1 (Destination 1) | Dual timer output | - | X | $-65,535$ |  |  |  |  |
| D2 (Destination 2) | System work area | - | - | - | - | - | - | X |

For valid device address ranges, see "Device Addresses" on page 2-1.

- Internal relays M0 through M1277 can be designated as D1. Special internal relays cannot be designated as D1.

Destination device D2 (system work area) uses 2 data registers starting with the device designated as D2. Data registers D0-D998 and D1000D1998 can be designated as D2. The two data registers are used for a system work area. Do not use these data registers for destinations of other advanced instructions, and do not change values of these data registers using the monitor function on WindLDR. If the data in these data registers are changed, the dual timer does not operate correctly.

The dual timer instructions cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. The data in D1 (destination 1) is unchanged. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Examples: DTML, DTIM, DTMH, DTMS



While input IO is on, four dual timer instructions turn on and off the destination devices according to the on and off durations assigned by source devices S1 and S2.


| Instruction | Increments | S1 | ON Duration | S2 | OFF Duration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DTML | 1 s | 2 | $1 \mathrm{~s} \times 2=2 \mathrm{~s}$ | 1 | $1 \mathrm{~s} \times 1=1 \mathrm{~s}$ |
| DTIM | 100 ms | 10 | $100 \mathrm{~ms} \times 10=1 \mathrm{~s}$ | 5 | $100 \mathrm{~ms} \times 5=0.5 \mathrm{~s}$ |
| DTMH | 10 ms | 50 | $10 \mathrm{~ms} \times 50=500 \mathrm{~ms}$ | 25 | $10 \mathrm{~ms} \times 25=250 \mathrm{~ms}$ |
| DTMS | 1 ms | 250 | $1 \mathrm{~ms} \times 250=250 \mathrm{~ms}$ | 125 | $1 \mathrm{~ms} \times 125=125 \mathrm{~ms}$ |

For the timer accuracy of timer instructions, see "TML, TIM, TMH, and TMS (Timer)" on page 4-7.

## TTIM (Teaching Timer)



While input is on, the ON duration is measured in units of 100 ms and the measured value is stored to a data register assigned by destination device D1.

When the input is off, D1 turns off.
The measured time range is 0 through 6,553.5 s.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D1 (Destination 1) | Measured value | - | - | - | - | - | - | X |

For valid device address ranges, see "Device Addresses" on page 2-1.
Destination device D1 (measured value) uses 3 data registers starting with the device designated as D1. Data registers D0-D997 and D1000-D1997 can be designated as D1. Subsequent two data registers starting with destination device D1+1 are used for a system work area. Do not use these two data registers for destinations of other advanced instructions, and do not change values of these data registers using the monitor function on WindLDR. If the data in these data registers are changed, the teaching timer does not operate correctly.
The teaching timer instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. The data in D1 (destination 1) is unchanged. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Examples: TTIM



When input IO is turned on, TTIM resets data register D100 to zero and starts to store the ON duration of input IO to data register D100, measured in units of 100 ms .
When input IO is turned off, TTIM stops the measurement, and data register D100 maintains the measured value of the ON duration.


The following example demonstrates a program to measure the ON duration of input IO and to use the ON duration as a preset value for 100 -ms timer instruction TIM.


When input I1 is turned on, $100-\mathrm{ms}$ timer T0 starts to operate with a preset value stored in data register DO.
While input IO is on, TTIM measures the ON duration of input IO and stores the measured value in units of 100 ms to data register D100.

When input IO is turned off, MOV(W) stores the D100 value to data register DO as a preset value for timer TO.

## 21: TRIGONOMETRIC FUNCTION Instructions

## Introduction

This chapter describes the trigonometric function instructions that are used to calculate sine, cosine, and tangent from an angle.

## RAD (Degree to Radian)


$\mathrm{S} 1 \cdot \mathrm{~S} 1+1^{\circ} \times \pi / 180 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the degree value assigned by source device S 1 is converted into a radian value and stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Degree value to convert into radian | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | - |

For the valid device address range, see "Device Addresses" on page 2-1.
When the conversion result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is between $-1.175495 \times 10^{-38}$ and $1.175495 \times 10^{-38}$, the destination device designated by D1 stores 0 .


When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the RAD instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | - |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

Example: RAD


When input I1 is turned on, the degree value of data registers D10 and D11 assigned by source device S1 is converted into a radian value and stored to data registers D20 and D21 assigned by destination device D1.

$$
270^{\circ} \times \pi / 180 \rightarrow 4.712389 \mathrm{rad}
$$

S1
D1


## 21: Trigonometric Function Instructions

## DEG (Radian to Degree)


$\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \mathrm{rad} \times 180 / \pi \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1^{\circ}$
When input is on, the radian value assigned by source device S 1 is converted into a degree value and stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Radian value to convert into degree | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the conversion result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is below $-3.402823 \times 10^{38}$ or over $3.402823 \times 10^{38}$, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.


When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the DEG instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - | Since floating point data is used, the source and destination devices use two consecutive data registers. |
| :--- | :--- | :--- |
| I (integer) | - |  |
| D (double word) | - |  |
| L (long) | - |  |
| F (float) | $X$ |  |

## Example: DEG



When input I1 is turned on, the radian value of data registers D10 and D11 assigned by source device S 1 is converted into a degree value and stored to data registers D20 and D21 assigned by destination device D1.

$$
4.712389 \mathrm{rad} \times 180 / \pi \rightarrow 270.0^{\circ}
$$

| S1 |  | D1 |  |
| :---: | :---: | :---: | :---: |
| D10•D11 | 4.712389 | D20•D21 | 270.0 |

## SIN (Sine)


$\sin \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the sine of the radian value assigned by source device S 1 is stored to the destination assigned by device D1.

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Radian value to convert into sine value | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the SIN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | - |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | $X$ |

Since the floating point data type is used, the source and destination devices use two consecutive data registers.

## Example: SIN



When input I1 is turned on, the sine of the radian value of data registers D10 and D11 assigned by source device S1 is stored to data registers D20 and D21 assigned by destination device D1.

$$
\begin{aligned}
& 3.926991 \mathrm{rad}=5 \pi / 4 \mathrm{rad} \\
& \sin 5 \pi / 4 \rightarrow-0.7071069
\end{aligned}
$$



## 21: Trigonometric Function Instructions

## COS (Cosine)


$\cos \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the cosine of the radian value assigned by source device S 1 is stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Radian value to convert into cosine value | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10
Since the COS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | - |
| :--- | :---: |
| I (integer) | - |
| D (double word) | - |
| L (long) | - |
| F (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

## Example: COS



When input I1 is turned on, the cosine of the radian value of data registers D10 and D11 assigned by source device S 1 is stored to data registers D20 and D21 assigned by destination device D1.

$$
\begin{aligned}
& 3.926991 \mathrm{rad}=5 \pi / 4 \mathrm{rad} \\
& \cos 5 \pi / 4 \rightarrow-0.7071068
\end{aligned}
$$

S1
D1


## TAN (Tangent)


$\tan \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the tangent of the radian value assigned by source device S 1 is stored to the destination assigned by device D1.

Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Radian value to convert into tangent value | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the conversion result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the conversion result is 0 . When the conversion result is below $-3.402823 \times 10^{38}$ or over $3.402823 \times 10^{38}$, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.


When the data designated by S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the TAN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - | Since floating point data is used, the source and destination devices use two consecutive data registers. |
| :--- | :--- | :--- |
| I (integer) - <br> $\mathbf{D}$ (double word) - <br> $\mathbf{L}$ (long) - <br> F (float) $X$ |  |  |

## Example: TAN



When input I1 is turned on, the tangent of the radian value of data registers D10 and D11 assigned by source device S1 is stored to data registers D20 and D21 assigned by destination device D1.


## 21: Trigonometric Function Instructions

## ASIN (Arc Sine)


asin $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the arc sine of the value assigned by source device S 1 is stored in radians to the destination assigned by device D1.

The $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value must be within the following range:

$$
-1.0 \leq \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq 1.0
$$

If the $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value is not within this range, 0 is stored to $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Arc sine value to convert into radian | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the data designated by source device S 1 is not within the range between -1.0 and 1.0 or does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the ASIN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - | Since floating point data is used, the source and destination devices use two consecutive data registers. |
| :--- | :--- | :--- |
| I (integer) - <br>   <br> $\mathbf{D}$ (double word) - <br> $\mathbf{L}$ (long) - <br> F (float) $X$ |  |  |

## Example: ASIN



When input I1 is turned on, the arc sine of the value of data registers D10 and D11 assigned by source device S1 is stored to data registers D20 and D21 assigned by destination device D1.

$$
\begin{aligned}
& \text { asin }-0.7071069 \rightarrow-0.7853984 \mathrm{rad} \\
& -0.7853984 \mathrm{rad}=-\pi / 4 \mathrm{rad} \\
& \mathrm{~S} 1 \\
& \mathrm{D} 10 \cdot \mathrm{D} 11 \xrightarrow{-0.7071069} \longrightarrow \mathrm{D} 20 \cdot \mathrm{D} 21 \xrightarrow{-0.7853984} \mathrm{D} 1
\end{aligned}
$$

## ACOS (Arc Cosine)


$\operatorname{acos} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$
When input is on, the arc cosine of the value assigned by source device S 1 is stored in radians to the destination assigned by device D1.

The $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value must be within the following range:
$-1.0 \leq \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \leq 1.0$
If the $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ value is not within this range, 0 is stored to $\mathrm{D} 1 \cdot \mathrm{D} 1+1$.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Arc cosine value to convert into radian | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the data designated by source device S 1 is not within the range between -1.0 and 1.0 or does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the ACOS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - | Since floating point data is used, the source and destination devices use two consecutive data registers. |
| :--- | :--- | :--- |
| I (integer) | - |  |
| D (double word) | - |  |
| L (long) | - |  |
| F (float) | $X$ |  |

## Example: ACOS



When input I1 is turned on, the arc cosine of the value of data registers D10 and D11 assigned by source device S 1 is stored to data registers D20 and D21 assigned by destination device D1.

$$
\begin{aligned}
& \mathrm{acos}-0.7071068 \rightarrow 2.356194 \mathrm{rad} \\
& 2.356194 \mathrm{rad}=3 \pi / 4 \mathrm{rad}
\end{aligned}
$$

| S1 |  | D1 |  |
| :---: | :---: | :---: | :---: |
| D10•D11 | -0.7071068 | D20•D21 | 2.356194 |

## 21: Trigonometric Function Instructions

## ATAN (Arc Tangent)


atan $\mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1 \mathrm{rad}$

When input is on, the arc tangent of the value assigned by source device S 1 is stored in radians to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Arc tangent value to convert into radian | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the data designated by source device S 1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the ATAN instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | - |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

## Example: ATAN



When input I1 is turned on, the arc tangent of the value of data registers D10 and D11 assigned by source device S1 is stored to data registers D20 and D21 assigned by destination device D1.
$\operatorname{atan} 0.4142136 \rightarrow 0.3926991 \mathrm{rad}$
$0.3926991 \mathrm{rad}=\pi / 8 \mathrm{rad}$

S1
D1
D10•D11 $\qquad$ D20•D21 $\qquad$

## 22: Logarithm / Power Instructions

## Introduction

This chapter describes logarithm function and power function instructions that are are used to calculate logarithms and powers for specified data.

## LOGE (Natural Logarithm)


$\log _{\mathrm{e}} \mathrm{S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the natural logarithm of the binary data assigned by source device S 1 is stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| S1 (Source 1) | Binary data to convert into natural logarithm | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the operation result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the result is 0 . For details, see "Carry and Borrow in Floating-Point Data Processing" on page 3-8.
When the value of S 1 (source 1 ) is 0 , a user program execution error occurs.
When the value of $S 1$ (source 1 ) is less than 0 , a user program execution error occurs.
When the data designated by source device S 1 does not comply with the normal floating-point format, a user program execution error occurs, and the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed.
When a user program execution error occurs, special internal relay M8004 and ERR LED on the FC6A Series MicroSmart are turned on. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the LOGE instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - | Since floating point data is used, the source and destination devices use two consecutive data registers. |
| :--- | :--- | :--- |
| I (integer) | - |  |
| D (double word) | - |  |
| $\mathbf{L}$ (long) | - |  |
| F (float) | $X$ |  |

## Example: LOGE



When input I1 is on, the natural logarithm of the binary data of data registers D10 and D11 assigned by source device S1 is stored to data registers D20 and D21 assigned by destination device D1.


## 22: Logarithm / Power Instructions

## LOG10 (Common Logarithm)


$\log _{10} \mathrm{~S} 1 \cdot \mathrm{~S} 1+1 \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, the common logarithm of the binary data assigned by source device S 1 is stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data to convert into common logarithm | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store conversion results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the operation result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the result is 0 . For details, see "Carry and Borrow in Floating-Point Data Processing" on page 3-8.

When the value of S 1 (source 1 ) is 0 , a user program execution error occurs.
When the value of S 1 (source 1 ) is less than 0 , a user program execution error occurs.
When the data designated by source device S 1 does not comply with the normal floating-point format, a user program execution error occurs, and the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed.
When a user program execution error occurs, special internal relay M8004 and ERR LED on the FC6A Series MicroSmart are turned on. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the LOG10 instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | - |
| :--- | :---: |
| I (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

## Example: LOG10



When input I1 is on, the common logarithm of the binary data of data registers D10 and D11 assigned by source device S 1 is stored to data registers D20 and D21 assigned by destination device D1.


## EXP (Exponent)


$\mathrm{e}^{\mathrm{S} 1 \cdot \mathrm{~S} 1+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, e is raised to the power $\mathrm{S} 1 \cdot \mathrm{~S} 1+1$ assigned by source device S 1 and is stored to the destination assigned by device D1.
$e$ (base of natural logarithm) $=2.7182818$

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data of exponent | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the operation result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ and $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on except when the result is 0 . For details, see "Carry and Borrow in Floating-Point Data Processing" on page 3-8.
When the operation result is between $-1.175495 \times 10^{-38}$ and $1.175495 \times 10^{-38}$, the destination device designated by D1 stores 0 . When the operation result is less than $-3.402823 \times 10^{38}$ or larger than $3.402823 \times 10^{38}$, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.

When the data designated by source device S 1 does not comply with the normal floating-point format, a user program execution error occurs, and the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed.
When a user program execution error occurs, special internal relay M8004 and ERR LED on the FC6A Series MicroSmart are turned on. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the EXP instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

Example: EXP


When input I1 is on, e is raised to the data of data registers D10 and D11 assigned by source device S1 and the operation result is stored to data registers D20 and D21 assigned by destination device D1.

$$
\mathrm{e}^{2}=2.7182818^{2} \rightarrow 7.389056
$$

S1 D1


## 22: Logarithm / Power Instructions

## POW (Power)


$\mathrm{S} 1 \cdot \mathrm{~S} 1+1^{\mathrm{S} 2 \cdot \mathrm{~S} 2+1} \rightarrow \mathrm{D} 1 \cdot \mathrm{D} 1+1$
When input is on, data assigned by source device S 1 is raised to the power $\mathrm{S} 2 \cdot \mathrm{~S} 2+1$ assigned by source device S 2 and the operation result is stored to the destination assigned by device D1.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Binary data of base | - | - | - | - | - | - | X | X | - | - |
| S2 (Source 2) | Binary data of exponent | - | - | - | - | - | - | X | X | - |  |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ | - | - |  |

For valid device address ranges, see "Device Addresses" on page 2-1.
When the operation result is not within the range between $-3.402823 \times 10^{38}$ and $-1.175495 \times 10^{-38}$ or between $1.175495 \times 10^{-38}$ to $3.402823 \times 10^{38}$, special internal relay M8003 (carry or borrow) is turned on, except when the result is 0 . For details, see "Carry and Borrow in Floating-Point Data Processing" on page 3-8.
When the operation result is between $-1.175495 \times 10^{-38}$ and $1.175495 \times 10^{-38}$, the destination device designated by D1 stores 0 . When the operation result is less than $-3.402823 \times 10^{38}$ or greater than $3.402823 \times 10^{38}$, causing an overflow, the destination device designated by D1 stores a value of minus or plus infinity.

When one of the following conditions occurs, a user program execution error occurs.

- The data designated by source device S 1 is less than 0 and the data designated by source device S 2 is not an integer.
- The data designated by source device $S 1$ is 0 and the data designated by source device $S 2$ is less than or equal to 0 .

When the data designated by source device S 1 or S2 does not comply with the normal floating-point format, a user program execution error occurs, and the execution of the instruction is canceled. The value of D1 is left unchanged and the next instruction is executed
When a user program execution error occurs, special internal relay M8004 and ERR LED on the FC6A Series MicroSmart are turned on. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the POW instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | - |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | $X$ |

Since floating point data is used, the source and destination devices use two consecutive data registers.

## Example: POW

$\left.\left.\right|_{\text {I1 }} \longmapsto \operatorname{SOTU}-$| $\operatorname{SOW}(F)$ | S1 | S2 |
| :---: | :---: | :---: |
| D10 | D20 | D30 | \right\rvert\,

S1

When input I1 is on, the data of data registers D10 and D11 assigned by source device S 1 is raised to the power D20•D20+1 assigned by source device S2 and the operation result is stored to data registers D30 and D31 assigned by destination device D1.

$$
4^{1.25} \rightarrow 5.656854
$$

S2
D1
D10•D11 4.0

## 23: File Data Processing Instructions

## Introduction

This chapter describes the file data processing instructions that handle the FIFO (first-in first-out) data structure. FIFOF (FIFO Format) instructions initialize the FIFO data files storing the data. FIEX (First-In Execute) instructions store new data to the FIFO data files, and FOEX (First-Out Execute) instructions retrieve the stored data from the FIFO data files. The first data to be stored to the FIFO data files by FIEX instructions will be the first data to be retrieved by FOEX instructions.

NDSRC (N Data Search) instructions search a designated value through a specified range.

## FIFOF (FIFO Format)

$|\vdash|$| $\mathrm{FIFOF}(\mathrm{W})$ | S 1 | S 2 | D 1 | D 2 |
| :--- | :--- | :---: | :---: | :---: |
| $*$ | $* * *$ | $* * *$ | $* * * * *$ | $* * * *$ |

When input is on, FIFOF instruction initializes an FIFO data file. Each data file has unique number 0 through 9. A maximum of 10 data files can be used in a user program.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N (File Number) | File Number | - | - | - | - | - | - | - | $0-9$ | - |
| S1 (Source 1) | Quantity of data registers per record | - | - | - | - | - | - | - | $1-255$ | - |
| S2 (Source 2) | Quantity of records | - | - | - | - | - | - | - | $2-255$ |  |
| D1 (Destination 1) | First data register to store FIFO data file | - | - | - | - | - | - | X | - | - |
| D2 (Destination 2) | FIFO status output | - | - | $\mathbf{A}$ | - | - | - | - | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
A Special internal relays cannot be designated as D2.
Since the FIFOF instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| F (float) | - |

When an M (internal relay) is assigned as the D2, three internal relays starting with the device assigned by D2 are used.

When a D (data register) is assigned as the $\mathrm{D} 1, \mathrm{~S} 1 \times \mathrm{S} 2+2$ data registers starting with the device assigned by D1 are used.

## 23: File Data Processing Instructions

## Destination Device D1 (FIFO Data File)

FIFO data files are initialized when corresponding FIFOF instructions are executed. FIFO data file is placed in the area starting with the device designated by D1 and occupies as many as $\mathrm{S} 1 \times \mathrm{S} 2+2$ data registers. The size of each record is equal to S 1 . $\mathrm{S} 1-1$ records of data can be stored in an FIFO data file using FIEX instructions. The stored data can be retrieved from the FIFO data file using FOEX instructions.

| Device | Function | Description |
| :---: | :---: | :---: |
| D1+0 | FI pointer | The FI pointer indicates the position to store new data into the FIFO data file. When an FIEX instruction is executed, the new data in data registers starting with the device designated by S 1 of the FIEX instruction is stored at the position indicated by the FI pointer, and the FI pointer is incremented by 1 to indicate the position to store the next data. <br> When the FI pointer indicates the last record of the FIFO data file, and an FIEX instruction is executed, the FI pointer will return to 0 . |
| D1+1 | FO pointer | The FO pointer indicates the position to retrieve the stored data from the FIFO data file. When an FOEX instruction is executed, the data at the position indicated by the FIFO pointer is retrieved and stored to the data registers starting with the device designated by D1 of the FOEX instruction, and the FO pointer is incremented by 1 to indicate the position to retrieve the next data. <br> When the FO pointer indicates the last record of the FIFO data file, and an FOEX instruction is executed, the FO pointer will return to 0 . |
| D1+2 | Record 0 | The first record to store the data. |
| ... |  |  |
| D1+(S1+1) |  |  |
| D1+(S1+2) | Record 1 | The second record to store the data. |
| ... |  |  |
| D1+(S1×2+1) |  |  |
| , |  |  |
| D1+(S1×(S2-1)+2) | Record S2-1 | The last record to store the data. |
| ... |  |  |
| D1+(S1×S2+1) |  |  |

## Destination Device D2 (FIFO Status Output)

When FIEX or FOEX instructions are executed, the following internal relays are turned on or off according to the execution status.

| D2 Assignments | Function | Description |
| :--- | :--- | :--- |
| D2+0 | Data file full output | When the value stored in the FI pointer (D1+0) is equal to the value stored in the FO <br> pointer (D1+1) - 1, the FIFO data file is full, and no more data can be stored. If an FIEX <br> instruction is executed when the FIFO data file is full, no operation is executed, and the <br> data file full output (D2+0) will be turned on. |
| D2+1 | Data file empty output | When the value stored in the FI pointer (D1+0) is equal to the value stored in the FO <br> pointer (D1+1), the FIFO data file is empty. If an FOEX instruction is executed when the <br> FIFO data file is empty, no operation is executed, and the data file empty output (D2+1) <br> will be turned on. |
| D2+2 | Pointer out of range <br> output | The value stored in the FI or FO pointer can be 0 through S2-1. When an FIEX or FOEX <br> instruction is executed while the FI or FO pointer value exceeds the valid range, no <br> operation is executed, and the pointer out of range output (D2+2) will be turned on. |

Note: The FIFOF instruction cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## FIEX (First-In Execute)



When input is on, the data stored in data registers starting with the device assigned by S 1 is stored to the corresponding FIFO data file.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N (File Number) | File number | - | - | - | - | - | - | - | $0-9$ | - |
| S1 (Source 1) | First data register to store data to FIFO data file | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Make sure that FIEX instructions are executed after the corresponding FIFOF instruction has initialized the FIFO data file. If FIEX instructions are executed without executing the corresponding FIFOF instruction, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the FIEX instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | X |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $F$ (float) | - |

When a D (data register) is assigned as the source, as many data registers as the value stored in device S 1 of the corresponding FIFOF instruction are used.

## FOEX (First-Out Execute)



When input is on, the data is retrieved from the corresponding FIFO data file and stored to the data registers starting with the device assigned by D1.

## Valid Devices

| Device | Function | I | Q | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N (File Number) | File number | - | - | - | - | - | - | - | $0-9$ | - |
| D1 (Destination 1) | First data register number to store data | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Make sure that FOEX instructions are executed after the corresponding FIFOF instruction has initialized the FIFO data file. If FOEX instructions are executed without executing the corresponding FIFOF instruction, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the FOEX instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| $\mathbf{W}$ (word) | $X$ |
| :--- | :---: |
| $\mathbf{I}$ (integer) | - |
| $\mathbf{D}$ (double word) | - |
| $\mathbf{L}$ (long) | - |
| $\mathbf{F}$ (float) | - |

When a D (data register) is assigned as the destination, as many data registers as the value stored in device S1 of the corresponding FIFOF instruction are used.

## Example: FIFOF, FIEX, and FOEX

This program demonstrates a user program of the FIFOX, FIEX, and FOEX instructions to use an FIFO data file.

| File number: | 2 |
| :--- | :--- |
| Quantity of data registers per record: | 3 |
| Quantity of records: | 4 |
| FIFO Data file: | D100 through D113 ( $3 \times 4+2$ data registers) |
| FIFO status outputs: | M100 through M102 |

Ladder Diagram


M8120 is the initialize pulse special internal relay.
When the CPU starts, MOV sets 0 to FI and FO pointers, and FIFOF initializes FIFO data file 2.

When input I0 is turned on, the data in D10 through D12 are stored to the FIFO data file 2.

When input I1 is turned on, the data in D20 through D22 are stored to the FIFO data file 2.

When input I2 is turned on, the first data is retrieved from the FIFO data file 2 and stored to D50 through D52.

## FIFO Data File

The table below shows the data stored in FIFO data file 2 when inputs IO, I1, and I2 are turned on in this order. Only valid data managed by the FIFOF, FIEX, and FOEX instructions are shown in the table.

| Function | Device Address | Input I0 | Input I1 | Input I2 |
| :--- | :---: | :---: | :---: | :---: |
| FI Pointer | D100 | 1 | 2 | 2 |
| FO Pointer | D101 | 0 | 0 | 1 |
| Record 0 | D102 through D104 | D10, D11, D12 | D10, D11, D12 | - |
| Record 1 | D105 through D107 | - | D20, D21, D22 | D20, D21, D22 |
| Record 2 | D108 through D110 | - | - |  |
| Record 3 | D111 through D113 | - | - | - |

## NDSRC (N Data Search)



When input is on, a value specified by device S 1 is searched for. Data registers are searched, starting with the data register assigned by device S2. Device S3 specifies the quantity of 1-word or 2-word blocks of data registers to search, depending on the data type.

The offset of the data register where a match first occurred is stored in data register assigned by device D1. The number of matches is stored in the next data register. When the search results in no match, 65,535 is stored in device D1 and 0 is stored in device $\mathrm{D}+1$.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Value to be sought | - | - | - | - | - | - | $X$ | $X$ | - |
| S2 (Source 2) | First data register number to search | - | - | - | - | - | - | $X$ | - | - |
| S3 (Source 3) | Quantity of blocks to search | - | - | - | - | - | - | $X$ | $X$ | - |
| D1 (Destination 1) | Search result | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Source S1 data specifies the value to be sought and the valid range depends on the data type.
The search range cannot straddle data registers and non-retentive data registers. Make sure that the sum of data register numbers designated by S1 and S2 does not result in a different data register range.

For source S3 and destination D1, 1 word is always used without regard to the data type.
Destination D1 occupies two consecutive data registers starting with the device designated by D1. Data registers D0-D7998 and D10000-D55998 can be designated as destination D1.

When F (float) data is selected and S1 does not comply with the normal floating-point format, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed.
When data in S 2 to $\mathrm{S} 2+(\mathrm{S} 3)$ does not comply with floating-point format, the data is skipped to continue the search and the results are stored in D1 and D1+1.
The NDSRC instruction cannot be used in an interrupt program.
If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When S 3 is zero or the sum of S 2 and S 3 is not within the valid data register range, a user program execution error will result, turning on special internal relay M8004 and ERR LED on the FC6A Series MicroSmart. When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed.

For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
Since the NDSRC instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Valid Data Types

| W (word) | $X$ |
| :--- | :--- |
| I (integer) | $X$ |
| $D$ (double word) | $X$ |
| $L$ (long) | $X$ |
| F (float) | $X$ |

When a word device such as D (data register) is assigned as the source, 1 point (word or integer data) or 2 points (double-word, long, or float data) are used.

## Quantity of Source and Destination Devices

Depending on the data type, source devices S1 and S2 use a different quantity of devices. Source device S3 and destination device D1 always use 1 word without regards to the data type.

| Device | W (word), I (integer) | D (double word), $\mathbf{L}$ (long), $\mathbf{F}$ (float) |
| :---: | :---: | :---: |
| S1, S2 | 1 word device | 2 word devices |
| S3, D1 | 1 word device | 1 word device |

## 23: File Data Processing Instructions

## Examples: NDSRC

The following examples demonstrate the NDSRC instruction that searches the data of three different data types.

- Data Type: Word

$\left.\left.\right|_{\text {IO }} ^{1} \longmapsto$| NDSRC(W) | S1 | S2 | S3 | D1 |
| :---: | :---: | :---: | :---: | :---: |
|  | D10 | D100 | 5 | D200 | \right\rvert\,

D10 1234


## - Data Type: Double Word

$\left.\right|_{\text {IO }} ^{1}+$| $N D S R C(D)$ | S1 | S2 | S3 | D1 |
| :---: | :---: | :---: | :---: | :---: |
|  | D10 | D100 | 5 | D200 |



- Data Type: Float


D10•D11
 Offset都


Offset of first match
Quantity of matches

## 24: Clock Instructions

## Introduction

TADD (time addition) and TSUB (time subtraction) instructions add or subtract time data in two different modes. The data can be selected from time (hour, minute, and second) or date/time (year, month, day, day of week, hour, minute, and second).
HTOS (HMS to s) and STOH (s to HMS) instructions perform conversion of time data between hours, minutes, seconds and seconds.
HOUR (hour meter) instruction measures the on duration of the input and compares the total duration to a preset value. When the preset value is reached, an output or internal relay is turned on.

## TADD (Time Addition)


$\mathrm{S} 1+\mathrm{S} 2 \rightarrow \mathrm{D} 1, \mathrm{CY}$
When input is on, time data assigned by source device S 2 are added to date/time data assigned by source device S1, depending on the selected mode. The result is stored to destination device D1 and carry (M8003).

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mode | Selection of S1 data range | - | - | - | - | - | - | - | 0,1 | - |
| S1 (Source 1) | Date/time data to add to | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Time data to add | - | - | - | - | - | - | $X$ | - | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When Mode 0 is selected, source devices S1 and S2 and destination device D1 occupy 3 consecutive data registers starting with the designated device. Data registers D0-D7997 and D10000-D55997 can be designated as these devices.

When Mode 1 is selected, source device S1 and destination device D1 occupy 7 consecutive data registers starting with the designated device. Data registers D0-D7993 and D10000-D55993 can be designated as these devices. Source device S2 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D7997 and D10000-D55997 can be designated as source device S2.

Since the TADD instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used

## 24: Clock Instructions

## Mode 0

When mode 0 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S2 are added to the time data (hour, minute, and second) stored in 3 data registers starting with source device S 1 . The results are stored to 3 data registers starting with destination device D1.


Hour data can be 0 through 23. Minute and second data can be 0 through 59.
When the execution result exceeds 23:59:59, the result is subtracted by 24 hours and stored to the data register designated by destination device D1, turning on special internal relay M8003 (carry).
When any of the hour, minute, or second data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Mode 1

When mode 1 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S 2 are added to the date/time data (year, month, day, day of week, hour, minute, and second) stored in 7 data registers starting with source device S1. The results are stored to 7 data registers starting with destination device D1.


Note: Device S1+3 in source 1 is not used for execution and need not be designated.

TADD instruction supports leap years.
For source 1: Year data can be 0 through 99. Month data 1 through 12. Day data 1 through 31 . Hour data 0 through 23. Minute and second data 0 through 59.
Year data 0 through 99 is processed as year 2000 through 2099.
For source 2: Hour data can be 0 through 65,535. Minute and second data can be 0 through 59.
Destination 1: The day of week is calculated automatically from the resultant year, month, and day, and stored to device D1+3.
Day of week data represent: 0 (Sunday), 1 (Monday), 2 (Tuesday), 3 (Wednesday), 4 (Thursday), 5 (Friday), and 6 (Saturday).
When source 1 contains invalid day/time data, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.

When the execution result exceeds 99 year 12 month 31 day 23:59:59, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Examples: TADD

The following examples demonstrate the TADD instruction that will add time data in two different modes.

## - Mode 0

| 10 | SOTU | TADD S1 S2 D1 <br> 0 D0 D10 D20 |
| :--- | :--- | :--- | :--- | :--- |



When the result exceeds 23:59:59, the resultant hour data is subtracted by 24 , turning on special internal relay M8003 (carry).


## - Mode 1



Note: D8011 in source 1 is not used for execution and does not need to be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

## 24: Clock Instructions

When the result exceeds 23:59:59, the resultant hour data is subtracted by a multiple of 24 and the day data is incremented.


Note: D8011 in source 1 is not used for execution and does not need to be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

## TSUB (Time Subtraction)



S1-S2 $\rightarrow$ D1, CY
When input is on, time data assigned by source device S 2 is subtracted from date/ time data assigned by source device S1, depending on the selected mode. The result is stored to destination device D1 and borrow (M8003).

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mode | Selection of S1 data range | - | - | - | - | - | - | - | 0,1 | - |
| S1 (Source 1) | Date/time data to subtract from | - | - | - | - | - | - | X | - | - |
| S2 (Source 2) | Time data to subtract | - | - | - | - | - | - | X | - | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
When Mode 0 is selected, source devices S1 and S2 and destination device D1 occupy 3 consecutive data registers starting with the designated device. Data D0-D7997 and D10000-D55997 can be designated as these devices.
When Mode 1 is selected, source device S1 and destination device D1 occupy 7 consecutive data registers starting with the designated device. Data registers D0-D7993 and D10000-D55993 can be designated as these devices. Source device S2 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D7997 and D10000-D55997 can be designated as source device S2.
Since the TSUB instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## 24: Clock Instructions

## Mode 0

When mode 0 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device $S 2$ is subtracted from the time data (hour, minute, and second) stored in 3 data registers starting with source device S 1 . The results are stored to 3 data registers starting with destination device D1.


Hour data can be 0 through 23. Minute and second data can be 0 through 59.
When the execution result is less than 00:00:00, 24 hour is added to the result and stored to the data register designated by destination device D1, turning on special internal relay M8003 (borrow).

When any of the hour, minute, or second data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Mode 1

When mode 1 is selected, time data (hour, minute, and second) stored in 3 data registers starting with source device S 2 is subtracted from the date/ time data (year, month, day, day of week, hour, minute, and second) stored in 7 data registers starting with source device S 1 . The results are stored to 7 data registers starting with destination device D1.


Note: Device $\mathrm{S} 1+3$ in source 1 is not used for execution and need not be designated.
TSUB instruction supports leap years.
For source 1: Year data can be 0 through 99. Month data 1 through 12. Day data 1 through 31 . Hour data 0 through 23 . Minute and second data 0 through 59.

Year data 0 through 99 is processed as year 2000 through 2099.
For source 2: Hour data can be 0 through 65,535. Minute and second data can be 0 through 59.
Destination 1: The day of week is calculated automatically from the resultant year, month, and day, and stored to device D1+3.
Day of week data represent: 0 (Sunday), 1 (Monday), 2 (Tuesday), 3 (Wednesday), 4 (Thursday), 5 (Friday), and 6 (Saturday).
When source 1 contains invalid day/time data, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When the execution result is less than 00 year 1 month 1 day 00:00:00, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart.
When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

## Examples: TSUB

The following examples demonstrate the TSUB instruction to that will subtract time data in two different modes.

## - Mode 0

$|$| $-1 H$ | SOTU | TSUB S1 S2 <br> 0 D0 D10 <br> 0 D20  |
| :--- | :--- | :--- | :--- | :--- |



When the result is less than 00:00:00, 24 is added to the result, turning on special internal relay M8003 (borrow).


## - Mode 1



Note: D8011 in source 1 is not used for execution and does not need to be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

## 24: Clock Instructions

When the result is less than 00:00:00, 24 is added to the result, and the day data is decremented.


Note: D8011 in source 1 is not used for execution and does not need to be designated. The day of week is calculated automatically from the resultant year, month, and day, and stored to D203 of destination 1.

## HTOS (HMS to Sec)



Hours, minutes, seconds $\rightarrow$ Seconds
When input is on, time data in hours, minutes, and seconds assigned by source device S 1 is converted into seconds. The result is stored to destination device D1.

## Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Time data in hours, minutes, seconds | - | - | - | - | - | - | X | - | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Source device S1 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D7997 and D10000-D55997 can be designated as source device S1.

Destination device D1 occupies 2 consecutive data registers to store double-word data, starting with the designated device. Data registers D0D7998 and D10000-D55998 can be designated as destination device D1.

Hour data can be 0 through 65,535. Minute and second data can be 0 through 59 .
When any of the hour, minute, or second data exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. When a user program execution error occurs, the execution of the instruction is canceled and the next instruction is executed.

When the execution of the instruction is canceled, the data in D1 and D1 +1 is left unchanged. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.

Since the HTOS instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: HTOS

The following examples demonstrate the HTOS instruction that will convert time data in hours, minutes, and seconds into seconds and store the results to two consecutive data registers.


## 24: Clock Instructions

## STOH (S to HMS)



Seconds $\rightarrow$ Hours, minutes, seconds
When input is on, time data in seconds assigned by source device S 1 is converted into hours, minutes, and seconds. The result is stored to destination device D1.

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Time data in seconds | - | - | - | - | - | - | X | X | - |
| D1 (Destination 1) | Destination to store results | - | - | - | - | - | - | $X$ | - |  |

For valid device address ranges, see "Device Addresses" on page 2-1.
Source device S1 occupies 2 consecutive data registers to store double-word data, starting with the designated device. Data registers D0-D7998 and D10000-D55998 can be designated as source device S1.

Destination device D1 occupies 3 consecutive data registers starting with the designated device. Data registers D0-D7997 and D10000-D55997 can be designated as destination device D1.

Second data for source device S1 can be 0 through 4,294,967,295.
When the conversion result exceeds 65,535 hours 59 minutes 59 seconds, special internal relay M8003 (carry) is turned on. For example, when the conversion result is 65,537 hours 0 minute 0 second, destination 1 stores 1 hour 0 minute 0 second, turning on special internal relay M8003 (carry).

Since the STOH instruction is executed in each scan while input is on, a pulse input from a SOTU or SOTD instruction should be used.

## Examples: STOH

The following examples demonstrate the STOH instruction that will convert time data in seconds into hours, minutes, and seconds and store the results to three consecutive data registers.


## HOUR (Hour Meter)



S1 $\leftrightarrow \mathrm{D} 1 \rightarrow \mathrm{D} 2$
While input is on, the ON duration of the input is measured. The measured time value (hour, minute, and second) is stored to 3 consecutive data registers assigned by destination device D1 and compared with the preset value assigned by source device S 1 .

When the D1 value reaches the S1 value, an output or internal relay assigned by destination device D2 is turned on.
The data registers specified by D3 and D3+1 are used as the system work area.

## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Preset value | - | - | - | - | - | - | X | $0-65,535$ | - |
| D1 (Destination 1) | Measured input ON duration | - | - | - | - | - | - | $X$ | - | - |
| D2 (Destination 2) | Comparison output | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | - |
| D3 (Destination 3) | System work area | - | - | - | - | - | - | X | - | - |

For valid device address ranges, see "Device Addresses" on page 2-1.
Source device S 1 can be designated by a data register or constant.
Source device S 1 , when designated by a data register, and destination device D1 occupy 3 consecutive data registers starting with the designated device to store hour, minute, and second data. Data registers D0-D7997 and D10000-D55997 can be designated as these devices.

When source device $S 1$ is designated by a constant, the preset value can be 0 through 65,535 in hours, then minutes and seconds are set to 0 .
Special internal relays cannot be designated as destination device D2.
Destination device D3 requires two data registers reserved for system work area.
Hour data can be 0 through 65,535. Minute and second data can be 0 through 59.
When the measured input ON duration value in destination device $D 1$ reaches the preset value designated by source device S 1 , the comparison output designated by destination device D 2 turns on. As long as the input remains on, the measured input ON duration value continues to increase. When the measured input ON duration value exceeds 65,535 hours 59 minutes 59 seconds, the value returns to 0 hours 0 minutes 0 seconds to repeat another measuring cycle, with the comparison output remaining on.

When any of the hour, minute, or second data of source device S1 exceeds the valid range, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart, but the input ON duration is measured.

When any of the hour, minute, or second data of source device S 1 is changed to an invalid value after the comparison output has turned on, the comparison output is turned off. Then a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart, but the input ON duration measurement is continued. For user program execution errors, see "User Program Execution Errors" on page 3-10.

## 24: Clock Instructions

## Examples: HOUR

The following examples demonstrate the HOUR instruction that will measure the input ON duration value in hours, minutes, and seconds and to compare the value in two different ways.

## - Source Device S1: Data Register



- Source Device S1: Constant


D0•D1•D2 < D100•D101•D102 $\rightarrow$ Q2
While input IO is on, the ON duration is measured. The measured time value (hour, minute, and second) is stored to data registers D100•D101•D102 assigned by destination device D1 and compared with the preset value stored in data registers D0•D1•D2 assigned by source device S1.

When the measured value reaches the preset value, output Q2 assigned by destination device D2 is turned on.

Data registers D1900 and D1901 assigned by destination device D3 are reserved for system work area.

50 < D100•D101•D102 $\rightarrow$ Q2
While input IO is on, the ON duration is measured. The measured time value (hour, minute, and second) is stored to data registers
D100•D101•D102 assigned by destination device D1 and compared with 50 hours assigned by source device S1.

When the measured value reaches 50 hours, output Q2 assigned by destination device D2 is turned on.

Data registers D1900 and D1901 assigned by destination device D3 are reserved for system work area.

## 25: Data Log Instructions

## Introduction

This chapter describes the data log instructions that save the log data of specified devices to the SD memory card.

## DLOG (Data Log)



The DLOG instruction saves the values of the specified devices in the specified data format as a CSV file on the SD memory card.

When the input is on, the date and time and the values of the specified devices are output to the CSV file in the folder assigned by S1. When the execution of the instruction finishes, the device assigned by D1 is turned on and the execution status is stored to the device assigned by D2.

When the folder assigned by S1 does not exist on the SD memory card, that folder is created. The folder path is "FCDATA01\DATALOG\User specified folder." For details on the folder structure, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

The CSV file name is "DATE.csv." The date when the DLOG instruction is turned on is used as DATE.

Example: If the date is December 30, 2015, the file name is "20151230.csv".

When a CSV file with the same date does not exist in the folder designated by S1, the CSV file is created and the header and the $\log$ data is output.

## Output example

| Time | D0010 | $\leftarrow$ Header |
| :--- | :--- | :--- |
| $2015 / 12 / 30$ 08:30:23 | 12345 | $\leftarrow$ Log data |

When a CSV file with the same date already exists in the folder designated by S1, only the log data is appended to the CSV file.

## Output example

| Time | D0010 |  |
| :---: | :---: | :---: |
| 2015/12/30 08:30:23 | 12345 |  |
| 2015/12/30 17:30:23 | 1212 | $\longleftarrow$ Appended log data |

When the execution of DLOG instruction finishes, the device designated by D1 is turned on and the status code is stored to the device designated by D2 according to the execution result. For status codes, see "3. D2 (destination 2): Execution Status" on page 25-3.

## Notes:

- The time required to create a new CSV file (create a file and output header) is $510 \mu \mathrm{~s}$.
- When the FC6A Series MicroSmart starts running and DLOG instruction is executed, the header is appended to the CSV file even if the same DLOG instruction was executed previously within the same day.

Output example

| Time | D0010 |
| :--- | :--- |
| 2015/12/30 08:30:23 | $\leftarrow$ Header |
| Time |  |
| $\leftarrow$ Log data |  |
|  | 1212 |

- For details on the SD memory card specification, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".


## Notes:

- The number of DLOG instructions that can be programmed in a user program is 48 . However, make sure that the folder name specified by the DLOG instruction is not duplicated by any folder names specified by the other DLOG instructions. When the folders are duplicated, log data with a mixed format is output to the same CSV file.
- The DLOG instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
- While the input to DLOG instruction is on, log data is repeatedly output to the CSV file. When you want to output the log data only one time, add a SOTU (single output up instruction) or SOTD (single output down instruction) to the input condition. For SOTU or SOTD, see "SOTU and SOTD (Single Output Up and Down)" on page 4-26.
- The process of writing data to the SD memory card for the DLOG instruction takes several scans. Once a DLOG instruction is executed, the process continues until the log data transfer is complete, regardless of any change in the instruction input. While the log data is being written to the SD memory card, instructions are not being executed, even when the inputs to DLOG instructions are turned on. To execute the DLOG instruction again, confirm that the previous data transfer process has finished, and then execute the instruction.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Folder name (Note) | - | - | - | - | - | - | - | - | - |
| D1 (Destination 1) | Completion output | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | - |
| D2 (Destination 2) | Execution status | - | - | - | - | - | - | $\mathbf{A}$ | - | - |

Note: Specify the folder name by entering characters.
( Special internal relays cannot be designated as D1. Special data registers cannot be designated as D2.

## Settings



## 1. S1 (source 1): Folder Name

Specify the folder name on the SD memory card to store the log data with a desired text up to 8 single-byte alphanumeric characters.

## Notes:

- The following single-byte characters cannot be used in the folder names: ハ: * ? " < > \| \# \} \% \& ~
- Consecutive periods cannot be used in folder names.
- A period cannot be used at the start or the end of the folder name.
- Single-byte spaces at the start or the end of the folder name are omitted.


## 2. D1 (destination 1): Completion Output

Specify the device that turns on when the transfer of log data to a SD card and the execution of the DLOG instruction are complete. This device is turned on regardless of the success or failure of transferring log data to the SD memory card.

## 3. D2 (destination 2): Execution Status

Specify the device to store the status code. One of the following status codes is stored according to the DLOG instruction execution status and result.

| Status Code | Status | Description |
| :---: | :--- | :--- |
| 0 | Normal | - |
| 1 | SD memory card insertion error | The SD memory card is not inserted |
| 2 | SD memory card capacity error | The SD memory card is full |
| 3 | SD memory card writing error | Writing log data to the SD memory card fails |
| 4 | CSV file capacity error | The CSV file exceeds 5 MB |
| 5 | SD memory card protection error | The SD memory card is write protected |
| 6 | SD memory card access error | DLOG instruction is executed while another DLOG instruction or TRACE <br> instruction is being executed |
| 7 | Characters conversion error | Converting log data to numeric characters fails |
| 8 | Folder creation error | Creating the folder fails |
| 9 | CSV file open error | Opening the CSV file fails |
| 32 | Executing DLOG instruction | Writing log data to SD memory card is in progress |

## 4. Settings

The following is a list of the device and display types that can be set as the data to be output to the CSV files.

| Display Type | Valid Devices |
| :--- | :--- |
| DEC(W) | TC, TP, CC, CP, D |
| DEC(I) | D |
| DEC(D) | CC, CP, D |
| DEC(L) | D |
| DEC(F) | D |
| HEX(W) | TC, TP, CC, CP, D |
| HEX(D) | CC, CP, D |
| BIN(B) | I, Q, M, R, T, C |

5. Tag Name

Enter tag names or device addresses to specify the devices whose values are output to the CSV files.

## 6. Device Address

When the devices are specified as tag names, the corresponding device addresses are shown.

## 7. Display Type

Select the display type from the following table for each device for when the device values are output to the CSV file.

| Display Type | Range | Maximum Characters |
| :--- | :--- | :--- |
| DEC(W) | 0 to 65,535 | 5 |
| DEC(I) | $-32,768$ to 32,767 | 6 |
| DEC(D) | 0 to $4,294,967,295$ | 10 |
| DEC(L) | $-2,147,483,648$ to $2,147,483,647$ | 11 |
| DEC(F) | $-3.402823 E+38$ to $3.402823 E+38$ | 13 |
| HEX(W) | 0000 to FFFF | 4 |
| HEX(D) | 00000000 to FFFFFFFF | 8 |
| BIN(B) | 0 or 1 | 1 |

## 8. Repeat

The data in as many consecutive devices as the specified repeat, starting from the specified device address, are output to the SD memory card.
For example, when the display type of D10 is $\operatorname{DEC}(W)$ and the repeat is set to 5 , the data is output to SD memory card as follows.

| Time | D0010 | D0011 | D0012 | D0013 | D0014 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2015 / 12 / 3015: 40: 00$ | 12345 | 1 | 5 | 12 | 111 |
| $2015 / 12 / 3015: 41: 00$ | 1212 | 3 | 7 | 35 | 222 |
| $2015 / 12 / 3015: 42: 00$ | 345 | 4 | 99 | 79 | 333 |
| $\leftarrow \leftarrow$ Header |  |  |  |  |  |$\leftarrow$ Log data 1

## 9. Logging data size

The amount of memory that the DLOG instruction uses for the current log settings is shown. The amount of memory used increases when a device to log the data is added. You can register up to a maximum of 64 devices (the total amount of memory must be less than or equal to 1,024 bytes). One byte of memory area is required for each character.

## 10. Remaining size

The amount of free memory (the difference between the logging data size and 1,024 bytes) is shown.

## CSV File Output Format and File Format Configuration

- Output format

The CSV file output format is as follows.

$$
\begin{aligned}
& \text { Time,D0010,D0020,D0030,D0050,D0060 } \\
& \text { 2015/12/30 15:40:00,12345,1,5,12,111 } \\
& \text { 2015/12/30 15:41:00,1212,3,7,35,222 } \\
& \text { 2015/12/30 15:42:00,345,4,99,79,333 }
\end{aligned}
$$

When the DLOG instruction is executed and the CSV file for the same date does not exist in the folder designated by S1, a new CSV file is created and the header and the log data 1 are output as shown in above output format example. If the DLOG instruction is executed again on the same date, the log data 2 is appended to the CSV file. Similarly, if the DLOG instruction is executed again on the same date, log data 3 is appended to the CSV file.
When the date changes and the DLOG instruction is executed, a new CSV file with a new file name is created and the header and the $\log$ data is output.

## - File format

The decimal symbol and separating character in CSV files can be specified in the function area settings. For details, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Examples: DLOG

When M0 is turned on, the decimal values of D0 through D5 (data type W (word)) and D10 (data type F (floating point)) are saved in a CSV file in the "RESULT" folder on the SD memory card every 10 seconds.

## Output example

| Time | D0000 | D0001 | D0002 | D0003 | D0004 | D0005 | D0010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2012 / 02 / 06$ 10:20:30 | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |
| $2012 / 02 / 0610: 20: 40$ | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |
| $2012 / 02 / 0610: 20: 50$ | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |

The sample user program described below operates as follows.

- M100 is turned on when the transfer of log data has finished transferring to the SD memory card is complete.
- The DLOG instruction status code is stored in D100.
- The status code saved in D100 is checked and Q0 is turned on if an error occurs.


## - Configuration Procedure

1. Create the ladder program.

2. Configure the DLOG instruction.

Configure the Devices tab.
(1) Designate M0100 as D1 (Completion Output).
(2) Designate D0100 as D2 (Execution Status).


Configure the Settings tab.
(3) Enter "RESULT" in S1 (Folder Name).
(4) Configure D0000 to output the decimal value of D0000 to the CSV files with the data type W (word).
(5) Set the repeat to 6 to output the values of D0000 through D0005 to the CSV files.
(6) Configure D0010 to output the decimal value of D0010 to the CSV files with the data type F (float).


The configuration is now completed.

## - Operation Description

10 seconds after MO is turned on, the DLOG instruction is executed one time. When the DLOG instruction is executed, the data of D0 through D5 and D10 are output to the CSV file on the SD memory card as decimal values along with the current date and time.
The saved location of CSV files is FCDATA011DATALOGIRESULT. The oldest data is saved at the top of the log data, and the latest data is saved at the bottom of the log data.
When the execution of the DLOG instruction is complete, the completion output M100 is turned on and the CMP instruction is executed once. The CMP instruction compares the status code stored in the execution status D100 with 0 and turns Q0 on or off. Q0 is turned on when an error occurs in the DLOG instruction.
While MO is on, the log data is appended to the CSV file every 10 seconds.
Output results

| Time | D0000 | D0001 | D0002 | D0003 | D0004 | D0005 | D0010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2012 / 02 / 06$ 10:20:30 | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |
| $2012 / 02 / 0610: 20: 40$ | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |
| $2012 / 02 / 0610: 20: 50$ | 12345 | 0 | 0 | 56789 | 0 | 0 | $-3.402823 \mathrm{E}+38$ |

## TRACE (Data Trace)



The TRACE instruction saves the values for the previous number of scans for the specified device in the specified data format as a CSV file on the SD memory card.

When the input is turned on, the date and time and the values of the previous scans for the specified device are output to the CSV file in the folder assigned by S 1 . When the execution of the instruction finishes, the device assigned by D1 is turned on and the execution status is stored to the device assigned by D2.

When the folder assigned by S1 does not exist on the SD memory card, that folder is created. The folder path is "FCDATA01ITRACEVUser specified folder." For details on the folder structure, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

The CSV file name is "DATE.csv." The date when the TRACE instruction is turned on is used as DATE.

Example: If the date is December 30, 2015, the file name is "20151230.csv".

When a CSV file with the same date does not exist in the folder designated by S1, the CSV file is created and the trace data is output. The oldest data is output at the top of the trace data, and the latest data is output at the bottom of the trace data.

## Output example

| Triggered at: | $2012 / 02 / 06$ 08:30:23 |
| :--- | :--- |
| Scan | D0010 |
| Old | 12345 |
|  | 12345 |
| New Header row 1 |  |
| H Header row 2 |  |
|  | 12345 |

When a CSV file for the same date already exists in the folder designated by S1, the header and trace data are appended to the CSV file.

## Output example

| Triggered at: | $2012 / 02 / 06$ 08:30:23 |
| :--- | :--- |
| Scan | D0010 |
| Old | 12345 |
|  | 12345 |
| New | 12345 |
|  |  |
|  | $2012 / 02 / 06$ 17:16:15 |
| Triggered at: | D0010 |
| Scan | 1212 |
| Old | 1212 |
|  | 1212 |
| New | $\leftarrow$ Appended header row 1 |
|  | $\leftarrow$ Appended data 2 scans before |

When the execution of the TRACE instruction finishes, the device designated by D1 is turned on and the status code is stored to the device designated by D2 according to the execution result. For status codes, see "3. D2 (destination 2): Execution Status" on page 25-9.

## Notes:

- The TRACE instruction accumulates data while FC6A Series MicroSmart is running but does not accumulate data when FC6A Series MicroSmart is stopped.
- Data is accumulated while FC6A Series MicroSmart is running even when the input to the TRACE instruction is off.
- When the input to the TRACE instruction is turned on, the accumulated data is output to the CSV file
- The time required to create a new CSV file (create a file and output header) is $870 \mu \mathrm{~s}$.
- Trace data is accumulated even when the MCS (master control set) instruction is on.


## Notes:

- The maximum number of TRACE instructions that can be programmed in a user program is three. Make sure that the folder name specified by the TRACE instruction is not duplicated by any of the folder names specified by the other TRACE instructions. When the folders are duplicated, trace data with a mixed format is output to the same CSV file.
- The number of scans of which the trace data can be saved to the CSV file when the TRACE instruction is executed one time depends on the number of devices specified to trace and the display type for each device. For details, see "9. Trace data size" on page 25-10.
- The TRACE instruction cannot be used in an interrupt program. If used, a user program execution error will result, turning on special internal relay M8004 and the ERR LED on the FC6A Series MicroSmart. For details about the user program execution errors, see "User Program Execution Errors" on page 3-10.
- Trace data is not accumulated when the TRACE instruction is skipped by the JMP (jump) instruction. For the JMP (jump) instruction, see "JMP (Jump) and JEND (Jump End)" on page 4-29.
- While the input to the TRACE instruction is on, the trace data is repeatedly output to the CSV file. When you want to output the trace data only one time, add a SOTU (single output up instruction) or SOTD (single output down instruction) to the input conditions. For SOTU (single output up instruction) or SOTD (single output down instruction), see "Basic Instructions" - "SOTU and SOTD (Single Output Up and Down)" on page 4-26.
- The data writing process to the SD memory card for the TRACE instruction takes several scans. Once a TRACE instruction is executed, the process continues until the trace data transfer is complete, regardless of any change in the instruction input. While the trace data is being written to the SD memory card, the instruction is not executed even when the input to the TRACE instructions are turned on. To execute the TRACE instruction again, confirm that the previous data writing process has finished, and then execute the instruction.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Folder name (Note) | - | - | - | - | - | - | - | - | - |
| D1 (Destination 1) | Completion output | - | $X$ | $\mathbf{A}$ | - | - | - | - | - | - |
| D2 (Destination 2) | Execution status | - | - | - | - | - | - | $\mathbf{1}$ | - | - |

Note: Specify the folder name by entering characters.
( Special internal relays cannot be designated as D1. Special data registers cannot be designated as D2.

## Settings




## 1. S1 (source 1): Folder Name

Specify the folder name on the SD memory card that will store the trace data using up to 8 single-byte alphanumeric characters.

## Notes:

- The following single-byte characters cannot be used in folder names:

$$
/ \backslash: * ? "<>\mid \#\{ \} \% \& \sim
$$

- Consecutive periods cannot be used in folder names.
- A period cannot be used at the start or the end of the folder name.
- Single-byte spaces at the start or the end of the folder name are omitted.


## 2. D1 (destination 1): Completion Output

Specifies the device that turns on when the transfer of trace data to SD card and the execution of the TRACE instruction are complete. This device turns on regardless of the success or failure of the transfer of trace data to the SD memory card.

## 3. D2 (destination 2): Execution Status

Specifies the data register to store the status code. One of the following status codes is stored according to the TRACE instruction execution status and result.

| Status Code | Status | Description |
| :---: | :--- | :--- |
| 0 | Normal |  |
| 1 | SD memory card insertion error | The SD memory card is not inserted |
| 2 | SD memory card capacity error | The SD memory card is full |
| 3 | SD memory card writing error | Writing trace data to the SD memory card fails |
| 4 | CSV file capacity error | The CSV file exceeds 5 MB |
| 5 | SD memory card protection error | The SD memory card is write protected |
| 6 | SD memory card access error | The TRACE instruction is executed while another DLOG instruction or TRACE <br> instruction is being executed |
| 7 | Characters conversion error | Converting trace data to numeric characters fails |
| 8 | Folder creation error | Creating the folder fails |
| 9 | CSV file open error | Opening the CSV file fails |
| 32 | Executing TRACE instruction | Writing trace data to SD memory card fails |

## 4. Settings

The following is a list of the device and display types that can be set as the data to be output to the CSV files.

| Display Type | Valid Devices |
| :--- | :--- |
| DEC(W) | TC, TP, CC, CP, D |
| DEC(I) | D |
| DEC(D) | CC, CP, D |
| DEC(L) | D |
| DEC(F) | D |
| HEX(W) | TC, TP, CC, CP, D |
| HEX(D) | CC, CP, D |
| BIN(B) | I, Q, M, R, T, C |

5. Tag Name

Enter tag names or device addresses to specify the devices to the CSV files.

## 6. Device Address

When the devices are specified as tag names, the corresponding device addresses are shown.

## 7. Display Type

Select the display type from the following table for each device for when the device values are output to the CSV file.

| Display Type | Range | Maximum Characters |
| :--- | :--- | :--- |
| DEC(W) | 0 to 65,535 | 5 |
| DEC(I) | $-32,768$ to 32,767 | 6 |
| DEC(D) | 0 to $4,294,967,295$ | 10 |
| DEC(L) | $-2,147,483,648$ to $2,147,483,647$ | 11 |
| DEC(F) | $-3.402823 E+38$ to $3.402823 E+38$ | 13 |
| HEX(W) | 0000 to FFFF | 4 |
| HEX(D) | 00000000 to FFFFFFFF | 8 |
| BIN(B) | 0 or 1 | 1 |

## 8. Repeat

The data in as many consecutive devices as the specified repeat, starting from the specified device address, are output to the SD memory card.
For example, when the display type of $\operatorname{D10}$ is $\operatorname{DEC}(W)$ and the repeat is set to 8 , the data is output to SD memory card as follows.

| Triggered at: | $2015 / 12 / 30$ 15:40:30 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Scan | D0010 | D0011 | D0012 | D0013 | D0014 | D0015 | D0016 | D0017 |
| Old | 1 | 9 | 17 | 25 | 33 | 41 | 49 | 57 |
|  | 2 | 10 | 18 | 26 | 34 | 42 | 50 | 58 |
|  | 3 | 11 | 19 | 27 | 35 | 43 | 51 | 59 |
|  | 4 | 12 | 20 | 28 | 36 | 44 | 52 | 60 |
|  | 5 | 13 | 21 | 29 | 37 | 45 | 53 | 61 |
|  | 6 | 14 | 22 | 30 | 38 | 46 | 54 | 62 |
|  | 7 | 15 | 23 | 31 | 39 | 47 | 55 | 63 |
|  | New | 8 | 16 | 24 | 32 | 40 | 48 | 56 |

$\leftarrow$ Header row 1
« Header row 2
$\leftarrow$ Data 7 scans before
$\leftarrow$ Data 6 scans before
$\longleftarrow$ Data 5 scans before
$\longleftarrow$ Data 4 scans before
$\longleftarrow$ Data 3 scans before
$\longleftarrow$ Data 2 scans before
$\leftarrow$ Data 1 scan before
9. Trace data size

The amount of memory that the TRACE instruction uses for the current trace settings is shown. The amount of memory used increases when a device to trace the data is added. You can register up to a maximum of 64 devices (the total amount of memory must be less than or equal to 1,024 bytes). One byte of memory area is required for each character.

## 10. Remaining size

The amount of free memory (the difference between the trace data size and 1,024 bytes) is shown.

## 11. The number of scans

How many scans of trace data can be accumulated with the current trace settings is shown. The number of scans of data that can be accumulated depends on the format of the trace data to output. If there is little data to output per scan, the data for many scans can be accumulated.

## CSV File Output Format and File Format Configuration

## - Output format

The CSV file output format is as follows.

```
Triggered at:,2015/12/30 15:40:30
Scan,D0010,D0020,D0030,D0040,D0050,D0060,D0070,D0080
Old,1,9,17,25,33,41,49,57
,2,10,18,26,34,42,50,58
,3,11,19,27,35,43,51,59
,4,12,20,28,36,44,52,60
,5,13,21,29,37,45,53,61
,6,14,22,30,38,46,54,62
,7,15,23,31,39,47,55,63
New,8,16,24,32,40,48,56,64
```

When the TRACE instruction is executed and the CSV file for the same date does not exist in the folder designated by S 1 , a new CSV file is created and the trace data is output as shown in above output format example. When the date changes and the TRACE instruction is executed, a new CSV file is created with a new file name.

## - File format

The decimal symbol and separating character in CSV files can be specified in the function area settings. For details, see Chapter 11 "SD Memory Card" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Examples: TRACE

When M0 is turned on, the accumulated data of D0 through D5 (data type W (word)) and D10 (data type F (floating point)) are saved as decimal values in a CSV file on the "RESULT" folder on the SD memory card.

## Output sample

| Triggered at: | $2012 / 02 / 0610: 20: 30$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Scan | D0000 | D0001 | D0002 | D0003 | D0004 | D0005 | D0010 |
| Old | 12345 | 2 | 12345 | 56789 | 1 | 56789 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12347 | 56789 | 1 | 56788 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12349 | 56789 | 1 | 56787 | $-3.402823 \mathrm{E}+38$ |


|  | 12345 | 2 | 12379 | 56789 | 1 | 56772 | $-3.402823 \mathrm{E}+38$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 12345 | 2 | 12381 | 56789 | 1 | 56771 | $-3.402823 \mathrm{E}+38$ |
| New | 12345 | 2 | 12383 | 56789 | 1 | 56770 | $-3.402823 \mathrm{E}+38$ |

The sample user program described below operates as follows.

- M100 is turned on when the writing trace data to the SD memory card completes.
- The TRACE instruction status code is stored to D100.
- The execution status saved in D100 is checked and Q0 is turned on if an error occurs.


## - Configuration Procedure

1. Insert the instructions in the Ladder editor.


## 2. Configure the TRACE instruction.

Configure the Devices tab.
(1) Designate M0100 as D1 (Completion Output).
(2) Designate D0100 as D2 (Execution Status).


Configure the Settings tab.
(3) Enter "RESULT" in S1 (Folder Name).
(4) Configure D0000 to output the decimal value of D0000 to the CSV files with the data type W (word).
(5) Set the repeat to 6 to output the values of D0000 through D0005 to the CSV files.
(6) Configure D0010 to output the value of D0010 to the CSV files with the data type F (float)


The configuration is now completed.

## - Operation Description

When MO is turned on, the TRACE instruction is executed one time. When the TRACE instruction is executed, the data of D0 through D5 and D10 in the previous 17 scans is output to a CSV file on the SD memory card as decimal values along with the date and time of the execution.
The saved location of CSV files is FCDATA01ITRACEIRESULT. The oldest data is saved at the top of the trace data, and the latest data is saved at the bottom of the trace data.
When the execution of the TRACE instruction completes, the completion output M100 is turned on and the CMP instruction is executed once. The CMP instruction compares the status code stored in the execution status D100 with 0 and turns Q0 on or off. Q0 is turned on when an error occurs in the TRACE instruction.

Output results

| Triggered at: | $2012 / 02 / 0610: 20: 30$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Scan | D0000 | D0001 | D0002 | D0003 | D0004 | D0005 | D0010 |
| Old | 12345 | 2 | 12345 | 56789 | 1 | 56789 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12347 | 56789 | 1 | 56788 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12349 | 56789 | 1 | 56787 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12351 | 56789 | 1 | 56786 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12353 | 56789 | 1 | 56785 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12355 | 56789 | 1 | 56784 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12357 | 56789 | 1 | 56783 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12359 | 56789 | 1 | 56782 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12361 | 56789 | 1 | 56781 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12363 | 56789 | 1 | 56780 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12365 | 56789 | 1 | 56779 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12367 | 56789 | 1 | 56778 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12369 | 56789 | 1 | 56777 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12371 | 56789 | 1 | 56776 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12373 | 56789 | 1 | 56775 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12375 | 56789 | 1 | 56774 | $-3.402823 \mathrm{E}+38$ |
|  | 12345 | 2 | 12377 | 56789 | 1 | 56773 | $-3.402823 \mathrm{E}+38$ |

## 26: SCRIPT

## Introduction

This chapter describes the SCRPT instruction that calls and executes scripts from the ladder program.

## SCRPT (Script)

Executes the specified script.

## Symbol



## Operation

When the input turns on, the script that corresponds to the script ID specified by S 1 is executed. When the script is finished executing, the execution status and the execution time are stored in D1 and D1+1. To use the SCRPT instruction, you must create a script to execute in Script Manager dialog box beforehand.
For an overview of the script function, see "Script Function Overview" on page 26-3.
For editing scripts, see "Script Programming and Management" on page 26-5.

## Valid Devices

| Device | Function | I | Q | M | R | T | C | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| S1 (Source 1) | Script ID | - | - | - | - | - | - | X | $1-255$ | - |
| D1 (Destination 1) | Execution results | - | - | - | - | - | - | $\mathbf{1}$ | - | - |

Special data registers cannot be designated as D1.

## Settings

## S1 (source 1): Script ID

Specify the script ID. A constant or data register can be specified.

## D1 (destination 1): Execution results

Specify the data register where the execution results are stored. Two data registers starting with the specified data register are used. The script execution status (error code at script completion) is stored in D1. The execution time from when the script execution is started until it is completed is stored in D1+1 in $100 \mu$ increments.

## Execution results

The execution results (D1, D1+1) store the execution status and the execution time.

## Execution status

| Numeric Value | Status | Error Cause |
| :---: | :--- | :--- |
| 0 | Normal termination | - |
| 1 | Arithmetic error | Division by zero, floating point format error |
| 2 | Script ID error | The specified script does not exist |
| 3 | Device access error | Invalid device specified, device boundary exceeded |

If any error occurs other than the script ID error, script processing is canceled and the execution of the SCRPT instruction is terminated. If the script ID error occurs, D1 and D1+1 are updated and execution of the SCRPT instruction terminates.

## Execution time

The execution time from when the execution of the specified script is started until it is completed is stored in $100 \mu \mathrm{~s}$ increments. For example, when it takes 1.45 ms to execute the specified script, 15 is stored as the execution time. When it takes $6,553.5 \mathrm{~ms}$ or longer to execute the specified script, 65535 is stored as the execution time. The SCRPT instruction execution time is affected by interrupt processing or other processing that occurs during the execution.
If any error occurs other than the script ID error, the script execution time from when the script execution is started until the error occurs is stored as the execution time. If the script ID error occurs, zero is stored as the execution time.

## Script selection

To specify a registered script ID for S1 in WindLDR, click Refer button on the SCRPT (Script) dialog box to open Script Manager dialog box. Choose the script ID to execute and click on Select button on Script Manager dialog box. The selected ID will be entered to S1.

## Script Function Overview

A script is a function for programming complicated processing with conditional branch, logical operations, arithmetic operations, and functions as text.
The programmed scripts can be executed in a ladder program.
For example, the logical AND operation is written as follows.


## -Script Programming and Management

Scripts are programmed using the Script Editor dialog box in WindLDR and managed with the Script Manager dialog box.

## Notes:

- In Script Editor, you can program scripts by selecting conditional expressions, operators, and functions from a list, and you can also check them for errors. The scripts can also be exported as text files, so they can be edited using a text editor such as Notepad. If you save an edited script as a text file, it can be imported into Script Editor.
For details, see "Script Editor" on page 26-8.
- In Script Manager, you can manage the scripts as a group by adding scripts created in Script Editor or deleting them. For details, see "Script Manager" on page 26-7.


## Script Data Type

The data type for the range of data that will be handled in the script must be configured by taking into consideration the details of the processing in the script including the maximum and minimum values of data that will be handled and whether negative numbers and real numbers are required.
Note: The data type is configured in Script Editor. For how to configure it, see "Script Editor" on page 26-8.

## Data Types

The following five data types can be processed in a script. For details about data types in ladder, see "Data Types for Advanced Instructions" on page 3-7.

| Data Type | Symbol | Bits | Quantity of Data <br> Registers Used | Range of Decimal Values |
| :--- | :---: | :---: | :---: | :---: |
| Word (Unsigned 16 bits) | $\mathbf{W}$ | 16 bits | 1 | 0 to 65,535 |
| Integer (Signed 16 bits) | $\mathbf{I}$ | 16 bits | 1 | $-32,768$ to 32,767 |
| Double Word (Unsigned 32 bits) | $\mathbf{D}$ | 32 bits | 2 | 0 to $4,294,967,295$ |
| Long (Signed 32 bits) | $\mathbf{L}$ | 32 bits | 2 | $-2,147,483,648$ to $2,147,483,647$ |
| Float (Floating point) | $\mathbf{F}$ | 32 bits | 2 | $-3.402823 \times 10^{38}$ to $3.402823 \times 10^{38}$ |

Note: Some functions cannot be used if the data type is different. Check the function in the notation list. See "Programming Scripts" on page 26-12.

## Device List

This section shows the devices that can be used in Script Editor and the device notation.
This section describes available devices and its notation that can be used in the Script Editor dialog box.
Note: The device ranges differ depending on each FC6A Series MicroSmart. Specify the devices within the device range of the selected FC6A Series MicroSmart. For device ranges, see "Device Addresses" on page 2-1.

| Device |  | Notation in Script Editor |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 16-I/O Type | 24-I/O Type | 40-I/O Type |
| Bit device | I (Inputs) | I0 to I10 | I0 to I15 | I0 to I27 |
|  | I (Expansion input relays) | I30 to I187 | $\begin{aligned} & \text { I30 to I307 } \\ & \text { I310 to I627 } \end{aligned}$ |  |
|  | Q (Outputs) | Q0 to Q6 | Q0 to Q11 | Q0 to Q17 |
|  | Q (Expansion outputs) | Q30 to Q187 | $\begin{aligned} & \text { Q30 to Q307 } \\ & \text { Q310 to Q627 } \end{aligned}$ |  |
|  | M (Internal relays) | M0000 to M7997, M10000 to M17497 |  |  |
|  | M (Special internal relays) | M8000 to M8317 |  |  |
|  | R (Shift registers) | R000 to R255 |  |  |
|  | C (Counter contacts) | T000 to T1023 |  |  |
|  | T (Timer contacts) | C000 to C511 |  |  |
|  | D (Data register bits) | D0000.0 ... D0000.15 to D7999.0 ... D7999.15 D10000.0 ... D10000.15 to D55999.0 ... D55999.15 |  |  |
|  | D (Specifying special data register bits) | DD8000.0 ... D8000.15 to D8499.0 ... D8499.15 |  |  |
| Word device | D (Data registers) | D0000 to D7999 D10000 to D55999 |  |  |
|  | D (Special data registers) | D8000 to D8499 |  |  |
|  | TC (Timer current values) | TC000 to TC1023 |  |  |
|  | TP (Timer preset values) | TP000 to TP1023 |  |  |
|  | CC (Counter current values) | CC000 to CC511 |  |  |
|  | CP (Counter preset values) | CP000 to CP511 |  |  |

Calculations in which both bit and word devices are used are not allowed.
Bit devices are always processed as bits, and values of those devices are 0 (OFF) or 1 (ON).

## Script Programming and Management

## Script Registration Procedure

This section describes the procedure to create and register a script. The registered script can be executed by specifying the script ID in the SCRPT instruction.

1. On the Project Window, double-click Script Manager.


Script Manager dialog box opens.
2. Click Add.


Script Editor dialog box opens.
3. Specify Script ID.

When creating a new script, enter the script ID (1 to 255).

4. Enter Script Name.

The script name can be entered up to 40 single-byte alphanumeric characters.
5. Select Data Type.

Note: The script is executed with the selected data type.
6. In Script, write the program.

Note: To create a script using the sample codes provided by WindLDR, under Function list, select Category and Function, and then click Insert Format. The sample code displayed in Format is inserted at the cursor position in Script.
7. After you finish creating the script, click OK.

You are returned to the Script Manager dialog box and the created script is displayed in List of scripts.
8. Click Close.


A save confirmation message is displayed.
9. Click OK.


The script is saved and the Script Manager dialog box is closed.

## Notes:

- If you click No, the script is not saved and the Script Manager dialog box is closed.
- Script Manager can also be opened from the SCRPT (Script) dialog box. Click Refer to open Script Manager.



## Script Manager

In the Script Manager dialog box, you can add scripts created in the Script Editor dialog box or delete registered scripts.


## 1. List of scripts

Shows the list of registered scripts.
Script ID: Shows the script ID of the registered scripts (1 to 255).
Error: $\quad$ Shows $\mathbf{O K}$ if the registered script has no errors. Shows $\mathbf{N G}$ if there are any errors.
Script name: Shows the name of the registered scripts.
Used: $\quad$ Shows whether or not the registered scripts are used in this project.

## 2. Script

Shows the contents of the script selected in the List of scripts.

## 3. Add

Click this button to display the Script Editor dialog box in order to create and add a script.
For details, see "Script Editor" on page 26-8.

## 4. Edit

Click this button to open the Script Editor dialog box in order to edit the script selected in the List of scripts.
For details, see "Script Editor" on page 26-8.

## 5. Delete

Click this button to delete the script selected in the List of scripts.

## 6. Select

This can only be used when Script Manager has been opened from the SCRPT instruction dialog box.
Select a script in the list of scripts and click this button to enter the selected script ID in S1 on the dialog box.

## 7. Close

Click this button to close Script Manager.
Note: If you click Close when the list of scripts was modified, a save confirmation message is displayed. Click Yes on the confirmation message to save the changes. Click No to discard the changes and close Script Manager.

## Script Editor

Script Editor is where you create new scripts and edit the scripts selected in Script Manager.


## 1. Script ID

When creating a new script, enter the script ID (1 to 255). When editing an existing script, this shows the script ID that was set.

## 2. Script Name

Enter the script name. The script name can be entered up to 40 characters.

## 3. Data Type

Select the data type to process in the script. For details about the data types, see "Script Data Type" on page 26-3.

## 4. Script

Enter the script.
The restrictions for one script are a maximum of 240 characters per line and a maximum of 1,024 lines per script.

## 5. Error Check

Click this button to check errors in the current script.

## 6. Import

Click this button to display the Open dialog box so you can import a script program.
If you select a script that was saved (exported) as a text file (*.txt) and click Open, the selected script is inserted at the current cursor position in the current script.


## 7. Export

Click this button to display the Save As dialog box so you can export the script program.
If you select the location to save the script, enter a file name, and click Save, the current script is saved as a text file (*.txt). The saved script can be inserted with Import.


## 8. Options

Click this button to display the Options dialog box.
In the Options dialog box, you can configure the font for the text used in the Script text box, the colors, the tab indents, and other settings. For details, see "Script Formatting Options Dialog Box" on page 26-11.

## 9. Find

Click this button to display the Find dialog box.
You can search the entered text in the script.


Note: If you first select an area in the Script and then click Find, you can search only in the selected area.

## 10. Replace

Click this button to display the Replace dialog box.
Enter the text to search in the script in Find What and enter the text to replace it with in Replace With.


## Notes:

- This is an effective tool when replacing device addresses.
- If you first select an area in the Script and then click Replace, you can search and replace text only in the selected area.


## 11. Show/Hide Function List

This button shows and hides Function List and Output.
Note: Click and drag the bottom right corner of Script Editor and you can change the size of the box for editing scripts. By hiding Function List and Output, you can increase the size of the script editing area (text box) and make it easier to edit the script.

## 12. Cursor

Shows the current cursor position in the Script text box as the line number and the column number.

## 13. Function List

Category: Shows the function category list.
Function: Shows the list of functions in the selected category.
Format: Shows a programming example of the selected function.
Description: Shows a description of the selected function.
Insert Format:
Insert Device:

Click this button to open the Tag Editor dialog box.
Specify a device address and click $\mathbf{O K}$ to insert the specified device address at the cursor position.

## 14. Script Compilation Output

Shows the details of errors when there are errors in the script in the error check.
If you double-click a comment displayed in Script Compilation Output, the section that corresponds to the error is highlighted in the Script.
Note: Depending on the error, the error may exist on a line that differs from the line displayed in the output, or it may show multiple errors.
15. OK

Click this button to perform the error check on the current script, and then return to Script Manager after the script is saved.
Note: If there are any errors in the current script the save confirmation message is displayed. Scripts that contain errors can be saved.
16. Cancel

Click this button to return to Script Manager without saving the current script.

## Script Formatting Options Dialog Box

This dialog box allows you to specify Font, Size, Tab indent, and Color used in the Script Editor Script text box.


## -Font

Enter or select the font name for text displayed in Script.

## -Size

Enter or select the size (pixels) of text displayed in Script.

## -Sample

Shows a sample of text that will be displayed in the Script text box with the character font and the character size specified by Font and Size.

## -Colors

Shows the colors for Comment, Keyword, and Device.
Click the colored buttons to display the Theme Colors dialog box.


Characters that are not comments, keywords, or devices are all shown in black.

## Programming Scripts

## Format List

This section describes the notation for control statements, operators, functions, and other elements, and it also describes their operation.
Except for comments, enter everything as single-byte characters. For specific programming examples, see "Script Programming Examples" on page 26-19.

Control Statements
Conditional expressions are written here as Cond. expr., Cond. expr. 1), Cond. expr. 2.
Executable lines are written as Exe. line, Exe. line 1), Exe. line 2 and so on.
-Conditional branch

| Format |  | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { if } \\ & \quad \text { else } \\ & \text { else if } \end{aligned}$ | $\begin{aligned} & \text { if (Cond. expr.) } \\ & \{\text { Exe. line ; \}} \end{aligned}$ | Execution line is executed if the conditional expression is satisfied. |
|  | $\begin{aligned} & \text { if (Cond. expr.) } \\ & \text { \{ Exe. line 1) } \\ & \text { else } \\ & \{\text { Exe. line 2; } \end{aligned}$ | Execution line 1 is executed if the conditional expression is satisfied. Execution line 2 is executed if it is not satisfied. |
|  | $\begin{aligned} & \text { if (Cond. expr. 1) } \\ & \{\text { Exe. line 1); \} } \\ & \text { else if (Cond. expr. 2) } \\ & \{\text { Exe. line 2 ; \} } \\ & \text { else } \\ & \{\text { Exe. line 3); \} } \end{aligned}$ | Execution line 1 is executed if the conditional expression 1 is satisfied. Conditional expression 2 is evaluated if conditional expression 1 is not satisfied, and execution line 2 is executed if conditional expression 2 is satisfied. Execution line 3 is executed if conditional expression 2 is not satisfied too. |
| switch case default | ```switch (Cond. expr.) { case constant 1: Exe. line 1; break; case constant 2: Exe. line 2; break; default: Exe. line 3): break; }``` | Execution line 1 is executed if the value of conditional expression matches constant 1. Execution line 2 is executed if the value of conditional expression matches constant 2. Execution line 3 is executed if the value of conditional expression does not match constant 1 nor constant 2. |

-Repeat

| Format |  | Description |
| :--- | :--- | :--- |
| while | while (Cond. expr.) | Execution line is repeatedly executed while the conditional expression is satisfied. <br> The execution will go into an infinite loop when the conditional expression is always <br> satisfied, so do not use fixed values or devices that do not change as the conditional <br> expression. |

## - Halt and exit

| Format |  | Description |
| :---: | :---: | :---: |
| break | ```while (Cond. expr. 1) { if (Cond. expr.2), { Exe. line 1; break; } Exe. line 2; } Exe. line 3;``` | Process will be as follows while the conditional expression 1 is satisfied. <br> Execution line 2 is continuously executed while the conditional expression 2 is not satisfied. <br> Once the conditional expression 2 is satisfied, the execution goes out of the loop by break (not executing execution line 2), and execution line 3 is executed. |
| break | ```switch (Cond. expr.) { case constant 1: Exe. line 1; break; case constant 2: Exe. line 2; break; } Exe. line 3;``` | When the conditional expression matches the constant 1 , execution line 1 is executed and the switch execution is terminated by break. Evaluation for constant 2 is not executed, and the execution moves to execution line 3. |
| return | return; | Script will exit and the next instruction in the user program is executed. |

## Operator

Device, constant, and temporary device are described as $\square \mathrm{a}, \mathrm{b}$ here, and expressions are described as Expr.), Expr. 1), Expr. 2).

## -Relational operator

| Operator | Format | Description |
| :---: | :---: | :---: |
| == | $\mathrm{a}==\mathrm{b}$ | Compares if a is equal to b . |
| ! = | $\mathrm{a}!=\mathrm{b}$ | Compares if a is not equal to b . |
| < | $\mathrm{a}<\mathrm{b}$ | Compares if a is less than b . |
| <= | $\mathrm{a}<=\mathrm{b}$ | Compares if a is less than or equal to b . |
| > | $\mathrm{a}>\mathrm{b}$ | Compares if a is greater than b . |
| >= | $\mathrm{a}>=\mathrm{b}$ | Compares if a is greater than or equal to b . |

## Logical operator

| Operator | Format | Description |
| :---: | :---: | :---: |
| \& \& | (Expr. 1) \&\& (Expr.2) | Calculates the logical product (AND) of Expr.1) and Expr. 2. |
| 11 | (Expr. 1) 11 (Expr.2) | Calculates the logical sum (OR) of Expr. 1 and Expr. 2. |
| ! | ! (Expr.) | Inverse the logic of Expr. |

- Arithmetic operator

| Operator | Format | Description |
| :---: | :---: | :---: |
| + | $\mathrm{a}+\mathrm{b}$ | Adds a and b . |
| - | $\mathrm{a}-\mathrm{b}$ | Subtracts b from a . |
| * | a * b | Multiplies a and b . |
| / | $\mathrm{a} / \mathrm{b}$ | Divides a by b . |
| \% | $\mathrm{a} \div \mathrm{b}$ | Calculates remainder after dividing a b by b . |

## -Bit operator

| Operator | Format | Description |
| :---: | :---: | :---: |
| \& | a \& b | Calculates the logical product (AND) of each bit of $\square$ and . $\square$ Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| 1 | a b | Calculates the logical sum (OR) of each bit of $\square$ and . $\square$ Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| $\wedge$ | $\mathrm{a} \wedge \mathrm{b}$ | Calculates the exclusive logical sum (XOR) of each bit of $\square$ and $\square$ . Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| ~ | $\sim a$ | Inverse the logic of each bits of $\square$ a . <br> For word devices and fixed values, 0 will be 65,535 , and 65,535 will be 0 . <br> For bit device, 0 will be 1 , and 1 will be 0 . <br> Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| << | a $\ll \mathrm{b}$ | Shifts each bit of $\square$ to the left for b $\square$ bit(s). <br> Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| >> | $\mathrm{a} \gg \mathrm{~b}$ | Shifts each bit of $\square$ to the right for $\square$ bit(s). <br> Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |

## Function

Device, constant, and temporary device are described as $a, b, b, d d$... here.

## -Bit function

| Function | Format | Description |
| :---: | :---: | :---: |
| Bit set | $\operatorname{SET}(\square)$; | Turns bit device $a$ to 1. <br> This is the same result as |
| Bit reset | RST ( ${ }^{\text {a }}$ ) ; | Turns bit device $a$ to 0 . <br> This is the same result as $a=0 ;$. $\square$ |
| Bit reverse | $\operatorname{REV}$ ( a ) ; | Reverses the 1 and 0 of bit device a. $\square$ <br> This is the same result as $\qquad$ $=\sim$ $\square$ i. |

-Word function
Arithmetic operation

| Function | Format | Description |
| :---: | :---: | :---: |
| Maximum value | $\operatorname{MAX}(\square, \mathrm{b}, \mathrm{c})$ | Maximum value out of $\square$ , b, $\square$ $\square$ is returned. <br> - This can be used for all data types. <br> - Up to 15 arguments can be defined. |
| Mininum value | $\operatorname{MIN}(\square, \mathrm{b}, \mathrm{c}$ ) | Minimum value out of $\square$ a , b $\square$ is returned. <br> - This can be used for all data types. <br> - Up to 15 arguments can be defined. |
| Exponential function | $\operatorname{EXP}(\square)$ | Exponential function of a $\square$ is returned. <br> - This can only be used for data type F (float). |
| Natural logarithm (base: e) | LOGE ( ${ }^{\text {a }}$ ) | Natural logarithm (base is e) for $a$ $\square$ is returned. <br> - This can only be used for data type F (float). <br> - Set a value larger than 0 for argument. |
| Common logarithm <br> (Base: 10) | LOG10 ( a ) | Common logarithm (base is 10) for $\square$ is returned. <br> - This can only be used for data type F (float). <br> - Set a value larger than 0 for argument. |
| Exponentiation | $\operatorname{Pow}(\square, \square$ | a to the b $\square$ power is returned. <br> - This can only be used for data type F (float). |


| Function | Format | Description |
| :---: | :---: | :---: |
| Square root | $\operatorname{ROOT}(\square \mathrm{a}$ ) | Square root of $\square$ is returned. <br> - This can only be used for data type F (float). |
| Sine | $\operatorname{SIN}(\square)$ | Sine of a $\square$ ( -1 to +1 ) is returned. <br> Specify arbitrary formula to represent angle (units in radian) for argument $\square$ $a$ . <br> - This can only be used for data type F (float). |
| Cosine | $\cos (\square)$ | Cosine of $\square$ ( -1 to +1 ) is returned. <br> Specify arbitrary formula to represent angle (units in radian) for argument . $\square$ <br> - This can only be used for data type F (float). |
| Tangent | $\operatorname{TAN}(\square)$ | Tangent of $\square$ $(-1$ to +1$)$ is returned. Specify arbitrary formula to represent angle (units in radian) for argument $\square$ a. <br> - This can only be used for data type F (float). |
| Arcsine | $\operatorname{ASIN}(\square \mathrm{a}$ ) | Arcsine of $\square$ $(-1$ to +1$)$ in radian value $(-\pi / 2$ to $+\pi / 2)$ is returned. Specify arbitrary formula for argument $\square$ a. <br> - This can only be used for data type F (float). |
| Arccosine | $\operatorname{ACOS}(\square)$ | Arccosine of $a(-1$ to +1$)$ in radian value $(0$ to $\pi)$ is returned. Specify arbitrary formula for argument $\square$ . <br> - This can only be used for data type F (float). |
| Arctangent | $\operatorname{ATAN}(\square)$; | Arctangent of $\square$ $(-1$ to +1$)$ in radian value $(-\pi / 2$ to $+\pi / 2)$ is returned. Specify arbitrary formula for argument $\square$ . <br> - This can only be used for data type F (float). |
| Conversion from Angle to Radian | $\operatorname{RAD}(\mathrm{a})$; | Value of $a$ is converted from degree $\left(^{\circ}\right)$ to radian, and the value is returned. <br> - This can only be used for data type F (float). |
| Conversion from Radian to Angle | DEG ( $\square$ ) ; | Value of $a$ is converted from radian to degree $\left({ }^{\circ}\right)$, and the value is returned. <br> - This can only be used for data type F (float). |

Data type conversion

| Function | Format | Description |
| :---: | :---: | :---: |
| Conversion from BCD to Binary | $\operatorname{BCD2BIN}(\square)$ | $B C D$ value of $a$ is returned in binary value. <br> - Data types W (word), I (integer), D (double word), and L (long) can be used. $F$ (float) cannot be used. |
| Conversion from Binary to BCD | $\operatorname{BIN2BCD}(\mathrm{a})$ | Binary value of $\square$ is returned in $B C D$ value. <br> - Data types W (word), I (integer), D (double word), and L (long) can be used. F (float) cannot be used. |
| Conversion from float to Binary | FLOAT2BIN ( ${ }^{\text {a }}$ ) | Float value of $\square$ is returned in binary value. Values after the decimal point is truncated. <br> - Data types W (word), I (integer), D (double word), and L (long) can be used. $F$ (float) cannot be used. |
| Conversion from Binary to float | BIN2FLOAT ( ${ }^{\text {a }}$ ) | Binary value of a $\square$ is returned in float value. <br> - This can be used with data types D (double word) and L (long). |
| Conversion from Decimal to String character | DEC2ASCII ( $\mathrm{a}, \mathrm{b}$ ) | Decimal number value $\square$ is converted to a character string, and store in order with as a starting device. <br> - Data types W (word), I (integer), D (double word), and L (long) can be used. $F$ (float) cannot be used. |
| Conversion from String character to Decimal | $\operatorname{ASCII2DEC}(\square)$ | Character string $\square$ is returned as decimal number value. <br> - Data types W (word), I (integer), D (double word), and L (long) can be used. $F$ (float) cannot be used. |

## Data comparison and copy

| Function | Format | Description |
| :---: | :---: | :---: |
| Data comparison | $\operatorname{MEMCMP}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ | $\square$ : Starting device of comparison target 1 $\square$ : Starting device of comparison target 2 $\square$ : Range of comparison (in words) <br> Values of device $\square$ a for $\square$ C words and values of device $\square$ b for words $\square$ are compared. 1 is returned if all the values of devices match, and 0 is returned if any of the value does not match. <br> - Specified range is compared in word unit, and result is returned. <br> - Up to 64 words can be compared. |
| Data copy | $\operatorname{MEMCPY}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ | $\square$ : Starting device of copy source $\square$ : Starting device of copy target $\square$ : Range of copy (in words) <br> Values from $\square$ for $\square$ C words are copied to $\square$ b for $\square$ C words respectively. <br> - Specified range is compared in word unit, and result is returned. <br> - Up to 64 words can be copied. |
| Bit device (1 word length) to <br> Bit device (1 word length) | $\operatorname{BITS2BITS}(\square \mathrm{a}, \mathrm{b})$; | a <br> : Starting device of copy target (bit device) $\square$ : Starting device of copy source (bit device) Copies one word worth of data from $\square$ to $\square$ . <br> - 16 bits are processed from the starting bit device as one word. |
| Bit device <br> (1 word length) to Word device | BITS2WORD ( $\mathrm{a}_{\mathrm{a}}, \mathrm{b}$ ) ; | a <br> : Starting device of copy target (word device) $\square$ $\square$ : Starting device of copy source (bit device) Copies one word worth of data from $\square$ to . $\square$ b . <br> - 16 bits are processed from the starting bit device as one word. |
| Word device to <br> Bit device (1 word length) | WORD2BITS ( $\mathrm{a}, \mathrm{b}$ ) ; | $\square$ : Starting device of copy target (bit device) $\square$ : Starting device of copy source (word device) Copies one word worth of data from $\square$ to $\square$ b . <br> - 16 bits are processed from the starting bit device as one word. |

Offset

| Function | Format | Description |
| :---: | :---: | :---: |
| Indirect specification | $\operatorname{OFFSET}(\mathrm{a}, \mathrm{b})$ | a : Reference device <br> b : Device to store the offset value (0 to 32767) <br> Specifies the device at $\square$ b words from $\square$ a . <br> Indirect read <br> Specify OFFSET function to the right of the assignment statement. <br> Format example: <br> C = OFFSET ( $\square$ a $\square$ ) = $\square$ <br> Operation: <br> Stores the value of device at $\square$ b words from $\square$ a into $\square$ C . <br> Indirect write <br> Specify OFFSET function to the left of the assignment statement. <br> Format example: <br> OFFSET ( $\square$, $\square$ $\square$ ]) = $\square$ C <br> Operation: <br> Stores the value of $\square$ C into the device at $\square$ b words from $\square$ a . <br> - Store the value appropriate for the data type as the offset value. For example, when the data type is I (integer), store the offset value of I (integer) into the device. |

## Character string operations

When handling strings, the NULL terminating character ( $0 \times 00$ ) is the end of the string. The NULL terminating character is not included in the length of the string.

| Function | Format | Description |
| :---: | :---: | :---: |
| Character string copy | ```STRCUT ( a , b, c d)``` | $\square$ : Starting device of copy source : Starting device that stores the source character string to copy : Copy start position (0 to 127) $\square$ ]: Character count to copy (1 to 128) <br> From the character string starting from $\square$ , character string from $\square$ bytes forward for $\square$ d characters are stored into $\square$ $a$ for $\square$ d characters. |
| Character string length | STRLEN ( ${ }^{\text {a }}$ ) | Returns the length of the character string that starts from $a$. |
| Concatenation of character strings | $\operatorname{STRCAT}(\mathrm{a}, \mathrm{b})$; | Concatenates the character string that starts from $b$ to the character string that starts from $a$ and stores $a$ at the start. |
| Character string search | $\operatorname{STRSTR}(\mathrm{a}, \mathrm{b})$; | Searches for the character string that starts from $\square$ in the character string that starts from $\square$ and returns the position in that string where it was found (number of characters from the start-1). <br> - The maximum character string length that can be searched is 128 characters. |

## Other

This section describes definitions for constant, device, temporary device, and comment.

## ■Constant

Constant can be defined as decimal or hexadecimal number.
Sample definition of decimal numbers

| 1234 | Define the numeric value directly. |
| :--- | :--- |
| -1234 | Define the negative number with a "-" (minus) symbol at the beginning. |
| 12.34 | Decimal number can be defined for real numbers (float). |
|  | Define a "." (period) between the whole numbers and decimal numbers. |

There are 2 ways to define hexadecimal numbers.
Sample definition of hexadecimal numbers

| $0 \times 12 \mathrm{AB}$ | Define " 0 " (zero) and " x " (lower case x ) at the beginning of the value. |
| :--- | :--- |
| 12 ABh | Append " h " at the tail of the value. |

## Device Address

Device Address is defined with the device symbol and address within " [" and "]". Definition of the device

```
[Device symbol and address]
```


## Sample definition

## [D0100]

## -Temporary Device

Temporary device is a device that can be used only inside the script. It can store a value and can be used as a variable. It is defined with a device symbol "@" followed by address (1-32).

## Definition of the temporary device

@address (Space between the device symbol "@" and address is not required.)

## Sample definition

$\square$ Temporary device number 2
Note: All the values for temporary devices are set to "0" when the execution of the script is started.

## Comment

A note defined in the script is called a comment. The line with "//" defined at the beginning of a line will become a comment. "/ /" is defined with a single-byte. Double-byte characters can be written after "//".

Definition of comment

```
// Arbitrary note
```


## Sample definition



## Notes:

- Describing comments to explain the contents of the script is useful especially when another person works on the scripts or when some time has passed after editing the scripts.
- Comments are ignored (not executed) when the script is executed, so they can be defined freely without interfering the execution time.


## Script Programming Examples

This section describes script programming examples for control statements, arithmetic operators, and functions, as well as their operations.

## 1. Control Statements

Example 1.1 Conditional branch

## Script

```
if ([D0100])
{
    [D0102] = 100;
}
```


## Operation Description

If the value of D0100 is not 0, then 100 is stored in D0102.

## Example 1.2 Conditional branch

## Script

```
if ([D0100])
{
    [D0102] = [D0103] + [D0104] + [D0105];
}
```


## Operation Description

If the value of D0100 is not 0, the value of D0103, D0104, and D0105 are added and the result is stored in D0102.
Example 1.3 Conditional branch

## Script

```
if (0 != [D0100])
{
    if (0 != [D0102])
    {
        [D0103] = 0x1234;
    }
}
```


## Operation Description

If the value of D0100 is not 0 and the value of D0102 is not 0 either, $0 \times 1234$ is stored in D0103.
If the value of D0100 is not 0 and the value of D0102 is 0 , then nothing is executed.
If the value of D0100 is 0 , then nothing is executed regardless of the value of D0102.
Example 1.4 Conditional branch

## Script

```
if ((0 != [D0100]) || (0 != [D0102]))
{
    [D0103] = 100;
}
else
{
    [D0104] = [D0105] + 100;
}
```


## Operation Description

If either the value of D0100 or the value of D0102 is not 0, then 100 is stored in D0103.
If the values of both D0100 and D0102 are 0, 100 is added to D0105 and the result is stored in D0104.
Example 1.5 Conditional branch

## Script

```
if ([D0100] == 0)
{
    [D0102] = 0x1234;
}
else if ([D0100] == 1)
{
    [D0102] = 0x5678;
}
else
{
    [D0102] = 0x9999;
}
```

Operation Description
If the value of D0100 is 0 , then $0 \times 1234$ is stored in D0102.
If the value of D0100 is 1 , then $0 \times 5678$ is stored in D0102.
If the value of D0100 is not 0 nor 1 , then $0 \times 9999$ is stored in D0102.
Example 1.6 Conditional branch

## Script

```
if ([D0100])
{
    if ([D0102])
    {
        if ([D0103])
        {
            [D0104] = 100;
        }
        else
        {
            [D0104] = 200;
        }
    }
}
```


## Operation Description

If the value of D0100, D0102, and D0103 are all not 0, then 100 is stored in D0104.
If the values of D0100 and the value of D0102 are not 0 and the value of D0103 is 0, then 200 is stored in D0104. If either the value of D0100 or D0102 is 0 , then nothing is executed regardless of the value of D0103.

Example 1.7 Iteration

## Script

```
[D0100] = 10;
[D0102] = 10;
while (0 < [D0100])
{
    [D0102] = [D0102] + 1;
    [D0100] = [D0100] - 1;
}
```


## Operation Description

If the value of D0100 is larger than 0 , then 1 is repeatedly added to the value of D0102 and 1 is repeatedly subtracted from the value of D0100.
In the script example above, when the while statement repeats ten times, the value of D0100 becomes 0 and the while statement ends.

After this script is executed, the value of D0100 is 0 and the value of D0102 is 20 .
Example 1.8 Iteration

## Script

```
[D0100] = 0;
[D0102] = 3;
[D0103] = 5;
while ([D0100] == 0)
{
    [D0102] = [D0102] + 1;
    if ([D0103] == [D0102])
    {
        SET([M0000]);
        break;
    }
}
```


## Operation Description

While the value of D0100 is 0 , the while statement is repeated.
Inside the while statement, if the values of D0102 and D0103 are equal, the while statement will terminate, and after [M0000] changes to 1 , execution breaks out of the while statement.
In the example script above, the values of D0102 and D0103 are equal when the while statement repeats twice, and after M0000 changes to 1 , execution breaks out of the while statement loop. After execution, the value of D0100 is 0 , the value of D0102 is 5, the value of D0103 is 5 , and M0000 is 1 .

Example 1.9 Indirect write and indirect read using iteration (while statement)

## Script

```
//Transfer D0010 through D0019 to D0100 through D0109
// Initialize the offset value
[D0000] = 0;
// Loop ten times
while ([D0000] < 10)
{
    // Transfer 1 word by indirect assignment
    OFFSET([D0100] , [D0000]) = OFFSET([D0010] , [D0000]);
    // Increment indirect value
    [DOOOO] = [DOOOO] + 1
}
```


## Operation Description

This script stores the values of D0010 through D0019 in D0100 through D0109.
It operates as follows.
First, the offset value D0000 is initialized and set to 0 .
First iteration (loop) : The value of D0000 is 0 , so the condition "[D0000] < 10 " is true and the statements inside while are executed.

- The value of D0010, 0 words from D0010, is stored in D0100, 0 words from D0100.
- 1 is added to the value of offset value D0000, so that it becomes 1 .

Second iteration (loop) : The value of D0000 is 1 , so the condition "[D0000] < 10 " is true and the statements inside while are executed.

- The value of D0011, 1 word from D0010, is stored in D0101, 1 word from D0100.
- 1 is added to the value of offset value D0000, so that it becomes 2 .
:
(Repeats in the same manner for the third to ninth iterations)
:

Tenth iteration (loop) : The value of D0000 is 9 , so the condition "[D0000] < 10 " is true and the statements inside while are executed.

- The value of D0019, 9 words from D0010, is stored in D0109, 9 words from D0100.
- 1 is added to the value of offset value D0000, so that it becomes 10 .

The value of D0000 is 10 , so the condition "[D0000] < 10" is false and execution breaks out of the while loop.
After execution, the values of D0100 through D0109 are the same with the values of D0010 through D0019.
Example 1.10 Decimal to octal conversion using a while statement

## Script

```
// Convert a decimal value to octal
// - For example, convert 10 (dec) to 12 (oct), 16 (dec) to 20 (oct)
// - Convert a value to octal up to 4 digits max
@1 = 0; // while counter
@2 = [D0100]; // gets original data
@3 = 1; // decimal base
@4 = 0; // calculation results
// repeat four times
while (@1 < 4)
{
    // Extract 1st octal digit from original data. Store working result in @10.
    @10 = @2 % 8;
    //Convert the extracted results to decimal and add to the results
    @4 = @4 + (@10 * @3);
    //Increase the decimal base by one digit
    @3 = @3 * 10;
    // Decrease the original data by one digit
    @2 = @2 / 8;
    // If @2 is 0, exit the white statement
    if (0 == @2)
    {
        break;
    }
    // Increment while counter by 1
    @1 = @1 + 1;
}
// Store the calculation result in D0200
[D0200] = @4;
```


## Operation Description

This example converts a decimal value to octal using a while statement.
By repeating the process to divide the original decimal data by 8 and converting each digit to octal in a while statement, the conversion is implemented up to four digits.
The original decimal value is stored in D0100. After the script is executed, the converted octal value is stored in D0200.
Example 1.11 Conditional branch with switch

## Script

```
switch ([D0100])
{
    case 10:
        [D0200] = 0x1234;
        break;
    case 999:
        [D0200] = 0x5678;
        SET([D0000.01]);
        break;
}
```


## Operation Description

If the value of D0100 is 10 , then $0 \times 1234$ is stored in D0200.
If the value of D0100 is 999, then 0x5678 is stored in D0200 and D0000.01 is set to 1.
If the value of D0100 is not 10 nor 999, then nothing is executed.

Example 1.12 Conditional branch with switch using the default statement

## Script

```
switch ([D0100])
{
    case 0:
        [D0102] = 0x1234;
        break;
    case 1:
        [D0102] = 0x5678;
        break;
    default:
        [D0102] = 0x9999;
        break;
}
```

Operation Description
If the value of D0100 is 0 , then $0 \times 1234$ is stored in D0102.
If the value of D0100 is 1 , then $0 \times 5678$ is stored in D0102.
If the value of D0100 is not 0 nor 1 , then $0 \times 9999$ is stored in D0102.

Example 1.13 Terminate the script with the return statement

## Script

```
if (0x1234 == [D0100])
{
    [D0102] = 0x5678;
    return;
}
[D0103] = 0;
```


## Operation Description

If the value of D0100 is not $0 \times 1234$, then 0 is stored in D0103.
If the value of D0100 is $0 \times 1234$, then $0 \times 5678$ is stored in D0102 and the script is terminated.
The return statement does not break out of a loop like the break statement, it terminates the script execution.

Example 1.14 Break out of a loop with the break statement

## Script

```
[D0100] = 0;
[D0102] = 3;
[D0103] = 5;
while ([D0100] == 0)
{
    [D0102] = [D0102] + 1;
    if ([D0102] == [D0103)
    {
        SET([D0000.01]);
        break;
    }
}
```


## Operation Description

While the value of D0100 is 0 , the while statement is repeated until D0102 and D0103 match.
Inside the while statement, if the values of D0102 and D0103 are equal, the while statement will end and execution breaks out of the while statement.
In the example above, the values of D0102 and D0103 match when the while statement is repeated twice, and after D0000.01 changes to 1 , the while statement ends. After execution, the value of D0100 is 0 , the value of D0102 is 5 , the value of D0103 is 5 , and the value of D0000.01 is 1 .

## 2. Relational Operators

Example 2.1 Equal to

## Script

```
if ([D0100] == [D0102])
{
    [D0103] = 0x100;
}
```

Operation Description
If the value of D0100 is equal to the value of D0102, then $0 \times 100$ is stored in D0103.
Example 2.2 Not equal to

## Script

```
if ([D0100] != [D0102])
{
    [D0103] = 0x100;
}
```


## Operation Description

If the value of D0100 is not equal to the value of D0102, then $0 \times 100$ is stored in D0103.
Example 2.3 Less than

## Script

```
if ([D0100] < [D0102])
{
    [D0103] = 0xl00;
}
```


## Operation Description

If the value of D0100 is less than the value of D0102, then $0 \times 100$ is stored in D0103.
Example 2.4 Less than or equal to

## Script

```
if ([D0100] <= [D0102])
{
    [D0103] = 0xl00;
}
```

Operation Description
If the value of D0100 is less than or equal to the value of D0102, then $0 \times 100$ is stored in D0103.
Example 2.5 Greater than

## Script

```
if ([D0100] > [D0102])
{
    [D0103] = 0xl00;
}
```


## Operation Description

If the value of D0100 is greater than the value of D0102, then $0 \times 100$ is stored in D0103.
Example 2.6 Greater than or equal to
Script

```
if ([D0100] >= [D0102])
{
    [D0103] = 0xl00;
}
```


## Operation Description

If the value of D0100 is greater than or equal to the value of D0102, then $0 \times 100$ is stored in D0103.

## 3. Logical Operators

Example 3.1 Logical AND

## Script

```
if (([D0100] == [D0200]) && ([D0300] == [D0400] + [D0500]))
{
    [D0600] = 100;
}
```


## Operation Description

If the value of D0100 is equal to the value of D0200, and if the value of D0300 is equal to the value of D0400 and D0500 added together, then 100 is stored in D0600.
If either ([D0100] == [D0200]) or ([D0300] == [D0400] $+[\mathrm{D0500}]$ ) is false, the processing in the brackets " $\}$ " is not executed.
Example 3.2 Logical OR

## Script

```
if ((0 != [D0100]) || (0 != [D0200]))
{
    [D0300] = 100;
}
```


## Operation Description

If the value of D0100 is not 0 or the value of D0102 is not 0, then 100 is stored in D0300.
If either one of them is true, the processing in the brackets "\{\}" is executed.
Example 3.3 Logical inversion

## Script

```
if (!([D0100] == 0x1234))
{
    [D0300] = 100;
}
```


## Operation Description

If the value of D0100 is not equal to $0 \times 1234$, then 100 is stored in D0300.
Example 3.4 Logical inversion

## Script

```
if (!(0 !=[D0100]))
{
    [D0300] = 100 ;
}
```


## Operation Description

If the value of D0100 is 0 , then 100 is stored in D0300.
This is the same as the code "if ( $0==$ [D0100]) $)$ ".

## 4. Arithmetic Operators

Example 4.1 Addition

## Script

```
[D0300] = [D0100] + [D0200];
```


## Operation Description

The values of D0100 and D0200 are added together and the result is stored in D0300.

Example 4.2 Subtraction

## Script

[D0300] = [D0100] - [D0200];

## Operation Description

The value of D0200 is subtracted from the value of D0100 and the result is stored in D0300.

## Example 4.3 Multiplication

## Script

```
[D0300] = [D0100] * [D0200];
```


## Operation Description

The values of D0100 and D0200 are multiplied together and the result is stored in D0300.

## Example 4.4 Division

Script

```
[D0300] = [D0100] / [D0200];
```


## Operation Description

The value of D0100 is divided by the value of D0200 and the result is stored in D0300.

## Example 4.5 Modulo

## Script

```
[D0300] = [D0100] % [D0200];
```


## Operation Description

The value of D0100 is divided by the value of D0200 and the remainder is stored in D0300.

## 5. Bitwise Operators

Example 5.1 Logical AND

## Script

```
if ([D0000.01] & [D0001.01])
{
    SET([D0002.01)]);
}
else
{
    RST([D0002.01]);
}
```


## Operation Description

If the bitwise logical AND operation on the value of D0000.01 and the value of D0001.01 is 1, D0002.01 is changed to 1 . If the bitwise logical AND operation on the value of D0000.01 and the value of D0001.01 is 0, D0002.01 is changed to 0 . The operation is the same as the following ladder diagram.


Example 5.2 Logical OR

## Script

```
if ([D0000.01] | [D0001.01])
{
    SET([D0002.01]);
}
else
{
    RST([D0002.01]);
}
```


## Operation Description

If the bitwise logical OR operation on the value of D0000.01 and the value of D0001.01 is $1, D 0002.01$ is changed to 1 . If the bitwise logical OR operation on the value of D0000.01 and the value of D0001.01 is $0, D 0002.01$ is changed to 0 . The operation is the same as the following ladder diagram.


Example 5.3 Logical XOR (exclusive OR)

## Script

```
[D0200] = [D0100] ^ 0xFF;
```


## Operation Description

The logical XOR operation on the value of D0100 and each bit in 0xFF is stored in D0200. For example, if the value of D0100 is 15 (0x0F), then 240 (0xFO) is stored in D0200.

Example 5.4 Inversion

## Script

```
[D0200] = ~[DO100];
```


## Operation Description

The bits in the value of D0100 are inverted and stored in D0200. For example, if the value of D0100 is 0 , then 65,535 is stored in D0200.

## Example 5.5 Inversion

## Script

```
if (([D0000.01] & ~[D0001.01]) | [D0002.01])
{
    SET([D0003.01]);
}
else
{
    RST([D0003.01]);
}
```


## Operation Description

If the bitwise logical OR operation on the value of D0002.01 and the result of the bitwise logical AND operation on the value of D0000.01 and the inverted result of the value of D0001.01 is 1 , then D0003.01 is changed to 1.
If the bitwise logical OR operation on the value of D0002.01 and the result of the bitwise logical AND operation on the value of D0000.01 and the inverted result of the value of D0001.01 is 0 , D0003.01 is changed to 0 .
The operation is the same as the following ladder diagram.


Example 5.6 Left shift

## Script

```
[D0300] = [D0100] << [D0200];
```


## Operation Description

The value of D0100 is shifted to the left by the value of D0200 and the result is stored in D0300.
For example, if the value of D0100 is 1 and the value of D0200 is 3,1 is shifted 3 bits to the left, and the result of 8 is stored in D0300.

Example 5.7 Right shift

## Script

[D0300] $=[$ D0100] $\gg$ [D0200];

## Operation Description

The value of D0100 is shifted to the right by the value of D0200 and the result is stored in D0300.
For example, if the value of D0100 is 8 and the value of D0200 is 3,8 is shifted 3 bits to the right, and the result of 1 is stored in D0300.

## 6. Bit Functions

Example 6.1 Set a bit

## Script

SET([D0000.01]);

## Operation Description

Turns D0000.01 to 1 . The result is the same as [D0000.01] = 1 .
Example 6.2 Reset a bit

## Script

## RST([D0000.01]);

Operation Description
Turns D0000.01 to 0 . The result is the same as [D0000.01] $=0$.
Example 6.3 Invert a bit

## Script

```
REV([D0000.01]);
```


## Operation Description

Inverts 1 and 0 in D0000.01. The result is the same as [D0000.01] $=\sim[D 0000.01]$.

## 7. Word Functions <br> Arithmetic operations

Example 7.1 Maximum value

## Script

```
[D0200] = MAX([D0100], [D0110], [D0120], [D0130], [D0140]);
```


## Operation Description

Out of the values stored in D0100, D0110, D0120, D0130, and D0140, the maximum value is stored in D0200. Up to 15 arguments can be used.

Example 7.2 Mininum value

## Script

```
[D0200] = MIN([D0100], [D0110], [D0120], [D0130], [D0140]);
```


## Operation Description

Out of the values stored in D0100, D0110, D0120, D0130, and D0140, the minimum value is stored in D0200. Up to 15 arguments can be used.

Example 7.3 Exponential function

## Script

```
[D0010] = EXP([D0020])
```


## Operation Description

Calculates the exponential function of the value of D0020 and the result is stored in D0010.
Only the data type $F$ (float) can be used.

## Example 7.4 Natural logarithm

## Script

## [D0010] = LOGE ([D0020]);

## Operation Description

Calculates the natural logarithm of the value of D0020 and the result is stored in D0010.
Only the data type F (float) can be used.

## Example 7.5 Common logarithm

## Script

```
[D0010] = LOG10([D0020]);
```


## Operation Description

Calculates the logarithm of the value of D0020 with 10 as the base and the result is stored in D0010.
Only the data type F (float) can be used.

## Example 7.6 Power

## Script

```
[D0010] = POW([D0020],[DOO30]);
```


## Operation Description

Calculates the power of the values.
For example, if the value of D0020 is 10 and the value of D0030 is 5 , the function calculates 10 to the power of 5 and stores the result in D0010.
Only the data type F (float) can be used.

Example 7.7 Square root

## Script

```
[D0010] = ROOT([D0020]);
```


## Operation Description

Calculates the square root of the value of [D0020] and the result is stored in [D0010].
Only the data type F (float) can be used.

Example 7.8 Sine

## Script

```
[D0010] = SIN([D0020]);
```


## Operation Description

Calculates the sine of the radian value of D0020 and stores the result in D0010.
Only the data type F (float) can be used.

Example 7.9 Cosine

## Script

```
[D0010] = COS([D0020]);
```


## Operation Description

Calculates the cosine of the radian value of D0020 and stores the result in D0010.
Only the data type F (float) can be used.

## Example 7.10 Tangent

## Script

## [D0010] = TAN([D0020]);

## Operation Description

Calculates the tangent of the radian value of D0020 and stores the result in D0010. Only the data type $F$ (float) can be used.

Example 7.11 Arcsine

## Script

```
[D0010] = ASIN([D0020]);
```


## Operation Description

Calculates the arcsine of the value of D0020 and stores the result as radians in D0010. Only the data type F (float) can be used.

## Example 7.12 Arccosine

## Script

```
[D0010] = ACOS([DOO20]);
```


## Operation Description

Calculates the arccosine of the value of D0020 and stores the result as radians in D0010. Only the data type $F$ (float) can be used.

Example 7.13 Arctangent

## Script

```
[D0010] = ATAN([D0020]);
```


## Operation Description

Calculates the arctangent of the value of D0020 and stores the result as radians in D0010. Only the data type F (float) can be used.

Example 7.14 Convert angle to radians

## Script

```
[D0010] = RAD([D0020]);
```


## Operation Description

Converts the value of D0020 from degrees $\left(^{\circ}\right.$ ) to radians and stores the result in D0010. Only the data type F (float) can be used.
Example 7.15 Convert radians to angle

## Script

## [D0010] = DEG([D0020]);

## Operation Description

Converts the value of D0020 from radians to degrees ( ${ }^{\circ}$ ) and stores the result in D0010.
Only the data type $F$ (float) can be used.

## Data type conversions

Example 7.16 Convert BCD to binary

## Script

```
[D0200] = BCD2BIN([D0100]);
```


## Operation Description

Converts the BCD value in D0100 to a binary value and stores it in D0200.
For example, if the BCD value 10 (16 as a binary value) is stored in D0100, 10 (binary value) is stored in D0200.
Example 7.17 Convert binary to BCD

## Script

```
[D0200] = BIN2BCD([D0100]);
```


## Operation Description

Converts the binary value in D0100 to a BCD value and stores it in D0200.
For example, if the binary value 16 ( 10 as a $B C D$ value) is stored in D0100, 16 (BCD value) is stored in D0200.
Example 7.18 Convert float to binary

## Script

```
[D0200] = FLOAT2BIN([D0100]);
```


## Operation Description

Converts the float value in D0100 to a binary value and stores it in D0200.
For example, if the data type $F$ (float) 1234.0 ( $0 \times 449$ A4000 as a binary value) is stored in D0100, 1234 (binary value) is stored in D0200. If the data type $F$ (float) 1234.56 ( $0 x 449 A 51 E C$ as a binary value) is stored in D0100, the value after the decimal point is truncated and 1234 (binary value) is stored in D0200.

Example 7.19 Convert binary to float

## Script

```
[D0200] = BIN2FLOAT([D0100]);
```


## Operation Description

Converts the binary value in D0100 to a float value and stores it in D0200.
For example, if the binary value 1234 is stored in D0100, the float value 1234.0 ( $0 \times 449 \mathrm{~A} 4000$ as a binary value) is stored in D0200.
Example 7.20 Convert decimal to string

## Script

## DEC2ASCII([D0100], [D0200]);

## Operation Description

Converts the decimal numeric value in D0200 to a string and stores it in order with D0100 as the starting address.

## Notes:

- This function can be used with data types W (word), I (integer), D (double word), and L (long).
- The NULL terminating character $(0 \times 00)$ is added to the end of the string.


## Converting 1234 (when the data type is W (word))

| Device | Stored Value |
| :---: | :---: |
| D0200 | 1234 |$\Longleftrightarrow$| Device | Stored Value |  |
| :---: | :---: | :---: |
|  | Upper Byte | Lower Byte |
| D 0100 | $' 1 '=0 \times 31$ | $' 2 '=0 \times 32$ |
| D 0101 | $' 3 '=0 \times 33$ | $' 4 '=0 \times 34$ |
| D 0102 | $0 \times 00$ | $0 \times 00$ |
| Terminating character |  |  |

## Converting - $\mathbf{1 2 3 4 5}$ (when the data type is I (integer))



## Converting 1234567890 (when the data type is D (double word))

|  |  | Device | Stored Value |  |
| :---: | :---: | :---: | :---: | :---: |
| Device | Stored Value |  | Upper Byte | Lower Byte |
| D0200 | 1234567890 | D0100 | '1' = 0x31 | '2' = 0x32 |
| D0201 |  | D0101 | '3' = 0x33 | '4' = 0x34 |
|  |  | D0102 | '5' = 0x35 | '6' = 0x36 |
|  |  | D0103 | '7' = 0x37 | '8' = 0x38 |
|  |  | D0104 | '9' = 0x39 | '0' = 0x30 |
|  |  | D0105 | 0x00 | 0x00 |
|  |  |  | Terminating character |  |

## Converting -1234567890 (when the data type is L(long))

| Device | Stored Value |
| :---: | :---: |
| D0200 | -1234567890 |
| D0201 |  |

Example 7.21 Convert string to decimal

## Script

## [D0100] = ASCII2DEC([D0200]);

## Operation Description

Converts the stored string starting at D0200 to a decimal and stores the result in D0100.
The number of digits that can be converted is the maximum number of digits for each data type with added sign.
If the string to convert contains a NULL or characters that cannot be converted to numeric values, the string is converted up to that character.

## Notes:

- This function can be used with data types W (word), I (integer), D (double word), and L (long).
- The NULL terminating character $(0 \times 00)$ is added to the end of the string.


## Setting the string "1234" (when the data type is W (word))

| Device | Stored Value |  |  |
| :---: | :---: | :---: | :---: |
|  | Upper Byte | Lower Byte |  |
| D0200 | '1' $=0 \times 31$ | $' 2 '=0 \times 32$ |  |
|  | $\Longrightarrow$ |  |  |


| Device | Stored Value |  |
| :---: | :---: | :---: |
|  | Upper Byte | Lower Byte |
| D0200 | '1' $=0 \times 31$ | $' 2 '=0 \times 32$ |
| D0201 | $' 3 '=0 \times 33$ | $' 4 '=0 \times 34$ |
| D0202 | $' 5 '=0 \times 35$ | $' 6 '=0 \times 36$ |
| D0203 | $' 7 '=0 \times 37$ | $0 \times 00$ |


$\Longleftrightarrow \quad$| Device | Stored Value |
| :---: | :---: |
| D0100 | 12345 |

## Setting the string "-12345" (when the data type is I (integer))

| Device | Stored Value |  |
| :---: | :---: | :---: |
|  | Upper Byte | Lower Byte |
| D0200 | '-' $=0 \times 2 \mathrm{D}$ | '1' $=0 \times 31$ |
| D0201 | '2' $=0 \times 32$ | $' 3 '=0 \times 33$ |
| D0202 | $' 4 '=0 \times 34$ | $' 5 '=0 \times 35$ |
| D0203 | $0 \times 00$ |  |
| Terminating character |  |  |


$\Longleftrightarrow \quad$| Device | Stored Value |
| :---: | :---: |
| D0100 | -12345 |

## String "1234567890" (when the data type is L (long))

| Device | Stored Value |  |
| :---: | :---: | :---: |
|  | Upper Byte | Lower Byte |
| D0200 | '1' $=0 \times 31$ | $' 2 '=0 \times 32$ |
| D0201 | $' 3 '=0 \times 33$ | $' 4 '=0 \times 34$ |
| D0202 | $' 5 '=0 \times 35$ | $' 6 '=0 \times 36$ |
| D0203 | $' 7 '=0 \times 37$ | $' 8 '=0 \times 38$ |
| D0204 | $' 9 '=0 \times 39$ | $' 0 '=0 \times 30$ |
| D0205 | $0 \times 00$ |  |
| Terminating character |  |  |


$\Longleftrightarrow \quad$| Device | Stored Value |
| :---: | :---: |
| D0100 | 1234567890 |

## Data comparison and copying

Example 7.22 Word-unit data comparison

## Script

```
[D0000] = MEMCMP([D0100], [D0200], 10);
```


## Operation Description

Compares the values of 10 words from D0100 (up to D0109) with the values of 10 words from D0200 (up to D0209). If the value for each is entirely equal, 1 is stored in D0000. If even a single one is not equal, 0 is stored.

Compare each


Note: Even if the data type is set to D (double word), L (long), or F (float), the comparison is performed from the starting device in word units.
Example 7.23 Bit-unit data comparison

## Script

```
[D0000] = MEMCMP([D0100.02], [D0200.00], 10);
```


## Operation Description

Compares the third bit of D0100 through the third bit of D0109 with the state of the bits from the first bit of D0200 through the first bit of D0209.
If the value for each is entirely equal, 1 is stored in D0000. If even a single one is not equal, 0 is stored.
Compare each


Note: Even if the data type is set to $D$ (double word), $L$ (long), or $F$ (float), the comparison is performed from the starting device in bit units.
Example 7.24 Word-unit data copy

## Script

```
MEMCPY([D0100], [D0200], 10);
```


## Operation Description

Copies the value of 10 word devices from D0200 (up to D0209) to 10 word devices from D0100 (up to D0109).
Copy each


Note: Even if the data type is set to D (double word), L (long), or F (float), the data is copied from the starting device in word units.

## Example 7.25 Bit-unit data copy

## Script

MEMCPY([D0200.00], [D0100.02], 10);

## Operation Description

Copies the third bit of 10 words from D0100 (up to D0109) to the bit state for 10 bits of devices from D0200 (up to D0209).
Copy each


Note: Even if the data type is set to D (double word), L (long), or F (float), the bits are copied from the starting device in bit units.

Example 7.26 Copy 1 word from bit devices to bit devices

## Script

```
BITS2BITS(IOO4, MOOOO);
```


## Operation Description

A value of 1 word length from IOO4 (IO04 to IO23) is copied to the bit states of a 1 word region from M0000 (M0000 to M0017).
Copy each


Example 7.27 Copy 1 word from bit devices to a word device

## Script

## BITS2WORD (I004, D0000):

## Operation Description

A value of 1 word length from I004 (to IO23) is copied to the value of device D0000.
This is the same as BITS2BITS (I004, D0000.0);.

Example 7.28 Copy 1 word from a word device to bit devices

## Script

```
WORD2BITS(D0100, M0000);
```


## Operation Description

The value of device D0100 is copied to the bit states of a value of 1 word length from M0000 (M0000 to M0017). This is the same as BITS2BITS (D1000.0, M0000);

## String Operations

Strings are set as continuous data registers of 1 word or more. 2 bytes of data are 1 word and they are set from upper byte to lower byte in order. Set 00 h at the end of the string.

Example 7.29 Copy a string
Script
STRCUT ([D0100], [D0200], 2, 3);
Operation Description
Stores in order from D0100 character count 3 (3 characters worth) from start position 2 (starting from 0, so the 3rd character) of the string "ABCDEFG" that starts from D0200.
Note: The start position can be specified in the range from 0 to 127 , the character count can be specified in the range from 1 to 128.
Copy from string "ABCDEFG" at start position 2 for a character count of $\mathbf{3}$


```
STRUCT([D0100], [D0200], 1, 4);
```

Copy from string "ABCDEFG" at start position 1 for a character count of 4

| Device |  | Stored Value | Start position | Character count | Device |  | Stored Value | Terminating character |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0200 | Upper Byte | 'A' = 0x41 | 0 | -4 characters | D0100 | Upper Byte | 'B' = 0x42 |  |
|  | Lower Byte | 'B' = 0x42 | $\leftarrow 1$ |  |  | Lower Byte | 'C' = 0x43 |  |
| D0201 | Upper Byte | 'C' = 0x43 | $\leftarrow 2$ |  | D0101 | Upper Byte | 'D' = 0x44 |  |
|  | Lower Byte | 'D' = 0x44 | 3 |  | D0101 | Lower Byte | 'E' = 0x45 |  |
| D0202 | Upper Byte | 'E' = 0x45 | 4 |  | D0101 | Upper Byte | $0 \times 00$ |  |
|  | Lower Byte | 'F' = 0x46 | 5 |  |  | Lower Byte | $0 \times 00$ |  |
| D0203 | Upper Byte | 'G' = 0x47 |  |  |  |  |  |  |
|  | Lower Byte | 0x00 | Terminating character |  |  |  |  |  |

## Example 7.30 Count a string

Script

```
[D0100] = STRLEN([D0200]);
```

Operation Description
Finds the length (character count) of the string starting from D0200 and stores the result in D0100.
Note: The NULL terminating character ( $0 \times 00$ ) is the end of the string. (The terminating character is not included in the string length.)

| Device |  | Stored Value |
| :---: | :---: | :---: |
| D0200 | Upper Byte | 'A' $=\mathbf{0 x 4 1}$ |
|  | Lower Byte | 'B' $=\mathbf{0 x 4 2}$ |
| D0201 Character count |  |  |
|  | Upper Byte | 'C' $=\mathbf{0 x 4 3}$ |
|  | Lower Byte | 'D' $=\mathbf{0 x 4 4}$ |
| D0202 | Upper Byte | 'E' $=\mathbf{0 x 4 5}$ |
|  | Lower Byte | 'F' $=\mathbf{0 x 4 6}$ |
| D0203 | Upper Byte | 'G' $=\mathbf{0 x 4 7}$ |
|  | Lower Byte | $\mathbf{0 x 0 0}$ |


$\Longleftrightarrow$| Device | Stored Value |
| :---: | :---: |
| D0100 | 7 |


| Device |  | Stored Value |  | Device | Stored Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D0200 | Upper Byte | 'A' = 0x41 |  | D0100 | 3 |
|  | Lower Byte | 'B' = 0x42 | Character count $\quad \longrightarrow$ |  |  |
| D0201 | Upper Byte | 'C' = 0x43 | Terminating character |  |  |
|  | Lower Byte | 0x00 |  |  |  |  |  |
| D0202 | Upper Byte | 'E' = 0x45 |  |  |  |
|  | Lower Byte | 'F' = 0x46 |  |  |  |
| D0203 | Upper Byte | 'G' = 0x47 |  |  |  |
|  | Lower Byte | 0x00 |  |  |  |

Example 7.31 Concatenate strings
Script

```
STRCAT([D0100], [D0200]);
```

Operation Description
Appends the string starting from D0200 to the string starting from D0100.
Note: The NULL terminating character ( $0 \times 00$ ) is the end of the string. (The terminating character is not included in the string length.)

| Device |  | Stored Value'A' = 0x41 |  | Concatenate $\quad$ 仡 | Device |  | Stored Value$\begin{aligned} & \hline \text { 'A' }=0 \times 41 \\ & \hline \text { 'B' }=0 \times 42 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D0100 | Upper Byte |  |  |  | D0100 | Upper Byte |  |  |
|  | Lower Byte | 'B' = 0x42 |  |  |  | Lower Byte |  |  |
| D0101 | Upper Byte | 'C' = 0x43 |  |  | D0101 | Upper Byte | 'C' = 0x43 |  |
|  | Lower Byte | 0x00 |  |  |  | Lower Byte | 'D' = 0x44 |  |
|  |  |  |  |  | D0102 | Upper Byte | 'E' = 0x45 |  |
| Device |  | Stored Value |  |  |  | Lower Byte | 'F' = 0x46 |  |
| D0200 | Upper Byte | 'D' = 0x44 |  |  | D0103 | Upper Byte | 'G' = 0x47 | Terminating character |
|  | Lower Byte | 'E' = 0x45 |  |  |  | Lower Byte | $0 \times 00$ |  |

## Example 7.32 Search a string

Script

```
[D0000] = STRSTR([D0100], [D0200]);
```

Operation Description
Searches for the search string "DEFG" that starts from D0200 in the string to be searched "ABCDEFGHIJKLMNO" that starts from D0100 and stores the position of the occurrence of the string in D0000. If not found, -1 is stored in D0000.

If "?" is specified as a character to search for, it is handled as any single-byte character. When specifying "?" (0x3F) as a character, specify it as "~?" (0x7E3F) in two bytes.
When specifying " $\sim$ " (0x7E) as a character, specify it as " $\sim$ " (0x7E7E) in two bytes.

Note: The maximum length of the search string is 128 characters.
When searching for "DEFG" and the string was found

| Search string |  |  | Terminating character | String to be searched |  |  | Position | Search result |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device |  | Stored Value |  | Device |  | Stored Value |  | Device | Stored Value |
| D0200 | Upper B Bre | 'D' = 0x44 |  | D0100 | Upper Brye | 'A' $=0 \times 41$ | 0 | D0000 | 3 |
|  | Lower Bry | 'E' = 0x45 |  |  | Lower Bre | 'B' = 0x42 | 1 |  |  |
| D0201 | Upper Brite | 'F' = 0x46 |  | D0101 | Upper Brye | 'C' = 0x43 | 2 |  |  |
|  | Lower Byte | 'G' = 0x47 |  |  | Lower Bre | 'D' = 0x44 | $\leftarrow 3$ |  |  |
| D0202 | Upper Brte | 0x00 |  | D0102 | Upper Brite | 'E' = 0x45 | 4 |  |  |
|  | Lower Byte | 0x00 |  |  | Lower Byte | 'F' = 0x46 | 5 |  |  |
|  |  |  |  | D0103 | Upper Bre | 'G' = 0x47 | 6 |  |  |
|  |  |  |  |  | Lower Byte | 'H' = 0x48 | 7 |  |  |
|  |  |  |  | D0104 | Upper Byte | 'I' = 0x49 | 8 |  |  |
|  |  |  |  |  | Lower Bye | 'J' $=0 \times 4 \mathrm{~A}$ | 9 |  |  |
|  |  |  |  | D0105 | Upper Brite | 'K' = 0x47 | 10 |  |  |
|  |  |  |  |  | Lower Bre | 'L' = 0x4C | 11 |  |  |
|  |  |  |  | D0106 | Upper Brye | 'M' = 0x4D | 12 |  |  |
|  |  |  |  |  | Lower Bre | ' N ' $=0 \times 4 \mathrm{E}$ | 13 |  |  |
|  |  |  |  | D0107 | Upper Brite | 'O' = 0x4F | 14 |  |  |
|  |  |  |  |  | Lower Byte | 0x00 | Terminating character |  |  |

When searching for "WXYZ" and the string was not found

| Search string |  |  | Terminating character | String to be searched |  |  | Position | Search result |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device |  | Stored Value |  |  |  | Stored Value |  | Device | Stored Value |
| D0200 | Upper Byte | 'W' = 0x57 |  | D0100 | Upper Bre | ' $\mathrm{A}^{\prime}$ = $0 \times 41$ | 0 | D0000 | -1 |
|  | Lower Brte | 'X' = 0x58 |  |  | Lower Brte | 'B' = 0x42 | 1 |  |  |
| D0201 | Upper Brte | 'Y' = 0x59 |  |  | Upper Bre | 'C' = 0x43 | 2 |  |  |
|  | Lower Bre | 'Z' = 0x5A |  | D0101 | Lower Brye | 'D' = 0x44 | 3 |  |  |
| D0202 | Upper Btre | 0x00 |  | D0102 | Upper Bre | 'E' = 0x45 | 4 |  |  |
|  | Lower Bte | 0x00 |  |  | Lower Byte | 'F' = 0x46 | 5 |  |  |
|  |  |  |  | D0103 | Upper Brte | 'G' = 0x47 | 6 |  |  |
|  |  |  |  |  | Lower Brye | 'H' = 0x48 | 7 |  |  |
|  |  |  |  | D0104 | Upper Brte | 'I' = 0x49 | 8 |  |  |
|  |  |  |  |  | Lower Byte | 'J' $=0 \times 4 \mathrm{~A}$ | 9 |  |  |
|  |  |  |  | D0105 | Upper Bre | 'K' = 0x47 | 10 |  |  |
|  |  |  |  |  | Lower Brite | 'L' = 0x4C | 11 |  |  |
|  |  |  |  | D0106 | Upper Bre | 'M' = 0x4D | 12 |  |  |
|  |  |  |  |  | Lower Brye | ' N ' = 0x4E | 13 |  |  |
|  |  |  |  | D0107 | Upper Bre | '0' = 0x4F | 14 |  |  |
|  |  |  |  |  | Lower Bre | 0x00 | Terminating character |  |  |

When searching for "?" as any single-byte character

| Search string |  |  | Terminating character | String to be searched |  |  | Position | Search result |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Device |  | Stored Value |  | Dev |  | Stored Value |  | Device | Stored Value |
| D0200 | Upper Byte | 'E' = 0x45 |  | D0100 | Upper Byte | 'A' = 0x41 | 0 | 0000 | 4 |
|  | Lower Byte | '?' $=0 \times 3 \mathrm{~F}$ |  |  | Lower Byte | 'B' = 0x42 | 1 |  | 4 |
| D0201 | Upper Byte | 'G' = 0x47 |  |  | Upper Byte | 'C' = 0x43 | 2 |  |  |
|  | Lower Byte | 'H' = 0x48 |  | D0101 | Lower Byte | 'D' = 0x44 | 3 |  |  |
| D0202 | Upper Byte | $0 \times 00$ |  | D0102 | Upper Byte | 'E' = 0x45 | $\leftarrow 4$ |  |  |
|  | Lower Byte | 0x00 |  |  | Lower Byte | 'F' = 0x46 | 5 |  |  |
|  |  |  |  | D0103 | Upper Byte | 'G' = 0x47 | 6 |  |  |
|  |  |  |  |  | Lower Byte | 'H' = 0x48 | 7 |  |  |
|  |  |  |  | D0104 | Upper Byte | 'I' = 0x49 | 8 |  |  |
|  |  |  |  |  | Lower Byte | 'J' = 0x4A | 9 |  |  |
|  |  |  |  | D0105 | Upper Byte | 'K' = 0x47 | 10 |  |  |
|  |  |  |  |  | Lower Byte | 'L' = 0x4C | 11 |  |  |
|  |  |  |  | D0106 | Upper Byte | 'M' = 0x4D | 12 |  |  |
|  |  |  |  |  | Lower Byte | 'N' = 0x4E | 13 |  |  |
|  |  |  |  | D0107 | Upper Byte | 'O' = 0x4F | 14 |  |  |
|  |  |  |  |  | Lower Byte | 0x00 | Terminating character |  |  |

## When searching for "?" as a character



| String to be searched |  |  | Position | Search result |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Device |  | Stored Value |  | Device | Stored Value |
| D0100 | Upper Byte | 'A' = 0x41 | 0 | D0000 | 4 |
|  | Lower Byte | 'B' = 0x42 | 1 |  | 4 |
| D0101 | Upper Byte | 'C' = 0x43 | 2 |  |  |
|  | Lower Byte | 'D' = 0x44 | 3 |  |  |
| D0102 | Upper Byte | 'E' = 0x45 | $\leftarrow 4$ |  |  |
|  | Lower Byte | '?' = 0x3F | 5 |  |  |
| D0103 | Upper Byte | 'G' = 0x47 | 6 |  |  |
|  | Lower Byte | 'H' = 0x48 | 7 |  |  |
| D0104 | Upper Byte | 'I' = 0x49 | 8 |  |  |
|  | Lower Byte | 'J' = 0x4A | 9 |  |  |
| D0105 | Upper Byte | 'K' = 0x47 | 10 |  |  |
|  | Lower Byte | 'L' = 0x4C | 11 |  |  |
| D0106 | Upper Byte | 'M' = 0x4D | 12 |  |  |
|  | Lower Byte | 'N' = 0x4E | 13 |  |  |
| D0107 | Upper Byte | 'O' = 0x4F | 14 |  |  |
|  | Lower Byte | 0x00 | Terminating character |  |  |

## When searching for " $\sim$ " as a character

Search string

| Device |  | Stored Value |
| :---: | :---: | :---: |
| D0200 | Upper Byte | 'E' = 0x45 |
|  | Lower Byte | ' $\mathbf{~ ' ~}=\mathbf{0 x 7 E}$ |
| D0201 | Upper Byte | ' $\mathbf{N}^{\prime}=\mathbf{0 x 7 E}$ |
|  | Lower Byte | 'G' = 0x47 |
| D0202 | Upper Byte | 'H' = 0x48 |
|  | Lower Byte | $0 \times 00$ |

String to be searched

| Device |  | Stored Value | Position 0 | Device | Stored Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D0100 | Upper Byte | 'A' = 0x41 |  | D0000 | 4 |
|  | Lower Byte | 'B' = 0x42 | 1 |  |  |
| D0101 | Upper Byte | 'C' = 0x43 | 2 |  |  |
|  | Lower Byte | 'D' = 0x44 | 3$\leftarrow 4$ |  |  |
| D0102 | Upper Byte | 'E' = 0x45 |  |  |  |  |  |
|  | Lower Byte | '~' = 0x7E | 5 |  |  |
| D0103 | Upper Byte | 'G' = 0x47 | 6 |  |  |
|  | Lower Byte | 'H' = 0x48 | 7 |  |  |
| D0104 | Upper Byte | 'I' = 0x49 | 8 |  |  |
|  | Lower Byte | 'J' = 0x4A | 9 |  |  |
| D0105 | Upper Byte | 'K' = 0x47 | 10 |  |  |
|  | Lower Byte | 'L' = 0x4C | 11 |  |  |
| D0106 | Upper Byte | 'M' = 0x4D | 12 |  |  |
|  | Lower Byte | 'N' = 0x4E | 13 |  |  |
| D0107 | Upper Byte | 'O' = 0x4F | 14 |  |  |
|  | Lower Byte | 0x00 | Terminating character |  |  |

## Indirect assignment

Example 7.33 Indirect read

## Script

[D0200] = OFFSET([D0010], [D0020]);
Operation Description
When the value of D0020 is 8 , the value of D0018, the device 8 words from D0010, is read and stored in D0200.


Example 7.34 Indirect write

## Script

```
OFFSET([D0010],[D0020]) = 1234;
```


## Operation Description

When the value of D0020 is 3, the constant 1234 is stored in D0013, the device 3 words from D0010.


## Important Notes

This section describes important notes when programming scripts.

## Important Notes Regarding While Definition

## -Define so the execution does not go into an infinite loop.

The execution expression is repeatedly executed while the conditional expression is satisfied.
However, it will go into an infinite loop when the conditional expression is satisfied continually.

```
[D0100] = 10;
while (0 != [D0100])
{
    [D0200] = [D0200] + 1;
}
```

In the conditional expression of the while definition, it states to exit the loop when the value of D0100 turns 0 . However, the value stored in D0100 is not changed after string 10 in the first line of the script, so the execution goes into an infinite loop. When using the while definition, define it so the execution will not go into an infinite loop.
If the execution becomes an infinite loop, the scan time will exceed the watchdog timer setting and a watchdog timer error will occur.

The value of D0100 becomes 0 when the while definition is repeated 10 times in the following example, and the execution will get out of the while definition.

```
[D0100] = 10;
while (0 != [D0100])
{
    [D0200] = [D0200] + 1;
    [D0100] = [D0100] - 1;
}
```


## About the Priority of the Operator

Operators are processed in the order from the left in each line. When multiple operations are combined, the operators are processed in the following priorities.

| Priority | Operator |
| :---: | :---: |
| High | () |
|  | ! ~ - (Negative number) |
|  | * / \% |
|  | + - (Subtraction) |
|  | << >> |
|  |  |
|  | $\wedge$ |
|  | । |
|  | \ll= \gg $=$ |
|  | $==$ ! $=$ |
|  |  |
|  | 11 |
| Low | $=$ |

## 27: Flow Calculation Instructions

This chapter describes the flow calculation instructions that output flow volume and the accumulated flow volume.

## SCALE (Convert Analog Input)

This instruction scales the analog input value according to the coordinates between two specified points and outputs that result.

## Symbol



## Operation

When the input is on, the value of the data register specified by $S 1$ is scaled according to the settings in the data register specified by S 2 , then the calculated result is stored in the output value (D1+0, D1+1).


## Notes:

- The SCALE instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error occurs, the execution of the instruction is canceled, and the next instruction is executed.
For user program execution errors, see "User Program Execution Errors" on page 3-10.
- If the value of $S 1$ or $S 2$ is out of range, the result is a user program execution error. Error code 28 is stored in D8006, and the output value (D1+0, D1+1) and the output value (dead band) (D1+2, D1+3) are not updated
For user program execution errors, see "User Program Execution Errors" on page 3-10.
- In the following cases, a user program execution error will occur. Error code 46 is stored in D8006, and the output value (D1+0, D1+1) and the output value (dead band) (D1+2, D1+3) are not updated. For user program execution errors, see "User Program Execution Errors" on page 3-10.
- When the input minimum value ( $\mathrm{S} 2+1$ ) is the input maximum value $(\mathrm{S} 2+0)$ or higher (input minimum value $(\mathrm{S} 2+1) \geq$ input maximum value (S2+0))
- When the output minimum value $(S 2+4, S 2+5)$ is the output maximum value $(S 2+2, S 2+3)$ or higher (output minimum value $(S 2+4$, $\mathrm{S} 2+5) \geq$ output maximum value $(\mathrm{S} 2+2, \mathrm{~S} 2+3)$ )
- When the output maximum value, the output minimum value, or the dead band ( $\mathrm{S} 2+6, \mathrm{~S} 2+7$ ) is INF (infinity) or NAN (not a number)
- When the dead band $(\mathrm{S} 2+6, \mathrm{~S} 2+7)$ is negative


## Dead Band Function

The dead band function filters minute changes in the value input to the SCALE instruction. The SCALE instruction always retains the following two values.

Output value: The result of scaling the input value with each scan
Output value (dead band): The result of filtering the input value with the dead band
The fluctuation range to perform filtering is set as the dead band.
If the fluctuation range of the output value is smaller than the dead band, the output value (dead band) is not updated.


When the SCALE instruction is executed, it stores the value scaled in the first scan in output value (D1 +0, D1 +1 ) and updates the output value (dead band) (D1+2, D1+3).
The operation at this time differs according to whether or not the dead band is enabled.

## When the dead band is enabled

The output value (D1+0, D1+1) and the output value (dead band) (D1+2, D1+3) are compared, and the value is stored depending on which of the absolute value of that difference ( $\mathrm{D} 1+4, \mathrm{D} 1+5$ ) and the size of the dead band $(\mathrm{S} 2+6, \mathrm{~S} 2+7$ ) are larger.

- If the absolute value of the difference ( $\mathrm{D} 1+4, \mathrm{D} 1+5$ ) between the output value ( $\mathrm{D} 1+0, \mathrm{D} 1+1$ ) and the output value (dead band) ( $\mathrm{D} 1+2, \mathrm{D} 1+3$ ) is less than the dead band ( $\mathrm{S} 2+6, \mathrm{~S} 2+7$ )
The output value (D1+0, D1+1) is not stored in the output value (dead band) (D1+2, D1+3).
- If the absolute value of the difference ( $\mathrm{D} 1+4, \mathrm{D} 1+5$ ) between the output value ( $\mathrm{D} 1+0, \mathrm{D} 1+1$ ) and the output value (dead band) ( $\mathrm{D} 1+2, \mathrm{D} 1+3$ ) is greater than or equal to the dead band ( $\mathrm{S} 2+6, \mathrm{~S} 2+7$ )
The output value (D1+0, D1+1) is stored in the output value (dead band) (D1 $+2, \mathrm{D} 1+3$ ) and output value (dead band) change notification (D2+0) turns on for one scan.

If the dead band is disabled (dead band ( $\mathbf{S 2 + 6 , S 2 + 7 \text { )=0) }}$
The output value (D1+0, D1+1) is stored in the output value (dead band) (D1+2, D1+3) with each scan.

## Example 1: When the dead band is enabled

When the dead band $(S 2+6, S 2+7)$ is 100 and initial value of the output value (dead band) $(D 1+2, D 1+3)$ is 0 , the operation in regard to the output value (D1+0, D1+1) is as follows.

(1) Since the absolute value of the difference ( $D 1+4, D 1+5$ ) between the output value and the output value (dead band) is less than the dead band, the output value ( $\mathrm{D} 1+0, \mathrm{D} 1+1$ ) is not stored in the output value (dead band) ( $\mathrm{D} 1+2, \mathrm{D} 1+3$ ).
(2) Since the absolute value of the difference (D1+4, D1+5) between the output value and the output value (dead band) is greater than or equal to the dead band, the output value (D1+0, D1+1) is stored in the output value (dead band) (D1+2, D1+3).
(3) Output value (dead band) change notification (D2+0) turns on for one scan when (2) occurs.

## Example 2: When the dead band is disabled

When the dead band ( $\mathrm{S} 2+6, \mathrm{~S} 2+7$ ) is 0 and initial value of the output value (dead band) ( $\mathrm{D} 1+2, \mathrm{D} 1+3$ ) is 0 , the output value (D1+0, D1+1) is stored in the output value (dead band) (D1+2, D1+3) with each scan.


## Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | $\mathbf{D}$ | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Input value | - | - | - | - | - | - | X | - | - |
| S2 (Source 2) | Control register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| S3 (Source 3) | Initialization input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Output register | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| D2 (Destination 2) | Output relay | - | $X$ | $\mathbf{i}$ | - | - | - | - | - | - |

Special data registers cannot be designated as S2 and D1. Special internal relays cannot be designated as D2.

## Data Types

| Data Type | W (word) | I (integer) | D (double word) | L (long) | F (float) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Specifiable | Yes | Yes | - | - | - |

The data type setting is only reflected in the input value.

## Settings

The SCALE (Scale Analog Value) dialog box contains the Devices tab and the Settings tab.
The Devices tab configures the devices used with the SCALE instruction. The Settings tab configures the initial values of the SCALE instruction parameters.

- Devices tab



## (1) S1 (Source 1): Input Value

Specify the data register as the device that stores the input value to convert.
If the input value is greater than the input maximum value ( $\mathrm{S} 2+0$ ) (input value $>$ input maximum value $(\mathrm{S} 2+0)$ ), the input maximum value ( $\mathrm{S} 2+0$ ) is scaled.
If the input value is less than the input minimum value ( $\mathrm{S} 2+1$ ) (input minimum value ( $\mathrm{S} 2+1$ ) > input value), the input minimum value ( $\mathrm{S} 2+1$ ) is scaled.

## (2) S2 (Source 2): Control Register

Specify the data register that stores the input maximum value, input minimum value, output maximum value, output minimum value, and the dead band.
8 continuous words are used starting from the specified data register.
For details on the control registers, see "S2: Control registers" on page 27-7.

## (3) S3 (Source 3): Initialization Input

Specify the input or internal relay as the device to initialize the control registers.
When the initialization input is on, the initial values configured on the Settings tab in the SCALE (Scale Analog Value) dialog box are stored in the control registers.
When the initialization input is on, the initial values are stored in the data registers with each scan. To execute initialization only once, add the SOTU instruction (single output up) or the SOTD (single output down) instruction to the input conditions. For how to configure the initial values, see "(2) Initial Value" on page 27-7.

## (4) D1 (Destination 1): Output Register

Specify the data register that will store the output value, the output value (dead band), and the amount of output change. 6 continuous words are used starting from the specified data register.

| Storage Destination | Function | Setting | Data Types |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{D} 1+0 \\ & \mathrm{D} 1+1 \end{aligned}$ | Output value | Stores the value after scaling with each scan. |  |
| $\begin{aligned} & \mathrm{D} 1+2 \\ & \mathrm{D} 1+3 \end{aligned}$ | Output value (dead band) | If the dead band is disabled (dead band $(\mathrm{S} 2+6, \mathrm{~S} 2+7)$ is 0 ), the output value ( $\mathrm{D} 1+0, \mathrm{D} 1+1$ ) is stored in the output value (dead band) with each scan. <br> If the dead band is enabled (dead band $(\mathrm{S} 2+6, \mathrm{~S} 2+7)$ is not 0 ), output value (dead band) change notification (D2+0) turns on and the output value (D1+0, D1+1) is stored in the output value (dead band) only when the absolute value of the difference between the output value (D1+0, D1+1) and the output value (dead band) is greater than or equal to the dead band ( $\mathrm{S} 2+6, \mathrm{~S} 2+7$ )) (difference $\geq$ dead band (S2+7, S2+8)). <br> For details, see "Dead Band Function" on page 27-2. | F (float) |
| $\begin{aligned} & \mathrm{D} 1+4 \\ & \mathrm{D} 1+5 \end{aligned}$ | Amount of output change | Stores the absolute value of the difference between the output value (D1+0, D1+1) and the output value (dead band) (D1+2, D1+3). <br> Absolute value of difference <br> $(\mathrm{D} 1+4, \mathrm{D} 1+5)$  <br> $\begin{array}{cc}\text { Output value (dead band) } & \\ \text { Output value } \\ \text { (D1+2, D1+3) } & \text { (D1+0, D1+1) }\end{array}$  | F (float) ${ }^{*}$ |

$*_{1}$ The data range is 0 and $1.175494 \mathrm{E}-38$ to $3.402823 \mathrm{E}+38$.
(5) D2 (Destination 2): Output Relay

Specify the output or internal relay to store the output value (dead band) change notification and the input value alarm output. 2 continuous words are used starting from the specified device.

| Storage <br> Destination | Function | Setting |
| :--- | :--- | :--- |
| D2+0 | Output value <br> (dead band) change <br> notification | This relay turns on for one scan if the absolute value of the difference between the output value <br> $(\mathrm{D} 1+0, \mathrm{D} 1+1)$ and the output value (dead band) (D1+2, D1+3) is greater than the dead band <br> $(\mathrm{S} 2+6, \mathrm{~S} 2+7)$. At that time, the output value (D1+0, D1+1) is stored in the output value (dead <br> band) (D1+2, D1+3). |
| D2+1 | Input value warning <br> output | This relay turns on when the input value (S1) is greater than the input maximum value (S2+0) or <br> when the input value is less than the input minimum value (S2+1). At that time, if the input value <br> $(S 1)$ is greater than the input maximum value (S2+0), it is scaled by the input maximum value <br> (S2+0). If the input value (S1) is less than the input minimum value (S2+1), it is scaled by the input <br> minimum value (S2+1). |

(6) Device Allocation

Click this button to display the Device Allocation dialog box. As shown next, a table of the data registers and internal relays and their corresponding SCALE instruction settings are displayed in the dialog box (7). Click Allocate Comments (8) and you can configure the comments for the data registers and internal relays that correspond to the content of the settings.

## Device Allocation dialog box



## - Settings tab



## (1) Data Type

Select the data type of the input value (S1) as "W (word)" or "I (integer)".

## (2) Initial Value

Configure the initial values of the functions that will be stored in the control registers when the initialization input is on. For the range of initial values, see "S2: Control registers" on page 27-7.

## S2: Control registers

| Storage Destination | Function | Setting | Data Types |
| :---: | :---: | :---: | :---: |
| S2+0 | Input maximum value | Set as input maximum value $>$ input minimum value $(\mathrm{S} 2+0)^{* 1}$. <br> For $W$ (word), the initial value is 65,535 . <br> For I (integer), the initial value is 32,767 . | W (word) <br> I (integer) |
| S2+1 | Input minimum value | Set as input minimum value < input maximum value ( $\mathrm{S} 2+1)^{*}$. For W (word), the initial value is 0 . <br> For I (integer), the initial value is $-32,768$. |  |
| $\begin{aligned} & \mathrm{S} 2+2 \\ & \mathrm{~S} 2+3 \end{aligned}$ | Output maximum value | Set as output maximum value $>$ output minimum value $(S 2+4, S 2+5)^{* 1}$. The initial value is 100.0 . | F (float) |
| $\begin{aligned} & \mathrm{S} 2+4 \\ & \mathrm{~S} 2+5 \end{aligned}$ | Output minimum value | Set as output minimum value < output maximum value $(\mathrm{S} 2+2, \mathrm{~S} 2+3)^{* 1}$. The initial value is 0.0 . |  |
| $\begin{aligned} & \mathrm{S} 2+6 \\ & \mathrm{~S} 2+7 \end{aligned}$ | Dead band | The absolute value of the difference between the output value (D1+0, D1+1) and the output value (dead band (D1 $+2, \mathrm{D} 1+3$ ) is sampled, and output value (dead band) change notification ( $\mathrm{D} 2+0$ ) turns on only if the absolute value of the difference is greater than or equal to the dead band (difference $\geq$ dead band). At that time, the output value (dead band) ( $D 1+2, D 1+3$ ) is stored in the output value ( $D 1+0, D 1+1$ ). If the dead band is 0 , the dead band function is disabled and the output value (D1+0, $D 1+1$ ) is stored in the output value (dead band) (D1+2, D1+3) with each scan. The initial value is 0 . | F (float) ${ }^{*}$ |

*1 If the conditions for the settings cannot be satisfied, a user program execution error will occur and the output value and output value (dead band) will not be updated.
*2 The data range is 0 and $1.175494 \mathrm{E}-38$ to $3.402823 \mathrm{E}+38$.

## Operation Example

To convert an analog input value from 0 to 4,095 to 0 to 65,535
Create the following ladder program.

(1) Store the analog value in D0000.
(2) Initialize the settings with the initialize pulse, and when M0000 turns on, the calculation is performed with the SCALE instruction.

## SCALE instruction settings



## Devices tab

| Settings | Description |
| :--- | :--- |
| S1 (input value) | D0000 |
| S2 (control register) | D0050 |
| S3 (initialization input) | M8120 |
| D1 (output register) | D0150 |
| D2 (output relay) | M0050 |

Settings tab

| Settings |  |
| :--- | :--- |
| Data type | Word $(\mathrm{W})$ |
| Input maximum value | 4,095 |
| Input minimum value | 0 |
| Output maximum value | 65,535 |
| Output minimum value | 0 |
| Deadband | 10 |

## FLWA (Analog Flow Totalizer)

This instruction samples the instantaneous flow (volume per unit of time) and stores the accumulated flow volume (the volume of a material that has passed through for an arbitrary period) to a log.

## Symbol



## Operation

The flow rate is sampled at a fixed cycle and the accumulated flow volume is calculated. That result is stored in the device specified by D2 (logged data).
The FLWA instruction has a totalizer function that samples and accumulates the flow rate and a log output function that temporarily saves the accumulated volume at the desired time.

Note: When using an analog output type flow meter, the FLWA instruction can be used to monitor the flow volume by converting the analog value output from the flow meter to the flow rate with the SCALE instruction.
For details on the SCALE instruction, see "SCALE (Convert Analog Input)" on page 27-1.
When using a pulse output type flow meter, the FLWP instruction can be used to monitor the flow volume. For details on the FLWP instruction, see "FLWP (Pulse Flow Totalizer)" on page 27-18.

## Notes:

- The FLWA instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error occurs, the execution of the instruction is canceled, and the next instruction is executed.
For user program execution errors, see "User Program Execution Errors" on page 3-10.
- The FLWA instruction cannot be simultaneously used with the LABEL, LJMP, LCAL, LRET, JMP, JEND, MCS, and MCR instructions.


## Totalizer Function Overview

When the input is on, if the enable totalizer input ( S 2 ) is turned on, the flow rate ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) starts being sampled. When the enable totalizer input is on, totalization is performed (updating the accumulated flow volume work area and accumulated time work area).
When the enable totalizer input is off, totalization is paused. (The accumulated flow volume work area and the accumulated time work area values are retained.)


Note: For details on the totalizer function such as the operation immediately after the input is turned on and the operation when the enable totalizer input (S2) is once again turned on, see "Totalizer Function" on page 27-11.

## 27: Flow Calculation Instructions

## Log Output Function Overview

When the input is on, if the log execution input (S3) is turned on, the logged data (D2) is updated regardless of the enable totalizer input (S2) on/off status. The maximum amount of logged data is 35 items.
When the enable totalizer input is off, totalization is paused. (The accumulated flow volume work area and the accumulated time work area values are retained.)


Note: For details on the log output function such as the operation immediately after the input is turned on, the operation when the enable totalizer input (S2) is once again turned on, and the logged data updating when the log execution input (S3) is turned on, see "Log Output Function" on page 27-13.

Valid Devices

| Device | Function | I | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Flow rate | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Enable totalizer input | $X$ | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Log execution input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Status | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| D2 (Destination 2) | Logged data | - | - | - | - | - | - | $\mathbf{A}$ | - | - |

L Special data registers cannot be used.

## Function Descriptions

## - Totalizer Function

## Starting Totalization

This section describes the operation from turning on the input to starting totalization.

(1) If the input is turned on, the operation status ( $D 1+0$ ), the amount of logged data ( $D 2+0$ ), the accumulated flow volume work area, the accumulated time work area, and the logged data (D2+2 to D2+2+(6×maximum amount of logged data)) are initialized to " 0 ".
(2) If the enable totalizer input (S2) is turned on, sampling starts. The accumulated time work area (D1+6, D1+7) count starts at the same time.
(3) The amount to add calculated from the flow rate ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) when sampled and the elapsed time is added to the accumulated flow volume work area (D1+4, D1+5).
(4) Afterward the operation in (3) is repeated.

## Pausing and Restarting Totalization

This section describes the operation to pause and restart totalization by turning the enable totalizer input (S2) on and off.

(1) While the totalization is being executed, if the enable totalizer input is turned off, sampling is paused and updating the accumulated flow volume work area (D1+4, D1+5) and the accumulated time work area (D1+6, D1+7) is stopped. The accumulated flow volume work area and the accumulated time work area values are retained.
During the period from the previous sampling to (1), the flow rate is not added to the accumulated flow volume work area, even if it is larger than " 0 ".
(2) If the enable totalizer input once again changes from off to on, totalization restarts.

The processing is the same as (2) in "Starting Totalization" on page 27-11.
(3) The accumulated flow volume and the accumulated time for the sampling period are calculated.

The processing is the same as (3) in "Starting Totalization" on page 27-11.
(4) Afterward the operation in (3) is repeated.

## Ending Totalization

## To end totalization by turning off the input

This section describes the end operation for totalization when ending totalization by turning off the input.

(1) When the input is off, updating the accumulated flow volume work area and the accumulated time work area is stopped. The accumulated flow volume work area and the accumulated time work area values are retained.
During the period from the previous sampling to (1), the flow rate is not added to the accumulated flow volume work area, even if it is larger than " 0 ".
(2) When the input is off, the accumulated flow volume work area and the accumulated time work area values are retained, even if the enable totalizer input is turned off.

## To end totalization by turning off the enable totalizer input (S2)

This section describes the end operation for totalization when ending totalization by turning off the enable totalizer input (S2).

(1) When the enable totalizer input is off, totalization (updating the accumulated flow volume work area and the accumulated time work area) is stopped.
The accumulated flow volume work area and the accumulated time work area values are retained.
(2) Even if the input is turned off, no processing is performed as totalization was stopped in (1).

The accumulated flow volume work area and the accumulated time work area values are retained.
(3) When the input is off, no processing is performed even if the enable totalizer input is turned on.

The accumulated flow volume work area and the accumulated time work area values are retained.

## - Log Output Function

## Log output

## When the input is on

This section describes the log output operation when the input is on.

(1) When the enable totalizer input (S2) is on, if the log execution input (S3) is turned on, the log is updated and the accumulated flow volume work area and the accumulated time work area values are initialized to " 0 ".
(2) The amount to add calculated from the flow rate ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) and the elapsed time is added to the accumulated flow volume work area.
When the enable totalizer input is on, the sampling period is retained even during the log update processing.
(3) When the enable totalizer input is off, sampling is paused and updating the accumulated flow volume work area and the accumulated time work area is stopped.
The accumulated flow volume work area and the accumulated time work area values are retained.
(4) Even when the enable totalizer input is off, if the input is on, the log is output in the same manner as (1).

## When the input is off

When the input is off, no processing is performed even if the log execution input (S3) is turned on.

## Log Updating

The logged data can be recorded from $\log 1$ to $\log 35 . \log 1$ is the newest logged data.
Each time the log is updated, 1 is added to the amount of logged data (1) and the old logged data is pushed back by one item (2).

When the maximum amount of logged data is reached, the oldest log is deleted (3).
The date/time information (4) and accumulated flow volume (5) is stored in $\log 1$.
The accumulated time (6) unit is converted from "ms" to "s" and stored in log 1.


The maximum amount of logged data to use is specified on the Settings tab in the FLWA (Analog Flow Totalizer) dialog box.

Note: For details on the date/time information, the accumulated flow volume, and the accumulated time recorded in the log, see "(5) D2 (Destination 2): Logged Data" on page 27-15.

## Settings

The FLWA (Analog Flow Totalizer) dialog box contains the Devices tab and the Settings tab.

- Devices tab


| Settings | Description |
| :--- | :--- |
| Tag name | Specifies the tag name or the device address for the device. |
| Device address | Shows the device address that corresponds to the tag name. |
| Comment | Shows the comment for the device address. This item can be edited. |

## (1) S1 (Source 1): Flow Rate

Specify the device that stores the flow rate. 2 continuous words ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) are used starting from the set device.
The valid range for flow rate is 0 or $1.175494 \mathrm{E}-38$ to $3.402823 \mathrm{E}+38{ }^{*}$.
*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see Chapter 3 "Instructions Reference" - "32-bit Data Storage" on page 3-9.

Note: If the flow rate value is outside the valid range, a user program execution error occurs, M8004 turns on, error code 28 is stored in D8006, and execution of the instruction is canceled. 10 is also stored in the status (D1) at the same time.
For user program execution errors, see "User Program Execution Errors" on page 3-10.
(2) S2 (Source 2): Enable Totalizer Input

Specify the device to enable totalization processing of the flow rate.
When the enable totalizer input is off, totalization is paused. When on, totalization is executed.
For details on the enable totalizer input, see "Function Descriptions" on page 27-11.
(3) S3 (Source 3): Log Execution Input

Specify the device to execute and stop the logging process that updates the log and initializes the accumulated flow volume work area and the accumulated time work area to " 0 ".
When the log execution input changes from off to on, the logging process is executed.
For details on the log execution input, see "Log Output Function" on page 27-13.
(4) D1 (Destination 1): Status

Specify the device to store the status including the error during FLWA instruction execution. 10 continuous words are used starting from the set device.

| Storage Destination | Function | Description |
| :---: | :---: | :---: |
| D1+0 | Operation status | Stores the status including the error during FLWA instruction execution. <br> 0 : Normal <br> 10 : Flow rate out of range during sampling |
| $\begin{gathered} \mathrm{D} 1+1 \\ \vdots \\ \mathrm{D} 1+9 \end{gathered}$ | System work area |  |

## (5) D2 (Destination 2): Logged Data

Specify the device to store the data that is logged. A maximum of 212 continuous words are used starting from the set device.

Note: The number of data registers that are used for logged data changes according to the maximum amount of logged data.
The number of data registers used for logged data is $2+6 \times$ the maximum amount of logged data.

| Storage Destination | Function |  | Description | Data Range |
| :---: | :---: | :---: | :---: | :---: |
| D2+0 | Amount of logged data |  | Stores the amount of logged data that has been recorded. | W (word): 0 to 35 |
| D2+1 | Reserved |  | - | - |
| $\begin{aligned} & \mathrm{D} 2+2 \\ & \mathrm{D} 2+3 \end{aligned}$ | $\log 1$ | Log time | When the log execution input (S3) changes from off to on (during log updating), these devices store the content of special data registers D8008 to D8014 (current calendar/time values) converted to the number of seconds ${ }^{* 1}$ from January 1st, 1970. | D (double word): <br> 0 to 4,294,967,295*2 |
| $\begin{aligned} & \mathrm{D} 2+4 \\ & \mathrm{D} 2+5 \end{aligned}$ |  | Accumulated flow volume | When the log execution input (S3) changes from off to on (during log updating), these devices store the accumulated flow volume. For the processing when an accumulated flow volume overflow or underflow has occurred, see "Carry and Borrow in Floating-Point Data Processing" on page 3-8. | $\begin{aligned} & \text { F (float): } \\ & 0,1.175494 \mathrm{E}-38 \text { to } \\ & 3.402823 \mathrm{E}+38^{* 2} \end{aligned}$ |
| $\begin{aligned} & \mathrm{D} 2+6 \\ & \mathrm{D} 2+7 \end{aligned}$ |  | Accumulated time | When the log execution input (S3) changes from off to on (during log updating), these devices store the accumulated time. <br> The unit is "s". | D (double word): <br> 0 to 4,294,967,295*2 |
| ! | : | ! | ! | ! |
| $\begin{aligned} & \text { D2+206 } \\ & \text { D2+207 } \end{aligned}$ | Log 35 | Log time | Same as $\log 1$. | Same as $\log 1$. |
| $\begin{aligned} & \hline \text { D2+208 } \\ & \text { D2+209 } \end{aligned}$ |  | Accumulated flow volume |  |  |
| $\begin{aligned} & \mathrm{D} 2+210 \\ & \mathrm{D} 2+211 \end{aligned}$ |  | Accumulated time |  |  |

*1 The time expressed as the number of seconds from 00:00:00 on January 1st, 1970.
(For example, if the date/time is 00:00:00 on January 1 st, 2015 , the value is $1,420,070,400$ seconds.)
*2 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see Chapter 3 "Instructions Reference" - "32-bit Data Storage" on page 3-9.

## - Settings tab



## (1) Flow Rate Unit

Select the time unit for flow rate that will be stored in the flow rate $(\mathrm{S} 1+0, \mathrm{~S} 1+1)$ from the following.
"Second", "Minute", "Hour", "Days"

## (2) Sampling Period

Specifies the time interval to sample the flow rate in 0.1 s increments.
The range is 0.1 to $6,553.5$.

## (3) Max Quantity of Log Data

Species the maximum amount of logged data that can be recorded.
The number of data registers that are used for the logged data (D2) changes according to the maximum amount of logged data.
The number of data registers used for logged data (D2) is $2+6 \times$ the maximum amount of logged data.
The range is 1 to 35 .

## Operation Example

## Configuration Example



## Devices tag

| Item | Description |  |
| :--- | :--- | :--- |
| S1 (flow rate) | D0010 | Comments |
| S2 (enable totalizer input) | M0050 |  |
| S3 (log execution input) | M0100 of the analog input value converted to the flow rate. |  |
| D1 (status) | D0150 | WEEK instruction output. Set to turn on for one scan every day at 00:00. |
| D2 (logged data) | M0150 |  |

## Settings tag

| Item | Description |  |
| :--- | :--- | :--- |
| Flow rate unit | Second |  |
| Sampling period | 0.1 sec |  |
| Max quantity of logged data | 10 |  |

## Example program

| $\underset{\text { M0000 }}{1-1}$ | SCALE(W) | S1 | S2 | S3 | D1 | D2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | D8058 | D0000 | M0020 | D0010 | M0030 |
| $\underset{\text { M0000 }}{1}$ | FLWA | S1 | S2 | S3 | D1 | D2 |
|  | 1 | D0010 | M0050 | M0100 | D0150 | D0200 |
| $\underset{\text { M0000 }}{1}$ |  | EK | S1 | S2 | S3 | D1 |
|  |  |  |  |  | 1 | M0100 |

- If input M0000 turns on, the result of analog input value D8058 being converted to the flow rate is stored in D0010 with each scan.
- Sampling of the flow rate D0010 and totalization starts by turning on input M0000 and enable totalizer input M0050.
- The operation status is stored in D1 (status).
- By turning on M0100 for one scan every day at 00:00 with the WEEK instruction, S3 (log execution input) turns on and the current log information is stored in D2 (logged data).


## FLWP (Pulse Flow Totalizer)

This instruction monitors a counter that measures the number of pulses and calculates the flow rate at a fixed cycle. It also stores the accumulated flow volume (the amount that flowed for an arbitrary period) to a log.

## Symbol



## Operation

The FLWP instruction calculates the flow rate and the accumulated flow volume by acquiring the pulse signal output from a pulse output type flow meter using a counter and monitoring the value of that counter. That result is stored in the devices specified by D1 (status) and D2 (logged data).
The FLWP instruction has a flow rate calculation function that calculates the flow rate from pulses, a totalizer function that accumulates the flow volume, and a log output function to temporarily save the accumulated volume at the desired time.

Note: When using an analog output type flow meter, the FLWA instruction can be used to monitor the flow volume. For details on the FLWA instruction, see "FLWA (Analog Flow Totalizer)" on page 27-9.

## Notes:

- The maximum frequency of pulses that the FLWP instruction supports is 10 kHz .
- Output the log in a cycle within 119 hours.
- The FLWP instruction cannot be used in an interrupt program. If used in an interrupt program, a user program execution error occurs, the execution of the instruction is canceled, and the next instruction is executed.
For user program execution errors, see "User Program Execution Errors" on page 3-10.
- The FLWP instruction must be executed with each scan as set or it cannot correctly measure the time. Therefore, it cannot be simultaneously used with the LABEL, LJMP, LCAL, LRET, JMP, JEND, MCS, and MCR instructions.


## Flow Rate Calculation Function Overview

When the input is on, if the enable totalizer input (S2) is turned on, the amount that the flow counter ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) increased is added to the flow volume work area with each scan. The flow rate (D1+0, D1+1) is updated every second with the result that is calculated from the flow volume work area.
If the enable totalizer input is turned off, the flow rate is initialized to "0" and updating the flow rate is stopped.


Note: For details on the flow calculation function such as the operation immediately after the input is turned on and the operation when the enable totalizer input is once again turned on, see "Flow Rate Function" on page 27-20.

## Totalizer Function Overview

When the input is on, if the enable totalizer input ( S 2 ) is turned on, totalization starts.
When the enable totalizer input is on, the amount that the flow counter ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) increased is added to the accumulated flow volume work area with each scan. The accumulated time work area count also starts at the same time. When the enable totalizer input is off, totalization is paused. (The accumulated flow volume work area and the accumulated time work area values are retained.)


Note: For details on the totalizer function such as the operation immediately after the input is turned on and the operation when the enable totalizer input is once again turned on, see "Totalizer Function" on page 27-22.

## Log Output Function Overview

When the input is on, if the log execution input (S3) is turned on, the logged data (D2) is updated regardless of the enable totalizer input (S2) on/off status. The maximum amount of logged data is 35 items.
When the enable totalizer input is off, totalization is paused. The accumulated flow volume work area and the accumulated time work area values are retained.


Note: For details on the log output function such as the operation immediately after the input is turned on, the operation when the enable totalizer input (S2) is once again turned on, and the logged data updating when the log execution input (S3) is turned on, see "Log Output Function" on page 27-23.

Valid Devices

| Device | Function | $\mathbf{I}$ | $\mathbf{Q}$ | $\mathbf{M}$ | $\mathbf{R}$ | $\mathbf{T}$ | $\mathbf{C}$ | D | Constant | Repeat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 (Source 1) | Flow counter | - | - | - | - | - | - | $X$ | - | - |
| S2 (Source 2) | Enable totalizer input | $X$ | - | $X$ | - | - | - | - | - | - |
| S3 (Source 3) | Log execution input | $X$ | - | $X$ | - | - | - | - | - | - |
| D1 (Destination 1) | Status | - | - | - | - | - | - | $\mathbf{A}$ | - | - |
| D2 (Destination 2) | Logged data | - | - | - | - | - | - | $\mathbf{1}$ | - | - |

Special data registers cannot be used.

## Function Descriptions

## - Flow Rate Function

## Starting the Flow Rate Calculation

This section describes the operation from turning on the input to starting the flow rate calculation.

(1) If the input is turned on, the flow volume work area and the flow rate ( $\mathrm{D} 1+0, \mathrm{D} 1+1$ ) are initialized to " 0 ".
(2) If the enable totalizer input (S2) is turned on, sampling of the flow counter ( $\mathrm{S} 1+0, \mathrm{~S} 1+1$ ) starts, and the amount that the flow counter increased is added to the flow volume work area with each scan.
(3) When the enable totalizer input is on, the flow volume is calculated from the flow volume work area each second and stored in the flow rate.
The flow rate calculation is executed at a cycle of 1 second regardless of whether the log execution input (S3) is turned on or off.
(4) (2) and (3) are then repeated.

Note: The flow rate formula is as follows.
Flow rate $=\frac{\text { Flow volume work area }}{K \text { factor }} \times \mathbf{T}$
T has the following values depending on the set flow rate unit.
$\mathrm{T}(\mathrm{s}) \quad=1$
$\mathrm{T}(\mathrm{min})=60$
T (hour) $=60 \times 60=360$
$T$ (day) $=60 \times 60 \times 24=8,640$

## Pausing the Flow Rate Calculation

This section describes the operation from turning on the input to pausing the flow rate calculation.

(1) If the enable totalizer input (S2) is turned off, the flow rate is initialized to " 0 ".
(2) If the enable totalizer input (S2) is turned on, sampling of the flow counter (S1+0, S1+1) starts, and the amount that the flow counter (S1) increased is added to the flow volume work area with each scan. The processing is the same as (2) in "Starting the Flow Rate Calculation" on page 27-20.
(3) 1 second after the enable totalizer input is turned on, the flow rate is calculated from the flow volume work area and stored in the flow rate (D1+0, D1+1).
Regardless of whether or not the log execution input (S3) is on or off, the flow rate is calculated in a 1 second cycle (the processing is the same as (3) in "Starting the Flow Rate Calculation" on page 27-20).
(4) (2) and (3) are then repeated.

## Ending the Flow Rate Calculation

This section describes the operation to end the flow rate calculation.

(1) If the input is turned off when the enable totalizer input (S2) is on, the flow volume work area and flow rate are initialized to " 0 " and the instruction ends.
(2) If the input is turned on when the enable totalizer input is on, the flow rate calculation starts.
(3) If the enable totalizer input is turned off, the flow rate is initialized to " 0 " and the flow rate calculation is paused (the processing is the same as (1) in "Pausing the Flow Rate Calculation" on page 27-21).
(4) If the input is turned off, the flow volume work area and the flow rate (D1+0, D1+1) are initialized to " 0 " and the instruction ends.

## - Totalizer Function

## Starting and Pausing Totalization

This section describes the operation from turning on the input to starting and pausing totalization.

(1) If the input is turned on, the operation status (D1+2), the amount of logged data (D2), the accumulated flow volume work area, the accumulated time work area, and the logged data (D2+2 to D2+2+(6×maximum amount of logged data)) are initialized to " 0 ".
(2) If the enable totalizer input (S2) is turned on while the input is on, sampling of the flow counter starts, and the amount that the flow counter increased is added to the accumulated flow volume work area with each scan. The accumulated time work area also starts being measured at the same time.
(3) If the enable totalizer input is turned off, updating the accumulated flow volume work area and the accumulated time work area is paused.
(4) If the enable totalizer input is once again changed from off to on, the operation is the same as in (2) without initializing the accumulated flow volume work area and the accumulated time work area.

## Ending Totalization

The section describes the operation to end totalization.

(1) If the input is turned off when the enable totalizer input (S2) is on, updating the accumulated flow volume work area and the accumulated time work area is stopped. The accumulated flow volume work area and the accumulated time work area values are retained.
(2) If the input is turned on, the accumulated flow volume work area and the accumulated time work area are initialized to " 0 ". If the enable totalizer input is on at this time, updating the accumulated flow volume work area and the accumulated time work area starts.
(3) If the enable totalizer input is turned off, updating the accumulated flow volume work area and the accumulated time work area is paused.
The processing is the same as (3) in "Starting and Pausing Totalization" on page 27-22.
(4) If the input is turned off, the totalization processing stops. The accumulated flow volume work area and the accumulated time work area values are retained.

## - Log Output Function

## Log output

## When the input is on

This section describes the log output operation when the input is on.

(1) When the enable totalizer input (S2) is on, if the log execution input (S3) is turned on, the log is updated and the accumulated flow volume work area and the accumulated time work area values are initialized to "0".
(2) If the enable totalizer input is turned off, sampling is paused and updating the accumulated flow volume work area and the accumulated time work area is stopped. The accumulated flow volume work area and the accumulated time work area values are retained.
(3) Even when the enable totalizer input is off, if the input is on, the log output processing is performed in the same manner as (1).

## When the input is off

When the input is off, no processing is performed even if the log execution input (S3) is turned on.

## Log Updating

The logged data can be recorded from $\log 1$ to $\log 35 . \log 1$ is the newest logged data.
Each time the log is updated, 1 is added to the amount of logged data (1) and the old logged data is pushed back by one item (2). When the maximum amount of logged data is reached, the oldest log is deleted (3).
The date/time information (4) and accumulated flow volume (5) is stored in $\log 1$.
The accumulated time (6) unit is converted from "ms" to "s" and stored in log 1.


The maximum amount of logged data to use is specified on the Settings tab in the FLWP (Pulse Flow Totalizer) dialog box.
Note: For details on the date/time information, the accumulated flow volume, and the accumulated time recorded in the log, see "(5) D2 (Destination 2): Logged Data" on page 27-25.

## Settings

The FLWP (Pulse Flow Totalizer) dialog box contains the Devices tab and the Settings tab.

## - Devices tab



| Settings | Description |
| :--- | :--- |
| Tag name | Specifies the tag name or the device address for the device. |
| Device address | Shows the device address that corresponds to the tag name. |
| Comment | Shows the comment for the device address. This item can be edited. |

## (1) S1 (Source 1): Flow Counter

The flow counter setting differs according to the "(2) Counter Type" on page 27-26 operation type. Starting from the set device, a number of continuous devices are used according to the data type.

## When Counter Type is "Free Run"

Specify the device that stores the counter value that is used to continuously add pulses. To find the number of pulse count for each scan, calculate it from the difference between the flow counter of the previous scan and latest flow counter.

## When Counter Type is "Difference"

Specify the device that stores the number of pulse count for each scan.

The setting range differs according to "(2) Counter Type" on page 27-26.
If Data Type is "Word (W)", the range is 0 to 65,535 .
If Data Type is "Double (D)", the range is 0 to $4,294,967,295^{* 1}$.
*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see Chapter 3
"Instructions Reference" - "32-bit Data Storage" on page 3-9.

## (2) S2 (Source 2): Enable Totalizer Input

Set the device to enable flow volume totalization.
When the enable totalizer input is off, totalization is paused. When on, totalization is executed.
For details on the enable totalizer input, see "Function Descriptions" on page 27-20.
(3) S3 (Source 3): Log Execution Input

Specify the device to execute and stop the logging process that updates the log and initializes the accumulated flow volume work area and the accumulated time work area to " 0 ".
When the log execution input changes from off to on, the logging process is executed.
While the FLWP instruction is being executed, execute the next logging process within 119 hours of the previous logging process.
For details on the log execution input, see "Log Output Function" on page 27-23.

## (4) D1 (Destination 1): Status

Stores the status including the flow rate and the error during FLWP instruction execution. 16 continuous words are used starting from the set device.

| Storage <br> Destination | Function | Description |  |
| :--- | :--- | :--- | :--- |
| D1+0 <br> D1+1 | Flow rate | Stores the flow rate calculated every second. The flow rate unit <br> conforms to the K factor and flow rate unit settings. | F (float): <br> $1.175494 E-38 ~ t o ~ 3.402823 E+38 * 1 ~$ |
| D1+2 | Operation status | Stores the status including the error during FLWP instruction execution. |  |
| D1+3 <br> $\vdots$ <br> D1 +15 | System work area |  |  |

*1 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see Chapter 3 "Instructions Reference" - "32-bit Data Storage" on page 3-9.

## (5) D2 (Destination 2): Logged Data

Specify the device to store the data that is logged. A maximum of 212 continuous words are used starting from the set device.

Note: The number of data registers that are used for logged data changes according to the maximum amount of logged data.
The number of data registers used for logged data is $2+6 \times$ the maximum amount of logged data.

| Storage Destination | Function |  | Description | Range |
| :---: | :---: | :---: | :---: | :---: |
| D2+0 | Amount of logged data |  | Stores the amount of logged data that has been recorded. | W (word): 0 to 35 |
| D2+1 | Reserved |  | - | - |
| $\begin{aligned} & \mathrm{D} 2+2 \\ & \mathrm{D} 2+3 \end{aligned}$ | $\begin{aligned} & \text { Log } \\ & 1 \end{aligned}$ | Log time | When the log execution input (S3) changes from off to on (during log updating), these devices store the content of special data registers D8008 to D8014 (current calendar/time values) converted to the number of seconds ${ }^{* 1}$ from January 1st, 1970. | D (double word): <br> 0 to 4,294,967,295*2 |
| $\begin{aligned} & \mathrm{D} 2+4 \\ & \mathrm{D} 2+5 \end{aligned}$ |  | Accumulated flow volume | When the log execution input (S3) changes from off to on (during log updating), these devices store the accumulated flow volume. <br> For the processing when an accumulated flow volume overflow or underflow has occurred, see "Carry and Borrow in FloatingPoint Data Processing" on page 3-8. | $\begin{aligned} & \text { F (float): } \\ & 0,1.175494 \mathrm{E}-38 \text { to } \\ & 3.402823 \mathrm{E}+38^{* 2} \end{aligned}$ |
| $\begin{aligned} & \text { D2+6 } \\ & \text { D2+7 } \end{aligned}$ |  | Accumulated time | When the log execution input (S3) changes from off to on (during log updating), these devices store the accumulated time. <br> The unit is "s". | D (double word): <br> 0 to 4,294,967,295*2 |
| ! | $\vdots$ | $\vdots$ | ! | ! |
| $\begin{aligned} & \text { D2+206 } \\ & \text { D2+207 } \end{aligned}$ | $\begin{aligned} & \mathrm{Log} \\ & 35 \end{aligned}$ | Log time | Same as $\log 1$. | Same as $\log 1$. |
| $\begin{aligned} & \text { D2+208 } \\ & \text { D2+209 } \end{aligned}$ |  | Accumulated flow volume |  |  |
| $\begin{aligned} & \hline \text { D2+210 } \\ & \text { D2+211 } \end{aligned}$ |  | Accumulated time |  |  |

*1 The time expressed as the number of seconds from 00:00:00 on January 1st, 1970.
(For example, if the date/time is 00:00:00 on January 1st, 2015, the value is $1,420,070,400$ seconds.)
*2 The upper and lower data registers change according to the 32-bit data storage method specified. For details, see Chapter 3 "Instructions Reference" - "32-bit Data Storage" on page 3-9.

## - Settings tab

|  |  | FLWP (Pulse Flow Totalizer) |  | ? | $\times$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Devices Settings |  |  |  |  |  |
| Data Type: | (1) Double (D) $\square$ |  |  |  |  |
| Counter Type: | (2) Free Run $\quad$ |  |  |  |  |
| Flow Rate Unit: | (3) Second $\square$ |  |  |  |  |
| Kfactor: | (4) 0.01 |  |  |  |  |
| Max Quantity of Log Data: | (5) 5固 |  |  |  |  |
|  |  |  | ок | Cancel |  |

## (1) Data Type

Select the flow counter data type as "Word (W)" or "Double (D)". The initial value is "Double (D)".
Word (W): $\quad \mathrm{S} 1+0$ is handled as the flow counter.
Double (D): $\quad$ S1+0 and S1+1 are handled as the flow counter.

## (2) Counter Type

Select the operation type for the flow counter that samples the pulses as "Free Run" or "Difference".
Free Run: An addition-only free run operation is performed without initializing the flow counter. The free run operation resets the count to 0 and continues counting when the count exceeds the upper limit of the data type (65,535 (W), 4,294,967,295 (D)).
Difference: The number of pulse count for each scan is stored in the flow counter.
For example, use this option when you will count pulses with two different types of counters, calculate that difference in the ladder, and directly store that to the flow counter.

## (3) Flow Rate Unit

Select the time unit for flow rate that will be stored in the flow rate (D1+0, D1+1) from the following.
"Second", "Minute", "Hour", "Days"
(4) $K$ factor

Specify the constant that indicates the number of pulses per unit quantity that is output by the flow meter.
The unit differs according to the flow meter (liter, gallon, etc.), and this unit does not affect the operation of the FLWP instruction.
For example, if the flow meter outputs 10 pulses for a flow of 1 liter, the $K$ factor is specified as 10 [pulses/liter].
The setting range is 0 and $1.175494 \mathrm{E}-38$ to $3.402823 \mathrm{E}+38$.

## (5) Max Quantity of Log Data

Species the maximum amount of logged data that can be recorded.
The number of data registers that are used for the logged data (D2) changes according to the maximum amount of logged data.
The number of data registers used for logged data (D2) is $2+6 \times$ the maximum amount of logged data.
The range is 1 to 35 .

## APPENDIX

## Execution Times for Instructions

Execution times for basic and advanced instructions of the FC6A Series MicroSmart are listed below. Repeat is not assigned for any device.

| Instruction | Device and Condition | Execution Time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: |
| LOD | - | 0.05 |
|  | Using data register | 0.13 |
| LODN | - | 0.06 |
|  | Using data register | 0.23 |
| OUT | - | 0.05 |
|  | Using data register | 0.17 |
| OUTN | - | 0.05 |
|  | - | 0.17 |
| SET, RST | - | 0.05 |
|  | Using data register | 0.17 |
| AND, | - | 0.04 |
|  | Using data register | 0.12 |
| ANDN | - | 0.05 |
|  | Using data register | 0.23 |
| OR | - | 0.04 |
|  | Using data register | 0.21 |
| ORN | - | 0.05 |
|  | Using data register | 0.23 |
| AND • LOD, OR • LOD | - | 0.03 |
| BPS | - | 0.02 |
| BRD | - | 0.02 |
| BPP | - | 0.02 |
| TML, TIM, TMH, TMS | - | 3.46 |
| TMLO, TIMO, TMHO, TMSO | - | 3.44 |
| CNT | - | 3.26 |
| CDP | - | 3.48 |
| CUD | - | 3.38 |
| CNTD, CDPD, CUDD | - | 18.9 |
| CC=, CC> $=$ | - | 1.85 |
| DC=, DC> $=$ | - | 2.24 |
| SFR, SFRN | $N$ bits | $7.04+0.04 n$ |
| SOTU, SOTD | - | 2.04 |
| MCS, MCR, JMP, JEND | - | - |
| END | - | - |
| NOP | - | - |
| MOV (W, I) | $\mathrm{M} \rightarrow \mathrm{M}$ | 4.38 |
|  | $\mathrm{D} \rightarrow \mathrm{D}$ | 0.18 |
| MOVN ( $\mathrm{W}, \mathrm{I}$ ) | $\mathrm{M} \rightarrow \mathrm{M}$ | 4.46 |
|  | $\mathrm{D} \rightarrow \mathrm{D}$ | 0.19 |
| MOV (D, L) | $\mathrm{M} \rightarrow \mathrm{M}$ | 14.6 |
|  | $\mathrm{D} \rightarrow \mathrm{D}$ | 0.36 |
| MOVN ( $\mathrm{D}, \mathrm{L}$ ) | $\mathrm{M} \rightarrow \mathrm{M}$ | 14.7 |
|  | $\mathrm{D} \rightarrow \mathrm{D}$ | 0.39 |
| MOV (F) | - | 0.37 |
| IMOV, IMOVN (W) | $\mathrm{M}+\mathrm{D} \rightarrow \mathrm{M}+\mathrm{D}$ | 8.4 |
|  | $\mathrm{D}+\mathrm{D} \rightarrow \mathrm{D}+\mathrm{D}$ | 8.56 |
| IMOV, IMOVN (D) | $\mathrm{D}+\mathrm{D} \rightarrow \mathrm{D}+\mathrm{D}$ | 18.8 |
| IMOV (F) | - | 13.9 |


| Instruction | Device and Condition | Execution Time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: |
| BMOV | $\mathrm{D} \rightarrow \mathrm{D}$ | $16.1+1.2 \mathrm{n}$ |
| IBMV, IBMVN | $\mathrm{M}+\mathrm{D} \rightarrow \mathrm{M}+\mathrm{D}$ | 13.4 |
|  | $D+D \rightarrow D+D$ | 13.4 |
| NSET (W, I) | $\mathrm{D} \rightarrow \mathrm{D}$ | $2.28+2.2 n$ |
| NSET (D, L) | $\mathrm{D} \rightarrow \mathrm{D}$ | $2.2+12.6 n$ |
| NSET (F) | $\mathrm{D} \rightarrow \mathrm{D}$ | $2.2+12.6 n$ |
| NRS (W, I) | D, D $\rightarrow$ D | $5.84+0.64 n$ |
| NRS (D, L) | D, D $\rightarrow$ D | $11.1+5.7 n$ |
| NRS (F) | D, D $\rightarrow$ D | $11.0+5.8 n$ |
| XCHG (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | 5.32 |
| XCHG (D) | $\mathrm{D} \rightarrow \mathrm{D}$ | 26.0 |
| TCCST (W) | $\mathrm{D} \rightarrow$ | 4.68 |
| TCCST (D) | $\mathrm{D} \rightarrow \mathrm{T}$ | 15.0 |
| CMP (=, <>, <, >, <=, >=) (W, I) | $\mathrm{D} \Leftrightarrow \mathrm{D} \rightarrow \mathrm{M}$ | 27.6 |
| CMP ( $=,<>,<,>,<=,>=)(\mathrm{D}, \mathrm{L})$ | $\mathrm{D} \Leftrightarrow \mathrm{D} \rightarrow \mathrm{M}$ | 38.0 |
| CMP (=, <>, <, >, <=, >=) (F) | $\mathrm{D} \Leftrightarrow \mathrm{D} \rightarrow \mathrm{M}$ | 38.2 |
| ICMP (>=) | $D \Leftrightarrow D \Leftrightarrow D \rightarrow M$ | 29.0 |
| $\operatorname{ICMP~(D,~L,~F)~}$ | $\mathrm{D} \Leftrightarrow \mathrm{D} \Leftrightarrow \mathrm{D} \rightarrow \mathrm{M}$ | 44.6 |
| LC ( $=,\langle>,<,>,<=,>=)($ W, I) | $\mathrm{D} \Leftrightarrow \mathrm{D}$ | 4.84 |
| LC ( $=,\langle>,<,>,<=,>=)(\mathrm{D}, \mathrm{L})$ | $D \Leftrightarrow D$ | 15.2 |
| LC ( $=,<>,<,>,<=,>=$ ) (F) | $\mathrm{D} \Leftrightarrow \mathrm{D}$ | 15.3 |
| ADD (W, I) | $\mathrm{M}+\mathrm{M} \rightarrow \mathrm{D}$ | 11.6 |
|  | $D+D \rightarrow D$ | 11.7 |
| ADD (D, L) | $\mathrm{M}+\mathrm{M} \rightarrow \mathrm{D}$ | 27.2 |
|  | $D+D \rightarrow D$ | 27.2 |
| ADD (F) | $D+D \rightarrow D$ | 27.8 |
| SUB (W, I) | $\mathrm{M}-\mathrm{M} \rightarrow \mathrm{D}$ | 11.6 |
|  | $D-D \rightarrow D$ | 11.7 |
| SUB (D, L) | $M-M \rightarrow D$ | 27.2 |
|  | $\mathrm{D}-\mathrm{D} \rightarrow \mathrm{D}$ | 27.2 |
| SUB (F) | $D-D \rightarrow D$ | 27.4 |
| MUL (W, I) | $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{D}$ | 11.2 |
|  | $\mathrm{D} \times \mathrm{D} \rightarrow \mathrm{D}$ | 11.3 |
| MUL (D, L) | $\mathrm{M} \times \mathrm{M} \rightarrow \mathrm{D}$ | 27.2 |
|  | $\mathrm{D} \times \mathrm{D} \rightarrow \mathrm{D}$ | 27.2 |
| MUL (F) | $\mathrm{D} \times \mathrm{D} \rightarrow \mathrm{D}$ | 27.4 |
| DIV (W, I) | $M \div M \rightarrow D$ | 7.0 |
|  | $D \div D \rightarrow D$ | 6.96 |
| DIV (D, L) | $\mathrm{M} \div \mathrm{M} \rightarrow \mathrm{D}$ | 28.0 |
|  | $D \div D \rightarrow D$ | 28.0 |
| DIV (F) | $D \div D \rightarrow D$ | 28.0 |
| INC (W, I) | - | 8.92 |
| INC ( $\mathrm{D}, \mathrm{L}$ ) | - | 19.3 |
| DEC (W, I) | - | 8.92 |
| DEC (D, L) | - | 19.2 |
| ROOT (W) | $\sqrt{\text { D }} \rightarrow \mathrm{D}$ | 6.24 |
| ROOT (D) | $\sqrt{\mathrm{D}} \rightarrow \mathrm{D}$ | 18.0 |
| ROOT (F) | $\sqrt{\mathrm{D}} \rightarrow \mathrm{D}$ | 19.4 |
| SUM (W, I) | D, D $\rightarrow$ D | $11.3+0.8 n$ |
| SUM (D, L) | D, D $\rightarrow$ D | $16.6+6.0 n$ |
| SUM (F) | D, D $\rightarrow$ D | $16.8+7.0 n$ |
| RNDM | D, D $\rightarrow$ D | 6.84 |
| ANDW, ORW, XORW (W) | $M \cdot M \rightarrow D$ | 6.08 |
|  | $D \cdot D \rightarrow D$ | 6.2 |
| ANDW, ORW, XORW (D) | $\mathrm{D} \cdot \mathrm{D} \rightarrow \mathrm{D}$ | 21.6 |
| SFTL, SFTR | N_B=100 | 14.10 |


| Instruction | Device and Condition | Execution Time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: |
| BCDLS | $\mathrm{D} \rightarrow \mathrm{D}, \mathrm{S} 1=1$ | 10.36 |
| WSFT | $\mathrm{D} \rightarrow \mathrm{D}$ | $15.6+1.4 n$ |
| ROTL, ROTR (W) | D, bits=1 | 9.1 |
| HTOB (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | 4.94 |
| BTOH (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | 4.94 |
| HTOA (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | 7.20 |
| ATOH (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | $5.48+0.88 \mathrm{n}$ |
| BTOA (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | $5.88+0.72 \mathrm{n}$ |
| ATOB (W) | $\mathrm{D} \rightarrow \mathrm{D}$ | $5.84+0.76 n$ |
| ENCO (W) | $\mathrm{M} \rightarrow \mathrm{D}$, bits=16 | $3.9+0.8 n$ |
| DECO | $\mathrm{D} \rightarrow \mathrm{M}$ | 9.6 |
| BCNT | $\mathrm{M} \rightarrow \mathrm{D}$, bits=16 | - |
| ALT | - | 8.00 |
|  | W, I $\rightarrow$ F | 10.2 |
|  | D, L $\rightarrow$ F | 15.3 |
| CVDT | $\mathrm{F} \rightarrow \mathrm{W}$, I | 10.3 |
|  | $\mathrm{F} \rightarrow \mathrm{D}, \mathrm{L}$ | 15.5 |
| DTDV | $\mathrm{D} \rightarrow \mathrm{D}$ | 4.78 |
| DTCB | $\mathrm{D} \rightarrow \mathrm{D}$ | 4.96 |
| SWAP (W) | - | 4.46 |
| SWAP (D) | - | 14.9 |
| WKTIM | - | - |
| WKTBL | - | - |
| WEEK | - | - |
| YEAR | - | - |
| MSG | - | - |
| DISP | - | - |
| DGRD | - | - |
| LABEL | - | - |
| LJMP | - | - |
| LCAL | - | - |
| LRET | - | - |
| DJNZ | - | - |
| IOREF | - | 9.48 |
| HSCRF | - | 8.32 |
| FRQRF | - | - |
| COMRF | - | - |
| DI | - | 7.44 |
| EI | - | 2.07 |
| XYFS | - | - |
| CVXTY | - | - |
| CVYTX | - | - |
| AVRG ( $\mathrm{W}, \mathrm{I}$ ) | S3=10 | 7.76 |
| AVRG ( $\mathrm{D}, \mathrm{L}$ ) | S3=10 | 13.5 |
| AVRG (F) | S3=10 | 14.4 |
| PULS | - | - |
| PWM | - | - |
| RAMP | - | - |
| ZRN | - | - |
| ARAMP | - | - |
| ABS | - | - |
| JOG | - | - |
| PID | - | - |
| PIDA | - | - |
| DTML, DTIM, DTMH | - | 14.6 |
| DTMS | - | 13.7 |


| Instruction | Device and Condition | Execution Time ( $\mu \mathrm{s}$ ) |
| :---: | :---: | :---: |
| TTIM | - | 4.56 |
| RAD | $\mathrm{F} \rightarrow \mathrm{F}$ | 28.4 |
| DEG | $\mathrm{F} \rightarrow \mathrm{F}$ | 28.4 |
| SIN | $\mathrm{F} \rightarrow \mathrm{F}$ | 18.2 |
| COS | $\mathrm{F} \rightarrow \mathrm{F}$ | 18.4 |
| TAN | $\mathrm{F} \rightarrow \mathrm{F}$ | 17.6 |
| ASIN | $\mathrm{F} \rightarrow \mathrm{F}$ | 24.4 |
| ACOS | $\mathrm{F} \rightarrow \mathrm{F}$ | 24.6 |
| ATAN | $\mathrm{F} \rightarrow \mathrm{F}$ | 22.8 |
| LOGE | $\mathrm{F} \rightarrow \mathrm{F}$ | 19.00 |
| LOG10 | $\mathrm{F} \rightarrow \mathrm{F}$ | 19.40 |
| EXP | $\mathrm{F} \rightarrow \mathrm{F}$ | 22.1 |
| POW | $\mathrm{F} \rightarrow \mathrm{F}$ | 34.0 |
| FIFOF | - | 23.2 |
| FIEX | - | 21.6 |
| FOEX | - | 21.6 |
| NDSRC (W, I) | D, D, D $\rightarrow$ D | 12.10 |
| NDSRC (D, L) | $D, D, D \rightarrow D$ | 43.0 |
| NDSRC (F) | D, D, D $\rightarrow$ D | 43.6 |
| TADD | - | 12.8 |
| TSUB | - | 12.8 |
| HOUR | $\mathrm{D} \rightarrow \mathrm{D}, \mathrm{Y}, \mathrm{D}$ | 8.0 |
| HTOS | $\mathrm{D} \rightarrow \mathrm{D}$ | 10.0 |
| STOH | $\mathrm{D} \rightarrow \mathrm{D}$ | 15.4 |
| DLOG | - | - |
| TRACE | - | - |
| SCRPT | - | - |
| SCALE | - | - |
| FLWA | - | - |
| FLWP | - | - |
| TXD | - | - |
| RXD | - | - |
| ETXD | - | - |
| ERXD | - | - |
| PING | - | - |
| EMAIL | - | - |

## Processing in One Scan

While the FC6A Series MicroSmart is running, the FC6A Series MicroSmart performs operations repeatedly such as input refreshing, ladder program processing, and error checking.
A scan is the execution of all instructions from address zero to the END instruction. The time required for this execution is referred to as one scan time. The scan time varies with respect to program length.
The current value of the scan time is stored to special data register D8023 (scan time current value), and the maximum value of the scan time is stored to special data register D8024 (scan time maximum value). These values can be viewed on the PLC status dialog box of WindLDR while monitoring on a computer.

## Executing Program Instructions

During the scan time, program instructions are processed sequentially starting with the first line of the ladder program, except for interrupt program execution. One scan time of a ladder program is approximately equal to the total execution time of each instruction shown on preceding pages.

## Watchdog Timer

The watchdog timer monitors the time required for one program cycle (scan time) to prevent hardware malfunction. When the processing time for one scan exceeds the allowed time, a watchdog timer error occurs and the system is reset. If this is the case, place NOP instructions in the ladder diagram. The NOP instruction resets the watchdog timer. For details on the watchdog timer, see Chapter 5 "Watchdog Timer Settings" in the "FC6A Series MicroSmart All-in-One Type User's Manual".

## Breakdown of END Processing Time

The END processing time depends on the FC6A Series MicroSmart settings and system configuration. The maximum values for the END processing time are as follows.

| Item | Processing Time |  |
| :--- | :--- | :---: |
| END processing | $640 \mu \mathrm{~s}$ |  |

## Instruction Bytes

The byte quantities for basic and advanced instructions are listed below.

| Basic <br> Instruction | Qty of Bytes |  |
| :---: | :---: | :---: |
|  | When Using Bit <br> Devices | When Using Bits <br> Specified in Data <br> Registers |
| LOD | 12 | 8 |
| LODN | 12 | 12 |
| OUT | 8 | 8 |
| OUTN | 8 | 8 |
| SET | 8 | 8 |
| RST | 8 | 8 |
| AND | 12 | 12 |
| ANDN | 12 | 8 |
| OR | 12 | 8 |
| ORN | 12 | 12 |
| AND LOD | - | 8 |
| OR LOD | - | 8 |
| BPS | - | 4 |
| BRD | - | 4 |
| BPP | - | 4 |
| TML | - | 12 |
| TIM | - | 12 |
| TMH | - | 12 |
| TMS | - | 12 |
| TMLO | - | 12 |
| TIMO | - | 12 |
| TMHO | - | 12 |


| Basic <br> Instruction | Qty of Bytes |  |
| :---: | :---: | :---: |
|  | When Using Bit <br> Devices | When Using Bits <br> Specified in Data <br> Registers |
| TMSO | - | 12 |
| CNT | - | 12 |
| CDP | - | 12 |
| CUD | - | 12 |
| CNTD | - | 12 |
| CDPD | - | 12 |
| CUDD | - | 12 |
| CC= | - | 12 |
| CC>= | - | 12 |
| DC= | - | $12-16$ |
| DC>= | - | $12-16$ |
| SFR | - | 12 |
| SFRN | - | 12 |
| SOTU | - | 8 |
| SOTD | - | 8 |
| MCS | - | 4 |
| MCR | - | 4 |
| JMP | - | 12 |
| JEND | - | 4 |
| END | - | 4 |


| Advanced Instruction | Qty of Bytes | Advanced Instruction | Qty of Bytes |
| :---: | :---: | :---: | :---: |
| NOP | 8 | WSFT | 16-20 |
| MOV (W, I) | 16-20 | ROTL, ROTR (W) | 12-16 |
| MOVN (W, I) | 16-20 | HTOB (W) | 12-20 |
| $\operatorname{MOV}(\mathrm{D}, \mathrm{L})$ | 16-20 | BTOH (W) | 12-20 |
| MOVN (D, L) | 16-20 | HTOA (W) | 16-24 |
| MOV (F) | 16-20 | ATOH (W) | 16-24 |
| IMOV, IMOVN (W) | 20-28 | BTOA (W) | 16-24 |
| IMOV, IMOVN (D) | 20-28 | ATOB (W) | 16-24 |
| IMOV (F) | 20-28 | ENCO (W) | 16-20 |
| BMOV | 16-20 | DECO | 16-20 |
| IBMV, IBMVN | 20-28 | BCNT | 16-20 |
| NSET (W, I) | 16-1544 | ALT | 12 |
| NSET (D, L) | 16-1544 | CVDT | 16-20 |
| NSET (F) | 16-1544 | DTDV | 12-16 |
| NRS (W, I) | 16-24 | DTCB | 12-16 |
| NRS (D, L) | 16-24 | SWAP (W) | 16-20 |
| NRS (F) | 16-24 | SWAP (D) | 16-20 |
| XCHG (W) | 12-16 | WKTIM | 20-24 |
| XCHG (D) | 12-16 | WKTBL | 12-92 |
| TCCST (W) | 16-20 | WEEK | 20-140 |
| TCCST (D) | 16-20 | YEAR | 28-220 |
| CMP ( $=,<>,<,>,<=,>=)($ W, I) | 20-28 | MSG | 12- |
| CMP ( $=,<>,<,>,<=,>=)(\mathrm{D}, \mathrm{L})$ | 20-28 | DISP | 16 |
| CMP ( $=,<>,<,>,<=,>=$ ) (F) | 20-28 | DGRD | 16-20 |
| ICMP (>=) | 16-28 | LABEL | 12 |
| ICMP (D, L, F) | 16-28 | LJMP | 12 |
| LC (=, <>, <, >, <=, >=) (W, I) | 12-20 | LCAL | 12 |
| LC ( $=,<>,<,>,<=,>=)(\mathrm{D}, \mathrm{L})$ | 12-20 | LRET | 8 |
| LC ( $=,<>,<,>,<=,>=$ ) (F) | 12-20 | DJNZ | 12-16 |
| ADD (W, I) | 16-28 | IOREF | 12 |
| ADD (D, L) | 16-28 | HSCRF | 8 |
| ADD (F) | 16-28 | FRQRF | 8 |
| SUB (W, I) | 16-28 | COMRF | 8 |
| SUB (D, L) | 16-28 | DI | 12 |
| SUB (F) | 16-28 | EI | 12 |
| MUL (W, I) | 16-28 | XYFS | 24-272 |
| MUL (D, L) | 16-28 | CVXTY | 16-20 |
| MUL (F) | 16-28 | CVYTX | 16-20 |
| DIV (W, I) | 16-28 | AVRG (W, I) | 20-24 |
| DIV (D, L) | 16-28 | AVRG (D, L) | 20-24 |
| DIV (F) | 16-28 | AVRG (F) | 20-24 |
| INC (W, I) | 12 | PULS | 12-28 |
| INC (D, L) | 12 | PWM | 12-28 |
| DEC (W, I) | 12 | RAMP | 12-36 |
| DEC (D, L) | 12 | ZRN | 16,52 |
| ROOT (W) | 12-20 | ARAMP | 40-316 |
| ROOT (D) | 12-20 | ABS | 12-16 |
| ROOT (F) | 12-20 | JOG | 36 |
| SUM (W, I) | 16-24 | PID | 20-28 |
| SUM (D, L) | 16-24 | PIDA | 112-116 |
| SUM (F) | 16-24 | DTML, DTIM, DTMH | 16-24 |
| RNDM | 16-20 | DTMS | 16-24 |
| ANDW, ORW, XORW (W) | 16-28 | TTIM | 12 |
| ANDW, ORW, XORW (D) | 16-28 | RAD | 12-20 |
| SFTL, SFTR | 16-24 | DEG | 12-20 |
| BCDLS | 12-16 | SIN | 12-20 |


| Advanced Instruction | Qty of Bytes |
| :--- | :--- |
| COS | $12-20$ |
| TAN | $12-20$ |
| ASIN | $12-20$ |
| ACOS | $12-20$ |
| ATAN | $12-20$ |
| LOGE | 20 |
| LOG10 | 20 |
| EXP | 20 |
| POW | $16-24$ |
| FIFOF | 24 |
| FIEX | $12-16$ |
| FOEX | $12-16$ |
| NDSRC (W, I) | $16-28$ |
| NDSRC (D, L) | $16-28$ |
| NDSRC (F) | $16-28$ |
| TADD | $16-24$ |
|  |  |


| Advanced Instruction | Qty of Bytes |
| :--- | :--- |
| TSUB | $16-24$ |
| HOUR | $20-24$ |
| HTOS | $12-16$ |
| STOH | $12-20$ |
| DLOG | $28-408$ |
| TRACE | $28-408$ |
| SCRPT | $16-20$ |
| SCALE | $36-44$ |
| FLWA | $24-32$ |
| FLWP | $28-36$ |
| TXD | $20-$ |
| RXD | $20-$ |
| ETXD | $20-$ |
| ERXD | $20-$ |
| PING | $16-20$ |
| EMAIL | $16-20$ |

## APPENDIX

## User Program Execution Error

This error indicates that invalid data is found during execution of a user program. When this error occurs, the ERR LED and special internal relay M8004 (user program execution error) turned on. The detailed information of this error can be viewed from the error code stored in special data register D8006 (user program execution error code).

| User Program Execution Error Code (D8006) | Error Details |
| :---: | :---: |
| 1 | Source/destination device exceeds range. |
| 2 | MUL result exceeds data type range. |
| 3 | DIV result exceeds data type range, or division by 0. |
| 4 | BCDLS has S1 or S1+1 exceeding 9999. |
| 5 | S1 is 10,000 or higher in the $\mathrm{HTOB}(\mathrm{W})$ instruction, or S 1 is $100,000,000$ or higher in the HTOB(D) instruction. |
| 6 | BTOH has any digit of S1 exceeding 9. |
| 7 | HTOA/ATOH/BTOA/ATOB has quantity of digits to convert out of range. |
| 8 | ATOH/ATOB has non-ASCII data for S1 through S1+4. |
| 9 | In the WEEK instruction, the ON time data exceeds range (hour data is 24 or higher, minute data is 60 or higher), or the OFF time data exceeds range (hour data is 25 or higher, minute data is 60 or higher). |
| 10 | In the YEAR instruction, the month and day data exceeds range (month data is 13 or higher, day data is 32 or higher). |
| 12 | CVXTY/CVYTX is executed without matching XYFS. <br> XYFS and CVXTY/CVYTX have the same S1, but have different data types. |
| 13 | CVXTY/CVYTX has S2 exceeding the value specified in XYFS. |
| 14 | Label in LJMP, LCAL, or DJNZ is not found. |
| 16 | PID instruction execution error. |
| 18 | Attempt was made to execute an instruction that cannot be used in an interrupt program: SOTU, SOTD, TML, TIM, TMH, TMS, CNT, CDP, CUD, SFR, SFRN, WEEK, YEAR, MSG, TXD, RXD, DI, EI, XYFS, CVXTY, CVYTX, AVRG, PULS, PWM, RAMP, ZRN, ARAMP, DTML, DTIM, DTMH, DTMS, TTIM, FIFOF, NDSRL, HOUR, ETXD, ERXD, DLOG, and TRACE (see "Instructions Reference" on page 3-1). |
| 19 | Attempt was made to execute an instruction that is not available for the PLC. |
| 20 | JOG, ABS, HZRN, PULS, PWM, RAMP, ZRN, or ARAMP has an invalid value in control registers. |
| 21 | DECO has S1 exceeding 255. |
| 22 | BCNT has S2 exceeding 256. |
| 23 | ICMP>= has S1 < S3. |
| 25 | BCDLS has S2 exceeding 7. |
| 26 | DI or EI is executed when interrupt input or timer interrupt is not programmed in the Function Area Settings. |
| 27 | Work area is broken when using DTML, DTIM, DTMH, DTMS, or TTIM. |
| 28 | S 1 for trigonometric function instruction is invalid. |
| 29 | Result of F (float) data type instruction exceeds the data type range. |
| 30 | The number of bits configured in the SFTL/SFTR instruction or SFR FB exceeds the valid range. |
| 31 | In the FIFOF instruction, the FIEX instruction or the FOEX instruction was executed before the FIFO data file was registered. |
| 32 | TADD, TSUB, HOUR, or HTOS has invalid data for source device S1 or HOUR FB has invalid data for the Preset value. |
| 34 | NDSRC has invalid data for source device S3. |
| 35 | In the SUM instruction, the execution result exceeds the valid range for the selected data type, or S2 data is 0 . |
| 36 | DLOG/TRACE is executed but the capacity of CSV file exceeds 5 MB . |
| 41 | SD memory card is write protected. |
| 42 | The result of execution using the SCRPT instruction is a value that indicates anything other than normal completion. |
| 43 | The minimum value is greater than the maximum value in RCMP FB. |
| 44 | The shift registers specified by the start shift register and the number of bits in SFR FB does not exist. |
| 45 | In RPULS FB, the minimum value of ON time is greater than the maximum value of ON time, or the maximum value of ON time is greater than the cycle time. |


| \# | 100-ms | FIFOF 23-1 |
| :---: | :---: | :---: |
|  | dual timer 20-1 | FOEX 23-3 |
|  | 10-ms | FRQRF 14-4 |
|  | dual timer 20-1 | HOUR 24-11 |
|  | 1-ms dual timer 20-1 | HSCRF 14-3 |
|  | 1-s | HTOA 10-5 |
|  | dual timer 20-1 | HTOB 10-1 |
|  | 32-bit Data Storage 3-9 | IBMV 5-10 |
|  |  | IBMVN 5-12 |
| $\boldsymbol{A}$ | About the Priority of the Operator 26-42 | ICMP $>=6-6$ |
|  | ACOS 21-7 | IMOV 5-6 |
|  | ADD 7-1 | IMOVN 5-8 |
|  | adding counter CNT 4-11 | INC 7-13 |
|  | addition 7-1 | input condition |
|  | advanced instruction | IOREF 14-1 |
|  | ACOS 21-7 | LABEL 13-1 |
|  | ADD 7-1 | LC< 6-8 |
|  | ALT 10-18 | LC<= 6-8 |
|  | ANDW 8-1 | LC<> 6-8 |
|  | ASIN 21-6 | $\mathrm{LC}=6-8$ |
|  | ATAN 21-8 | LC> 6-8 |
|  | ATOB 10-12 | LC> $=6-8$ |
|  | ATOH 10-7 | LCAL 13-3 |
|  | AVRG 17-1 | list 3-3 |
|  | BCDLS 9-5 | LJMP 13-1 |
|  | BCNT 10-17 | LOG10 22-2 |
|  | BMOV 5-9 | LOGE 22-1 |
|  | BTOA 10-9 | LRET 13-3 |
|  | BTOH 10-3 | MOV 5-1 |
|  | CMP< 6-1 | MOVN 5-5 |
|  | $\mathrm{CMP}<=6-1$ | MUL 7-1 |
|  | CMP<> 6-1 | NDSRC 23-5 |
|  | CMP $=6-1$ | NOP 3-11 |
|  | CMP> 6-1 | NRS 5-14 |
|  | CMP> $=6-1$ | NSET 5-13 |
|  | COMRF 14-5 | ORW 8-1 |
|  | COS 21-4 | POW 22-4 |
|  | CVDT 10-19 | RAD 21-1 |
|  | CVXTY 16-2 | ROOT 7-14 |
|  | CVYTX 16-3 | ROTL 9-8 |
|  | data types 3-7 | ROTR 9-10 |
|  | DEC 7-13 | SFTL 9-1 |
|  | DECO 10-16 | SFTR 9-3 |
|  | DEG 21-2 | SIN 21-3 |
|  | DGRD 12-22 | structure 3-6 |
|  | DI 15-1 | SUB 7-1 |
|  | DISP 12-20 | SUM 7-15 |
|  | DIV 7-1 | SWAP 10-23 |
|  | DJNZ 13-5 | TADD 24-1 |
|  | DTCB 10-22 | TAN 21-5 |
|  | DTDV 10-21 | TCCST 5-16 |
|  | DTIM 20-1 | TSUB 24-5 |
|  | DTMH 20-1 | TTIM 20-3 |
|  | DTMS 20-1 | WSFT 9-7 |
|  | EI 15-1 | XCHG 5-15 |
|  | ENCO 10-15 | XORW 8-1 |
|  | EXP 22-3 | XYFS 16-1 |
|  | FIEX 23-3 | dvanced instruc |


|  | ARAMP 18-37 | change |
| :---: | :---: | :---: |
|  | DLOG 25-1 | counter preset and current values 4-11 |
|  | PULS 18-1 | timer preset and current values 4-8 |
|  | PWM 18-8 | changing |
|  | RAMP 18-15 | preset values for timers and counters 4-17 |
|  | WEEK 11-3 | Character string operations 26-17 |
|  | YEAR 11-16 | clear button 4-17 |
|  | ZRN 18-27 | clearing |
|  | ALT 10-18 | changed preset values 4-17 |
|  | alternate output 10-18 | clock |
|  | Analog flow totalizer (FLWA) 27-9 | instructions 24-1 |
|  | AND and ANDN instructions 4-4 | CMP< 6-1 |
|  | AND LOD instruction 4-5 | CMP<= 6-1 |
|  | AND word 8-1 | CMP<> 6-1 |
|  | ANDW 8-1 | $\mathrm{CMP}=6-1$ |
|  | arc | CMP> 6-1 |
|  | cosine 21-7 | CMP>= 6-1 |
|  | sine 21-6 | CNT, CDP, and CUD instructions 4-11 |
|  | tangent 21-8 | CNTD, CDPD, and CUDD instructions 4-14 |
|  | Arithmetic operation 26-14 | Comment 26-18 |
|  | Arithmetic operator 26-13, 26-26 | common logarithm 22-2 |
|  | ASCII | communication |
|  | to BCD 10-12 | refresh 14-5 |
|  | to hex 10-7 | Communication Adapter Information 2-21 |
|  | ASIN 21-6 | compare |
|  | ATAN 21-8 | equal to 6-1 |
|  | ATOB 10-12 | greater than 6-1 |
|  | ATOH 10-7 | or equal to 6-1 |
|  | average 17-1 | less than 6-1 |
|  | AVRG 17-1 | or equal to 6-1 |
| B | basic | unequal to 6-1 |
|  | instructions 3-1, 4-1 | comparison result |
|  | BCD | M8150, M8151, M8152 6-2, 6-6 |
|  | left shift 9-5 | COMRF 14-5 |
|  | to ASCII 10-9 | Conditional branch 26-12 |
|  | to hex 10-3 | confirm |
|  | BCDLS 9-5 | button 4-17 |
|  | BCNT 10-17 | confirming changed preset values 4-17 |
|  | bidirectional shift register 4-25 | Constant 26-18 |
|  | binary arithmetic instructions 7-1 | Control signal status 2-23 |
|  | bit count 10-17 | Control Statements 26-12, 26-19 |
|  | Bit function 26-14, 26-29 | conversion 12-20, 12-22 |
|  | Bit operator 26-14 | linear 16-4 |
|  | Bitwise Operators 26-27 | convert |
|  | block move 5-9 | data type 10-19 |
|  | BMOV 5-9 | $X$ to $Y$ 16-2 |
|  | BMOV/WSFT executing flag M8024 5-9, 9-7 | Y to X 16-3 |
|  | Boolean computation instructions 8-1 | coordinate conversion instructions 16-1 |
|  | Borrow 2-7, 3-10 | COS 21-4 |
|  | BPS, BRD, and BPP instructions 4-6 | cosine 21-4 |
|  | breakdown of END processing time A-5 | counter |
|  | BTOA 10-9 | adding (up) counter 4-11 |
|  | BTOH 10-3 | and shift register in master control circuit 4-28 |
|  | bytes A-5 | comparison instructions 4-18 |
| C | Carry 3-10 | double-word |
|  | carry | adding (up) 4-14 |
|  | and borrow 7-16 | dual-pulse reversible 4-15 |
|  | or borrow signals 7-2 | up/down selection reversible 4-16 |
|  | Carry/ 2-7 | dual-pulse reversible 4-12 |
|  | Carry/Borrow 2-7 | up/down selection reversible 4-13 |
|  | $\mathrm{CC}=$ and $\mathrm{CC}>=$ instructions 4-18 | CSV File 25-4, 25-10 |


increment 7-13
indirect
bit move 5-10
bit move not 5-12
move 5-6
move not 5-8
input
condition for advanced instructions 3-6
instruction bytes $A-5$
instructions
average 17-1
binary arithmetic 7-1
Boolean computation 8-1
clock 24-1
coordinate conversion 16-1
data comparison 6-1
data conversion 10-1
dual/teaching timer 20-1
file data processing 23-1
logarithm/power 22-1
move 5-1
program branching 13-1
prohibited 4-31
shift/rotate 9-1
trigonometric function 21-1
interval compare greater than or equal to 6-6
IOREF 14-1
J JMP and JEND instructions 4-29
JOG operation (JOG) 18-63
jump instructions 4-29
L LABEL $13-1$
label 13-1
call 13-3
jump 13-1
return 13-3
latch phase 12-20
LC< 6-8
LC<= 6-8
LC<> 6-8
LC= 6-8
LC> 6-8
LC> $=6-8$
LCAL 13-3
linear conversion 16-4
list
advanced instruction 3-3
basic instruction 3-1
UMP 13-1
load compare
equal to $6-8$
greater than $6-8$
or equal to $6-8$
less than $6-8$ or equal to $6-8$
unequal to $6-8$
LOD and LODN instructions 4-1
LOG10 22-2
logarithm/power instructions 22-1
LOGE 22-1
Logical operator 26-13, 26-25
LRET 13-3

M master
control instruction 4-27
MCS and MCR instructions 4-27
Message (MSG) 12-1
monitor
operation 1-12
MOV 5-1
move 5-1
instructions 5-1
not 5-5
MOVN 5-5
MUL 7-1
multiple
OUT and OUTN 4-2
usage of MCS instructions 4-28
multiplication $7-1$
N $\quad \mathrm{N}$ data
repeat set 5-14
search 23-5
set 5-13
natural logarithm 22-1
NDSRC 23-5
no operation 3-11
NOP 3-11
NRS 5-14
NSET 5-13
O off-delay
100-ms timer 4-10
10-ms timer 4-10
1-ms timer 4-10
1-s timer 4-10
timer 4-10
Offset 26-16
opcode 3-6
operation
basics 1-1
Operator 26-13
Optional Cartridge Information 2-21
OR and ORN instructions 4-4
OR LOD instruction 4-5
OR word 8-1
ORW 8-1
OUT and OUTN
instructions 4-1
multiple 4-2
overlapping coordinates 16-5
P PIDA Control (PID) 19-2
PLC Selection 1-2
PLC status 4-17
POW 22-4
power 22-4
failure
memory protection 4-9
preset
values
change counter 4-11
change timer 4-8
changing 4-17
restoring 4-17
program branching
instructions 13-1
using with SOTU/SOTD instructions 13-2
using with timer instruction 13-2
programming
DI or EI using WindLDR 15-2
Programming Scripts 26-12
prohibited
instructions 4-31
ladder programs 4-31
proximity signal 18-27
pulse
input 4-22
Pulse flow totalizer (FLWP) 27-18
$\boldsymbol{Q}$ quit WindLDR 1-12
$\boldsymbol{R} \quad$ RAD 21-1
radian 21-1
Relational operator 26-13, 26-24
Repeat 26-12
repeat
cycles 3-6
designation 3-6
operation
ADD and SUB instructions 7-6
ANDW, ORW, and XORW instructions 8-3
data comparison instructions 6-4
DIV instruction 7-10
indirect bit move instruction 5-11
move instructions 5-3
MUL instruction 7-8
reset
input 4-22
restore timer/counter preset values 4-17
restriction on ladder programming 4-31
reverse
shift register 4-24
Reversible control 18-18, 18-43
ROOT 7-14
rotate
left 9-8
right 9-10
ROTL 9-8
ROTR 9-10
RS232C DSR Control Signal Status 2-23
RS232C DTR Output Control Signal Option 2-24
rung $1-3,1-4$
$S$ sto HMS 24-10
Scale conversion instruction (SCALE) 27-1
Script (SCRPT) 26-1
Script Editor 26-8
Script Manager 26-7
Script Programming Examples 26-19
SET and RST instructions 4-3
SFR and SFRN instructions 4-22
SFTL 9-1
SFTR 9-3
shift
left 9-1
register
instructions 4-22
right 9-3
shift/rotate instructions 9-1
simulate operation 1-9
SIN 21-3
sine 21-3
single output instruction 4-26
SOTU and SOTD instructions 4-26
SOTU/SOTD instructions using with program branching 13-2
source
and destination devices 3-6
device 3-6
Special data register device addresses 2-13
special dates 11-16
special internal relay
for interrupt status 15-1
Special internal relay device addresses 2-3
specified date 11-16
start
WindLDR 1-1, 1-3
start/stop
operation 1-15
schematic 1-15
using power supply $1-16$
using WindLDR 1-15
structure of an advanced instruction 3-6
SUB 7-1
subroutine 13-4
subtraction 7-1
SUM 7-15
sum 7-15
SWAP 10-23
$\boldsymbol{T}$ TADD 24-1
TAN 21-5
tangent 21-5
TCCST 5-16
teaching timer 20-3
Temporary Device 26-18
time
addition 24-1
subtraction 24-5
timer
100-ms off-delay 4-10
10-ms off-delay 4-10
1-ms off-delay 4-10
1-s off-delay 4-10
accuracy 4-8
instruction using with program branching 13-2
or counter
as destination device 3-6
as source device 3-6
timer/counter
current value
store 5-16
TML, TIM, TMH, and TMS instructions 4-7
TMLO, TIMO, TMHO, and TMSO instructions 4-10
TRACE 25-7
trigonometric function instructions 21-1
TSUB 24-5
TTIM 20-3
$\boldsymbol{U} \quad$ up
counter CNT 4-11
up/down selection reversible counter CUD 4-13

# User Program Execution Errors 3-10 

$\boldsymbol{W} \quad$ Week Table (WKTBL) 11-1
Week Timer (WKTIM) 11-1 WindLDR
programming
DI or EI 15-2
quit $1-12$
start $1-1,1-3$
Word function 26-14, 26-29
word shift 9-7
WSFT 9-7
$\boldsymbol{X} \quad$ XCHG 5-15
XORW 8-1
XY format set 16-1
XYFS 16-1


[^0]:    *1 For bit devices and word devices, see "Devices" on page 2-1.

[^1]:    The valid device range depends on the FC6A Series MicroSmart type. For details, see "Device Addresses" on page 2-1.
    Specify the bit by inserting a "." between the data register number and the bit position.

[^2]:    *1 Set the initial pulse frequency so that it is lower than the steady pulse frequency.

