Fuji Electric

High Performance Multifunctional Inverters FRENIC-MEGA Series

FRENIC

Maximum Engineering for Global Advantage

FUJI ELECTRIC INVERTERS

With the flexibility and functionality to support a wide range of applications on all types of mechanical equipment, the FRENIC-MEGA takes core capability, responsiveness, environmental awareness, and easy maintenance to the next level.

The Inverter with the Highest Performance in the Industry.

FRENIC-MEGA is a high performance, multifunctional inverter
Fuji Electric has developed by gathering the best of its technologies.
With our own state-of-the-art technology, the control performance has evolved to a new dimension.
FRENIC-MEGA has been developed with unyielding standards of quality and flexibility to meet the demands of both simple and complex industrial applications. Meeting the requirements for various applications, achieving lower maintenance, and improved protection to environmental conditions.

FRENIC-MEGA, the inverter with the highest performance in the industry, is about to redefine the common sense of general-purpose inverters. Now, it is ready to provide a solution to your application needs!

Maximum Engineering for Global Advantage
FUJI ELECTRIC INVERTERS
With the flexibility and functionality to support a wide range of applications on all types of mechanical equipment, the FRENIC-MEGA
takes core capability, responsiveness, environmental awareness, and
easy maintenance to the next level.

Two types of keypads are available for FRENIC-MEGA: the multi-function keypad and the keypad with USB port. Allowing you to select and utilize a keypad interface that meets your application needs.

High Performance Multifunctional Inverters
 FRENIC-MECA Series

Maximum Engineering for Global Advantage

Improved control performance

I Available control methods: PG vector control, sensorless vector control, dynamic torque vector control, PG Closed-Loop control, and V/f control

II Improved performance in current response and speed response (vector control)

Easy maintainance

I Multi-function keypad
II Keypad with a USB Port (optional)
III Maintenance warning signal output
IV Long life cycle

III Improved durability in overload operation

LD (Low duty) spec: 120\% for 1 min
: For fans and pumps applications
MD (Medium duty) spec: 150\% for 1 min
: For constant torque applications
HD (High duty) spec: 200\% for $3 \mathrm{sec} /$ 150\% for 1 min : For general industry applications

Versatile applications

Environmental Compatibility

I Various functions that accommodate a broad range of applications
Examples: customizable control logic through the built-in PLC functionality, pulse train input for speed and direction, ratio operation of the main speed, positioning control, output brake signal for mechanical braking control, etc..

II Expanded power ratings for which the dynamic braking transistor is built-in
Provided as standard on models rated up through 40Hp(LD)

III Connectivity to various networks

Ethernet TCP/IP, DeviceNet, Profibus DP, CC-Link, etc...
IV Compliance with Safety Standard (EN954-1 Cat.3)
Safe torque off function that shuts off the power to the inverters output coasting the motor to a stop

I Model variation meeting customers' needs

- Standard Inverter
- Inverter with DC Reactor Built-in

II Compliance with RoHS Directives
III Improved protection to environmental conditions

Best in class vector control for general-purpose inverters

Ideal for high accuracy positioning control

PG vector control

Effective in providing highly accurate control for applications such as printing presses.

Speed control range: 1:1500
Speed response: 100 Hz
Speed control accuracy: $\pm 0.01 \%$
Current response: 500 Hz
Torque accuracy: $\pm 10 \%$

* The option card is required separately.
* The above specifications may vary depending on the environment or conditions for use.

Further Improved Fujl's original dynamic torque vectior control
In addition to the dynamic torque vector control, the inverter has a constant tuning mode of operation that will compensate for voltage errors in the main circuit devices. The inverter also utilizes a new magnetic flux observer for more precise operation. This allows for a high starting torque of 200%, even at low speed $(0.3 \mathrm{~Hz}$).

Improved durability in overload operation

The inverter performs quick acceleration and deceleration tasks, at maximum power, by extending the overload time as compared with previous models. This improves the operation efficiency of the applications such as cutting machines and conveyors.
Overload capability: 200\% for 3s and 150\% for 1 min.
The standard model is available in two specifications
concerning the operation load.

Classification	Overload current rating	Major use
HD (High duty) spec	200% for $3 \mathrm{sec}, 150 \%$ for 1 min	Operation under heavy load
MD (Medium duty) spec	150% for 1 min	Operation under constant torque load
LD (Low duty) spec	120% for 1 min	Operation under light load

Expanded power ratings for built-in braking transistor

For models with power ratings up through $40 \mathrm{Hp}(\mathrm{LD})$ the dynamic braking transistor is built-in and is provided as standard. This functionality is utilized for applications where the load requires additional deceleration control such as vertical conveyance machines.

* Power ratings on models up through $15 \mathrm{Hp}(\mathrm{LD})$ also include a dynamic braking resistor
** For 460V power ratings on models of $50 \mathrm{Hp}(\mathrm{LD})$ through $250 \mathrm{Hp}(\mathrm{LD})$ the built-in dynamic braking transistor is available upon request.

Maximizing motor performance

Speed sensor-less vector control
Useful for applications that require a high starting torque, such as the gondola type multi-level car parking tower

Speed control range: 1:200
Speed response: 20 Hz
Speed control accuracy: $\pm 0.5 \%$
Current response: 500 Hz
Torque accuracy: $\pm 10 \%$

Improved reaction to fluctuation of an impact load

When a substantial load fluctuation occurs, the inverter provides a torque response that is best in class. It controls the flux to minimize the fluctuation in motor speed while suppressing the vibration. This function is best suited for the equipment that requires stable speed operation such as a cutting machine.

Quicker response to the operation commands

The terminal response to the operation commands has an established reputation. FRENIC-MEGA has further shortened this response time, achieving an industry-best response time. This function is effective in shortening the tact time per cycle and effective for use in the process including frequent repetitions.
Example:

Terminal response time example per command

FRENIC-MEGA :Approx. 4 ms Previous model :Approx.6ms

Response time shortened by approx. 2 ms

Accommodating various applications

Convenient function for operation at a specified speed

The pulse train input function is provided as standard.
It is possible to issue a speed command with the pulse train input (single-phase pulse and a sign of command value) from a pulse generator, etc. (Maximum pulse input: 100kHz)

Speed Ratio operation
The Ratio operation function is used to adjust the speed differences between two different sections of a machine/process. Using one main speed reference, two or more inverters can have their speeds modified by an analog ratio signal. On conveyor systems, one conveyor can be made to run slightly faster to match speed with another based on gear box ratio differences.

$$
\begin{aligned}
& \text { Frequency } \\
& \text { setting output }
\end{aligned}=\begin{aligned}
& \text { Frequency } \\
& \text { setting input }
\end{aligned} \times \frac{\text { Analog input (Ratio setting) }}{100 \%}
$$

"Total" protection of the braking circuit

The inverter protects the braking resistor by monitoring the braking transistor operation. The inverter outputs an exclusive signal on detection of the braking transistor abnormality. A circuit for shutting off the input power supply must be provided outside of the inverter. When this signal is output, the power is shut off; thus protecting the braking circuit.

Opiimum function for preventing an object from falling

The reliability of the brake signal was increased for uses such as vertical conveyance. Conventionally, the current value and the frequency have been monitored when the brake signal is output. By adding a torque value to these two values, the brake timing can be adjusted more easily.

Dancer control function optimized for winding control

The PID value, which is calculated by comparing the target value and the feedback value, is added to or subtracted from the reference line speed. Since the PID calculator proportional gain can be adjusted to have a MEGA FAST response. The inverter can be applied to automatic control systems where quick response may be required.

Extended functions for various applications

(1) Safety function meets EN954-1 Cat.3. (2) Analog inputs: voltage input through 2 terminals with polarity, current input through 1 terminal (3) Slow flowrate level stop function (Pressurized operation is possible before slow flowrate operation stop.) (4) Non-linear V/f pattern at 3 points (5) Dummy failure output function (6) Selection of up to the 4 motors (7) S-curve accel./decel. range setting (8) Detecting loss of PID feedback

Applications with MEGA keep expanding

PG option card

This control function is best suited for the application that requires highly accurate positioning such as that of the conveyance machine. By combined use of the automatic position regulater (APR) and PG vector control, the position control accuracy has been remarkably improved. Shortened positioning time by this function will be helpful to reduce the tact time of a cycle.
Example: Fixed length marking system

Built-in PLC Functionality

Logic input/output can be easily created by parameter setting. This makes it possible to simplify the peripheral circuits.

Introducing servo lock function (PG option card).

This function is effective in adjusting the stop timing or the braking torque when the equipment such as a conveyance machine is stopped by positioning of the motor. This function is helpful when torque is applied externally or holding torque is required during the stop time. The tact time per cycle will be reduced by shortened deceleration time.

Multi-function Keypad Type: TP-G1W-J1

Features:

- LCD with intelligent back-light feature for better viewing
- Large 7-segment LED with 5 digit display for excellent visibility from a distance
- Quick setup parameter list that can be customer modified
- Fully functional Remote/Local key for switching between operation commands and speed references
- 3 different parameter sets can be saved and copied

- Various display languages

English, Spanish, French, German, Italian and Japanese

Keypad with USB port Type: TP-E1U (Optional)

- The built-in USB port allows use of a personal computer loader software for easy information control! Improved working efficiency at the manufacturing site
- A variety of data from the inverter can be saved in keypad memory, allowing you to check the information at any time.

Features

1. The keypad can be directly connected to the computer through a commercial USB cable (Mini B) without using a converter. The computer can be connected on-line with the inverter.
2. With the personal computer loader software, the inverter can support the following functions (1) to (5).
(1) Editing, comparing, and copying the function code data
(2) Operation monitor, and real-time trace
(3) Alarm history (indicating the latest four alarms)
(4) Maintenance information
(5) Historical trace

- Data can be transferred from the USB port of the keypad directly to the computer (personal computer loader) at the manufacturing site.
- Periodical collection of life information can be carried out efficiently.
- The real-time tracing function permits the operator to check the equipment for abnormality.

Connectivity

Built-in network functionality

■RS-485 communication is provided as standard In addition to the RJ-45 connection port which is shared with the inverter keypad, RS-485 terminals are provided as standard on the control terminal board allowing multi-drop network connections to be made easily.

RS-485 terminals (DX+, DX-, SD) enabling multi-drop connections

Available network option cards

Prolonged service life and improved maintenance alarm function

10 Year design life

The design life for the replaceable components of the inverter is 10 years.

Replacement Part	Designed life
Main circuit capacitor	10 years
Electrolytic capacitor on PCB	10 years
Cooling fan	10 years

> Conditional factors used for determining component design life are as follows:
> the inverter is operated in an ambient air temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ and the average load is $80 \%(\mathrm{LD})$ or $100 \%(\mathrm{HD})$ of the inverter output rating.

* Design life values are calculated and not guaranteed.

Full support of maintenance warnings

The inverter is loaded with many different functions for facilitating maintenance of the equipment.

Item	Purpose		
Cumulative inverter run time (h)	Displays the total run time of the inverter.		
Number of inverter startups	Displays the number of times the inverter has started the equipment. Example This data indicates the timing to of use: replace the equipment parts (such as a timing belt) operating under the normal load.		
Equipment maintenance warning Cumulative run time (h)			
Number of startups			By inputting the signal for operation with the commercial power supply, the time outside the inverter operation time can also be measured. This makes it possible to manage the total run time of the equipment and the number of startups. Such data is usable for preparing the maintenance schedule.
:---			
Display of inverter		The displayed contents include:	
:---			
main circuit capacitor capacity, total run time of the			
cooling fan (with ON/OFF compensation), total run			
time of the electrolytic capacitor on the printed			
circuit board, and total run time of the inverter.			

Environment Friendly Designed

Improved protection to environmental conditions

Protection to conditions of the installation environment has been improved as compared to the previous series of general purpose inverters.
(1) The durability of the cooling fans has been improved to provide additional coatings and connector sealing.
(2) Copper bus bars are provided with nickel (Ni) and tin (Sn) plating.

FRENIC-MEGA's protection to environmental conditions has been improved compared to FRENIC5000G11S/P11S. However, careful examination of the installation environment prior to use of the inverter should be done under the following conditions:
a. The environment is subject to sulfide gas (examples include: tire manufacturing, paper manufacturing, waste water processing, part of a textile process, etc...)
b. The environment is subject to conductive dust or foreign matter (examples include: metalworking, extruding, printing, waste disposal, etc...)
c. The environmental conditions exceed or do not match the environment specifications of the inverter.

For applications planning to utilize the inverter in any of the above environmental conditions please consult with Fuji Electric.

Compliance with RoHS Directives

MEGA complies with European regulations that limit the use of specific hazardous substances (RoHS) as a standard. This inverter is environment-friendly as the use of the following six hazardous substances is restricted. Lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl (PBB), and polybrominated biphenyl ether (PBDE)
The Directive 2002/96/EC, promulgated by the European Parliament and European Council, limits the use of specific hazardous substances included in electrical and electronic devices.

Global compatibility

- Application to the world standards pending

- Wide voltage range

Applicable to 480 V and 240 V power supplies as standard

Model Variations

Model list

LD : Low Duty spec 120\% for 1 min
MD : Medium Duty spec 150% for 1 min
HD : High Duty spec 200% for 3 sec , 150% for 1 min

Nominal applied motor (HP)	Standard Inverter			
	Three-phase 230 V series	Three-phase	60 V series	
	LD spec (120\%) HD spec (150\%)	LD spec (120\%)	MD spec (150\%)	HD spec (150\%)
0.5	-FRNF50G1S-2U-FRNF50G1S-2U-FRNF50G1S-4U			
	FRN001GIS-2 -FRN001GIS-2U-FRN001GIS-4U-FRN001GIS-4U			
2	-FRN002G1S-2U-FRN002GIS-2U- FFR002GIS-4U-FRN002GIS-4U			
3	-FRNOO3G1S-2U--FRNOO3GIS-2U- FRNOO3GIS-4U- FRNOO3GIS-4U			
5	-(FRN005G1S-2U-(FRN005GIS-2U)-(FRN005GIS-4U)- FRN005GIS-4U)			
	-FRN007GIS-2U)-FRN007GIS-2U-FRN007G1S-4U- FRN007GIS-4U			
7.5	FRNOIOGIS-2U			
10	-FRN010G1S-2U-FRN015GIS-2U-(FRN010GIS-4U- FRN015GIS-4U			
15	-FRN015G1S-2U-FRNO2OGIS-2U-FRN015G1S-4U FRN02OGIS-4U			
20	-FRN020G1S-2U-FRN025GIS-2U-ERN020G1S-4U-			
25	-FRN025GIS-2U-ERN030GIS-2U-FRN025GIS-4U-ERN030GIS-4U			
30	-FRN030G1S-2U-FRNO40G1S-2U- FRN03OG1S-4U- FRN040GIS-4U			
40	-FRN040GIS-2U-FRN050G1S-2U- FRN040G1S-4U- FRN050GIS-4U			
50	FFN050GIS-2U-FRN060GIS-2U-FRN050GIS-4U-FRN060GIS-4U			
60	-FRN060G1S-2U-(FRN075GIS-2U-(FRN060G1S-4U- FRN075GIS-4U			
75	-FRN075G1S-2U-FRN100G1S-2U-FRN075G1S-4U ERN100GIS-4U			
100	(FRN100G1S-2U)-FRN125G1S-2U-FRN100GIS-4U-FRN125G1S-4U			
125	(FRN125G1S-2U)-(FRN150G1S-2U)- FRN125G1S-4U- FRN150G1S-4U)			
150	FRN150G1S-2U-FRN150G1S-4U--FRN150G1S-4U--FRN200G1S-4U			
200	-FRN200G1S-4U--FRN200GIS-4U-FRN250G1S-4U			
250	(FRN250G1S-4U)-FRN250G1S-4U)-FRN300G1S-4U)			
300	FRN300GIS-4U-FRN300G1S-4U-FRN350GIS-4U			
350	FRN350GIS-4U-FRN350G1S-4U-FRN450GIS.4U			
350	FRN450GIS-4U			
400				FRN500GIS-4U
450		FRN450GIS-4U	FRN500G1S-4U	FRN600GIS-4U
500		FRN500GIS-4U	FRN600G1S-4U	FRN700G1S-4U)
600		FRN600GIS-4U	FRN700GIS-4U	FRN800GIS-4U)
700		FRN700GIS-4U	FRN800G1S-4U	
800		FRN800GIS-4U		FRN900GIS-4U
900		FRN900GIS-4U		FRNIOOOGIS-4U
1000		FRN1000GIS-4U		

How to read the inverter model

*A multi-function keypad (TP-G1W-J1) is included as standard equipment for inverters. Please select and use remote control keypad (TP-E1U) as option, if necessary. *The external DC reactor is included as standard for 100HP and above. DC Reactor listed on reference section in this catalog.

Keypad Functionality

Multi-function keypad

Item	Monitor, LED indicator or Key	Functionality
LED/LCD Monitor	En bobid	Five-digit, 7 -segment LED monitor which displays the following according to the operation mode: - In Running Mode: Running status information (e.g., output frequency, current, and voltage) -In Programming Mode: same as above ■ In Alarm Mode: Alarm code, which identifies the cause of alarm if the protective function is activated.
		LCD monitor which displays the following according to the operation modes: -In Running Mode: Running status information In Programming Mode: Menus, function codes and their data - In Alarm Mode: Alarm code, which identifies the cause of alarm if the protective function is activated.
	LED indicator indexes	In running mode, display the unit of the number displayed on the LED monitor and the running status information shown on the LCD monitor. For details,see next page.
Keypad Operation Key	ค)	Switches the operation modes of the inverter.
	(17)	Shifts the cursor to the right when entering a number.
	38)	Pressing this key after removing the cause of an alarm will switch the inverter to Running Mode. Used to reset a setting or screen transition.
	and	UP and DOWN keys. Used to select the setting items or change the function code data displayed on the LED monitor.
		Function/Data key. Switches the operation as follows: - In Running Mode: Pressing this key switches the information to be displayed concerning the status of the inverter (output frequency (Hz), output current (A), output voltage (V), etc.). - In Programming Mode: Pressing this key displays the function code and confirms the data you have entered. - In Alarm Mode: Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
RunOperation Key	FW0)	Starts running the motor (forward rotation).
	(12)	Starts running the motor (reverse rotation).
	(sio)	Stops the motor.
	-	Pressing this toggle key for more than 1 second switches between Local and Remote modes.
LED Indicator		Lights while a run command is supplied to the inverter.

Type	Item	Description (information, condition, status)
Unit of Number Displayed on LED Monitor	Hz	Output frequency, frequency command
	A	Output current
	V	Output voltage
	\%	Calculated torque, load factor, speed
	r/min	Motor speed, set motor speed, load shaft speed, set load shaft speed
	$\mathrm{m} / \mathrm{min}$	Line speed, set line speed
	kW	Input power, motor output
	X10	Data greater than 99,999
	min	Constant feeding rate time, constant feeding rate time setting
	sec	Timer
	PID	PID process value
$\begin{aligned} & \text { Operating } \\ & \text { Status } \end{aligned}$	FWD	Running (forward rotation)
	REV	Running (reverse rotation)
	STOP	No output frequency
Source of Operation	REM	Remote mode
	LOC	Local mode
	COMM	Communication enabled (RS-485 (standard, optional), field bus option)
	JOG	Jogging mode
	HAND	Keypad effective (lights also in local mode)

Inverter PC Software

Full-fledged maintenance with the FRENIC loader software

■Editing, comparing, copying and downloading of the function code data
■Operation monitor, real-time historical trace, trouble monitor, and multi-monitor
Test run, motor auto tuning

Compatibility with Windows2000 and XP is guaranteed. - The real-time trace function monitors the inverter operating conditions with waveforms in a multi-channel graph format, and the results can be stored in a data file. The stored data can be used for motion analysis etc.

* The loader software can be downloaded for free from FUJl's website. http://www.americas.fujielectric.com

Operation monitor

Historical trace

Standard Specifications (Standard Inverter)

Three-phase 230V series

LD (Low Duty)-mode inverters for light load

(0.5 to 150 HP)

HD (High Duty)-mode inverters for heavy load
(0.5 to 125 HP)

Item	Specifications																	
Type (FRN $\square \square \square$ G1S-2U)	F50	001	002	003	005	007	010	015	020	025	030	040	050	060	075	100	125	150
Nominal applied motor (HP) (Output rating) *1	0.5	1	2	3	5	7.5	7.5	10	15	20	25	30	40	50	60	75	100	125
๑ \quad Rated capacity (kVA) *2	1.2	2.0	3.2	4.4	7.2	11	11	15	20	25	30	36	47	58	72	86	113	138
Rated voltage (V) *3	Three-phase 200 to 240 V (with AVR function)												Three-phase 200 to 230 V (with AVR function)					
을 Rated current (A)	3	5	8	11	18	27	27	37	49	63	76	90	119	146	180	215	283	346
Overload capability	150\%-1 min, 200\%-3.0 s																	
Voltage, frequency	$200 \text { to } 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$												$\begin{aligned} & 200 \text { to } 220 \mathrm{~V}, 50 \mathrm{~Hz}, \\ & 200 \text { to } 230 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$					
Allowable voltage/frequency		Voltage: +10 to -15% (Interphase voltage unbalance: 2% or less) *5, Frequency: +5 to -5%																
Required capacity (with DCR) (kVA) *6		1.2	2.2	3.1	5.2	7.4	7.4	10	15	20	25	30	40	48	58	71	98	116
Torque (\%) *7	150\%		100\%						20\%				10 to 15%					
Braking transistor	Built-in												-					
Built-in braking resistor	Built-in								-									
¢ \quad Braking time (s)	5 s								-									
Duty cycle (\%ED)	5	3	5	3	2	3	3	2	-									
DC reactor (DCR)	Option															Standard *8		
Applicable safety standards	UL508C, C22.2 No.14, EN61800-5-1:2007																	
Enclosure (IEC60529)	IP20, UL open type												IP00, UL open type					
Cooling method	Natural cooling			Fan cooling														
Weight / Mass lbs (kg)	$\begin{gathered} 3.8 \\ (1.7) \end{gathered}$	$\begin{gathered} 4.4 \\ (2.0) \end{gathered}$	$\begin{gathered} 6.2 \\ (2.8) \end{gathered}$	$\begin{gathered} 6.6 \\ (3.0) \end{gathered}$	$\begin{gathered} 6.6 \\ (3.0) \end{gathered}$	$\begin{gathered} 14 \\ (6.5) \end{gathered}$	$\begin{gathered} \hline 14 \\ (6.5) \end{gathered}$	$\begin{gathered} \hline 14 \\ (6.5) \end{gathered}$	$\begin{gathered} 13 \\ (5.8) \end{gathered}$	$\begin{gathered} \hline 21 \\ (9.5) \end{gathered}$	$\begin{gathered} 21 \\ (9.5) \end{gathered}$	$\begin{gathered} 22 \\ (10) \end{gathered}$	$\begin{gathered} 55 \\ \text { (25) } \end{gathered}$	$\begin{gathered} 71 \\ (32) \end{gathered}$	$\begin{gathered} 93 \\ (42) \end{gathered}$	$\begin{gathered} 95 \\ (43) \end{gathered}$	$\begin{aligned} & 137 \\ & \text { (62) } \end{aligned}$	$\begin{gathered} 232 \\ (105) \end{gathered}$

[^0]*3 Output voltage cannot exceed the power supply voltage
*4 To use the inverter with the carrier frequency of 3 kHz or more at the surrounding temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or higher, manage the load so that the current comes to be within the rated ones enclosed in parentheses () in con
*5 Voltage unbalance $(\%)=\frac{\text { Max. voltage }(\mathrm{V})-\text { Min. voltage }(\mathrm{V})}{\text { Three-phase average voltage }(\mathrm{V})} \times 67$ (IEC 61800-3) hree-phase average voltage (V)
Required is 2 to 3%, use an optional AC reactor (ACR).
*6 Required when a DC reactor (DCR) is used.
7 Average braking torque for the motor running alone, without external braking resistor. (It varies with the efficiency of the motor.)
*8 The FRN100G1S-2U or higher type comes with a DC reactor (DCR).

Three-phase 460V series

LD (Low Duty)-mode inverters for light load

(0.5 to 100 HP)

(125 to 1000 HP)

*1 US-4P standard induction motor
2 Rated capacity is calculated assuming the rated output voltage as 230 V for 230 V series and 460 V for 460 V series.
3 Output voltage cannot exceed the power supply voltage.
$* 4$ Voltage unbalance $(\%)=\frac{\text { Max. voltage }(\mathrm{V})-\text { Min. voltage }(\mathrm{V})}{\text { Three-phase average voltage }(\mathrm{V})} \times 67$ (IEC 61800-3) hree-phase average voltage (V)
If this value is 2 to 3%, use an optional AC reactor (ACR).
*5 Required when a DC reactor (DCR) is used.
${ }^{6} 6$ Average braking torque for the motor running alone, without external braking resistor. (It varies with the efficiency of the motor.)
*7 The FRN100G1S-4U or higher type comes with a DC reactor (DCR).

Standard Specifications (Standard Inverter)

Three-phase 460V series

MD (Medium Duty)-mode inverters for medium load

(150 to 700 HP)

dard induction motor
*2 Rated capacity is calculated assuming the rated output voltage as 230 V for 230 V series and 460 V for 460 V series
*3 Output voltage cannot exceed the power supply voltage.
*4 Voltage unbalance $(\%)=\frac{\text { Max. voltage }(\mathrm{V})-\text { Min. voltage }(\mathrm{V})}{\text { Three-phase average voltage }(\mathrm{V})} \times 67$ (IEC 61800-3)
If this value is 2 to 3%, use an optional AC reactor (ACR).
*5 Required when a DC reactor (DCR) is used.
*6 Average braking torque for the motor running alone, without external braking resistor. (It varies with the efficiency of the motor.)
*7 The FRN100G1S-4U or higher type comes with a DC reactor (DCR).

Three-phase 460V series

HD (High Duty)-mode inverters for heavy load

(0.5 to 75 HP)

(100 to 900 HP)

Item	Specifications																		
Type (FRN $\square \square \square$ G1S-4U)	125	150	200	250	300	350	450	500	600	700	800	900	1000						
Nominal applied motor (HP) (Output rating) *1	100	125	150	200	250	300	350	400	450	500	600	800	900						
\% Rated capacity (kVA) *2	120	140	167	202	242	300	330	414	466	518	590	765	932						
Rated voltage (V) *3	Three-phase 380 to 480 V (with AVR function)																		
Rated current (A)	150	176	210	253	304	377	415	520	585	650	740	960	1170						
Overload capability	150\%-1 min, 200\%-3.0 s																		
Voltage, frequency	380 to $440 \mathrm{~V}, 50 \mathrm{~Hz}$ 380 to $480 \mathrm{~V}, 60 \mathrm{~Hz}$																		
Allowable voltage/frequency	Voltage: +10 to -15\% (Interphase voltage unbalance: 2% or less) *4, Frequency: +5 to -5%																		
Required capacity (with DCR) (kVA) *5	96	114	140	165	199	248	271	347	388	436	489	611	773						
Torque (\%) *6	10 to 15\%																		
아 Braking transistor	-																		
Built-in braking resistor	-																		
¢ \quad Braking time (s)	-																		
俍 ${ }^{\text {Duty cycle (\%ED) }}$	-																		
DC reactor (DCR)	Standard *7																		
Applicable safety standards	UL508C, C22.2 No.14, EN61800-5-1:2007																		
Enclosure (IEC60529)	IP00, UL open type																		
Cooling method	Fan cooling																		
Weight / Mass lbs (kg)	$\begin{gathered} 93 \\ (42) \end{gathered}$	$\begin{aligned} & 137 \\ & (62) \end{aligned}$	$\begin{aligned} & 141 \\ & (64) \end{aligned}$	$\begin{aligned} & 207 \\ & (94) \end{aligned}$	$\begin{aligned} & 216 \\ & (98) \end{aligned}$	$\begin{gathered} \hline 284 \\ (129) \\ \hline \end{gathered}$	$\begin{gathered} \hline 309 \\ (140) \\ \hline \end{gathered}$	$\begin{gathered} \hline 540 \\ (245) \\ \hline \end{gathered}$	$\begin{gathered} 540 \\ (245) \end{gathered}$	$\begin{gathered} 728 \\ (330) \\ \hline \end{gathered}$	$\begin{gathered} 728 \\ (330) \end{gathered}$	$\begin{aligned} & 1169 \\ & (530) \end{aligned}$	$\begin{aligned} & 1169 \\ & (530) \end{aligned}$						

*2 US-4P standard induction motor
2 Rated capacity is calculated assuming the rated output voltage as 230 V for 230 V series and 460 V for 460 V series.
*3 Output voltage cannot exceed the power supply voltage.
$* 4$ Voltage unbalance $(\%)=\frac{\text { Max. voltage }(\mathrm{V})-\text { Min. voltage }(\mathrm{V})}{T h r e} \times 67($ IEC 61800-3 hree-phase average voltage (V)
If this value is 2 to 3%, use an optional AC reactor (ACR).
*5 Required when a DC reactor (DCR) is used.
*6 Average braking torque for the motor running alone, without external braking resistor. (It varies with the efficiency of the motor.)
*7 The FRN100G1S-4U or higher type comes with a DC reactor (DCR).

Common Specifications

Item				Explanation
		Maximum frequency		25 to 500 Hz (120 Hz for inverters in MD/LD mode) (120 Hz under vector control without speed sensor, 200 Hz under vector control with speed sensor)
		Base frequency		25 to 500 Hz (in conjunction with the maximum frequency)
		Starting frequency		0.1 to 60.0 Hz (0.0 Hz under vector control with/without speed sensor)
		Carrier frequency		- 0.75 to 16 kHz (HD mode: 0.5 to $100 \mathrm{HP}, \quad$ LD mode: 7 to 30 HP) - 0.75 to 10 kHz (HD mode: 120 to 800 HP , LD mode: 40 to 100 HP) - 0.75 to 6 kHz (HD mode: 900 and 1000 HP , LD mode: 125 to 900 HP) - 0.75 to 4 kHz (LD mode: 100 HP) $\cdot 0.75$ to 2 kHz (MD mode: 150 to 800 HP) Note: The carrier frequency may automatically drop depending upon the surrounding temperature or output current to protect the inverter. (The automatic drop function can be disabled.)
	Accuracy (Stability)			- Analog setting: $\pm 0.2 \%$ of maximum frequency (at $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$) - Keypad setting: $\pm 0.01 \%$ of maximum frequency (at -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$)
	Setting resolution			- Analog setting: $1 / 3000$ of maximum frequency ($1 / 1500$ for V 2 input) - Keypad setting: 0.01 Hz (99.99 Hz or less), $0.1 \mathrm{~Hz}(100.0$ to 500.0 Hz$)$ - Link operation setting: Selectable from the following two types - $1 / 20000$ of maximum frequency -0.01 Hz (fixed)
	Under V/f control with speed sensor Under dynamic torque vector control with speed sensor		Speed control range	- 1 : 100 (Minimum speed: Base speed, 4P, 15 to $1500 \mathrm{r} / \mathrm{min}$) - 1 : 2 (Constant torque range: Constant output range)
			Speed control accuracy	- Analog setting: $\pm 0.2 \%$ of maximum frequency (at $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$) - Digital setting: $\pm 0.01 \%$ of maximum frequency (at -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $122^{\circ} \mathrm{F}$))
	Under vector control without speed sensor		Speed control range	- 1 : 200 (Minimum speed: Base speed, 4P, 7.5 to $1500 \mathrm{r} / \mathrm{min}$) - 1 : 2 (Constant torque range: Constant output range)
			Speed control accuracy	- Analog setting: $\pm 0.5 \%$ of base speed (at $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$) - Digital setting: $\pm 0.5 \%$ of base speed (at -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$)
	Under vector control with speed sensor		Speed control range	- 1 : 1500 (Minimum speed: Base speed, 4P, 1 to 1500 r/min, 1024 p/r) - 1 : 4 (Constant torque range: Constant output range)
			Speed control accuracy	- Analog setting: $\pm 0.2 \%$ of maximum frequency (at $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$) - Digital setting: $\pm 0.01 \%$ of maximum frequency (at -10 to $+50^{\circ} \mathrm{C}\left(14\right.$ to $122^{\circ} \mathrm{F}$))
은0	Control method			- V/f control - Dynamic torque vector control - V/f control with speed sensor or dynamic torque vector control with speed sensor - Vector control without speed sensor (Not available for MD-mode inverters) - Vector control with speed sensor (with an optional PG interface card mounted)
	V/f characteristics			- Possible to set output voltage at base frequency and at maximum frequency - AVR control ON/OFF selectable. Non-linear V/f pattern with three arbitrary points.
	Torque boost			- Auto torque boost (for constant torque load) - Manual torque boost: Desired torque boost (0.0 to 20.0%) can be set. - Select application load with function code F37. (Variable torque load or constant torque load)
	Starting torque			30 Hp (HD) or below: 200% or over, 40 Hp (HD) or above: 180% or over Reference frequency: 0.3 Hz with slip compensation and auto torque boost
	Start/stop operation			- Keypad (FWD and REV keys), external signals (run forward (run reverse) command etc.), Communications link (RS-485 or fieldbus (option)) - Remote/local operation
	Enable input (Safety stop function)			Opening the circuit between terminals [EN] and [PLC] stops the inverter's output transistor (coast-to-stop). (Compliant with EN954-1 Cat.3)
	Frequency command			- Keypad: and keys - Analog input (Analog input can be set with external voltage/current input): 0 to ± 10 VDC/0 to $\pm 100 \%$ (terminals [12], [V2]) +4 to +20 mA DC/0 to 100\% (terminal [C1]) - UP/DOWN operation: Multi-frequency (16 steps), 16-bit parallel - Pulse train input (standard): Pulse input $=[\mathrm{X} 7]$ terminal, Rotational direction $=$ One of the digital input terminals except [X7] - Link operation: Various buses (option) - Reference frequency switching, Remote/local mode switching, Auxiliary frequency setting, Proportional operation setting, and Inverse operation
	Acceleration/ deceleration time			0.00 to 6000 s Linear/S-curve/curvilinear, Acceleration/deceleration time settings 1 to 4 switchable
	Stop control			- Running continued at the stop frequency, coast-to-stop, or force to stop. - DC braking: Braking starting frequency (up to 60 Hz), time (up to 30.0 s), and operation level (up to 100\%) - Zero speed control (under vector control with speed sensor.)

Item		Explanation
은00	Auto-restart after momentary power failure	- Trip immediately, trip after recovery from power failure, trip after deceleration to stop - Continue to run, restart at the frequency at which the power failure occurred, restart at the starting frequency, restart after searching for idling motor speed
	Hardware current limiter	- Current limiter operation level (20 to 200%) - Overcurrent limiting by hardware (This can be canceled.)
	Torque limiter	- Torque limit value ($\pm 300 \%$) - Torque limiter $1 / 2$, torque limiter enabled/disabled, analog torque limit value
	Control functions	- Analog input adjustment (gain/offset/filter time constant), frequency limiter (high and low), bias frequency, jump frequency, jogging operation, pre-excitation, switch to commercial power, commercial power switching sequence, cooling fan ON/OFF control, select motor 2 to 4, protect motor from dew condensation, universal DI, universal DO, universal AO, rotational direction limitation - Overload prevention control, auto search, slip compensation, automatic deceleration (anti-regenerative control), droop control, PID process control, PID dancer control, Deceleration characteristics (improving braking capability), auto energy saving function - Offline tuning - Life early warning, cumulative inverter run time, cumulative motor run time - Light alarm, retry, command loss detection
	Digital input	Run forward command, run reverse command, select multi-frequency, select ACC/DEC time, enable 3-wire operation, coast to a stop, reset alarm, enable external alarm trip, ready for jogging, select frequency command $2 / 1$, select motor 1 to 4, enable DC braking, select torque limiter level, switch to commercial power, UP (increase output frequency), DOWN (decrease output frequency), enable data change with keypad, cancel PID control, switch normal/inverse operation, interlock, cancel torque control, enable communications link via RS-485 or fieldbus (option), universal DI, enable auto search for idling motor speed at starting, force to stop, pre-excitation, reset PID integral and differential components, hold PID integral component, select local (keypad) operation, protect the motor from dew condensation, enable internal sequence to commercial lines, pulse train input, pulse train sign, cancel constant peripheral speed control, hold the constant peripheral speed control frequency in the memory, switch to commercial power operation, select droop control, servo-lock command, cancel PG alarm, cancel customizable logic, clear all customizable logic timers
	Transistor output	Inverter running, frequency arrival signal $1 / 3$, frequency detected (3 points), undervoltage detected (inverter stopped), torque polarity detected, inverter output limiting, auto-restarting after momentary power failure, motor overload early warning, keypad operation, inverter ready to run, switch motor power between commercial line and inverter output (inverter input/output/commercial power), select the AX terminal function (primary side MC), inverter output limiting with delay, cooling fan in operation, auto-resetting, universal DO, heat sink overheat early warning, service lifetime alarm, reference loss detected, inverter output on, overload prevention control, current detected (3 points), low level current detected, PID alarm, under PID control, PID control stopped due to slow flowrate, low output torque detected, torque detected (2 points), switched to motor 1 to 4, run forward signal, run reverse signal, inverter in remote operation, PTC status detection enabled, brake signal, analog frequency reference loss on the terminal [C1], inverter keeping speed output, speed arrived, PG error detected, maintenance timer, light alarm, alarm relay contact output (for any fault), braking resistor broken, positioning completion signal, enable circuit failure detected, customizable logic output signal
	Analog output	Terminals [FM1] and [FM2]: Output a selected signal with analog DC voltage (0 to +10 V) or analog DC current (4 to 20 mA) Selectable output signals: Output frequency (before slip compensation, after slip compensation), output current, output voltage, output torque, load factor, input power, PID feedback amount (PV), speed (PG feedback value), DC link bus voltage, universal AO, motor output, calibration, PID command (SV), PID output (MV)
	Running/stopping	Speed monitor (reference frequency (Hz), output frequency, motor speed, load shaft speed, line speed, speed in \%) Output current, output voltage, torque calculation value, input power, PID command value, PID feedback amount, PID output, load factor, motor output, torque current, flux command, analog signal input monitor, input watt-hour Life early warning, cumulative inverter run time, cumulative motor run time, input watt-hour, number of startups I/O checking, energy-saving monitor (input power, input power x coefficient (charges for input power))
	Trip mode	Trip history: Saves and displays the last 4 trip factors and their detailed description.
	Communications	RS-485 COM port 1 (for keypad connection), RS-485 COM port 2 (on terminal board), and USB port (with optional keypad)
	Protection against momentary power failure	Upon detection of a momentary power failure lasting more than 15 ms , this function stops the inverter output. If restart after momentary power failure is selected, this function invokes a restart process if power is restored within a predetermined period (allowable momentary power failure time).

Basic Wiring Diagram

Wiring of main circuit terminal and grounding terminal

■Basic wiring diagram

*1 Install a recommended molded case circuit breaker (MCCB) or residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) (with overcurrent protection function) in the primary circuit of the inverter to protect wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
*2 Install a magnetic contactor (MC) for each inverter to separate the inverter from the power supply, apart from the MCCB or RCD/ELCB, when necessary. Connect a surge absorber in parallel when installing a coil such as the MC or solenoid near the inverter.
*3 The R0 and T0 terminals are provided for inverters of 2 HP or above.
To retain an alarm output signal $\boldsymbol{A L M}$ issued on inverter's programmable output terminals by the protective function or to keep the keypad alive even if the main power has shut down, connect these terminals to the power supply lines. Without power supply to these terminals, the inverter can run.
*4 Normally no need to be connected. Use these terminals when the inverter is equipped with a high power-factor, regenerative PWM converter (RHC series).
*5 When connecting an optional DC reactor (DCR), remove the jumper bar from the terminals P1 and $\mathrm{P}(+)$. The FRN100G1S-2/4U and higher types come with a DCR. Be sure to connect the DCR.
Use a DCR when the capacity of the power supply transformer exceeds 500 kVA and is 10 times or more the inverter rated capacity, or when there are thyristor-driven loads in the same power supply line.
The DCR built-in type has no DCR at this location.
*6 Inverters of 15 HP or below have a built-in braking resistor (DBR) between the terminals $\mathrm{P}(+)$ and DB . When connecting an external braking resistor (DBR), be sure to disconnect the built-in one.
*7 A grounding terminal for a motor. Use this terminal if needed.
*8 For control signal wires, use twisted or shielded-twisted wires. When using shielded-twisted wires, connect the shield of them to the common terminals of the control circuit. To prevent malfunction due to noise, keep the control circuit wiring away from the main circuit wiring as far as possible (recommended: 3.9 inches $(10 \mathrm{~cm})$ or more). Never install them in the same wire duct. When crossing the control circuit wiring with the main circuit wiring, set them at right angles.
*9 The connection diagram shows factory default functions assigned to digital input terminals [X1] to [X7], [FWD] and [REV], transistor output terminals [Y1] to [Y4], and relay contact output terminals [Y5A/C] and [30A/B/C].
*10 Switching connectors in the main circuits. For details, refer to " Switching connectors" later in this section.
*11 Slide switches on the control printed circuit board (control PCB). Use these switches to customize the inverter operations. For details, refer to Section 2.3 .6 "Setting up the slide switches."
*12 When using the Enable input function, be sure to remove the jumper wire from terminals [EN] and [PLC]. For opening and closing the hardware circuit between terminals [EN] and [PLC], use safety components such as safety relays and safety switches that comply with EN954-1, Category 3 or higher. Be sure to use shielded wires exclusive to terminals [EN] and [PLC]. (Do not put them together with any other control signal wire in the same shielded core.) Ground the shielding layer. For details, refer to Chapter 9, Section 9.4 "Compliance with EN954-1, Category 3." When not using the Enable input function, keep the terminals between [EN] and [PLC] short-circuited with the jumper wire (factory default).

Terminal Functions

Terminal Functions

Classifi- cation	Symbol	Name	Description	Remarks
	L1/R, L2/S, L3/T	Main circuit power inputs	Connect the three-phase input power lines.	Connect the single phase input to L1 \& L3
	RO, To	Auxiliary power input for the control circuit	Connect AC power lines.	
	R1,T1	Auxiliary power input for the fans	Normally, no need to use these terminals. Use these terminals for an auxiliary power input of the fans in a power system using a power regenerative PWM converter.	(200 V 50 HP or above) (400 V 100 HP or above)
	U,V,W	Inverter outputs	Connect a three-phase motor.	
	$\mathrm{P}(+)$, P1	DC reactor connection	Connect a DC reactor (DCR).	
	$\mathrm{P}(+), \mathrm{N}(-)$	DC link bus	Terminal for DC bus link system.	
	$\mathrm{P}(+), \mathrm{DB}$	Braking resistor	Connect an external braking resistor (option).	(30HP or below)
	$\stackrel{\text { ¢ }}{ }$	Grounding for inverter	Grounding terminals for the inverter.	
$\begin{aligned} & \text { 膏 } \\ & \text { B } \\ & \frac{0}{0} \\ & \frac{0}{\mathbb{N}} \end{aligned}$	[13]	Power supply for the potentiometer	Power supply (+10 VDC) for frequency command potentiometer (Variable resistor: 1 to 5 kW) The potentiometer of $1 / 2 \mathrm{~W}$ rating or more should be connected. (10 VDC, 10 mADC max.)	
	[12]	Analog setting voltage input	- External input voltage to be used as a frequency command. 0 to $+10 \mathrm{VDC} / 0 \%$ to 100% (0 to $+5 \mathrm{VDC} / 0 \%$ to 100%) 0 to $\pm 10 \mathrm{VDC} / 0 \%$ to $\pm 100 \%$ (0 to $\pm 5 \mathrm{VDC} / 0 \%$ to $\pm 100 \%$)	Input impedance: $22 \mathrm{k} \Omega$ Maximum input ± 15 VDC
		(Inverse operation)	- +10 to 0 VDC/ 0 to100\%	
		(PID control)	Used as PID command value or PID feedback signal.	Gain: 200\%
		(Auxiliary frequency setting)	- Used as additional auxiliary setting to various frequency settings.	Offset: $\pm 5 \%$ Setting filter: 5 s
		(Gain setting)	- Used as gain for the frequency command. 0% to 100% for 0 to 10 V	
		(Torque limit value)	- Analog torque limit value	*8
		(Torque command)	- Analog torque command value *6*7. 0 to $20 \mathrm{mADC} / 0 \%$ to 100%	
		(Analog input monitor)	- Enables peripheral analog signals to be displayed on the keypad. (Display coefficient valid)	
	[C1]	Analog setting current input	- External input voltage to be used as a frequency command. 4 to $20 \mathrm{mADC} / 0 \%$ to 100%	Input impedance: 250Ω Maximum input 30 mADC
		(Inverse operation)	- 20 to $4 \mathrm{mADC/} 0 \%$ to 100%	
		(PID control)	Used as PID command value or PID feedback signal.	Gain: 200%
		(PTCNTC thermistor connection)	- Connect a PTC/NTC thermistor for motor protection. (Switchable)	Offset: $\pm 5 \%$ Setting filter: 5 s
		(Auxiliary frequency setting)	- Used as additional auxiliary setting to various frequency settings.	
		(Gain setting)	- Used as gain for the frequency command. 0% to 100% for 4 to 20 mA	*8
		(Torque limit value)	- Analog torque limit value	
		(Torque command)	- Analog torque command value *6*7	
		(Analog input monitor)	- Enables peripheral analog signals to be displayed on the keypad. (Display coefficient valid)	
	[V2]	Analog setting voltage input	- External input voltage to be used as a frequency command. 0 to $+10 \mathrm{VDC} / 0$ to 100% (0 to $+5 \mathrm{VDC} / 0$ to 100%) 0 to $\pm 10 \mathrm{VDC} / 0$ to $\pm 100 \%$ (0 to $\pm 5 \mathrm{VDC} / 0$ to $\pm 100 \%$)	Input impedance: $22 \mathrm{k} \Omega$ Maximum input ± 15 VDC
		(Inverse operation)	$\cdot+10$ to $0 \mathrm{VDC} / 0$ to 100%	
		(PID control)	Used as PID command value or PID feedback signal.	Gain: 200\%
		(Auxiliary frequency setting)	- Used as additional auxiliary setting to various frequency settings.	Offset: $\pm 5 \%$
		(Gain setting)	- Used as gain for the frequency command. 0% to 100% for 0 to 10 V	
		(Torque limit value)	- Analog torque limit value	*8
		(Torque command)	- Analog torque command value *6*7	
		(Analog input monitor)	- Enables peripheral analog signals to be displayed on the keypad. (Display coefficient valid)	
	[11] (2 terminals)	Analog common	Common terminals for frequency command signals (12, 13, C1, V2, FM1,FM2).	These terminals are electrically isolated from terminals [CM]s and [CMY]s.
	[X1]	Digital input 1	- The following functions can be assigned to terminals [X1] to [X7], [FWD], and [REV]. <Common functions> - SINK/SOURCE is changeable by using the internal slide switch. - These function codes may also switch the logic system between normal and negative to define how the inverter logic interprets either ON or OFF status of each terminal. Terminal [X7] can receive a pulse rate input. (Using the SY disables [X7].)	Operation current at ON Source current: 2.5 to 5 mA Source current: 11 to 16 mA (terminal [X7])
	[X2]	Digital input 2		
	[X3]	Digital input 3		
	[X4]	Digital input 4		
	[X5]	Digital input 5		Voltage level: 2 V
	[X6]	Digital input 6		Operation current at OFF Allowable leakage current: 0.5 mA or less
	[X7]	Digital input 7		
	[FWD]	Run forward commands		Voltage: 22 to 27 V
	[REV]	Run reverse commands		
	[EN] (2 terminals)	Enable Input	- This terminal stops output transistor (making coast-to-stop) when the terminal EN-PLC is turned off. This terminal is dedicted for source input.	Source current at Turn-on : 5-10mA
	[CM]	Digital input common	Common terminals for digital input signals.	This terminal is electrically isolated from terminals [CM]s and [11]s.
	[PLC] (2 terminals)	PLC signal power	Connect to PLC output signal power supply. This terminal also serves as 24 V power supply.	+24 V (22 to 27 V), Max. 100 mA
	(FWD)	Run forward	Turning the (FWD) ON runs the motor in the forward direction; turning it OFF decelerates it to a stop.	These terminal commands can be assigned only to terminals [FWD] and [REV]. The negative logic system never applies to those terminals.
	(REV)	Run reverse	Turning the (REV) ON runs the motor in the reverse direction; turning it OFF decelerates it to a stop.	Same as above.
	(SS1)	Select multi-frequency	The combination of the ON/OFF states of digital input signals (SS1), (SS2), (SS4) and (SS8) provides 16 different frequency choices.	
	(SS2)			
	(SS4)			
	(RT1)	Select ACC/DEC time (2 steps)	The combination of the ON/OFF states of (RT1) and (RT2) provides four choices of acceleration/deceleration settings.	
	(RT2)	Select ACC/DEC time (4 steps)		
	(HLD)	Enable 3-wire operation	Used as a self-hold signal for 3-wire inverter operation. Turning the (HLD) ON self-holds the (FWD) or (REV) command; turning it OFF releases the self-holding.	

Terminal Functions

Terminal Functions

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Classifi- } \\ \text { cation } \end{array} \end{array}$	Symbol	Name	Description	Remarks
	(BX)	Coast to a stop	Turning the (BX) ON immediately shuts down the inverter output so that the motor coasts to a stop without issuing any alarms.	
	(RST)	Reset alarm	Turning the (RST) ON clears the alarm state.	Signal of 0.1 s or more
	(THR)	Enable external alarm trip	Turning the (THR) OFF immediately shuts down the inverter output so that the motor coasts to a stop, issuing OH 2 if (ALM) is enabled.	
	(JOG)	Ready for jogging	Turning the (JOG) ON readies the inverter for jogging. Turning the (FWD) or (REV) ON starts jogging in the rotation direction specified by the jogging frequency.	
	(Hz2/Hz1)	Select frequency command $2 / 1$	Turning the (Hz2/Hz1) ON selects Frequency command 2. (If the PID control is enabled, this terminal command switches the PID command.)	
	(M2)	Select motor 2		
	(M3)	Select motor 3	The combination of the ON/OFF states of (M2), (M3) and (M4) provides four choices of Motors 1 to 4 . (Setting all of (M2), (M3) and (M4) OFF selects Motor 1.)	
	(M4)	Select motor 4		
	(DCBRK)	Enable DC braking	Turning the (DCBRK) ON activates DC braking.	
	(TL2/TL1)	Select torque limiter level	The (TL2/TL1) switches between torque limiters 1 and 2.	
	(SW50)	Switch to commercial power (50 Hz)	Turning the (SW50) OFF switches to commercial power, 50 Hz .*1~*3	
	(SW60)	Switch to commercial power (60 Hz)	Turning the (SW60) OFF switches to commercial power, 60 Hz .*1~*3	
	(UP)	UP (Increase output frequency)	While the (UP) is ON, the output frequency increases.	
	(DOWN)	DOWN (Decrease output frequency)	While the (UP) is ON, the output frequency decreases.	
	(WE-KP)	Enable data change with keypad	Only when the (WE-KP) is ON, function code data can be changed with the keypad.	
	(Hz/PID)	Cancel PID control	Turning the (Hz/PID) ON disables the PID control so that the inverter runs the motor with a reference frequency specified by any of the multi-frequency, keypad, analog input, etc.	
	(IVS)	Switch normal/inverse operation	The (INV) switches the output frequency control between normal (proportional to the input value) and inverse in PID process control and manual frequency command. Turning the (INV) ON selects the inverse operation.	
	(IL)	Interlock	In a configuration where a magnetic contactor (MC) is inserted between the inverter and motor, connecting the auxiliary contact to this terminal enables the input of the (IL) when a power failure occurs, activating the momentary power failure detection function	
	(HZ/TRQ)	Cancel torque control	Turning this signal on cancels torque control.	
	(LE)	Enable communications link via RS-485 or field bus	Turning the (LE) ON gives priority to commands received via the RS-485 communications link or the field bus option.	
	(U-DI)	Universal DI	Using the (U-DI) enables the inverter to monitor arbitrary digital input signals sent from the peripheral equipment, telling the signal status to the host controller.	
	(STM)	Enable auto search for idling motor speed at starting	The (STM) enables auto search for idling motor speed at the start of operation.	
	(STOP)	Force to stop	Turning the (STOP) OFF causes the motor to decelerate to a stop forcedly in accordance with the specified deceleration time.	
	(PID-RST)	Reset PID integral and differential components	Turning the (PID-RST) ON resets PID integral and differential components.	
	(PID-HLD)	Hold PID integral component	Turning this terminal command ON holds the integral components of the PID processor.	
	(EXITE)	Pre-excitation	When this (EXITE) signal comes ON, preliminary excitation starts.***7	
	(LOC)	Select local (keypad) operation	Turning the (LOC) ON gives priority to run/frequency commands entered from the keypad.	
	(DWP)	Protect motor from dew condensation	Turning the (DWP) ON supplies a DC current to the motor that is on halt, in order to generate heat, preventing dew condensation.	
	(ISW50)	Enable integrated sequence to switch to commercial power (50 Hz)	Turning the (ISW50) OFF switches inverter operation to commercial-power operation in accordance with the inverter internal switching sequence (for 50 Hz).	
	(ISW60)	Enable integrated sequence to switch to commercial power (60 Hz)	Turning the (ISW50) OFF switches inverter operation to commercial-power operation in accordance with the inverter internal switching sequence (for 60 Hz).	
	(PIN)	Pulse train input	Frequency command by pulse rate input.	Available only on terminal [X7] (E07)
	(SIGN)	Pulse train sign	Rotational direction command for pulse rate input. OFF: Forward, ON: Reverse	Available only on terminal [X7] (E07)
	(BATRY)	Enable battery operation	Turning this terminal on cancels the under voltage protection so that the inverter runs the motor with battery power in an undervoltage condition.	
	(HZ/LSC)	Cancel constant peripheral speed control	Turning on this terminal cancels constant peripheral speed control.	
	(LSC/HLD)	Hold the constant peripheral speed control frequency in memory	Turning on this terminal cancels constant peripheral speed control frequency in memory.	
	(CRUN-M1)	Count the run time of commercial power-driven motor 1	Turning the (CRUN-M1) ON accumulates the run time of motor 1 in commercial-power operation. (independent of run/stop and motor selected)	
	(CRUN-M2)	Count the run time of commercial power-driven motor 2	Turning the (CRUN-M2) ON accumulates the run time of motor 2 in commercial-power operation. (independent of run/stop and motor selected)	

Terminal Functions Cont'd

$\begin{aligned} & \text { Classifi- } \\ & \text { cation } \end{aligned}$	Symbol	Name	Description	Remarks
	(CRUN-M3)	Count the run time of commercial power-driven motor 3	Turning the (CRUN-M3) ON accumulates the run time of motor 3 in commercial-power operation. (independent of run/stop and motor selected)	
	(CRUN-M4)	Count the run time of commercial power-driven motor 4	Turning the (CRUN-M4) ON accumulates the run time of motor 4 in commercial-power operation. (independent of run/stop and motor selected)	
	(DROOP)	Select droop control	Turning the(DROOP) ON enables the droop control.	
	(PG-CCL)	Cancel PG alarm	Turning the(PG-CCL) ON cancels PG alarm. ${ }^{*}{ }^{*} 5^{*} 7$	
	(CLC)	Cancel customizable logic	Turning this terminal on cancels customizable logic.	
	(CLTC)	Clear all customizable logic timers	Turning this terminal on cancels all customizable logic timers.	
	(LOCK)	Servo-lock command	Turning the(LOCK) ON enables the servo-lock control.*7	
	(NONE)	No function	No function assigned. Can be used as a temporary input of the customized logic interface.	

$\begin{aligned} & \text { Classifi- } \\ & \text { cation } \end{aligned}$	Symbol	Name	Description	Remarks
	(PLC)	Transistor output power	Transistor output load power. (24 VDC, 100 mA DC max.) (Note: Shared by the digital input PLC terminal.)	Short-circuit terminals [CM] and [CMY].
	[Y1]	Transistor output 1	Out of the following signals, the selected one will be issued. -These function codes may also switch the logic system between normal and negative to define how the inverter logic interprets either ON or OFF status of each terminal.	Maximum voltage 27 VDC Maximum current 50 mADC
	[Y2]	Transistor output 2	Applicable to SINK and SOURCE. (No switching is required.)	Leakage current
	[Y3]	Transistor output 3		Le.1
	[Y4]	Transistor output 4		ON voltage: Max. 2 V (50 mA)
	[CMY]	Transistor output common	Common terminal for transistor output signal terminals.	This terminal is electrically isolated from terminals [CM]s and [11]s.
	(RUN)	Inverter running	This signal is ON when the inverter is running with the starting frequency or higher.	
	(RUN2)	Inverter output on	This signal is ON when the inverter is running with the starting frequency or higher or when the DC braking is activated.	
	(DNZS)	Speed valid	This signal is turned ON when the speed command/actual speed exceeds the stop frequency; it is turned OFF when it is below the stop frequency. (Speed command and actual speed selectable.)	
	(FRUN)	Running forward	ON -signal is generated at forward rotation.	
	(RRUN)	Running reverse	ON-signal is generated at reverse rotation	
	(FAR)	Frequency (speed) arrival signal	ON-signal is generated when frequeny / speed reaches at set-value.	
	(FAR3)	Frequency (speed) arrival signal 3	ON-signal is generated when frequency / speed reaches at set-value. When the run command is OFF, the frequency command is interpreted as zeo and frequency	
	(FDT)	Frequency (speed) detected	arrival is judged under the premise. This output signal comes ON when the output frequency exceeds the frequency detection level,	
	(FDT2)	Frequency (speed) detected 2	and it goes OFF when the ou	
	(FDT3)	Frequency (speed) detected 3	Hysteresis width."	
	(LU)	Undervoltage detected	This signal is ON when the undervoltage protection function is activated so that the motor is in an abnormal stop state.	
	(B/D)	(Inverter stopped) Torque polarity detected	This signal comes ON when the inverter is driving the motor; it comes OFF when the inverter is braking the motor or on halt.	
	(IOL)	Inverter output limiting	This signal comes ON when the inverter is activating the current limiter, torque limiter, or antiregenerative control (automatic deceleration).	
	(IOL2)	Inverter output limiting with delay	This signal comes ON when the inverter has been activated the current limiter, torque limiter, or anti-regenerative control (automatic deceleration) for at least 20 ms .	
	(IPF)	Auto-restarting after momentary power failure	This signal is kept ON during the period from when the inverter shuts down its output due to a momentary power failure until the restart is completed.	
	(OL)	Motor overload early warning	This signal comes ON when the value calculated by the electronic thermal overload protection exceeds the predetermined detection level. (applicable to Motor 1 only)	
	(KP)	Keypad operation enabled	This signal is ON when the inverter is in keypad operation.	
	(RDY)	Inverter ready to run	This signal comes ON when the inverter is ready to run.	
	(SW88)	Switch motor drive source between commercial power and inverter output (For MC on commercial line)	This controls the magnetic contactor located at the commercial power line side, for switching the motor drive source from the commercial power line to inverter output.	
	(SW52-2)	Switch motor drive source between commercial power and inverter output (For secondary side)	This controls the magnetic contactor located at the inverter output side (secondary side), for switching the motor drive source from the commercial power line to inverter output.	
	(SW52-1)	Switch motor drive source between commercial power and inverter output (For primary side)	This controls the magnetic contactor located at the inverter input side (primary side), for switching the motor drive source from the commercial power line to inverter output.	
	(SWM1)	Motor 1 selected	This signal comes ON when motor 1 is selected.	
	(SWM2)	Motor 2 selected	This signal comes ON when motor 2 is selected.	
	(SWM3)	Motor 3 selected	This signal comes ON when motor 3 is selected.	
	(SWM4)	Motor 4 selected	This signal comes ON when motor 4 is selected.	
	(AX)	Select AX terminal function (For MC on primary side)	This signal controls the magnetic contactor located at the inverter input side (primary side).	
	(FAN)	Cooling fan in operation	This signal tells the ON/OFF state of the cooling fan.	
	(TRY)	Auto-resetting	This output signal comes ON when auto-resetting is in progress.	

Terminal Functions

[^1][^2]Terminal Arrangement

- Main circuit terminals

Inverter type		Refer to:
Three-phase 230 V	Three-phase 460 V	
FRNF50G1S-2U	FRNF50G1S-4U	Figure A
FRN001G1S-2U	FRN001G1S-4U	
FRN002G1S-2U	FRN002G1S-4U	Figure B
FRN003G1S-2U	FRN003G1S-4U	
FRN005G1S-2U	FRN005G1S-4U	
FRN007G1S-2U	FRN007G1S-4U	Figure C
FRN010G1S-2U	FRN010G1S-4U	
FRN015G1S-2U	FRN015G1S-4U	
FRN020G1S-2U	FRN020G1S-4U	
FRN025G1S-2U	FRN025G1S-4U	Figure D
FRN030G1S-2U	FRN030G1S-4U	
FRN040G1S-2U	FRN040G1S-4U	
FRN050G1S-2U	FRN050G1S-4U	Figure E
	FRN060G1S-4U	
	FRN075G1S-4U	
	FRN100G1S-4U	
FRN060G1S-2U	FRN125G1S-4U	Figure F
FRN075G1S-2U		
FRN100G1S-2U		
-	FRN150G1S-4U	Figure G
-	FRN200G1S-4U	
FRN125G1S-2U	-	Figure M
-	FRN250G1S-4U	Figure H
-	FRN300G1S-4U	
FRN150G1S-2U	FRN350G1S-4U	Figure I
	FRN450G1S-4U	
-	FRN500G1S-4U	Figure J
-	FRN600G1S-4U	
-	FRN700G1S-4U	Figure K
-	FRN800G1S-4U	
-	FRN900G1S-4U	Figure L
-	FRN1000G1S-4U	

Figua Hi Figarel

$\frac{6}{7}$

Arrangermet of conetol circtit tersinals (fomanee to all liaverter rypes)

Screw siok: M3, Tighoning terque: 6.2 b -in (0.7 N m)
Recormonted uire sixe AWG 19 or $18(0,7 \text { mo } 08 \mathrm{~mm})^{*}$
 nentor of sires und ingoding kogpol' manal opertites.

Function Settings

Function Settings

- F codes: Fundamental Functions

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} \& \multirow[b]{2}{*}{Name} \& \multirow[b]{2}{*}{Data setting range} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\text { n } \begin{gathered}
\text { Data } \\
\text { copying }
\end{gathered}
\]} \& \multirow[t]{2}{*}{Default setting} \& \multicolumn{5}{|l|}{} \\
\hline \& \& \& \& \& \& \multicolumn{4}{|l|}{} \& Torque Control \\
\hline FOO \& Data Protection \& \begin{tabular}{l}
0 : Disable both data protection and digital reference protection \\
1 : Enable data protection and disable digital reference protection \\
2 : Disable data protection and enable digital reference protection \\
3 : Enable both data protection and digital reference protection
\end{tabular} \& Y \& Y \& 0 \& Y \& - \& Y \& Y \& - \\
\hline FO: \& Frequency Command 1 \& \begin{tabular}{l}
\(0:-1 \geqslant\) keys on keypad \\
1 : Voltage input to terminal [12] (-10 to +10 VDC) \\
2 : Current input to terminal [C1] (4 to 20 mADC) \\
3 : Sum of voltage and current inputs to terminals [12] and [C1] \\
5 : Voltage input to terminal [V2] (-10 to +10 VDC) \\
7 : Terminal command UP/DOWN control \\
\(8:-1\) keys on keypad (balanceless-bumpless switching available) \\
11 : Digital input interface card (option) \\
12 : Pulse train input
\end{tabular} \& N \& Y \& 0 \& Y \& - \& Y \& Y \& - \\
\hline F02 \& Operation Method \& \begin{tabular}{l}
0 : Keypad \\
1 : Terminal command FWD or REV \\
2 : Keypad (Forward direction) \\
3 : Keypad (Reverse direction)
\end{tabular} \& N \& Y \& 0 \& Y \& - \& Y \& Y \& - \\
\hline F03 \& Maximum Frequency 1 \& 25.0 to 500.0 Hz \& N \& Y \& 60.0 \& Y \& - \& Y \& Y \& - \\
\hline F04 \& Base Frequency 1 \& 25.0 to 500.0 Hz \& N \& Y \& 60.0 \& Y \& - \& Y \& Y \& - \\
\hline F05 \& Rated Voltage at Base Frequency 1 \& 0 : Output a voltage in proportion to input voltage 80 to 240 V : Output an AVR-controlled voltage (for 230 V series) 160 to 500 V : Output an AVR-controlled voltage (for 460 V series) \& N \& Y2 \& \[
\begin{aligned}
\& 230 \\
\& 460 \\
\& \hline
\end{aligned}
\] \& Y \& - \& Y \& Y \& - \\
\hline F05 \& Maximum Output Voltage 1 \& 80 to 240 V : Output an AVR-controlled voltage (for 230 V series) 160 to 500 V : Output an AVR-controlled voltage (for 460 V series) \& N \& Y2 \& \[
\begin{aligned}
\& 230 \\
\& 460 \\
\& \hline
\end{aligned}
\] \& Y \& - \& N \& N \& - \\
\hline FO7 \& Acceleration Time 1 \& \multirow[t]{2}{*}{\begin{tabular}{l}
0.00 to 6000 s \\
Note: Entering 0.00 cancels the acceleration time, requiring external soft-start.
\end{tabular}} \& Y \& Y \& *1 \& Y \& - \& Y \& Y \& - \\
\hline F08 \& Deceleration Time 1 \& \& Y \& Y \& *1 \& Y \& - \& Y \& Y \& - \\
\hline F09 \& Torque Boost 1 \& 0.0\% to 20.0\% (percentage with respect to "Rated Voltage at Base Frequency 1") \& Y \& Y \& 0.0 \& Y \& - \& N \& N \& - \\
\hline F 10 \& \multirow[t]{3}{*}{\begin{tabular}{l}
Electronic Thermal Overload Proection or or Motor 1 (Select moior characierisicss) (Overload detection level) \\
(Thermal time constant)
\end{tabular}} \& \begin{tabular}{l}
1 : For a general-purpose motor with shaft-driven cooling fan \\
2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan
\end{tabular} \& Y \& Y \& 1 \& Y \& - \& Y \& Y \& - \\
\hline Fil \& \& \begin{tabular}{l}
0.00: Disable \\
\(1 \%\) to \(135 \%\) of the rated current (allowable continuous drive current) of the motor
\end{tabular} \& Y \& Y1 Y2 \& *2 \& Y \& - \& Y \& Y \& - \\
\hline Fiz \& \& 0.5 to 75.0 min \& Y \& Y \& *3 \& Y \& - \& Y \& Y \& - \\
\hline F 14 \& Restart Mode after Momentary Power Failure (Mode selection) \& \begin{tabular}{l}
0 : Trip immediately \\
1 : Trip after a recovery from power failure \\
2 : Trip after decelerate-to-stop \\
3 : Continue to run, for heavy inertia or general loads \\
4 : Restart at the frequency at which the power failure occurred, for general loads \\
5 : Restart at the starting frequency
\end{tabular} \& Y \& Y \& 0 \& Y \& - \& Y \& Y \& - \\
\hline Fis \& \multirow[t]{2}{*}{Frequency Limiter \(\begin{gathered}\text { (High) } \\ \text { (Low) }\end{gathered}\)} \& 0.0 to 500.0 Hz \& Y \& Y \& 70.0 \& Y \& - \& Y \& Y \& - \\
\hline Fi5 \& \& 0.0 to 500.0 Hz \& Y \& Y \& 0.0 \& Y \& - \& Y \& Y \& - \\
\hline Fis \& \& -100.00\% to 100.00\% \& \(Y^{*}\) \& Y \& 0.00 \& Y \& - \& Y \& Y \& - \\
\hline \(F 20\) \& \multirow[t]{3}{*}{Bias (Frequency command 1) DC Braking 1 (Braking starting trequency) (Braking level) (Braking time)} \& 0.0 to 60.0 Hz \& Y \& Y \& 0.0 \& Y \& - \& Y \& Y \& - \\
\hline FEI \& \& 0\% to 80\% (LD/MD mode) * \(4,0 \%\) to \(100 \%\) (HD mode) \& Y \& Y \& 0 \& Y \& - \& Y \& Y \& - \\
\hline F22 \& \& 0.00 (Disable); 0.01 to 30.00 s \& Y \& Y \& 0.00 \& Y \& - \& Y \& Y \& - \\
\hline F23 \& \multirow[t]{2}{*}{Starting Frequency 1 (Holding time)} \& 0.0 to 60.0 Hz \& Y \& Y \& 0.5 \& Y \& - \& Y \& Y \& - \\
\hline F24 \& \& 0.00 to 10.00 s \& Y \& Y \& 0.00 \& Y \& - \& Y \& Y \& - \\
\hline F25 \& \multirow[t]{3}{*}{Stop Frequency
Motor Sound (Carrier frequency)

(Tone)} \& 0.0 to 60.0 Hz \& Y \& Y \& 0.2 \& Y \& - \& Y \& Y \& -

\hline F25 \& \& | 0.75 to 16 kHz (LD-mode inverters of 0.5 to 30 HP and HD -mode ones of 0.5 to 100 HP) 0.75 to 10 kHz (LD-mode inverters of 40 to 100 HP and HD -mode ones of 125 to 800 HP) 0.75 to 6 kHz (LD-mode inverters of 125 to 900 HP and HD-mode ones of 900 and 1000 HP) 0.75 to 4 kHz (LD-mode inverters of 1000 HP) |
| :--- |
| 0.75 to 2 kHz (MD-mode inverters of 150 to 800 HP) | \& Y \& Y \& 2 \& Y \& - \& Y \& Y \& -

\hline F27 \& \& ```
0 : Level 0 (Inactive)
1:Level 1
2 : Level 2
3:Level 3

``` & Y & Y & 0 & Y & - & N & N & - \\
\hline F23 & \multirow[t]{3}{*}{\begin{tabular}{l}
Analog Output [FM1] \\
(Mode selection) \\
(Voltage adjustment) (Function)
\end{tabular}} & \begin{tabular}{l}
0 : Output in voltage ( 0 to 10 VDC ) \\
1 : Output in current ( 4 to 20 mA DC ) \\
2 : Output in current ( 0 to 20 mADC )
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline F30 & & 0\% to 300\% & \(Y^{*}\) & Y & 100 & Y & Y & Y & Y & Y \\
\hline F3i & & \begin{tabular}{l}
Select a function to be monitored from the followings. \\
0 : Output frequency 1 (before slip compensation) \\
1 : Output frequency 2 (after slip compensation) \\
2 : Output current \\
3 : Output voltage \\
4 : Output torque \\
5 : Load factor \\
6 : Input power \\
7 : PID feedback amount (PV) \\
8 : PG feedback value \\
9 : DC link bus voltage \\
10 : Universal AO \\
13 : Motor output \\
14 : Calibration (+) \\
15 : PID command (SV) \\
16 : PID output (MV) \\
17 : Positional deviation in synchronous operation
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & \(Y\)


N \\
\hline F32 & \multirow[t]{3}{*}{\begin{tabular}{l}
Analog Output [FM2] \\
(Mode selection) \\
(Voltage adjustment) Pulse Output [FMP] (Mode selection)
\end{tabular}} & \[
\begin{aligned}
& 0 \text { : Output in voltage ( } 0 \text { to } 10 \mathrm{VDC} \text { ) } \\
& 1 \text { : Output in current ( } 4 \text { to } 20 \mathrm{~mA} \mathrm{DC} \text { ) } \\
& 2 \text { : Output in current ( } 0 \text { to } 20 \mathrm{~mA} \mathrm{DC} \text { ) }
\end{aligned}
\] & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline F34 & & 0\% to 300\% & \(\mathrm{Y}^{*}\) & Y & 100 & Y & - & Y & Y & - \\
\hline F35 & & \begin{tabular}{l}
Select a function to be monitored from the followings. \\
0 : Output frequency 1 (before slip compensation) \\
1 : Output frequency 2 (after slip compensation) \\
2 : Output current
\end{tabular} & Y & Y & 0 & N & Y & N & Y & Y \\
\hline
\end{tabular}
- F codes: Fundamental Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Code} & \multirow[t]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{Data
copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline F35 & Analog Output [FM2] (Function) & \begin{tabular}{l}
3 : Output voltage \\
4 : Output torque \\
5 : Load factor \\
6 : Input power \\
7 : PID feedback amount (PV) \\
8 : PG feedback value \\
9 : DC link bus voltage \\
10 : Universal AO \\
13 : Motor output \\
14 : Calibration (+) \\
15 : PID command (SV) \\
16 : PID output (MV) \\
17 : Positional deviation in synchronous running
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & N \\
\hline 537 & \begin{tabular}{l}
Load Selection/ \\
Auto Torque Boost/ \\
Auto Energy Saving Operation 1
\end{tabular} & \begin{tabular}{l}
0 : Variable torque load \\
1 : Constant torque load \\
2 : Auto torque boost \\
3 : Auto energy saving (Variable torque load during ACC/DEC) \\
4 : Auto energy saving (Constant torque load during ACC/DEC) \\
5 : Auto energy saving (Auto torque boost during ACC/DEC)
\end{tabular} & N & Y & 1 & Y & - & N & Y & - \\
\hline F38 & Stop Frequency (Detection mode) & 0 : Detected speed 1:Reference speed & N & Y & 0 & N & - & N & Y & - \\
\hline F39 & (Holding Time) & 0.00 to 10.00 s & Y & Y & 0.00 & Y & - & Y & Y & - \\
\hline F40 & Torque Limiter 1-1 & -300\% to 300\%; 999 (Disable) & Y & Y & 999 & Y & - & Y & Y & - \\
\hline F4i & 1-2 & -300\% to 300\%; 999 (Disable) & Y & Y & 999 & Y & - & Y & Y & - \\
\hline \(F 42\) & Drive Control Selection 1 & \begin{tabular}{l}
0 : V/f control with slip compensation inactive \\
1 : Dynamic torque vector control \\
2 : V/f control with slip compensation active \\
3 : V/f control with speed sensor \\
4 : Dynamic torque vector control with speed sensor \\
5 : Vector control without speed sensor \\
6 : Vector control with speed sensor
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline \(F 43\) & Current Limiter (Mode selection) & \begin{tabular}{l}
0 : Disable (No current limiter works.) \\
1 : Enable at constant speed (Disable during ACC/DEC) \\
2 : Enable during ACC/constant speed operation
\end{tabular} & Y & Y & 2 & Y & - & N & N & - \\
\hline F44 & (Level) & 20\% to 200\% (The data is interpreted as the rated output current of the inverter for 100\%.) & Y & Y & *5 & Y & - & N & N & - \\
\hline F50 & Electronic Thermal Overload Protection for Braking Resisior (Dischagang capadility) & 0 (Braking resistor built-in type), 1 to 9000 kWs , OFF (Disable) & Y & Y1 Y2 & *6 & Y & - & Y & Y & - \\
\hline F5 & (Allowable average loss) & 0.001 to 99.99 kW & Y & Y1 Y2 & 0.001 & Y & - & Y & Y & - \\
\hline FS2 & (Resistance) & 0.01 to 999] & Y & Y1 Y2 & 0.01 & Y & - & Y & Y & - \\
\hline F80 & Switching between LD, MD and HD drive modes & \begin{tabular}{l}
0 : HD (High Duty) mode 1: LD (Low Duty) mode \\
2 : MD (Medium Duty) mode
\end{tabular} & N & Y & 1 & Y & - & Y & Y & - \\
\hline
\end{tabular}

The shaded function codes ( \(\square\) ) are applicable to the quick setup.
*1 6.00 s for inverters of 40 HP or below; 20.00 s for those of 50 HP or above
*4 \(0 \%\) to \(100 \%\) for inverters of 7.5 HP or below
*2 The motor rated current is automatically set. See Table B (P03/A17/b17/r17).
*5 \(160 \%\) for inverters of 7.5 HP or below; \(130 \%\) for those of 10 HP or above
*6 0 for inverters of 15 HP or below; OFF for those of 20 HP or above

\section*{- E codes: Extension Terminal Functions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{Data
copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline & & Selecting function code data assigns the corresponding function to terminals [X1] to [X7] as listed below. & & & & & & & & \\
\hline ESi & Terminal [X1] Function & O(1000) S Select multi-frequency (0 to 1 steps) & N & Y & 0 & \(\bar{Y}^{-}\) & Y & \(\mathrm{Y}^{-}\) & \(\bar{Y}^{-}\) & \\
\hline EOD & Terminal [X2] Function & 1-(1001) : Select multi-frequency (0 to 3 steps) & N & Y & 1 & Y- & Y & Y & Y & N \\
\hline E03 & Terminal [X3] Function & 2_(1002) : Select multi-frequency (0 to 7 steps) & N & Y & 2 & \(\bar{Y}^{-}\) & Y & \(\mathrm{Y}^{-}\) & Y' & N- \\
\hline E04 & Terminal [X4] Function & 3 (1003) : Select multi-frequency (0 to 15 steps) - . - . - . - - . - . (SS8) & N & Y & 3 & Y- & Y & Y & Y & N \\
\hline E05 & Terminal [X5] Function &  & N & Y & 4 & Y- & Y & Y' & \(\underline{Y}\) & N- \\
\hline E05 & Terminal [X6] Function &  & N & Y & 5 & \(\bar{Y}^{-}\) & Y & \(\bar{Y}^{-}\) & \(\bar{Y}^{-}\) & N- \\
\hline E07 & Terminal [X7] Function & 6 (1006) : Enable 3-wire operation & N & Y & 8 & \(\bar{Y}^{-}\) & Y & Y' & \(\bar{Y}\) & Y \\
\hline & & 7 (1007) : Coast to a stop (BX) & & & & Y & Y & Y & Y & Y \\
\hline & & 8 (1008) : Reset alarm (RST) & & & & Y & Y & Y & Y & Y \\
\hline & & 9(1009) : Enable external alarm trip (9 = Active OFF, 1009 = Active ON) _ (THR) & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}\) & N- \\
\hline & & 11_(1011) : Select frequency command 2/1 - . - . - . - . & & & & Y- & Y & Y & \(\bar{Y}\) & N- \\
\hline & & 12(1012) : Select motor 2 - & & & & \(\mathrm{Y}^{-}\) & Y & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y \\
\hline & & 13-1. \({ }^{\text {Enable DC braking }}\) & & & & Y- & Y & Y- & Y & N \\
\hline & &  & & & & \(\bar{Y}^{-}\) & Y & \(\mathrm{Y}^{-}\) & \(\mathrm{Y}^{-}\) & Y \\
\hline & & 15- & & & & \(\bar{Y}^{-}\) & Y & N- & N- & N---- \\
\hline & & 16- & & & & Y- & Y & N- & N- & N \\
\hline & & 17(1017) : UP (Increase output frequency) - & & & & Y- & Y & Y & Y & N \\
\hline & & 18(1018) : DOWN (Decrease output frequency) - & & & & Y- & Y & Y & Y & N- \\
\hline & & 19(1019) Enable data change with keypad - .-- & & & & Y- & Y & Y & Y & Y \\
\hline & & \(20(1020)\) Óancel PID control - & & & & Y- & Y & Y' & Y' & N- \\
\hline & &  & & & & Y- & Y & Y' & Y' & N- \\
\hline & &  & & & & Y- & Y & Y & Y & \\
\hline & & 23 (1023) : Cancel torgue control . . . . . . . . . . . . . . . . (Hz/TRQ) & & & & N & N & N- & N & Y- - - - \\
\hline & & 24 (1024) : Enable communications link via RS-485 or fieldbus (option) (LE) & & & & Y & Y & Y & Y & Y \\
\hline & & 25-1025) U' Universal D̄İ- - - (U-DI) & & & & Y & Y & Y & Y & Y \\
\hline & & 26 (1026) Enable auto search for idling motor sped starting (STM) & & & & \(\bar{Y}^{-}\) & Y & \(\bar{Y}\) & \(\overline{\mathrm{N}}\) & \\
\hline & & 30 (1030) Force to stop (30=Active OFF, \(1030=\) Active ON) & & & & Y- & Y & Y & \(\bar{Y}\) & \\
\hline & & 32 (1032) : Pre-excitation & & & & \(\bar{N}^{-}\) & N & Y & \(\bar{Y}\) & \\
\hline & &  & & & & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}\) & \(\overline{\mathrm{N}}\) \\
\hline
\end{tabular}

\footnotetext{
16.00 s for inverters of 40 HP or below; 20.00 s for those of 50 HP or above
*2 The motor rated current is automatically set. See Table B (P03/A17/b17/r17).
}

\section*{Function Settings}

Function Settings
OE codes: Extension Terminal Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Data } \\
\text { copying }
\end{gathered}
\]} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline Code & & & & & & & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline \multirow[t]{23}{*}{607} & \multirow[t]{23}{*}{Terminal [X7] Function} & 34 (1034) : Hold PID integral component . . . - . - . - . - . . . . (PID-HLD) & & & & Y & Y & Y & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}^{---}\) \\
\hline & & 36 (1036) : Select motor 3 (M3) & & & & Y & Y & Y & Y & Y \\
\hline & & 37 (1037) : Select motor 4 (M4) & & & & Y & Y & Y & Y & Y \\
\hline & & 39 - & & & & Y & Y & Y & Y & Y \\
\hline & & 40- - - Énable integrated sequence to switch to commercial power ( \(50-\mathrm{Hz}\) ) \(-(\overline{I S W} 50)\) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N & N & N \\
\hline & & 41-- - Énable integrated sequence to switch to commercial power (60 Hz ) - (ISWCOO) & & & & \(\overline{\mathrm{Y}}\) & \(\mathrm{Y}^{-}\) & N & N & N \\
\hline & & 47-(10̄47) ' Servol-lock command - & & & & N- & \(\bar{N}^{-}\) & N & Y & N \\
\hline & & \begin{tabular}{l}
48- : Púlse train input (available only on terminal [ \(\overline{\mathrm{X}} \overline{7}]\) (ĒO7)) (PIN) \\
49 (1049) : Pulse train sign (available on terminals except [X7] (E01 to E06)) (SIGN)
\end{tabular} & & & & Y & \(\bar{Y}^{-}\) & Y & Y & Y \\
\hline & & \(59 .(1059)\) Énable battery operation - - - - - - - - - - - - - & N & Y & 98 & \(\overline{\mathrm{Y}}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\bar{Y}\) \\
\hline & & 70-(1070) Cancel constant peripheral speed control - - - - - (HzzlLSC) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & N \\
\hline & & -̄2-(10̄T2) Count the run time of commercial power-driven motor - ( \(\bar{C} \bar{B} \bar{U} \bar{N}-\bar{M} 1)\) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N & N & Y \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N & N & Y \\
\hline & & -74 (1074) Count the run time of commercial power-driven motor 3 ( \(\overline{C \bar{R}} \bar{U} \bar{N}-\bar{M} 3)\) & & & & \(\overline{\mathrm{Y}}\) & \(\bar{Y}^{-}\) & N & N & Y \\
\hline & & - \(\overline{5}\) (10̄75) Count the run time of commercial power-driven motor 4 - ( \(\overline{C D} \overline{\mathcal{U}} \bar{N}-\bar{M} 4)\) & & & & Y' & \(\bar{Y}^{-}\) & N & N & Y \\
\hline & &  & & & & \(\overline{\mathrm{Y}}\) & \(\bar{Y}^{-}\) & Y' & Y- & N- \\
\hline & &  & & & & N- & \(\overline{\mathrm{Y}}^{-}\) & N & Y & Y \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}^{---}\) \\
\hline & & 81 (1081) : Clear all customizable logic timers (CLTC) & & & & Y & Y & Y & Y & Y \\
\hline & & 100 : No function assigned & & & & Y & Y & Y & Y & Y \\
\hline & &  & N & Y & 99 & \(\bar{N}\) & \(\bar{N}^{-}\) & N & Y & N \\
\hline & & \begin{tabular}{l}
111 (1111) : Force to stop only by terminal \\
Setting the value in parentheses () shown above assigns a negative logic input to a terminal.
\end{tabular} & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}\) \\
\hline E ID & Acceleration Time 2 & \multirow[t]{6}{*}{\begin{tabular}{l}
0.00 to 6000 s \\
Note: Entering 0.00 cancels the acceleration time, requiring external soft-start and -stop.
\end{tabular}} & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline Eit & Deceleration Time 2 & & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline Eic & Acceleration Time 3 & & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline E13 & Deceleration Time 3 & & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline E 14 & Acceleration Time 4 & & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline E I5 & Deceleration Time 4 & & Y & Y & *1 & Y & Y & Y & Y & N \\
\hline EI6 & \multirow[t]{2}{*}{Torque Limiter 2-1 Torque Limiter 2-2} & -300\% to 300\%; 999 (Disable) & Y & Y & 999 & Y & Y & Y & Y & Y \\
\hline E 17 & & -300\% to 300\%; 999 (Disable) & Y & Y & 999 & Y & Y & Y & Y & Y \\
\hline E20 & \multirow{46}{*}{Terminal [Y1] Function Terminal [Y2] Function Terminal [Y3] Function Terminal [Y4] Function Terminal [Y5A/C] Function Terminal [30A/B/C] Function (Relay output)} & Selecting function code data assigns the corresponding function to terminals [ Y 1\(]\) to \([\mathrm{Y} 5 \mathrm{~A} / \mathrm{C}]\) and \([30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]\) as listed below. & N & Y & 0 & Y & Y & Y & Y & Y \\
\hline E2: & &  & N & Y & 1 & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\overline{\mathrm{N}}\) \\
\hline E22 & &  & N & Y & 2 & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\text { Y }}\) & Y & \(\bar{Y}\) \\
\hline E23 & & 3 (1003) : Undervoltage detected (Inverter stopped) (LU) & N & Y & 7 & Y & Y & Y & Y & Y \\
\hline E24 & & 4 (1004) : Torque polarity detected (B/D) & N & Y & 15 & Y & Y & Y & Y & Y \\
\hline \multirow[t]{41}{*}{E27} & & 5 (1005) : Inverter output limiting (IOL) & N & Y & 99 & Y & Y & Y & Y & Y \\
\hline & & 6 (1006) : Auto-restarting after momentary power failure (IPF) & & & & Y & Y & Y & Y & Y \\
\hline & & 7 (1007) : Motor overload early warning (OL) & & & & Y & Y & Y & Y & Y \\
\hline & & 8 (1008) : Keypad operation enabled
\[
(K P)
\] & & & & Y & Y & Y & Y & Y \\
\hline & & \begin{tabular}{l}
10 (1010) : Inverter ready to run \\
(RDY)
\end{tabular} & & & & Y- & Y & Y & Y & Y \\
\hline & & 11 : Suwitch motor drive source between commercial power and inverter output (For MC on commercial line) & & & & Y & Y & N & N & N \\
\hline & & \begin{tabular}{l}
 (For secondary side) \\
(SW52-2)
\end{tabular} & & & & Y & Y & N & N & N \\
\hline & &  (For primary side) (SW52-1) & & & & Y & & & & \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}^{-}\) & Y & \\
\hline & & 22 (1022) : Inverter output limiting with delay (IOL2) & & & & Y & Y & Y & Y & Y \\
\hline & & 25 (1025) : Cooling fan in operation (FAN) & & & & Y & Y & Y & Y & Y \\
\hline & & 26 (1026) : Auto-resetting (TRY) & & & & Y & Y & Y & Y & Y \\
\hline & & 27 (1027) : Universal DO (U-DO) & & & & Y & Y & Y & Y & Y \\
\hline & & 28 (1028) : Heat sink overheat early warning & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & \(\overline{\mathrm{N}}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{N}}\) & Y & \(\stackrel{N}{N}\) \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\bar{Y}\) \\
\hline & & 31 (1031) : Frequency (speed) detected 2 (FDT2) & & & & Y & Y & Y & Y & Y \\
\hline & & 33 (1033) : Reference loss detected (REF OFF) & & & & Y & Y & Y & Y & Y \\
\hline & & 35 (1035) : Inverter output on - - - - - - - - - - - - - - - - - - (RUN2) & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\bar{N}\) \\
\hline & &  & & & & \(\bar{Y}\) & \(\mathrm{Y}^{-}\) & \(\bar{Y}\) & Y & \(\bar{Y}\) \\
\hline & & 38 (1038) : Current detected 2 (ID2) & & & & Y & Y & Y & Y & Y \\
\hline & & 39 (1039) : Current detected 3 (ID3) & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & \(\bar{Y}-\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & \(\bar{Y}\) & \(\bar{N}\) \\
\hline & &  & & & & \(\bar{Y}-\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\overline{\mathrm{N}}\) \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\overline{\mathrm{N}}\) \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(\bar{Y}\) \\
\hline & & 46 (1046) : Torque detected 1 ( 10 (DD) & & & & Y & Y & Y & Y & Y \\
\hline & & 47 (1047) : Torque detected 2 (TD2) & & & & Y & Y & Y & Y & Y \\
\hline & & 48 (1048) : Motor 1 selected (SWM1) & & & & Y & Y & Y & Y & Y \\
\hline & & 49 (1049) : Motor 2 selected (SWM2) & & & & Y & Y & Y & Y & Y \\
\hline & & 50 (1050) : Motor 3 selected (SWM3) & & & & Y & Y & Y & Y & Y \\
\hline & & 51 (1051): Motor 4 selected ( \({ }^{\text {a }}\) (SWM4) & & & & Y & Y & Y & Y & Y \\
\hline & & 52 (1052) : Running forward (FRUN) & & & & Y & Y & Y & Y & Y \\
\hline & & 53 (1053) : Running reverse (RRUN) & & & & Y & Y & Y & Y & Y \\
\hline & & 54 (1054) : In remote operation (RMT) & & & & Y & Y & Y & Y & Y \\
\hline & & 56 (1056) : Motor overheat detected by thermistor - - - - - - - - - - (THM) & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & \(\overline{\mathrm{Y}}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & \(\bar{Y}\) \\
\hline & & 59 (1059) : Terminal [C1] wire break (C1OFF) & & & & Y & Y & Y & Y & Y \\
\hline
\end{tabular}

E codes: Extension Terminal Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Code & Name & \multirow[t]{2}{*}{Data setting range} & Change when & Data & Default & & & Drive & contro & \\
\hline Code & Name & & & copying & setting & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline \multirow[t]{16}{*}{E27} & \multirow[t]{16}{*}{Terminal [30A/B/C] Function (Relay output)} &  & & & & N & Y & Y & Y & Y \\
\hline & &  & & & & N- & Y- & Y & \(\mathrm{Y}^{-}\) & \\
\hline & &  & & & & Y- & Y & Y- & \(\mathrm{Y}^{-}\) & N \\
\hline & &  & & & & N & \(\bar{Y}^{-}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & N \\
\hline & &  & & & & N & \(\bar{N}^{-}\) & \(\bar{N}^{-}\) & \(\bar{Y}\) & \\
\hline & &  & & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & , & \\
\hline & & 98 (1098) : Light alarm (L-ALM) & & & & Y & Y & Y & Y & Y \\
\hline & & 99 (1099) : Alarm output (for any alarm) (ALM) & & & & Y & Y & Y & Y & Y \\
\hline & & 101 (1101): Enable circuit failure detected (DECF) & & & & Y & Y & Y & Y & Y \\
\hline & & 102 (1102): Enable input OFF (EN OFF) & & & & Y & Y & Y & Y & Y \\
\hline & & 105 (1105): Braking transistor broken (DBAL) & & & & Y & Y & Y & Y & Y \\
\hline & & 111 (1111): Customizable logic output signal 1 (CLO1) & & & & Y & Y & Y & Y & Y \\
\hline & & 112 (1112): Customizable logic output signal 2 (CLO2) & & & & Y & Y & Y & Y & Y \\
\hline & & 113 (1113): Customizable logic output signal 3 (CLO3) & & & & Y & Y & Y & Y & Y \\
\hline & & 114 (1114): Customizable logic output signal 4 (CLO4) & & & & Y & Y & Y & Y & Y \\
\hline & & 115 (1115): Customizable logic output signal 5
(CLO5) & & & & Y & Y & Y & Y & Y \\
\hline E30 & Frequency Arrival (Hysteresis width) & Setting the value in parentheses () shown above assigns a negative logic output to a terminal. & Y & Y & 2.5 & Y & Y & Y & Y & N \\
\hline E3i & \multirow[t]{2}{*}{Frequency Detection 1 (Level) (Hysteresis width)} & & Y & Y & 60.0 & Y & Y & Y & Y & Y \\
\hline E32 & & \[
0.0 \text { to } 500.0 \mathrm{~Hz}
\] & Y & Y & 1.0 & Y & Y & Y & Y & Y \\
\hline E34 & \multirow[t]{2}{*}{\begin{tabular}{l}
Overload Eary WarningOUurent Deiection (Level) \\
(Timer)
\end{tabular}} & 0.00 (Disable); Current value of 1\% to 200\% of the inverter rated current & Y & Y1 Y2 & *2 & Y & Y & Y & Y & Y \\
\hline E35 & & 0.01 to 600.00 s & Y & Y & 10.00 & Y & Y & Y & Y & Y \\
\hline E36 & Frequency Detection 2 (Level) & & Y & Y & 60.0 & Y & Y & Y & Y & Y \\
\hline E37 & Current Detection 2 Low Curent Detection (Level) & 0.00 (Disable); Current value of \(1 \%\) to \(200 \%\) of the inverter rated current & Y & Y1 Y2 & *2 & Y & Y & Y & Y & Y \\
\hline E38 & (Timer) & 0.01 to 600.00 s & Y & Y & 10.00 & Y & Y & Y & Y & Y \\
\hline E40 & PID Display Coefficient A & -999 to 0.00 to 9990 & Y & Y & 100 & Y & Y & Y & Y & N \\
\hline E4i & PID Display Coefficient B & -999 to 0.00 to 9990 & Y & Y & 0.00 & Y & Y & Y & Y & N \\
\hline E42 & LED Display Filter & -999 to 0.00 to 9990 & Y & Y & 0.5 & Y & Y & Y & Y & Y \\
\hline 643 & LED Monitor (Item selection) & \begin{tabular}{l}
0 : Speed monitor (select by E48) \\
3 : Output current \\
4 : Output voltage \\
8 : Calculated torque \\
9 : Input power \\
10 : PID command \\
12 : PID feedback amount \\
14 : PID output \\
15 : Load factor \\
16 : Motor output \\
17 : Analog input \\
23 : Torque current (\%) \\
24 : Magnetic flux command (\%) \\
25 : Input watt-hour
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline E44 & (Display when stopped) & 0 : Specified value 1: Output value & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline E45 & \multirow[t]{2}{*}{LCD Monitor (Item selection) (Language selection)} & \begin{tabular}{l}
0 : Running status, rotational direction and operation guide \\
1: Bar charts for output frequency, current and calculated torque
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline \(\varepsilon 45\) & & \begin{tabular}{l}
Type: TP-G1W-J1 \\
0 : Japanese \\
1 : English \\
2 : German \\
3 : French \\
4 : Spanish \\
5 : Italian
\end{tabular} & Y & Y & 1 & Y & Y & Y & Y & Y \\
\hline E47 & (Contrast control) & 0 (Low) to 10 (High) & Y & Y & 5 & Y & Y & Y & Y & Y \\
\hline 548 & LED Monitor (Speed monitor item) & \begin{tabular}{l}
0 : Output frequency 1 (Before slip compensation) \\
1 : Output frequency 2 (After slip compensation) \\
2 : Reference frequency \\
3 : Motor speed in \(\mathrm{r} / \mathrm{min}\) \\
4 : Load shaft speed in \(\mathrm{r} / \mathrm{min}\) \\
5 : Line speed in \(\mathrm{m} / \mathrm{min}\) \\
7 : Display speed in \%
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline E50 & Coefficient for Speed Indication & \multirow[t]{2}{*}{0.01 to 200.00 (Cancel/reset), 0.001 to 9999} & Y & Y & 30.00 & Y & Y & Y & Y & Y \\
\hline E5: & \multirow[t]{2}{*}{Display Coefficient for Innut Watt-hour Data} & & Y & Y & 0.010 & Y & Y & Y & Y & Y \\
\hline E52 & & \begin{tabular}{l}
0.000 (Cancel/reset), 0.001 to 9999 \\
0 : Function code data editing mode (Menus \#0, \#1, and \#7) \\
1 : Function code data check mode (Menus \#2 and \#7) \\
2 : Full-menu mode
\end{tabular} & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline E54 & Frequency Detection 3 (Level) & 0.0 to 500.0 Hz & Y & Y & 60.0 & Y & Y & Y & Y & Y \\
\hline E55 & \multirow[t]{2}{*}{Current Detection 3 (Level)
(Timer)} & & Y & Y1 Y2 & *2 & Y & Y & Y & Y & Y \\
\hline E56 & & \begin{tabular}{l}
0.00 (Disable); Current value of \(1 \%\) to 200\% of the inverter rated current \\
0.01 to 600.00 s \\
\hline
\end{tabular} & Y & Y & 10.00 & Y & Y & Y & Y & Y \\
\hline E5: & \multirow[t]{3}{*}{Terminal [12] Extended Function Terminal [C1] Extended Function Terminal [V2] Extended Function} & \multirow[t]{3}{*}{\begin{tabular}{l}
0 : None \\
1 : Auxiliary frequency command 1 \\
2 : Auxiliary frequency command 2 \\
3 : PID command 1 \\
5 : PID feedback amount \\
6 : Ratio setting \\
7 : Analog torque limit value \(A\) \\
8 : Analog torque limit value \(B\) \\
10 : Torque command \\
11 : Torque current command \\
20 : Analog input monitor
\end{tabular}} & N & Y & 0 & Y & Y & Y & Y & Y \\
\hline E52 & & & N & Y & 0 & Y & Y & Y & Y & Y \\
\hline E53 & & & N & Y & 0 & Y & Y & Y & Y & Y \\
\hline E54 & Saving of Digital Reference Frequency & \begin{tabular}{l}
0 : Automatic saving (when main power is turned OFF) \\
1 : Saving by pressing key
\end{tabular} & Y & Y & 1 & Y & Y & Y & Y & Y \\
\hline E55 &  & 0 : Decelerate to stop, \(20 \%\) to \(120 \%\), 999: Disable & Y & Y & 999 & Y & Y & Y & Y & Y \\
\hline E 78 & Torque Detection 1 (Level) & 0\% to 300\% & Y & Y & 100 & Y & Y & Y & Y & Y \\
\hline E79 & (Timer) & 0.01 to 600.00 s & Y & Y & 10.00 & Y & Y & Y & Y & Y \\
\hline E8O & Torque Deiection 2 Low Torque Detection (Level) & 0\% to 300\% & Y & Y & 20 & Y & Y & Y & Y & Y \\
\hline ES i & (Timer) & 0.01 to 600.00 s & Y & Y & 20.00 & Y & Y & Y & Y & Y \\
\hline
\end{tabular}

Function Settings
OE codes: Extension Terminal Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Code & Name & \multirow[t]{2}{*}{Data setting range} & Change when & & Default & \multicolumn{5}{|c|}{Drive control} \\
\hline Code & Name & & & copying & setting & & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline \(\underline{698}\) & Terminal [FWD] Function & Selecting function code data assigns the corresponding function to terminals [FWD] and [REV] as listed below.
\[
0(1000) \text { Select multi-frequency (0 to } 1 \text { steps) }
\] & N & Y & 98 & Y & Y & Y & Y & N \\
\hline 699 & Terminal [REV] Function &  & N & Y & 99 & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\mathrm{Y}^{-}\) & Y' & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & N \\
\hline & & 6 (1006) : Enable 3-wire operation & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & Y \\
\hline & & 7 (1007) : Coast to a stop (BX) & & & & Y & Y & Y & Y & Y \\
\hline & & 8 (1008) : Reset alarm (RST) & & & & Y & Y & Y & Y & Y \\
\hline & & 9 9 1009 ) : Enable external alarm trip (9 = Active OFF, \(1009=\) Active ON) _(THR) & & & & Y & Y & \(\bar{Y}\) & Y & Y \\
\hline & & 10(1010) : Ready for jogging & & & & \(\bar{Y}\) & Y- & \(\bar{Y}\) & \(\bar{Y}\) & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}^{-}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & \(\bar{Y}\) & Y \\
\hline & &  & & & & \(\bar{Y}\) & Y & \(\bar{Y}^{-}\) & Y & \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & Y & Y & Y \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N- & N & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N- & N & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\mathrm{Y}^{-}\) & Y & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}{ }^{-}\) & \(\bar{Y}\) & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & \\
\hline & &  & & & & \(\bar{Y}\) & \(\mathrm{Y}^{-}\) & \(\bar{Y}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \({ }^{-}\) & \(\bar{Y}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & Y \\
\hline & &  & & & & N & \(\bar{N}^{-}\) & \(\overline{\mathrm{N}}\) & N & \(\mathrm{Y}^{----}\) \\
\hline & & 24 (1024) : Enable communications link via RS-485 or fieldbus (LE) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & , \\
\hline & & 25-(1025) : Universal DI . . . . . . . . . . . . . . . . . . . . . . . . (U-DI) & & & & & Y & Y & Y & Y \\
\hline & & 26 (1026) : Enableaatos search for idling motor speed at starting - (STM) & & & & \(\bar{Y}\) & Y- & \(\bar{Y}\) & N & Y \\
\hline & &  & & & & Y & \(\bar{Y}^{-}\) & \(\bar{Y}^{-}\) & Y & Y \\
\hline & & 32(1032) : Pre-excitation- & & & & N & \(\bar{N}^{-}\) & \(\bar{Y}^{-}\) & Y & \\
\hline & & 33-1033) : Reset PIDintegraland differential components - - - (PID-RST) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & N \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & N \\
\hline & & 35 (1035) : Select local (keypad) operation ----------1) (LOC) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \(Y^{----}\) \\
\hline & & 36 (1036) : Select motor 3 (M3) & & & & Y & Y & Y & Y & Y \\
\hline & & 37 (1037) : Select motor 4 (M4) & & & & Y & Y & Y & Y & Y \\
\hline & &  & & & & Y & Y & Y & Y & Y \\
\hline & & 40- - - Enable integrated sequence to switch to commercial power (50 Hz ) (ISW50) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N- & N & \\
\hline & & 41- - Enable integrated sequence to switch to commercial power (60 Hz ) (ISW60) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N- & N & N \\
\hline & &  & & & & N & N- & N & Y & \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & Y \\
\hline & &  & & & & Y & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \\
\hline & & 70(1070): Cancel constant peripheral speed control --------1(Hz/LSC) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & N \\
\hline & & 71-(1071) : Hold the constant peripheral speed control frequency in the memory - (LSCO-HLD) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\overline{\mathrm{Y}}\) & Y & \\
\hline & & 72-(1072) Count the run time of commercialpower-driven motor 1- \CBUVN-M12 & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & N- & N & \\
\hline & & 73 (1073) Count the run timeof commercial power-driven motor 2- (CRUN-M2) & & & & Y & & N- & N & \\
\hline & & 74 (1074) Oount the run time of commercial power-driven motor 3 (CRUN-M3) & & & & Y & Y' & N & N & \\
\hline & & 75 (1075) Count the run time of commercial power-driven motor 4- (CABUN-M4) & & & & \(\bar{Y}\) & Y' & N- & N & \\
\hline & & 76-(1076) : Select droop control - - - - - - - - - - - - - - (DQPOPP) & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \\
\hline & &  & & & & N & Y & N- & Y & \\
\hline & &  & & & & \(\bar{Y}\) & \(\bar{Y}^{-}\) & \(\bar{Y}\) & Y & \\
\hline & & 81 (1081) : Clear all customizable logic timers (CLTC) & & & & Y & Y & Y & Y & Y \\
\hline & & 98 : Run forward (FWD) & & & & Y & Y & Y & Y & Y \\
\hline & & 99 : Run reverse (REV) & & & & Y & Y & Y & Y & Y \\
\hline & & 100 : No function assigned (NONE) & & & & Y & Y & Y & Y & Y \\
\hline & & Setting the value in parentheses () shown above assigns a negative logic input to a terminal. & & & & & & & & \\
\hline
\end{tabular}

The shaded function codes ( \(\square\) ) are applicable to the quick setup.
*1 6.00 s for inverters of 40 HP or below; 20.00 s for those of 50 HP or above
*2 The motor rated current is automatically set. See Table B (P03/A17/b17/r17).
OC codes: Control Functions of Frequency
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{Data copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{3}{|l|}{Drive control} \\
\hline & & & & & & V/f & w/o PG & w/ PG \\
\hline [01 & Jump Frequency 1 & 0.0 to 500.0 Hz & Y & Y & 0.0 & Y & Y & Y \\
\hline [D2 & 2 & & Y & Y & 0.0 & Y & Y & Y \\
\hline [03 & 3 & & Y & Y & 0.0 & Y & Y & Y \\
\hline \(\underline{204}\) & (Hysteresis width) & 0.0 to 30.0 Hz & Y & Y & 3.0 & Y & Y & Y \\
\hline \([05\) & Multi-frequency 1 & 0.00 to 500.00 Hz & Y & Y & 0.00 & Y & Y & Y \\
\hline [06 & 2 & & Y & Y & 0.00 & Y & Y & Y \\
\hline \(\underline{207}\) & 3 & & Y & Y & 0.00 & Y & Y & Y \\
\hline \(\underline{208}\) & 4 & & Y & Y & 0.00 & Y & Y & Y \\
\hline \(\underline{49}\) & 5 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [10] & 6 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [1i & 7 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [ic & 8 & & Y & Y & 0.00 & Y & Y & Y \\
\hline \([1]\) & 9 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [14 & 10 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [15 & 11 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [is & 12 & & Y & Y & 0.00 & Y & Y & Y \\
\hline \([17\) & 13 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [18 & 14 & & Y & Y & 0.00 & Y & Y & Y \\
\hline [19 & 15 & & Y & Y & 0.00 & Y & Y & Y \\
\hline
\end{tabular}

OC codes: Control Functions of Frequency
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & Change when & & Default & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & running & copying & setting & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline [20 & Jogging Frequency & 0.00 to 500.00 Hz & Y & Y & 0.00 & Y & - & Y & Y & - \\
\hline ᄃ30 & Frequency Command 2 & \begin{tabular}{l}
0 : Enable - keys on the keypad \\
1 : Voltage input to terminal [12] ( -10 to +10 VDC \()\) \\
2 : Current input to terminal [C1] (4 to 20 mA DC ) \\
3 : Sum of voltage and current inputs to terminals [12] and [C1] \\
5 : Voltage input to terminal [V2] ( -10 to +10 VDC ) \\
7 : Terminal command UP/DOWN control \\
8 : Enable \(/\) keys on the keypad (balanceless-bumpless switching available) \\
11 : Digital input interface card (option) \\
12 : Pulse train input
\end{tabular} & N & Y & 2 & Y & - & Y & Y & - \\
\hline \([31\) & Analog Input Adjustment for [12] (Offset) & -5.0\% to 5.0\% & \(Y^{*}\) & Y & 0.0 & Y & - & Y & Y & - \\
\hline [32 & (Gain) & 0.00\% to 400.00\% & \(\mathrm{Y}^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline \([33\) & (Filter time constant) & 0.00 to 5.00 s & Y & Y & 0.05 & Y & - & Y & Y & - \\
\hline [34 & (Gain base point) & 0.00\% to 100.00\% & \(\mathrm{Y}^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline \(ז 35\) & (Polarity) & 0 : Bipolar 1: Unipolar & N & Y & 1 & Y & - & Y & Y & - \\
\hline [35 & Analog Input Adjustment for [C1] (Offset) & -5.0\% to 5.0\% & \(\mathrm{Y}^{*}\) & Y & 0.0 & Y & - & Y & Y & - \\
\hline \([37\) & (Gain) & 0.00\% to 400.00\% & \(Y^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline [38 & (Filter time constant) & 0.00 to 5.00 s & Y & Y & 0.05 & Y & - & Y & Y & - \\
\hline [39 & (Gain base point) & 0.00\% to 100.00\% & \(\mathrm{Y}^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline [40] & Terminal [C1] Range Selection & \[
\begin{aligned}
& 0: 4 \text { to } 20 \mathrm{~mA} \\
& 1: 0 \text { to } 20 \mathrm{~mA}
\end{aligned}
\] & N & Y & 0.0 & Y & Y & Y & Y & Y \\
\hline [41 & Analog Input Adjustment for [V2] (Offset) & -5.0\% to 5.0\% & \(Y^{*}\) & Y & 0.0 & Y & - & Y & Y & - \\
\hline [4] & (Gain) & 0.00\% to 400.00\% & \(Y^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline \([43\) & (Filter time constant) & 0.00 to 5.00 s & Y & Y & 0.05 & Y & - & Y & Y & - \\
\hline \([44]\) & (Gain base point) & 0.00\% to 100.00\% & \(Y^{*}\) & Y & 100.00 & Y & - & Y & Y & - \\
\hline [45 & (Polarity) & 0 : Bipolar 1: Unipolar & N & Y & 1 & Y & - & Y & Y & - \\
\hline [50 & Bias (Frequency command 1) (Bias base point) & 0.00\% to 100.00\% & \(\mathrm{Y}^{*}\) & Y & 0.00 & Y & - & Y & Y & - \\
\hline [5 i & Bias (PID command 1) (Bias value) & -100.00\% to 100.00\% & \(Y^{*}\) & Y & 0.00 & Y & - & Y & Y & - \\
\hline [52] & (Bias base point) & 0.00\% to 100.00\% & \(\mathrm{Y}^{*}\) & Y & 0.00 & Y & - & Y & Y & - \\
\hline [53] & Selection of Normal/Inverse Operation (Frequency command 1) & \begin{tabular}{l}
0 : Normal operation \\
1 : Inverse operation
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline
\end{tabular}

P codes: Motor 1 Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Code} & \multirow[t]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{Change when running} & \multirow[t]{2}{*}{Data copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline PO & \multirow[t]{4}{*}{Motor \(1 \quad \begin{array}{r}\text { (No. of poles) } \\ \text { (Rated capacity) } \\ \\ \\ \\ \text { (Rated current) }\end{array}\)} & 2 to 22 poles & N & Y1 Y2 & 4 & Y & - & Y & Y & - \\
\hline 902 & & \[
\begin{aligned}
& 0.01 \text { to } 1000 \mathrm{~kW} \text { (when P99 }=0,2,3 \text { or } 4 \text { ) } \\
& 0.01 \text { to } 1000 \mathrm{HP} \text { (when P99 }=1 \text { ) }
\end{aligned}
\] & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 903 & & 0.00 to 2000 A & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P04 & & \begin{tabular}{l}
0 : Disable \\
1 : Tune while the motor stops. (\%R1, \%X and rated slip frequency) \\
2 : Tune while the motor is rotating under V/f control (\%R1, \%X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5 , and magnetic saturation extension factors "a" to "c") \\
3 : Tune while the motor is rotating under vecior control (\%R1, \%X, rated slip frequency, no-oad current, magnetic saturation factors 1 to 5 , and magnetic saturation extension factiors "a" to "c." Available when the vector control is enabled.)
\end{tabular} & N & N & 0 & Y & - & Y & Y & - \\
\hline P05 & \multirow[t]{3}{*}{\begin{tabular}{l}
1 (Online tuning) \\
(No-load current) \\
(\%R1)
\end{tabular}} & 0 : Disable 1: Enable & Y & Y & 0 & Y & N & N & N & N \\
\hline P05 & & 0.00 to 2000 A & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P07 & & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P08 & & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P09 & (Slip compensation gain for driving) & 0.0\% to 200.0\% & \(\mathrm{Y}^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline P in & (Slip compensation response time) & 0.01 to 10.00 s & Y & Y1 Y2 & 0.12 & Y & - & N & N & - \\
\hline Pit & \multirow[t]{2}{*}{\begin{tabular}{l}
(Slip compensation gain for braking) \\
(Rated slip frequency)
\end{tabular}} & 0.0\% to 200.0\% & \(\mathrm{Y}^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline PiL & & 0.00 to 15.00 Hz & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P13 & (Iron loss factor 1) & 0.00\% to 20.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P14 & (Iron loss factor 2) & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline Pi5 & \multirow[t]{2}{*}{\begin{tabular}{l}
(Iron loss factor 3) \\
(Magnetic saturation factor 1)
\end{tabular}} & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline Pi5 & & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P17 & (Magnetic saturation factor 2) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P i8 & (Magnetic saturation factor 3) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P19 & (Magnetic saturation factor 4) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P20 & (Magnetic saturation factor 5) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P2i & (Magnetic saturation extension factor "a") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P22 & \multirow[t]{2}{*}{(Magnetic saturation extension factor "b") (Magnetic saturation extension factor "c")} & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P23 & & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline P53 & \begin{tabular}{l}
(Magnetic saturation extension factior "c") \\
(\%X correction factor 1)
\end{tabular} & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline P54 & \multirow[t]{2}{*}{\begin{tabular}{l}
(\%X correction factor 2) \\
(Torque current under vector control) \\
(Induced voltage factor under vector contro)
\end{tabular}} & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline P55 & & 0.00 to 2000 A & N & Y1 Y2 & *7 & N & - & Y & Y & - \\
\hline P56 & (Induced voltage factor under vector control) & 50\% to 100\% & N & Y1 Y2 & \[
\begin{gathered}
85(90) \\
* 8
\end{gathered}
\] & N & - & Y & Y & - \\
\hline P5 7 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline P99 & Motor 1 Selection & \begin{tabular}{l}
0 : Motor characteristics 0 (Fuji standard motors, 8-series) \\
1 : Motor characteristics 1 (HP rating motors) \\
2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) \\
3 : Motor characteristics 3 (Fuji standard motors, 6-series) \\
4 : Other motors
\end{tabular} & N & Y1 Y2 & 1 & Y & - & Y & Y & - \\
\hline
\end{tabular}

\footnotetext{
The shaded function codes ( \(\square\) ) are applicable to the quick setup.
}
*7 The motor parameters are automatically set, depending upon the inverter's capacity. See Table B.
* \(885 \%\) for inverters of 150 HP or less; \(90 \%\) for those of 175 HP or above.
\({ }^{*} 9\) Factory use. Do not access these function codes.

\section*{Function Settings}

\section*{Function Settings}

\section*{OH codes: High Performance Functions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[t]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & & & & & & & Drive & control \\
\hline & & & runni & copying & setting & V/f & & w/o PG & w/ PG & Torque Control \\
\hline 403 & Data Initialization & \begin{tabular}{l}
0 : Disable initialization \\
: Initialize all function code data to the factory defaults \\
: Initialize motor 1 parameters \\
3 : Initialize motor 2 parameters \\
: Initialize motor 3 parameters \\
5 : Initialize motor 4 parameters
\end{tabular} & N & N & 0 & Y & - & Y & Y & - \\
\hline H04 & \multirow[t]{2}{*}{Auto-reset \(\begin{array}{r}\text { (Times) } \\ \\ \text { (Reset interval) }\end{array}\)} & 0 : Disable; 1 to 10 & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 405 & & 0.5 to 20.0 s & Y & Y & 5.0 & Y & - & Y & Y & - \\
\hline 405 & Cooling Fan ON/OFF Control & \begin{tabular}{l}
0 : Disable (Always in operation) \\
1 : Enable (ON/OFF controllable)
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline H07 & Acceleration/Deceleration Pattern & \begin{tabular}{l}
0 : Linear \\
1 : S-curve (Weak) \\
2 : S-curve (Arbitrary, according to H 57 to H 60 data) \\
3 : Curvilinear
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 408 & Rotational Direction Limitation & \begin{tabular}{l}
0 : Disable \\
1 : Enable (Reverse rotation inhibited) \\
2 : Enable (Forward rotation inhibited)
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 409 & Starting Mode (Auto search) & \begin{tabular}{l}
0 : Disable \\
1 : Enable (At restart after momentary power failure) \\
2 : Enable (At restart after momentary power failure and at normal start)
\end{tabular} & N & Y & 0 & Y & - & N & N & - \\
\hline Hit & Deceleration Mode & 0 : Normal deceleration 1: Coast-to-stop & Y & Y & 0 & Y & - & Y & Y & - \\
\hline \(\mathrm{H}_{12}\) & Instantaneous Overcurrent Limiting (Mode selection) & \begin{tabular}{l}
0 : Disable \\
1 : Enable
\end{tabular} & Y & Y & 1 & Y & - & N & N & - \\
\hline H13 & \multirow[t]{4}{*}{\begin{tabular}{l}
Resat Illode ater IMonentay Povere Falure (Resiat ine) \\
(Frequency fall rate) \\
(Continuous running level) \\
(Allowable momentary power failure time)
\end{tabular}} & 0.1 to 20.0 s & Y & Y1 Y2 & *10 & Y & - & Y & Y & - \\
\hline H: 4 & & 0.00: Deceleration time selected by F08, 0.01 to \(100.00 \mathrm{~Hz} / \mathrm{s}\), 999: Follow the current limit command & Y & Y & 999 & Y & - & Y & N & - \\
\hline His & & 200 to 300 V for 230 V series 400 to 600 V for 460 V series & Y & Y2 & \[
\begin{array}{r}
235 \\
470 \\
\hline
\end{array}
\] & Y & - & N & N & - \\
\hline His & & \begin{tabular}{l}
0.0 to 30.0 s \\
999: Automatically determined by inverter
\end{tabular} & Y & Y & 999 & Y & - & Y & Y & - \\
\hline Hi8 & Torque Control (Mode selection) & \begin{tabular}{l}
0 : Disable (Speed control) \\
2 : Enable (Torque current command) \\
3 : Enable (Torque command)
\end{tabular} & N & Y & 0 & N & - & Y & Y & - \\
\hline Н25 & \multirow[t]{2}{*}{Thermistor (for motor) (Mode selection)
(Level)} & \begin{tabular}{l}
0 : Disable \\
1 : PTC (The inverter immediately trips with 0 . 4 displayed.) \\
2 : PTC (The inverter issues output signal THM and continues to run.) \\
3 : NTC (When connected)
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline H27 & & 0.00 to 5.00 V & Y & Y & 0.35 & Y & - & Y & Y & - \\
\hline H28 & Droop Control & \multirow[t]{2}{*}{\begin{tabular}{ll} 
Frequency command & Run command \\
\(0:\) F01/C30 & F02 \\
\(1:\) RS-485 (Port 1) & F02 \\
\(2:\) F01/C30 & RS-485 (Port 1) \\
\(3:\) RS-485 (Port 1) & RS-485 (Port 1) \\
\(4:\) RS-485 (Port 2) & F02 \\
\(5:\) RS-485 (Port 2) & RS-485 (Port 1) \\
\(6:\) F01/C30 & RS-485 (Port 2) \\
7 : RS-485 (Port 1) & RS-485 (Port 2) \\
\(8:\) RS-485 (Port 2) & RS-485 (Port 2)
\end{tabular}} & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline 430 & Communications Link Function (Mode selection) & & Y & Y & 0 & Y & - & Y & Y & - \\
\hline H42 & Capacitance of DC Link Bus Capacitor & Indication for replacement of DC link bus capacitor 0 to 65535 & Y & N & & Y & - & Y & Y & - \\
\hline 1443 & Cumulative Run Time of Cooling Fan & Indication for replacement of cooling fan 0 to 99990 hours & Y & N & - & Y & - & Y & Y & - \\
\hline Нч4 & Startup Counter for Motor 1 & Indication of cumulative startup count 0 to 65535 times & Y & N & - & Y & - & Y & Y & - \\
\hline 1445 & Mock Alarm & \begin{tabular}{l}
0 : Disable \\
1 : Enable (Once a mock alarm occurs, the data automatically returns to 0 .)
\end{tabular} & Y & N & 0 & Y & - & Y & Y & - \\
\hline 445 & Starting Mode (Auto search delay time 2) & 0.1 to 20.0 s & Y & Y1 Y2 & *7 & Y & - & Y & N & - \\
\hline 447 & Initial Capacitance of DC Link Bus Capacitor & Indication for replacement of DC link bus capacitor 0 to 65535 & Y & N & - & Y & - & Y & Y & - \\
\hline 448 & Cumulative Run Time of Capacitors on Printed Circuit Boards & Indication for replacement of capacitors 0 to 99990 hours (The cumulative run time can be modified or reset.) & Y & N & - & Y & - & Y & Y & - \\
\hline 149 & Starting Mode (Auto search delay time 1) & 0.0 to 10.0 s & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline H50 & \multirow[t]{2}{*}{\(\begin{array}{rr}\text { Non-linear V/f Pattern } 1 \text { (Frequency) } \\ & \text { (Voltage) }\end{array}\)} & 0.0: Cancel, 0.1 to 500.0 Hz & N & Y & 0.0 & Y & - & N & N & - \\
\hline 45 ; & & \begin{tabular}{l}
0 to 240 : Output an AVR-controlled voltage (for 230 V series) \\
0 to 500 : Output an AVR-controlled voltage (for 460 V series)
\end{tabular} & N & Y2 & 0 & Y & - & N & N & - \\
\hline H5? & \multirow[t]{2}{*}{Non-linear V/f Pattern 2 (Frequency) (Voltage)} & 0.0: Cancel, 0.1 to 500.0 Hz & N & Y & 0.0 & Y & - & N & N & - \\
\hline H53 & & \begin{tabular}{l}
0 to 240 : Output an AVR-controlled voltage (for 230 V series) \\
0 to 500 : Output an AVR-controlled voltage (for 460 V series)
\end{tabular} & N & Y2 & 0 & Y & - & N & N & - \\
\hline 454 & Acceleration Time (Jogging) & 0.00 to 6000 s & Y & Y & *1 & Y & - & Y & Y & - \\
\hline 455 & Deceleration Time (Jogging) & 0.00 to 6000 s & Y & Y & *1 & Y & - & Y & Y & - \\
\hline H55 & Deceleration Time for Forced Stop & 0.00 to 6000 s & Y & Y & *1 & Y & - & Y & Y & - \\
\hline 457 & 1st \(S\)-uure acceleration range (Leading edge) & 0\% to 100\% & Y & Y & 10 & Y & - & Y & Y & - \\
\hline H58 & 2nd S-urve acceleration range (Trailing edge) & 0\% to 100\% & Y & Y & 10 & Y & - & Y & Y & - \\
\hline H59 & 1 sis S-uuve deceleration range (Leading edge) & 0\% to 100\% & Y & Y & 10 & Y & - & Y & Y & - \\
\hline 450 & 2nd S-curve deceleration range (Trailing edge) & 0\% to 100\% & Y & Y & 10 & Y & - & Y & Y & - \\
\hline H5: & UP/DOWN Control (Initial frequency setting) & \begin{tabular}{l}
\[
0: 0.00 \mathrm{~Hz}
\] \\
1 : Last UP/DOWN command value on releasing the run command
\end{tabular} & N & Y & 1 & Y & - & Y & Y & - \\
\hline 463 & \multirow[t]{2}{*}{\begin{tabular}{l}
Low Limiter (Mode selection) \\
(Lower limiting frequency)
\end{tabular}} & \begin{tabular}{l}
0 : Limit by F16 (Frequency limiter: Low) and continue to run \\
1 : If the output frequency lowers below the one limited by F16 (Frequency limiter: Low), decelerate to stop the motor.
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 454 & & \multirow[t]{2}{*}{0.0: Depends on F16 (Frequency limiter, Low) 0.1 to 60.0 Hz
0.0: Cancel, 0.1 to 500.0 Hz} & Y & Y & 1.6 & Y & - & N & N & - \\
\hline 465 & \multirow[t]{2}{*}{Non-linear V/f Pattern 3 (Frequency)
(Voltage)} & & N & Y & 0.0 & Y & - & N & N & - \\
\hline 456 & & 0 to 240 :Output an AVR-controlled voltage (for 230 V series) 0 to 500 :Output an AVR-controlled voltage (for 460 V series) & N & Y2 & 0 & Y & - & N & N & - \\
\hline 457 & Auto Energy Saving Operation
(Mode selection) & \begin{tabular}{l}
0 : Enable during running at constant speed \\
1 : Enable in all modes
\end{tabular} & Y & Y & 0 & Y & - & N & Y & - \\
\hline
\end{tabular}

\section*{OH codes: High Performance Functions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{Change when running} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Data } \\
\text { copying }
\end{gathered}
\]} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline 458 & Slip Compensation 1 (Operating conditions) & \begin{tabular}{l}
0 : Enable during ACC/DEC and at base frequency or above \\
1 : Disable during ACC/DEC and enable at base frequency or above \\
2 : Enable during ACC/DEC and disable at base frequency or above \\
3 : Disable during ACC/DEC and at base frequency or above
\end{tabular} & N & Y & 0 & Y & - & N & N & - \\
\hline 459 & Automatic Deceleration (Mode selection) & \begin{tabular}{l}
0 : Disable \\
2 : Torque limit control with Force-to-stop if actual deceleration time exceeds three times the specified one \\
3 : DC link bus voltage control with Force-to-stop if actual deceleration time exceeds three times the specified one \\
4 : Torque limit control with Force-to-stop disabled \\
5 : DC link bus voltage control with Force-to-stop disabled
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 470 & Overload Prevention Control & 0.00 :Follow the deceleration time selected 0.01 to \(100.0 \mathrm{~Hz} / \mathrm{s}\) 999: Cancel & Y & Y & 999 & Y & - & Y & Y & - \\
\hline H7: & Deceleration Characteristics & 0 : Disable 1: Enable & Y & Y & 0 & Y & - & N & N & - \\
\hline H72 & Main Power Down Detection (Mode selection) & 0 : Disable 1: Enable & Y & Y & 1 & Y & - & Y & Y & - \\
\hline 473 & Torque Limite (Operating conditions) & \begin{tabular}{l}
0 : Enable during ACC/DEC and running at constant speed \\
1 : Disable during ACC/DEC and enable during running at constant speed \\
2 : Enable during ACC/DEC and disable during running at constant speed
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 474 & (Control target) & \begin{tabular}{l}
0 : Motor-generating torque limit \\
1 : Torque current limit \\
2 : Output power limit
\end{tabular} & N & Y & 1 & N & - & Y & Y & - \\
\hline 475 & (Target quadrants) & \begin{tabular}{l}
0 : Drive/brake \\
1 : Same for all four quadrants \\
2 : Upper/lower limits
\end{tabular} & N & Y & 0 & N & - & Y & Y & - \\
\hline 476 & (Frequency increment limit for braking) & 0.0 to 500.0 Hz & Y & Y & 5.0 & Y & - & N & N & - \\
\hline 477 & Serice Liteo OCC Link Bus Capacior (Remaning itime) & 0 to 87600 hours & Y & N & - & Y & - & Y & Y & - \\
\hline H78 & Maintenance Interval (M1) & 0 : Disable; 1 to 99990 hours & Y & N & 87600 & Y & - & Y & Y & - \\
\hline H79 & Prese Startup Count for Maintenance (M1) & 0 : Disable; 1 to 65535 times & Y & N & 0 & Y & - & Y & Y & - \\
\hline 480 & Output Curent Fivcuation Damming Gain for Motor 1 & 0.00 to 1.00 & Y & Y & 0.20 & Y & - & N & N & - \\
\hline H8: & Light Alarm Selection 1 & 0000 to FFFF (hex.) & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline H82 & Light Alarm Selection 2 & 0000 to FFFF (hex.) & Y & Y & 0 & Y & Y & Y & Y & Y \\
\hline 484 & Pre-excitation (Initial level) & 100\% to 400\% & Y & Y & 100 & N & - & Y & Y & - \\
\hline 485 & (Time) & 0.00: Disable; 0.01 to 30.00 s & Y & Y & 0.00 & N & - & Y & Y & - \\
\hline 485 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline 487 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline 488 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline 489 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline 490 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline H9 & PID Feedback Wire Break Detection & 0.0: Disable alarm detection 0.1 to 60.0 s & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline H92 & Continuity of Running (P) & 0.000 to 10.000 times; 999 & Y & Y1Y2 & 999 & Y & - & N & N & - \\
\hline 493 & (1) & 0.010 to \(10.000 \mathrm{~s} ; 999\) & Y & Y1Y2 & 999 & Y & - & N & N & - \\
\hline 494 & Cumulative Motor Run Time 1 & 0 to 99990 hours (The cumulative run time can be modified or reset.) & N & N & - & Y & - & Y & Y & - \\
\hline H95 & DC Braking (Braking response mode) & \[
\begin{aligned}
& 0 \text { : Slow } \\
& 1 \text { : Quick }
\end{aligned}
\] & Y & Y & 1 & Y & - & N & N & - \\
\hline 495 & STOP Key Priority/ Start Check Function & \begin{tabular}{cll} 
Data & STOP key priority & Start check function \\
\(0:\) & Disable & Disable \\
\(1:\) & Enable & Disable \\
\(2:\) & Disable & Enable \\
\(3:\) & Enable & Enable
\end{tabular} & Y & Y & 3 & Y & - & Y & Y & - \\
\hline 497 & Clear Alarm Data & \begin{tabular}{l}
0 : Disable \\
1 : Enable (Setting "1" clears alarm data and then returns to "0.")
\end{tabular} & Y & N & 0 & Y & - & Y & Y & - \\
\hline 498 & Protection/Maintenance Function (Mode selection) & \begin{tabular}{l}
0 to 255: Display data in decimal format \\
Bit 0: Lower the carrier frequency automatically (0: Disabled; 1: Enabled) \\
Bit 1: Detect input phase loss \\
(0: Disabled; 1: Enabled) \\
Bit 2: Detect output phase loss \\
(0: Disabled; 1: Enabled) \\
Bit 3: Select life judgment threshold of \(D C\) link bus capacitor \\
(0: Factory default level; 1 : User setup level) \\
Bit 4: Judge the life of DC link bus capacitor \\
(0: Disabled; 1: Enabled) \\
Bit 5: Detect DC fan lock \\
Bit 6: Detect braking transistor error (for 40 HP or below) (0: Disabled; 1: Enabled) \\
Bit 7: Switch IP20/IP40 enclosure \\
(0: IP20; 1: IP40)
\end{tabular} & Y & Y & 83 & Y & - & Y & Y & - \\
\hline
\end{tabular}
* 16.00 s for inverters of 40 HP or below; 20.00 s for those of 50 HP or above
*7 The motor parameters are automatically set, depending upon the inverter's capacity. See Table B
*9 Factory use. Do not access these function codes.
*10 The factory default differs depending upon the inverter's capacity. See Table A.

\section*{-A codes: Motor 2 Parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[t]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & Change when & & & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & running & copying & setting & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline 昭 i & Maximum Frequency 2 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & - & Y & Y & - \\
\hline 902 & Base Frequency 2 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & - & Y & Y & - \\
\hline 803 & Rated Voltage at Base Frequency 2 & \begin{tabular}{l}
0 : Output a voltage in proportion to input voltage \\
80 to 240 : Output an AVR-controlled voltage (for 230 V series) \\
160 to 500 : Output an AVR-controlled voltage (for 460 V series)
\end{tabular} & N & Y2 & \[
\begin{aligned}
& 230 \\
& 460 \\
& \hline
\end{aligned}
\] & Y & - & Y & Y & - \\
\hline 904 & Maximum Output Voltage 2 & 80 to 240 : Output an AVR-controlled voltage (for 230 V series) 160 to 500 : Output an AVR-controlled voltage (for 460 V series) & N & Y2 & \[
\begin{aligned}
& 230 \\
& 460 \\
& \hline
\end{aligned}
\] & Y & - & N & N & - \\
\hline 805 & Torque Boost 2 & 0.0\% to 20.0\% (percentage with respect to "A03: Rated Voltage at Base Frequency 2") & Y & Y & 0.0 & Y & - & N & N & - \\
\hline 806 & \begin{tabular}{l}
Electronic Thermal Overload Protection for Motor 2 \\
(Select motor characteristics)
\end{tabular} & \begin{tabular}{l}
1 : For a general-purpose motor with shaft-driven cooling fan \\
2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan
\end{tabular} & Y & Y & 1 & Y & - & Y & Y & - \\
\hline 907 & (Overload detection level) & \begin{tabular}{l}
0.00: Disable \\
\(1 \%\) to \(135 \%\) of the rated current (allowable continuous drive current) of the motor
\end{tabular} & Y & Y1 Y2 & *2 & Y & - & Y & Y & - \\
\hline 908 & (Thermal time constant) & 0.5 to 75.0 min & Y & Y & *3 & Y & - & Y & Y & - \\
\hline 809 & DC Braking 2 (Braking starting trequency) & 0.0 to 60.0 Hz & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline 810 & (Braking level) & 0\% to 80\% (LD/MD mode)* \(4,0 \%\) to 100\% (HD mode) & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 8: 1 & (Braking time) & 0.00 : Disable; 0.01 to 30.00 s & Y & Y & 0.00 & Y & - & Y & Y & - \\
\hline 812 & Starting Frequency 2 & 0.0 to 60.0 Hz & Y & Y & 0.5 & Y & - & Y & Y & - \\
\hline
\end{tabular}

\section*{Function Settings}

\section*{Function Settings}

\section*{-A codes: Motor 2 Parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{Change when running} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Data } \\
\text { copying }
\end{gathered}
\]} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline 813 & \begin{tabular}{l}
Load Selection/ \\
Auto Torque Boost \\
Auto Energy Saving Operation 2
\end{tabular} & \begin{tabular}{l}
0 : Variable torque load \\
1 : Constant torque load \\
2 : Auto-torque boost \\
3 : Auto-energy saving operation (Variable torque load during ACC/DEC) \\
4 : Auto-energy saving operation (Constant torque load during ACC/DEC) \\
5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC)
\end{tabular} & N & Y & 1 & Y & - & N & Y & - \\
\hline 84 & Drive Control Selection 2 & \begin{tabular}{l}
0 : V/f control with slip compensation inactive \\
1 : Dynamic torque vector control \\
2 : V/f control with slip compensation active \\
3 : V/f control with speed sensor \\
4 : Dynamic torque vector control with speed sensor \\
5 : Vector control without speed sensor \\
6 : Vector control with speed sensor
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 815 & Motor 2 (No. of poles) & 2 to 22 poles & N & Y1 Y2 & 4 & Y & - & Y & Y & - \\
\hline 815 & (Rated capacity) & \[
\begin{aligned}
& 0.01 \text { to } 1000 \mathrm{~kW} \text { (when A39 }=0,2.3 \text { or } 4 \text { ) } \\
& 0.01 \text { to } 1000 \mathrm{HP} \text { (when A39 = 1) }
\end{aligned}
\] & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 817 & (Rated current) & 0.00 to 2000 A & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline \% 8 & Motor 2 (Auto-tuning) & \begin{tabular}{l}
0 : Disable \\
1 : Tune while the motor stops. (\%R1, \%X and rated slip frequency) \\
2 : Tune while the motor is rotating under V/f control (\%R1, \%X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5 , and magnetic saturation extension factors "a" to "c") \\
3 : Tune while the motor is rotating under vector control (\%R1, \%X, rated slip trequency, no-load curent, magneit saturation factors 1 to 5 , and magneicic saturation extension factors "a" to " c ." Available when the vector contro i is enabled.
\end{tabular} & N & N & 0 & Y & \({ }^{-}\) & Y & Y & \({ }^{-}\) \\
\hline 819 & Motor 2 (Online tuning) & 0 : Disable 1: Enable & Y & Y & 0 & Y & N & N & N & N \\
\hline R20 & (No-load current) & 0.00 to 2000 A & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 82 i & (\%R1) & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline R23 & (\%X) & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 823 & (Slip compensation gain for driving) & 0.0\% to 200.0\% & \(Y^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline 88 & (Slip compensation response time) & 0.01 to 10.00s & Y & Y1 Y2 & 0.12 & Y & - & N & N & - \\
\hline R25 & (Slip compensation gain for braking) & 0.0\% to 200.0\% & \(\mathrm{Y}^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline 925 & (Rated slip frequency) & 0.00 to 15.00 Hz & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 927 & (Iron loss factor 1) & 0.00\% to 20.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline R23 & (Iron loss factor 2) & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline 823 & (Iron loss factor 3) & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline 830 & (Magnetic saturation factor 1) & 0.0\% to 300.0\% & Y & Y1 Y2 & * 7 & Y & - & Y & Y & - \\
\hline 831 & (Magnetic saturation factor 2) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 833 & (Magnetic saturation factor 3) & 0.0\% to 300.0\% & Y & Y1 Y2 & * 7 & Y & - & Y & Y & - \\
\hline 833 & (Magnetic saturation factor 4) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 8334 & (Magnetic saturation factor 5) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 835 & (Magnetic saturation extension factor "a") & 0.0\% to 300.0\% & Y & Y1 Y2 & * 7 & Y & - & Y & Y & - \\
\hline 8335 & (Magnetic saturation extension factor "b") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 837 & (Magnetic saturation extension factor "c") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline 833 & Motor 2 Selection & \begin{tabular}{l}
0 : Motor characteristics 0 (Fuji standard motors, 8-series) \\
1 : Motor characteristics 1 (HP rating motors) \\
2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) \\
3 : Motor characteristics 3 (Fuji standard motors, 6-series) \\
4 : Other motors
\end{tabular} & N & Y1 Y2 & 1 & Y & - & Y & Y & - \\
\hline 840 & Slip Compensation 2 (Operating conditions) & \begin{tabular}{l}
0 : Enable during ACC/DEC and at base frequency or above \\
1 : Disable during ACC/DEC and enable at base frequency or above \\
2 : Enable during ACC/DEC and disable at base frequency or above \\
3 : Disable during \(A C C / D E C\) and at base frequency or above
\end{tabular} & N & Y & 0 & Y & - & N & N & - \\
\hline 84: & Output Curenen Fluctuation Damping Gain for Motor2 & 0.00 to 1.00 & Y & Y & 0.20 & Y & - & N & N & - \\
\hline 842 & MotorParameier Switching 2 (Mode selection) & \begin{tabular}{l}
0 : Motor (Switch to the 2nd motor) \\
1 : Parameter (Switch to particular A codes)
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 843 & Speed Control 2 (Speed command filter) & 0.000 to 5.000 s & Y & Y & 0.020 & N & - & Y & Y & - \\
\hline 848 & (Speed detection filter) & 0.000 to 0.100 s & \(\mathrm{Y}^{*}\) & Y & 0.005 & N & - & Y & Y & - \\
\hline 845 & P (Gain) & 0.1 to 200.0 times & \(\mathrm{Y}^{*}\) & Y & 10.0 & N & - & Y & Y & - \\
\hline 845 & 1 (Integral time) & 0.001 to 9.999 s & \(\mathrm{Y}^{*}\) & Y & 0.100 & N & Y & Y & Y & N \\
\hline 848 & (Output filter) & 0.000 to 0.100 s & Y & Y & 0.002 & N & - & Y & Y & - \\
\hline 849 & (Notch filter resonance frequency) & 1 to 200 Hz & Y & Y & 200 & N & - & N & Y & - \\
\hline 850 & (Notch filter attenuation level) & 0 to 20 dB & Y & Y & 0 & N & - & N & Y & - \\
\hline 851 & Cumulative Motor Run Time 2 & 0 to 99990 hours (The cumulative run time can be modified or reset.) & N & N & - & Y & - & Y & Y & - \\
\hline 852 & Startup Counter for Motor 2 & Indication of cumulative startup count 0 to 65535 times & Y & N & - & Y & - & Y & Y & - \\
\hline 853 & Motor 2 (\%X correction factor 1) & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline 854 & (\%X correction factor 2) & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline 855 & (Torque current under vector control) & 0.00 to 2000 A & N & Y1 Y2 & *7 & N & - & Y & Y & - \\
\hline 855 & (Induced voltage factor under vector contro) & 50 to 100 & N & Y1 Y2 & \[
\begin{gathered}
85(90) \\
* 8
\end{gathered}
\] & N & - & Y & Y & - \\
\hline 957 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
*2 The motor rated current is automatically set. See Table B (P03/A17/b17/r17).
*3 5.0 min for inverters of 40 HP or below; 10.0 min for those of 50 HP or above
*4 \(0 \%\) to \(100 \%\) for inverters of 7.5 HP or below
7 The motor parameters are automatically set, depending upon the inverter's capacity. See Table B.
\(885 \%\) for inverters of 150 HP or less; \(90 \%\) for those of 175 HP or above.
*9 Factory use. Do not access these function codes.

\section*{Ob codes: Motor 3 Parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & Change when & Data & Default & & & Drive & contro & \\
\hline & & & & copying & setting & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline b0 1 & Maximum Frequency 3 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & & Y & Y & \\
\hline 682 & Base Frequency 3 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & & Y & Y & \\
\hline
\end{tabular}

Ob codes: Motor 3 Parameters


\section*{Function Settings}

\section*{Function Settings}

\section*{Or codes: Motor 4 Parameters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{Data
copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline rit & Maximum Frequency 4 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & - & Y & Y & - \\
\hline rob & Base Frequency 4 & 25.0 to 500.0 Hz & N & Y & 60.0 & Y & - & Y & Y & - \\
\hline r03 & Rated Voltage at Base Frequency 4 & \begin{tabular}{l}
0 : Output a voltage in proportion to input voltage \\
80 to 240 : Output an AVR-controlled voltage (for 230 V series) 160 to 500 : Output an AVR-controlled voltage (for 460 V series)
\end{tabular} & N & Y2 & \[
\begin{aligned}
& 230 \\
& 460 \\
& \hline
\end{aligned}
\] & Y & - & Y & Y & - \\
\hline -04 & Maximum Output Voltage 4 & 80 to 240 : Output an AVR-controlled voltage (for 230 V series) 160 to 500 : Output an AVR-controlled voltage (for 460 V series) & N & Y2 & \[
\begin{array}{r}
230 \\
460 \\
\hline
\end{array}
\] & Y & - & N & N & - \\
\hline -85 & Torque Boost 4 & 0.0\% to 20.0\% (percentage with respect to "r03: Rated Voltage at Base Frequency 4") & Y & Y & 0.0 & Y & - & N & N & - \\
\hline r05 & Electronic Thermal Overload Protection for Motor 4 (Select motor characterisicics) & \begin{tabular}{l}
1 : For a general-purpose motor with shaft-driven cooling fan \\
2 : For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan
\end{tabular} & Y & Y & 1 & Y & - & Y & Y & - \\
\hline -87 & (Overload detection level) & 0.00: Disable \(1 \%\) to \(135 \%\) of the rated current (allowable continuous drive current) of the motor & Y & Y1 Y2 & *2 & Y & - & Y & Y & - \\
\hline -08 & (Thermal time constant) & 0.5 to 75.0 min & Y & Y & *3 & Y & - & Y & Y & - \\
\hline r09 & DC Braking 4 (Braking starting frequency) & 0.0 to 60.0 Hz & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline - in & (Braking level) & 0\% to 80\% (LD/MD mode)* \(4,0 \%\) to \(100 \%\) (HD mode) & Y & Y & 0 & Y & - & Y & Y & - \\
\hline rit & (Braking time) & 0.00 : Disable; 0.01 to 30.00 s & Y & Y & 0.00 & Y & - & Y & Y & \\
\hline ric & Starting Frequency 4 & 0.0 to 60.0 Hz & Y & Y & 0.5 & Y & - & Y & Y & - \\
\hline ri3 & \begin{tabular}{l}
Load Selection/ \\
Auto Torque Boost/ \\
Auto Energy Saving Operation 4
\end{tabular} & \begin{tabular}{l}
0 : Variable torque load \\
1 : Constant torque load \\
2 : Auto-torque boost \\
3 : Auto-energy saving operation (Variable torque load during ACC/DEC) \\
4 : Auto-energy saving operation (Constant torque load during ACC/DEC) \\
5 : Auto-energy saving operation (Auto-torque boost during ACC/DEC)
\end{tabular} & N & Y & 1 & Y & - & N & Y & - \\
\hline r 4 & Drive Control Selection 4 & \begin{tabular}{l}
0 : V/f control with slip compensation inactive \\
1 : Dynamic torque vector control \\
2 : V/f control with slip compensation active \\
3 : V/f control with speed sensor \\
4 : Dynamic torque vector control with speed sensor \\
5 : Vector control without speed sensor \\
6 : Vector control with speed sensor
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline r is & Motor 4 (No. of poles) & 2 to 22 poles & N & Y1 Y2 & 4 & Y & - & Y & Y & - \\
\hline - i5 & (Rated capacity) & \[
\begin{aligned}
& 0.01 \text { to } 1000 \mathrm{~kW} \text { (when r39 }=0,2,3 \text { or } 4 \text { ) } \\
& 0.01 \text { to } 1000 \mathrm{HP}(\text { when } \mathrm{r} 39=1 \text { ) }
\end{aligned}
\] & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline \(r 17\) & (Rated current) & 0.00 to 2000 A & N & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline rig & (Auto-tuning) & \begin{tabular}{l}
0 : Disable \\
1 : Tune while the motor stops. (\%R1, \%X and rated slip frequency) \\
2 : Tune while the motor is rotating under V/f control (\%R1, \%X, rated slip frequency, no-load current, magnetic saturation factors 1 to 5 , and magnetic saturation extension factors "a" to "c") \\
3 : Tune while the motor is rotating under vector control (\%R1, \%X, rated slip trequency, no-load current, magneicic saturation factors 1 to 5 , and magnetic saturation extension factors "a" to 0 "c." Available when the vector control is enabled.)
\end{tabular} & N & N & 0 & Y & - & Y & Y & - \\
\hline ris & Motor 4 (Online tuning) & 0 : Disable 1: Enable & Y & Y & 0 & Y & N & N & N & N \\
\hline r20 & (No-load current) & 0.00 to 2000 A & N & Y1 Y2 & * 7 & Y & - & Y & Y & - \\
\hline \(r{ }^{-2}\) & (\%R1) & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline rez & (\%X) & 0.00\% to 50.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r23 & (Slip compensation gain for driving) & 0.0\% to 200.0\% & \(\mathrm{Y}^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline r24 & (Slip compensation response time) & 0.01 to 10.00 s & Y & Y1 Y2 & 0.12 & Y & - & N & N & - \\
\hline \(r 25\) & (Slip compensation gain for braking) & 0.0\% to 200.0\% & \(\mathrm{Y}^{*}\) & Y & 100.0 & Y & - & Y & Y & - \\
\hline r25 & (Rated slip frequency) & 0.00 to 15.00 Hz & N & Y1 Y2 & \({ }^{*} 7\) & Y & - & Y & Y & - \\
\hline r27 & (Iron loss factor 1) & 0.00\% to 20.00\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r28 & (Iron loss factor 2) & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline r29 & (Iron loss factor 3) & 0.00\% to 20.00\% & Y & Y1 Y2 & 0.00 & Y & - & Y & Y & - \\
\hline r30 & (Magnetic saturation factor 1) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r3i & (Magnetic saturation factor 2) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline \(r 32\) & (Magnetic saturation factor 3) & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r33 & (Magnetic saturation factor 4) & 0.0\% to \(300.0 \%\) & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r34 & (Magnetic saturation factor 5) & 0.0\% to 300.0\% & Y & Y1 Y2 & * 7 & Y & - & Y & Y & - \\
\hline r35 & (Magnetic saturation extension factor "a") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline \(r 36\) & (Magnetic saturation extension factor "b") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r37 & (Magnetic saturation extension factor "c") & 0.0\% to 300.0\% & Y & Y1 Y2 & *7 & Y & - & Y & Y & - \\
\hline r39 & Motor 4 Selection & \begin{tabular}{l}
0 : Motor characteristics 0 (Fuji standard motors, 8 -series) \\
1 : Motor characteristics 1 (HP rating motors) \\
2 : Motor characteristics 2 (Fuji motors exclusively designed for vector control) \\
3 : Motor characteristics 3 (Fuji standard motors, 6-series) \\
4 : Other motors
\end{tabular} & N & Y1 Y2 & 1 & Y & - & Y & Y & - \\
\hline -40 & Slip Compensation 4 (Operating conditions) & \begin{tabular}{l}
0 : Enable during ACC/DEC and at base frequency or above \\
1 : Disable during ACC/DEC and enable at base frequency or above \\
2 : Enable during ACC/DEC and disable at base frequency or above \\
3 : Disable during \(A C C / D E C\) and at base frequency or above
\end{tabular} & N & Y & 0 & Y & - & N & N & - \\
\hline -4i & Output Curent Fluctuation Damming Gain for Motor 4 & 0.00 to 1.00 & Y & Y & 0.20 & Y & - & N & N & - \\
\hline -42 & Motor/Parameter Switching 4 (Mode selection) & \begin{tabular}{l}
0 : Motor (Switch to the 4th motor) \\
1 : Parameter (Switch to particular r codes)
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline -43 & Speed Control 4 (Speed command filter) & 0.000 to 5.000 s & Y & Y & 0.020 & N & - & Y & Y & - \\
\hline -44 & (Speed detection filter) & 0.000 to 0.100 s & \(\mathrm{Y}^{*}\) & Y & 0.005 & N & - & Y & Y & - \\
\hline -45 & P (Gain) & 0.1 to 200.0 times & \(\mathrm{Y}^{*}\) & Y & 10.0 & N & - & Y & Y & - \\
\hline -45 & 1 (Integral time) & 0.01 to 9.999 s & \(\mathrm{Y}^{*}\) & Y & 0.100 & N & Y & Y & Y & N \\
\hline -48 & (Output filter) & 0.000 to 0.100 s & Y & Y & 0.002 & N & - & Y & Y & - \\
\hline -49 & (Notch filter resonance frequency) & 1 to 200 Hz & Y & Y & 200 & N & - & N & Y & - \\
\hline r-50 & (Notch filter attenuation level) & 0 to 20 dB & Y & Y & 0 & N & - & N & Y & - \\
\hline r5i & Cumulative Motor Run Time 4 & 0 to 99990 hours (The cumulative run time can be modified or reset.) & N & N & - & Y & - & Y & Y & - \\
\hline -52 & Startup Counter for Motor 4 & Indication of cumulative startup count 0 to 65535 times & Y & N & - & Y & - & Y & Y & - \\
\hline r-53 & Motor 4 (\%X correction factor 1) & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline r54 & (\%X correction factor 2) & 0\% to 300\% & Y & Y1 Y2 & 100 & Y & - & Y & Y & - \\
\hline \(r 55\) & (Torgue current under vector control) & 0.00 to 2000 A & N & Y1 Y2 & *7 & N & - & Y & Y & - \\
\hline
\end{tabular}

Or codes: Motor 4 Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Data setting range}} & Change when & Data & Default & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & running & copying & setting & V/f & PG V/f & W/o PG & w/ PG & Torque Control \\
\hline r-55 & \begin{tabular}{l}
Motor 4 \\
(Induced voltage factor under vector control)
\end{tabular} & 50 to 100 & & N & Y1 Y2 & \[
\begin{array}{|c|}
\hline 85(90) \\
* 8 \\
\hline
\end{array}
\] & N & - & Y & Y & - \\
\hline \(r 57\) & Reserved *9 & - & & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
*2 The motor rated current is automatically set. See Table B (P03/A17/b17/r17).
*3 5.0 min for inverters of 40 HP or below; 10.0 min for those of 50 HP or above
* \(40 \%\) to \(100 \%\) for inverters of 7.5 HP or below
*7 The motor parameters are automatically set, depending upon the inverter's capacity. See Table B.
* \(885 \%\) for inverters of 150 HP or less; \(90 \%\) for those of 175 HP or above.
*9 Factory use. Do not access these function codes.

\section*{OJ codes: Application Functions 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & Change when & & Default & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & running & copying & setting & V/f & PG V/f & w/o PG & w/ PG & Torque Control \\
\hline U0 1 & \multirow[t]{2}{*}{\begin{tabular}{l}
PID Control (Mode selection) \\
(Remote command SV)
\end{tabular}} & \begin{tabular}{l}
0 : Disable \\
1 : Enable (Process control, normal operation) \\
2 : Enable (Process control, inverse operation) \\
3 : Enable (Dancer control)
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 402 & & \begin{tabular}{l}
\(0:-1 \bigcirc\) keys on keypad \\
1 : PID command 1 (Analog input terminals [12], [C1], and [V2]) \\
3 : UP/DOWN \\
4 : Command via communications link
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 403 & P (Gain) & 0.000 to 30.000 times & Y & Y & 0.100 & Y & - & Y & Y & - \\
\hline 404 & \multirow[t]{4}{*}{\begin{tabular}{l}
I (Integral time) \\
D (Differential time) \\
(Feedback filter) \\
(Pressurization starting frequency)
\end{tabular}} & 0.0 to 3600.0 s & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline U05 & & 0.00 to 600.00 s & Y & Y & 0.00 & Y & - & Y & Y & - \\
\hline 405 & & 0.0 to 900.0 s & Y & Y & 0.5 & Y & - & Y & Y & - \\
\hline 408 & & 0.0 to 500.0 Hz & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline 009 & (Pressurization starting frequency) (Pressurizing time) & 0 to 60 s & Y & Y & 0 & Y & - & Y & Y & - \\
\hline UiO & (Anti reset windup) & 0\% to 200\% & Y & Y & 200 & Y & - & Y & Y & - \\
\hline U'i & (Select alarm output) & \begin{tabular}{l}
0 : Absolute-value alarm \\
1 : Absolute-value alarm (with Hold) \\
2 : Absolute-value alarm (with Latch) \\
3 : Absolute-value alarm (with Hold and Latch) \\
4 : Deviation alarm \\
5 : Deviation alarm (with Hold) \\
6 : Deviation alarm (with Latch) \\
7 : Deviation alarm (with Hold and Latch)
\end{tabular} & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 4ic & (Upper level alarm (AH)) & -100\% to \(100 \%\) & Y & Y & 100 & Y & - & Y & Y & - \\
\hline 4i3 & \multirow[t]{2}{*}{(Lower level alarm (AL)) (Stop frequency for slow flowrate)} & \(-100 \%\) to \(100 \%\) & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 415 & & 0.0: Disable; 1.0 to 500.0 Hz & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline 4is & (Stop frequency for slow flowrate) (Slow flowrate level stop latency) & 0 to 60 s & Y & Y & 30 & Y & - & Y & Y & - \\
\hline 4.17 & (Starting frequency) & 0.0 to 500.0 Hz & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline Sig & (Upper limit of PID process output) & \(-150 \%\) to 150\%; 999: Depends on setting of F15 & Y & Y & 999 & Y & - & Y & Y & - \\
\hline -19 & (Lower limit of PID process output) & \(-150 \%\) to 150\%; 999: Depends on setting of F16 & Y & Y & 999 & Y & - & Y & Y & - \\
\hline L? & \multirow[t]{2}{*}{Dew Condensation Prevention (Duty) Commercial Power Switching Sequence} & 1\% to 50\% & Y & Y & 1 & Y & - & Y & Y & - \\
\hline ue2 & & \begin{tabular}{l}
0 : Keep inverter operation (Stop due to alarm) \\
1 : Automatically switch to commercial-power operation
\end{tabular} & N & Y & 0 & Y & - & N & N & - \\
\hline U55 & \multirow[t]{3}{*}{PID Control (Speed command filter) (Dancer reference position) (Detection width of dancer postion deviaition)} & 0.00 to 5.00 s & Y & Y & 0.10 & Y & - & Y & Y & - \\
\hline 457 & & -100\% to 0\% to 100\% & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 458 & & 0 : Disable switching PID constant \(1 \%\) to \(100 \%\) (Manually set value) & Y & Y & 0 & Y & - & Y & Y & - \\
\hline 459 & \multirow[t]{4}{*}{\(\mathrm{P}(\) Gain ) 2
I (Integral time) 2
D (Differential time) 2
(PID control block selection)} & 0.000 to 30.000 times & Y & Y & 0.100 & Y & - & Y & Y & - \\
\hline 450 & & 0.0 to 3600.0 s & Y & Y & 0.0 & Y & - & Y & Y & - \\
\hline 451 & & 0.00 to 600.00 s & Y & Y & 0.00 & Y & - & Y & Y & - \\
\hline U62 & & \begin{tabular}{l}
0 to 3 \\
bit 0 : PID output polarity \\
\(0:\) Plus (add), 1: Minus (subtract) \\
bit 1 : Select compensation factor for PID output \\
\(0=\) Ratio (relative to the main setting) \\
\(1=\) Speed command (relative to maximum frequency)
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline 468 & Brake Signal (Brake-OFF current) & 0\% to 300\% & Y & Y & 100 & Y & - & Y & Y & - \\
\hline 459 & (Brake-OFF frequency/speed) & 0.0 to 25.0 Hz & Y & Y & 1.0 & Y & - & N & N & - \\
\hline 470 & (Brake-OFF timer) & 0.0 to 5.0 s & Y & Y & 1.0 & Y & - & Y & Y & - \\
\hline U71 & (Brake-ON frequency/speed) & 0.0 to 25.0 Hz & Y & Y & 1.0 & Y & - & N & N & - \\
\hline 472 & (Brake-ON timer) & 0.0 to 5.0 s & Y & Y & 1.0 & Y & - & Y & Y & - \\
\hline 495 & (Brake-OFF torque) & 0\% to 300\% & Y & Y & 100 & N & - & Y & Y & - \\
\hline \multirow[t]{6}{*}{¢96} & \multirow[t]{6}{*}{Brake Signal (Speed condition selection)} & 0 to 31 & \multirow[t]{6}{*}{N} & \multirow[t]{6}{*}{Y} & \multirow[t]{6}{*}{0} & & & & & \\
\hline & & \begin{tabular}{l}
Bit 0 : Criterion speed for brake-ON \\
( 0 : Detected speed, \(1:\) Reference speed)
\end{tabular} & & & & N & N & \(\bar{Y}\) & \(\bar{Y}\) & N \\
\hline & & Bit 1 : Reserved. & & & & N- & N & N & N- & N- \\
\hline & & Bit 2 : Response for brake-OFF current (0 : Slow response, 1_:Quick response) & & & & \(\bar{Y}\) & Y- & \(\bar{Y}\) & \(\bar{Y}\) & \(\overline{\mathrm{N}}\) \\
\hline & & Bit 3 :Criterion frequency for brake-ON ( 0 : Stop frequency (F25), 1: Brake-ON frequency (J71) & & & & N & N & \(\bar{Y}\) & \(\bar{Y}\) & N \\
\hline & & \begin{tabular}{l}
Bit 4 :Output condition of brake signal \\
( 0 : Independent of a run command ON/OFF, 1 : Only when a run command is OFF)
\end{tabular} & & & & \(\overline{\mathrm{N}}\) & \(\bar{Y}\) & \(\bar{Y}\) & \(\overline{\mathrm{Y}}\) & \(\overline{\mathrm{N}}\) \\
\hline 497 & \multirow[t]{3}{*}{Servo-lock (Gain) (Completion timer) (Completion range)} & 0.00 to 10.00 times & \(Y^{*}\) & Y & 0.10 & N & - & N & Y & - \\
\hline 438 & & 0.000 to 1.000 s & Y & Y & 0.100 & N & - & N & Y & - \\
\hline 493 & & 0 to 9999 pulses & Y & Y & 10 & N & - & N & Y & - \\
\hline
\end{tabular}

\section*{Function Settings}

\section*{Function Settings}

\section*{Od codes: Application Functions 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Change when } \\
\text { running }
\end{gathered}
\]} & \multirow[t]{2}{*}{Data
copying} & \multirow[t]{2}{*}{Default setting} & \multicolumn{5}{|c|}{Drive control} \\
\hline & & & & & & \multicolumn{2}{|l|}{V/f PG V/f} & \multicolumn{2}{|l|}{w/o PG w/ PG} & Torque Control \\
\hline d0 & \multirow[t]{2}{*}{Speed Control 1 (Speed command filter) (Speed detection filter)} & 0.000 to 5.000 s & Y & Y & 0.020 & N & - & Y & Y & - \\
\hline d02 & & 0.000 to 0.100 s & \(\mathrm{Y}^{*}\) & Y & 0.005 & N & - & Y & Y & - \\
\hline -103 & P (Gain) & 0.1 to 200.0 times & \(\mathrm{Y}^{*}\) & Y & 10.0 & N & - & Y & Y & - \\
\hline 804 & 1 (Integral time) & 0.001 to 9.999 s & \(\mathrm{Y}^{*}\) & Y & 0.100 & N & Y & Y & Y & N \\
\hline d05 & (Output filter) & 0.000 to 0.100 s & Y & Y & 0.002 & N & - & Y & Y & - \\
\hline \$07 & (Notch filter resonance frequency) & 1 to 200 Hz & Y & Y & 200 & N & - & N & Y & - \\
\hline d08 & (Notch filter attenuation level) & 0 to 20 dB & Y & Y & 0 & N & - & N & Y & - \\
\hline d09 & Speed Control (Jogging) & 0.000 to 5.000 s & Y & Y & 0.020 & N & - & Y & Y & - \\
\hline ¢ \({ }^{\text {d }}\) & (Speed detection filter) & 0.000 to 0.100 s & \(Y^{*}\) & Y & 0.005 & N & - & Y & Y & - \\
\hline dit & P (Gain) & 0.1 to 200.0 times & \(\mathrm{Y}^{*}\) & Y & 10.0 & N & - & Y & Y & - \\
\hline dic & \multirow[t]{2}{*}{I (Integral time) (Output filter)} & 0.001 to 9.999 s & \(\mathrm{Y}^{*}\) & Y & 0.100 & N & - & Y & Y & - \\
\hline di & & 0.000 to 0.100 s & Y & Y & 0.002 & N & - & Y & Y & - \\
\hline -14 & Feedback Input (Pulse input format) & \begin{tabular}{l}
0 : Pulse train sign/Pulse train input \\
1 : Forward rotation pulse/Reverse rotation pulse \\
2 : A/B phase with 90 degree phase shift
\end{tabular} & N & Y & 2 & N & - & N & Y & - \\
\hline dis & \multirow[t]{2}{*}{\begin{tabular}{l}
(Encoder pulse resolution) \\
(Pulse count factor 1)
\end{tabular}} & 20 to 60000 pulses & N & Y & 1024 & N & - & N & Y & - \\
\hline dit & & 1 to 9999 & N & Y & 1 & N & - & N & Y & - \\
\hline dit & \multirow[t]{2}{*}{(Pulse count factor 2)} & 1 to 9999 & N & Y & 1 & N & - & N & Y & - \\
\hline de & & 0.0\% to 50.0\% & Y & Y & 10.0 & N & - & Y & Y & - \\
\hline dez & (Detection timer) & 0.00 to 10.00 s & Y & Y & 0.50 & N & - & Y & Y & - \\
\hline d23 & PG Error Processing & \begin{tabular}{l}
0 : Continue to run 1 \\
1 : Stop running with alarm 1 \\
2 : Stop running with alarm 2 \\
3 : Continue to run 2 \\
4 : Stop running with alarm 3 \\
5 : Stop running with alarm 4
\end{tabular} & N & Y & 2 & N & - & Y & Y & - \\
\hline 824 & Zero Speed Control & \begin{tabular}{l}
0 : Not permit at startup \\
1 : Permit at startup
\end{tabular} & N & Y & 0 & N & - & Y & Y & - \\
\hline d25 & ASR Switching Time & 0.000 to 1.000 s & Y & Y & 0.000 & N & - & Y & Y & - \\
\hline \(\square 32\) & \multirow[t]{2}{*}{Torque Control (Speed limit 1) (Speed limit 2)} & 0 to \(110 \%\) & Y & Y & 100 & N & - & Y & Y & - \\
\hline 8 & & 0 to \(110 \%\) & Y & Y & 100 & N & - & Y & Y & - \\
\hline \multirow[t]{5}{*}{-4'} & \multirow[t]{5}{*}{Application-defined Control} & 0 : Disable_(Ordinary_control) & \multirow[t]{5}{*}{N} & \multirow[t]{5}{*}{Y} & \multirow[t]{5}{*}{0} & Y & - & Y & Y & - \\
\hline & & 1-Enable (Constant peripheral speed control) & & & & N- & - & N- & N- & \\
\hline & & 2 Enable (Simultaneous synchronization, without zophase) & & & & N- & - & N- & Y' & \\
\hline & & 3-Enable (Standby synchronization) & & & & N- & - & N- & Y & \\
\hline & & 4 : Enable (Simultaneous synchronization, with Z phase) & & & & \(\overline{\mathrm{N}}\) & - & N & Y & - \\
\hline d'5 & Reserved *9 & . & - & - & - & - & - & - & - & - \\
\hline - 65 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline d53 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline -654 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline -555 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline d59 & Command (Pulse Rate Input) (Pulse input format) & \begin{tabular}{l}
0 : Pulse train sign/Pulse train input \\
1 : Forward rotation pulse/Reverse rotation pulse \\
2 : A/B phase with 90 degree phase shift
\end{tabular} & N & Y & 0 & Y & - & Y & Y & - \\
\hline \$50 & \multirow[t]{2}{*}{\begin{tabular}{l}
(Encoder pulse resolution) \\
(Filter time constant)
\end{tabular}} & 20 to 3600 pulses & N & Y & 1024 & N & - & N & Y & - \\
\hline -15 & & 0.000 to 5.000 s & Y & Y & 0.005 & Y & - & Y & Y & - \\
\hline  & (Pulse count factor 1) & 1 to 9999 & N & Y & 1 & Y & - & Y & Y & - \\
\hline 863 & \multirow[t]{2}{*}{Starting Mode (Auto search)} & 1 to 9999 & N & Y & 1 & Y & - & Y & Y & - \\
\hline \$67 & & \begin{tabular}{l}
0 : Disable \\
1 : Enable (At restart after momentary power failure) \\
2 : Enable (At restart after momentary power failure and at normal start)
\end{tabular} & N & Y & 2 & N & - & Y & N & - \\
\hline \(\square 68\) & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline \(\square 59\) & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline \(\square{ }^{170}\) & Speed Control Limiter & 0.00 to \(100.00 \%\) & Y & Y & 100.00 & N & - & N & Y & - \\
\hline - \({ }^{\text {a }}\) & \multirow[t]{3}{*}{Sychronous Operation (Main speed regulator ain)
(APR P gain)
(APR positive output limiter)} & 0.00 to 1.50 times & Y & Y & 1.00 & N & - & N & Y & - \\
\hline ate & & 0.00 to 200.00 times & Y & Y & 1500 & N & - & N & Y & - \\
\hline \(\square^{173}\) & & 20 to 200\%, 999: No limiter & Y & Y & 999 & N & - & N & Y & - \\
\hline - \({ }^{174}\) & \multirow[t]{2}{*}{(APR negative output limiter) (Z phase alignment gain)} & 20 to 200\%, 999: No limiter & Y & Y & 999 & N & - & N & Y & - \\
\hline \(\square\) & & 0.00 to 10.00 times & Y & Y & 1.00 & N & - & N & Y & - \\
\hline -76 & \multirow[t]{2}{*}{(Synchronous offset angle) (Synchronization completion detection angle)} & 0 to 359 degrees & Y & Y & 0 & N & - & N & Y & - \\
\hline - \({ }^{177}\) & & 0 to 100 degrees & Y & Y & 15 & N & - & N & Y & - \\
\hline -778 & (Excessive deviation detection range) & 0 to 65535 (in units of 10 pulses) & Y & Y & 65535 & N & - & N & Y & - \\
\hline -198 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline -999 & Reserved *9 & - & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\footnotetext{
9 Factory use. Do not access these function codes.
}

OU codes: Application Functions 3


\section*{Function Settings}

Function Settings

\section*{OU codes: Application Functions 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & & & & & ve con & \\
\hline & & & running & copying & setting & V/f & w/o PG & w/ PG \\
\hline 102 & Customizable Logic: Step 1 (Input 2) & \begin{tabular}{lr}
\hline 6004 (7004) : During deceleration & (DDEC) \\
6005 (7005) : Under anti-regenerative control & (REGA) \\
6006 (7006) : Within dancer reference position & (DR_REF) \\
6007 (7007) : Alarm factor presence & (ALM_ACT) \\
Setting the value in parentheses () shown above assigns a negative logic output to a terminal. (True if OFF.)
\end{tabular} & & & & Y
Y
Y
\(Y\) & Y
Y
Y
Y & Y
Y
Y
Y \\
\hline 403 & (Logic circuit) & \begin{tabular}{l}
0 : No function assigned \\
1 : Through output + General-purpose timer \\
2 : ANDing + General-purpose timer \\
3 : ORing + General-purpose timer \\
4 : XORing + General-purpose timer \\
5 : Set priority flip-flop + General-purpose timer \\
6 : Reset priority flip-flop + General-purpose timer \\
7 : Rising edge detector + General-purpose timer \\
8 : Falling edge detector + General-purpose timer \\
9 : Rising and falling edge detector + General-purpose timer \\
10 : Input hold + General-purpose timer \\
11 : Increment counter \\
12 : Decrement counter \\
13 : Timer with reset input
\end{tabular} & N & Y & 0 & Y & Y & Y \\
\hline 404 & (Type of timer) & \begin{tabular}{l}
0 : No timer \\
1 : On-delay timer \\
2 : Off-delay timer \\
3 : Pulse \\
4 : Retriggerable timer \\
5 : Pulse train output
\end{tabular} & N & Y & 0 & Y & Y & Y \\
\hline 1205 & (Timer) & 0.00 to 600.00 & N & Y & 0.00 & Y & Y & Y \\
\hline 1405 & Customizable Logic: (Input 1) & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 1187 & Step 2 (Input 2) & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 1008 & (Logic circuit) & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 109 & (Type of timer) & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 410 & (Timer) & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 411 & \multirow[t]{5}{*}{\begin{tabular}{rr} 
Customizable Logic: & (Input 1) \\
Step 3 & (Input 2) \\
& (Logic circuit) \\
(Type of timer) \\
& (Timer)
\end{tabular}} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 412 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 413 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 414 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 4 U 4 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 415 & \multirow[t]{5}{*}{\begin{tabular}{|r|} 
Customizable Logic: \\
Step 4 \\
\\
\\
\\
\\
\\
\\
\\
(Input 1) \\
(Typic circuit) \\
\\
\\
(Timer)
\end{tabular}} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline W17 & & See U02. & N & Y & 0 & & See U02 & \\
\hline 41888 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 413 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 420 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 121 & \multirow[t]{5}{*}{\(\left.\begin{array}{|r|}\text { Customizable Logic: } \\ \text { Step 5 } \\ \\ \\ \\ \\ \\ \\ \\ \text { (Input 1) } \\ \text { (Type of circuit) }\end{array}\right)\)} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline U22 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 423 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 4 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 425 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 425 & \multirow[t]{5}{*}{\begin{tabular}{|rr|}
\hline Customizable Logic: & (Input 1) \\
Step 6 & (Input 2) \\
& (Logic circuit) \\
& (Type of timer) \\
& (Timer)
\end{tabular}} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 427 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 428 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 423 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 430 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 431 & \multirow[t]{5}{*}{\(\left.\begin{array}{|r|}\text { Customizable Logic: } \\ \text { Step 7 } \\ \\ \\ \\ \\ \\ \\ \text { (Logic circuit) } \\ \text { (Type of timer) }\end{array}\right)\)} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 432 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 1333 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 434 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 435 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 435 & Customizable Logic: (Input 1) & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 437 & \multirow[t]{4}{*}{\begin{tabular}{|r} 
Step 8 \\
\\
\\
\\
\\
(Logic circuit) \\
(Type of timer) \\
(Timer)
\end{tabular}} & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 1338 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 439 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 440 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 441 & \multirow[t]{5}{*}{\begin{tabular}{l}
Customizable Logic: (Input 1) \\
Step \(9 \quad\) (Input 2) \\
(Logic circuit) \\
(Type of timer) \\
(Timer)
\end{tabular}} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 442 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 443 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 444 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 445 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline 445 & \multirow[t]{5}{*}{\(\left.\begin{array}{|r|}\text { Customizable Logic: } \\ \text { Step 10 } \\ \\ \\ \\ \\ \\ \\ \\ \text { (Input 1) } \\ \text { (Type circuit) } \\ \text { (Tyimer) }\end{array}\right)\)} & See U01. & N & Y & 0 & \multicolumn{3}{|c|}{See U01.} \\
\hline 447 & & See U02. & N & Y & 0 & \multicolumn{3}{|c|}{See U02.} \\
\hline 448 & & See U03. & N & Y & 0 & Y & Y & Y \\
\hline 449 & & See U04. & N & Y & 0 & Y & Y & Y \\
\hline 450 & & See U05. & N & Y & 0.00 & Y & Y & Y \\
\hline U17 & \multirow[t]{5}{*}{\begin{tabular}{l}
Customizable Logic Output Signal 1 \\
(Output selection) \\
Customizable Logic Output Signal 2 Customizable Logic Output Signal 3 Customizable Logic Output Signal 4 Customizable Logic Output Signal 5
\end{tabular}} & \begin{tabular}{l}
0 : Disable \\
1 : Step 1 output
\end{tabular} & N & Y & 0 & Y & Y & Y \\
\hline 472 & & 2 : Step 2 output (SO02) & N & Y & 0 & Y & Y & Y \\
\hline 473 & & 3 : Step 3 output (SO03) & N & Y & 0 & Y & Y & Y \\
\hline 474 & & 4 : Step 4 output (SO04) & N & Y & 0 & Y & Y & Y \\
\hline 475 & & \begin{tabular}{rr}
5 : Step 5 output & (SO05) \\
\(6:\) Step 6 output & (SOO6) \\
7 : Step 7 output & (SOO7) \\
\(8:\) Step 8 output & (SOO8) \\
\(9:\) Step 9 output & (SOO9) \\
10 : Step 10 output & (SO10)
\end{tabular} & N & Y & 0 & Y & Y & Y \\
\hline
\end{tabular}
-U codes: Application Functions 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Data setting range} & \multirow[t]{2}{*}{Change when
running running} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Data } \\
\text { copying }
\end{gathered}
\]} & \multirow[t]{2}{*}{Default setting} & \multicolumn{3}{|l|}{Drive control} \\
\hline & & & & & & V/f & w/o PG & w/PG \\
\hline 481 & Customizable Logic Output Signal 1 & 0 (1000): Select multi-frequency (0_to 1 step) . - . - . - . - - - - . (SS1) & N & Y & 100 & Y & Y & Y \\
\hline & (Function selection) & 1 (1001): Select multi-frequency (0_to 3 steps) - - - - - - - - - - (SS2) & & & & Y & Y & Y \\
\hline 482 & Customizable Logic Output Signal 2 & 2 (1002): Select multi-frequency (0_to 7 steps) - - . - - - - . - (SS44) & N & Y & 100 & Y & Y & Y \\
\hline 483 & Customizable Logic Output Signal 3 &  & N & Y & 100 & Y & \(\bar{Y}^{-}\) & Y \\
\hline 488 & Customizable Logic Output Signal 4 &  & N & Y & 100 & Y & Y' & \(\mathrm{Y}^{--}\) \\
\hline \multirow[t]{46}{*}{485} & Customizable Logic Output Signal 5 &  & N & Y & 100 & Y & \(\underline{Y}\) & Y \\
\hline & & 6 (1006) : Enable 3-wire operation & & & & - \(\bar{Y}\) & \(\bar{Y}\) & \(\bar{Y}\) \\
\hline & & 7 (1007) : Coast to a stop (BX) & & & & Y & Y & Y \\
\hline & & 8 (1008) : Reset alarm (RST) & & & & Y & Y & Y \\
\hline & & 9 (1009): Enable external alarm trip (9 = Active OFF, 1009 a Active ON) _ _ (THR) & & & & Y & Y & Y \\
\hline & & - 10 (1010): Ready for jogging & & & & Y & Y & Y \\
\hline & & -11 (1011): Select frequency command 211-- & & & & Y & Y & Y' \\
\hline & &  & & & & Y & Y' & - Y - - \\
\hline & &  & & & & Y & Y & \(\mathrm{Y}^{--}\) \\
\hline & &  & & & & Y & Y & Y \\
\hline & &  & & & & Y & N- & N- \\
\hline & &  & & & & Y & N & N- \\
\hline & & -17 (1017): UP (Increaseooutput frequency)- & & & & Y & Y & Y \\
\hline & & -18 (1018): DOWN (Decreaseoutput frequency) -- - - . - . (DOWN) & & & & Y & Y & Y -- \\
\hline & &  & & & & Y & \(\underline{Y}\) & \(\mathrm{Y}^{--}\) \\
\hline & &  & & & & Y & Y' & \(\mathrm{Y}^{--}\) \\
\hline & &  & & & & Y & Y & Y \\
\hline & & - 23 S 1023 ): Cancel torque control - & & & & - & N & N- \\
\hline & & 24 (1024) : Enable communications link via RS-485 or fieldbus (LE) & & & & Y & Y & Y \\
\hline & & - 25 (1025): Universal DI . . . . . . . - . . . . . . . . . . . . . . - (U-DI) & & & & Y & Y & Y \\
\hline & & - 26 (1026): Enable auto search for iding motor speed at starting (STM) & & & & Y & Y & N \\
\hline & &  & & & & Y & Y & - \(\bar{Y}\) \\
\hline & & 32 (1032): Pre-excitation - - - - - - - - - - - - - - - - - & & & & N & Y & Y \\
\hline & & - 33 (1033): Reset PID integral and differential components - (PID-RST) & & & & Y & Y & Y \\
\hline & &  & & & & Y & \(\bar{Y}\) & Y \\
\hline & & 35 (1035) : Select local (keypad) operation (LOC) & & & & Y & Y & Y \\
\hline & & 36 (1036) : Select motor 3 (M3) & & & & Y & Y & Y \\
\hline & & 37 (1037) : Select motor 4 (M4) & & & & Y & Y & Y \\
\hline & & 39 . . . . : Protect motor from dew condensation . . . . . . . . (DWP) & & & & Y & Y & Y \\
\hline & & - 40 - - & & & & - Y & N & N \\
\hline & & - 41 : Enable integrated sequence to switch to commercial power (60 Hz ) (ISW60) & & & & Y & N & N \\
\hline & & - 47 (1047): Servo-lock command - - - - - - - - - - - - - - - - - - (LOCK) & & & & N & N & Y \\
\hline & &  & & & & - & Y' & Y \\
\hline & & 70 (1070): Cancel constant peripheral speed control - . . . . (Hz/LSC) & & & & Y & Y & Y \\
\hline & & 71 (1071): Hold the constant peripheral speed control frequency in the memory ( \(L\) SCO-HLD & & & & Y & Y & Y \\
\hline & & - 72 (1072): Count the run time of commercial power-driven motor1 (CRUN-M1) & & & & Y & N & N \\
\hline & & - 73 (1073): Count the run time of commercial power-driven motor2 (CQUUN-M2) & & & & Y & N & N \\
\hline & & - 74 (1074): : Count the run time of commercial power-driven motor3 (CRUN-M3) & & & & Y & N & N \\
\hline & & 75 (1075): Count the run time of commercial power-driven motor 4 ( \(C \mathcal{B} U N\) N-M4) & & & & Y & N & N- \\
\hline & & 76 (1076): Select droop control - . . . . . - . - . - . (DROOP) & & & & Y & Y & Y \\
\hline & & 77 (1077): Cancel PG alarm & & & & N & N & \(\mathrm{Y}^{--}\) \\
\hline & & 81 (1081) : Clear all customizable logic timers & & & & - Y & \(\overline{\text { Y }}\) & \(\bar{Y}^{--}\) \\
\hline & & 98 : Run forward (FWD) & & & & Y & Y & Y \\
\hline & & 99 : Run reverse (REV) & & & & Y & Y & Y \\
\hline & & 100 : No function assigned (NONE) & & & & Y & Y & Y \\
\hline & & Setting the value of 1000s in parentheses () shown above assigns a negative logic input to a terminal. & & & & & & \\
\hline \multirow[t]{10}{*}{491} & & 1 : Step 1 & N & Y & 1 & Y & Y & Y \\
\hline & (Step selection) & 2 : Step 2 & & & & & & \\
\hline & & 3 : Step 3 & & & & & & \\
\hline & & 4 : Step 4 & & & & & & \\
\hline & & 5 : Step 5 & & & & & & \\
\hline & & 6 : Step 6 & & & & & & \\
\hline & & 7 : Step 7 & & & & & & \\
\hline & & 8 : Step 8 & & & & & & \\
\hline & & 9 : Step 9 & & & & & & \\
\hline & & 10 : Step 10 & & & & & & \\
\hline
\end{tabular}

\section*{Function Settings}

\section*{Oy codes: LINK Functions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Name} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Data setting range}} & Change when & & Default & & ve con & trol \\
\hline & & & & running & copying & setting & V/f & w/o PG & w/ PG \\
\hline 401 & \multirow[t]{2}{*}{RS-485 Communication 1 (Station address) (Communications error processing)} & \multicolumn{2}{|l|}{1 to 255} & N & Y & 1 & Y & Y & Y \\
\hline 402 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Immediately trip with alarm \(\varepsilon\) r \(B\) \\
1 : Trip with alarm \(\varepsilon_{r}-8\) after running for the period specified by timer y03 \\
2 : Retry during the period specified by timer y03. If the retry fails, trip with alarm \(E r B\). If it succeeds, continue to run. \\
3 : Continue to run
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 403 & \multirow[t]{2}{*}{(Timer) (Baud rate)} & \multicolumn{2}{|l|}{0.0 to 60.0 s} & Y & Y & 2.0 & Y & Y & Y \\
\hline 404 & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 0: 2400 \mathrm{bps} \\
& 1: 4800 \mathrm{bps} \\
& 2: 9600 \mathrm{bps} \\
& 3: 19200 \mathrm{bps} \\
& 4: 38400 \mathrm{bps} \\
& \hline
\end{aligned}
\]} & Y & Y & 3 & Y & Y & Y \\
\hline 405 & \multirow[t]{3}{*}{(Data length) (Parity check)} & \multicolumn{2}{|l|}{\(0: 8\) bits \(1: 7\) bits} & Y & Y & 0 & Y & Y & Y \\
\hline 405 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : None ( 2 stop bits) \\
1 : Even parity (1 stop bit) \\
2 : Odd parity (1 stop bit) \\
3 : None (1 stop bit)
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 407 & & \(0: 2\) bits 1:1 bit & & Y & Y & 0 & Y & Y & Y \\
\hline 408 & \multirow[t]{3}{*}{RS445 Communcalion1 (Noresponse erorodedetion time) (Response interval) (Protocol selection)} & \multicolumn{2}{|l|}{0 : No detection; 1 to 60 s} & Y & Y & 0 & Y & Y & Y \\
\hline 409 & & \multicolumn{2}{|l|}{0.00 to 1.00 s} & Y & Y & 0.01 & Y & Y & Y \\
\hline 310 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Modbus RTU protocol \\
1 : FRENIC Loader protocol (SX protocol) \\
2 : Fuji general-purpose inverter protocol
\end{tabular}} & Y & Y & 1 & Y & Y & Y \\
\hline 311 & \multirow[t]{2}{*}{RS-485 Communication 2 (Station address) (Communications error processing)} & \multicolumn{2}{|l|}{1 to 255} & N & Y & 1 & Y & Y & Y \\
\hline 412 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Immediately trip with alarm \(E_{r}\) P \\
1 : Trip with alarm \(\varepsilon_{r} P\) after running for the period specified by timer y13 \\
2 : Retry during the period specified by timer y13. If the retry fails, trip with alarm \(E_{r} P\). If it succeeds, continue to run. \\
3 : Continue to run
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 413 & \multirow[t]{2}{*}{(Timer) (Baud rate)} & \multicolumn{2}{|l|}{0.0 to 60.0 s} & Y & Y & 2.0 & Y & Y & Y \\
\hline 34 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : 2400 bps \\
1 : 4800 bps \\
2 : 9600 bps \\
3 : 19200 bps \\
\(4: 38400 \mathrm{bps}\)
\end{tabular}} & Y & Y & 3 & Y & Y & Y \\
\hline 315 & \multirow[t]{2}{*}{\begin{tabular}{l}
(Data length) \\
(Parity check)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 0: 8 \text { bits } \\
& 1: 7 \text { bits }
\end{aligned}
\]} & Y & Y & 0 & Y & Y & Y \\
\hline 315 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : None (2 stop bits) \\
1 : Even parity (1 stop bit) \\
2 : Odd parity (1 stop bit) \\
3 : None (1 stop bit)
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 317 & \multirow[t]{4}{*}{\begin{tabular}{l}
(Stop bits) \\
(No-response error detection time) \\
(Response interval) \\
(Protocol selection)
\end{tabular}} & \multicolumn{2}{|l|}{0:2 bits 1:1 bit} & Y & Y & 0 & Y & Y & Y \\
\hline 418 & & \multicolumn{2}{|l|}{0 : No detection; 1 to 60 s} & Y & Y & 0 & Y & Y & Y \\
\hline 419 & & \multicolumn{2}{|l|}{0.00 to 1.00 s} & Y & Y & 0.01 & Y & Y & Y \\
\hline 420 & & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Modbus RTU protocol \\
2 : Fuji general-purpose inverter protocol
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 497 & Communication Data Storage Selection & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : Save into nonvolatile storage (Rewritable times limited) \\
1 : Write into temporary storage (Rewritable times unlimited) \\
2 : Save all data from temporary storage to nonvolatile one (After saving data, the y97 data automatically returns to "1.")
\end{tabular}} & Y & Y & 0 & Y & Y & Y \\
\hline 398 & Bus Link Function (Mode selection) & \begin{tabular}{l}
Frequency command \\
0 : Follow H3O data \\
1 : Via fieldbus option \\
2 : Follow H30 data \\
3 : Via fieldbus option
\end{tabular} & Run command Follow H30 data Follow H3O data Via fieldbus option Via fieldbus option & Y & Y & 0 & Y & Y & Y \\
\hline 499 & Loader Link Function (Mode selection) & \begin{tabular}{l}
Frequency command \\
0 : Follow H30 and y98 data \\
1 : Via RS-485 link \\
(FRENIC Loader) \\
2 : Follow H30 and y98 data \\
3 : Via RS-485 link \\
(FRENIC Loader)
\end{tabular} & \begin{tabular}{l}
Run command Follow H30 and y98 data Follow H30 and y98 data \\
Via RS-485 link (FRENIC Loader) Via RS-485 link (FRENIC Loader)
\end{tabular} & Y & N & 0 & Y & Y & Y \\
\hline
\end{tabular}
- Changing, validating, and saving function code data when the inverter is running

Function codes are indicated by the following based on whether they can be changed or not when the inverter is running:
\begin{tabular}{|c|c|l|}
\hline Notation & Change when running & \multicolumn{1}{c|}{ Validating and saving function code data } \\
\hline \(\mathrm{Y}^{*}\) & Possible & \begin{tabular}{l} 
If the data of the codes marked with \(\mathrm{Y}^{*}\) is changed with and keys, the change will immediately take effect; however, the change is not saved \\
into the inverter's memory. To save the change, press the key. If you press the key without pressing the key to exit the current state, then \\
the changed data will be discarded and the previous data will take effect for the inverter operation.
\end{tabular} \\
\hline Y & Possible & \begin{tabular}{l} 
Even if the data of the codes marked with Y is changed with and keys, the change will not take effect. Pressing the key will make the change \\
take effect and save it into the inverter's memory.
\end{tabular} \\
\hline N & Impossible & \\
\hline
\end{tabular}
- Copying data

The keypad is capable of copying of the function code data stored in the inverter's memory into the keypad's memory (refer to Menu \#7 "Data copying" in Programming mode). With this feature, you can easily transfer the data saved in a source inverter to other destination inverters.

If the specifications of the source and destination inverters differ, some code data may not be copied to ensure safe operation of your power system.
Whether data will be copied or not is detailed with the following symbols in the "Data copying" column of the function code tables given on the following pages.
Y: Will be copied unconditionally.
Y1: Will not be copied if the rated capacity differs from the source inverter
Y2: Will not be copied if the rated input voltage differs from the source inverter.
N : Will not be copied. (The function code marked with " N " is not subject to the Verify operation, either.)
For details of copying operation, refer to Chapter 3, Section 3.4.9.

40Hp (LD) \& Below


50Hp (LD) \& Above

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
\text { Inve } \\
\text { FRN } \square \square
\end{array}
\] & \[
\begin{aligned}
& \text { ype } \\
& 1 \mathrm{~S}-2 \mathrm{U} / 4 \mathrm{u}
\end{aligned}
\] & \multicolumn{11}{|c|}{Dimensions inch ( mm )} \\
\hline 230 V & 460 V & w & W1 & W2 & H & H1 & H2 & D & D1 & D2 & D3 & øA \\
\hline 0.5 & 0.5 & \multirow[t]{2}{*}{\[
\begin{gathered}
4.33 \\
(110)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 3.78 \\
& (96)
\end{aligned}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.24 \\
(6)
\end{gathered}
\]} & \multirow{9}{*}{\[
\begin{aligned}
& 10.24 \\
& (260)
\end{aligned}
\]} & \multirow{5}{*}{\[
\begin{gathered}
9.69 \\
(246)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.28 \\
(7)
\end{gathered}
\]} & \[
\begin{gathered}
\hline 5.2 \\
(132) \\
\hline
\end{gathered}
\] & \multirow{5}{*}{\[
\begin{aligned}
& 4.45 \\
& (113)
\end{aligned}
\]} & \[
\begin{array}{|l|}
\hline 0.75 \\
(19) \\
\hline
\end{array}
\] & \multirow{5}{*}{\[
\begin{gathered}
0.12 \\
(3)
\end{gathered}
\]} & \multirow{5}{*}{\[
\begin{gathered}
0.24 \\
(6)
\end{gathered}
\]} \\
\hline 1 & 1 & & & & & & & \multirow{4}{*}{\[
\begin{array}{|c}
5.71 \\
(145)
\end{array}
\]} & & \multirow{4}{*}{\[
\begin{aligned}
& 1.26 \\
& \text { (32) }
\end{aligned}
\]} & & \\
\hline 2 & 2 & \multirow[b]{3}{*}{\[
\begin{gathered}
5.91 \\
(150)
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
5.35 \\
(136)
\end{gathered}
\]} & & & & & & & & & \\
\hline 3 & 3 & & & & & & & & & & & \\
\hline 5 & 5 & & & & & & & & & & & \\
\hline 7.5 & 7.5 & \multirow{4}{*}{\[
\begin{array}{|c}
8.66 \\
(220)
\end{array}
\]} & \multirow{4}{*}{\[
\begin{gathered}
7.72 \\
(196)
\end{gathered}
\]} & \multirow{13}{*}{\[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\]} & & \multirow{4}{*}{\[
\begin{array}{|c}
9.37 \\
(238)
\end{array}
\]} & \multirow{7}{*}{\[
\begin{aligned}
& 0.43 \\
& (11)
\end{aligned}
\]} & \multirow{7}{*}{\[
\begin{aligned}
& 7.68 \\
& (195)
\end{aligned}
\]} & \multirow{7}{*}{\[
\begin{gathered}
4.13 \\
(105)
\end{gathered}
\]} & \multirow{7}{*}{\[
\begin{aligned}
& 3.54 \\
& (90)
\end{aligned}
\]} & \multirow{7}{*}{\[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\]} & \multirow{13}{*}{\[
\begin{aligned}
& 0.39 \\
& (10)
\end{aligned}
\]} \\
\hline 10 & 10 & & & & & & & & & & & \\
\hline 15 & 15 & & & & & & & & & & & \\
\hline 20 & 20 & & & & & & & & & & & \\
\hline 25 & 25 & \multirow[b]{3}{*}{\[
\begin{gathered}
9.84 \\
(250)
\end{gathered}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
8.9 \\
(226)
\end{gathered}
\]} & & \multirow[b]{3}{*}{\[
\begin{aligned}
& 15.75 \\
& (400)
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 14.88 \\
& (378)
\end{aligned}
\]} & & & & & & \\
\hline 30 & 30 & & & & & & & & & & & \\
\hline 40 & 40 & & & & & & & & & & & \\
\hline & 50 & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline 12.6 \\
(320) \\
\hline
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline 9.45 \\
(240) \\
\hline
\end{array}
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 21.65 \\
& (550)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline 20.87 \\
(530) \\
\hline
\end{array}
\]} & \multirow{6}{*}{\[
\begin{aligned}
& 0.47 \\
& (12)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 10.04 \\
& (255) \\
& \hline
\end{aligned}
\]} & \multirow{6}{*}{\[
\begin{aligned}
& 4.53 \\
& (115)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline 5.51 \\
(140) \\
\hline
\end{array}
\]} & \multirow{14}{*}{\[
0.16
\]
(4)} & \\
\hline 50 & 60 & & & & & & & & & & & \\
\hline 60 & 75 & \multirow{4}{*}{\[
\begin{array}{|l|}
\hline 13.98 \\
(355)
\end{array}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 10.83 \\
& (275)
\end{aligned}
\]} & & \[
\begin{array}{|l}
\hline 24.21 \\
(615) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 23.43 \\
& (595)
\end{aligned}
\] & & \multirow{4}{*}{\[
\begin{aligned}
& 10.63 \\
& (270)
\end{aligned}
\]} & & \multirow{4}{*}{\[
\begin{array}{|c}
6.1 \\
(155)
\end{array}
\]} & & \\
\hline - & 100 & & & & \[
\begin{array}{|l}
\hline 26.57 \\
(675) \\
\hline
\end{array}
\] & \[
\begin{array}{|l}
\hline 25.79 \\
(655) \\
\hline
\end{array}
\] & & & & & & \\
\hline 75 & & & & & 29.13 & \multirow[b]{3}{*}{\[
\begin{aligned}
& 28.35 \\
& (720)
\end{aligned}
\]} & & & & & & \\
\hline 100 & 125 & & & & (740) & & & & & & & \\
\hline 125 & - & \[
\begin{aligned}
& \hline 20.87 \\
& (530) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 16.93 \\
& (430) \\
& \hline
\end{aligned}
\] & \multirow{14}{*}{\[
\begin{aligned}
& 0.59 \\
& (15)
\end{aligned}
\]} & \[
\begin{array}{|l}
\hline 29.53 \\
(750) \\
\hline
\end{array}
\] & & \multirow{14}{*}{\[
\begin{array}{|c}
0.61 \\
(15.5)
\end{array}
\]} & \[
\begin{array}{|l|}
\hline 11.22 \\
(285) \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline 5.71 \\
(145) \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 5.51 \\
(140) \\
\hline
\end{array}
\] & & \multirow{14}{*}{\[
\begin{aligned}
& 0.59 \\
& (15)
\end{aligned}
\]} \\
\hline 150 & - & \[
\begin{gathered}
24.8 \\
(630) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 11.42 \\
& (290) \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{|l}
\hline 34.65 \\
(880)
\end{array}
\] & \[
\begin{array}{|l}
33.46 \\
(850) \\
\hline
\end{array}
\] & & \[
\begin{array}{|l|}
\hline 14.17 \\
(360) \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline 7.09 \\
(180) \\
\hline
\end{array}
\] & \multirow{7}{*}{\[
\begin{aligned}
& 7.09 \\
& (180)
\end{aligned}
\]} & & \\
\hline - & 150 & \multirow{4}{*}{\[
\begin{array}{|l}
20.87 \\
(530)
\end{array}
\]} & \multirow{4}{*}{\[
\begin{array}{|l}
16.93 \\
(430)
\end{array}
\]} & & 29.13 & 27.95 & & 12.4 & 5.31 & & & \\
\hline - & 200 & & & & (740) & (710) & & (315) & (135) & & & \\
\hline - & 250 & & & & & & & & & & & \\
\hline - & 300 & & & & 39.37 & 38.19 & & 14.17 & 7.09 & & & \\
\hline - & 350 & \multirow{4}{*}{\[
\begin{aligned}
& 26.77 \\
& (680)
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{array}{|l|l}
11.42 \\
(290)
\end{array}
\]} & & (1000) & (970) & & (360) & (180) & & & \\
\hline - & 450 & & & & & & & & & & & \\
\hline - & 500 & & & & \multirow{4}{*}{\[
\begin{aligned}
& 55.12 \\
& (1400)
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 53.94 \\
& (1370)
\end{aligned}
\]} & & \multirow{4}{*}{\[
\begin{aligned}
& 17.32 \\
& (440)
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& 10.24 \\
& (260)
\end{aligned}
\]} & & & \\
\hline - & 600 & & & & & & & & & & \multirow{5}{*}{\[
\begin{aligned}
& 0.25 \\
& (6.4)
\end{aligned}
\]} & \\
\hline - & 700 & 34.65 & 10.24 & & & & & & & & & \\
\hline - & 800 & (880) & (260) & & & & & & & & & \\
\hline - & 900 & \multirow[t]{2}{*}{39.37
\((1000)\)} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 11.81 \\
(300) \\
\hline
\end{array}
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 61.02 \\
& (1550) \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline 59.84 \\
(1520) \\
\hline
\end{array}
\]} & & 19.69 & 12.33 & 7.35 & & \\
\hline - & 1000 & & & & & & & (500) & (313.2) & (186.8) & & \\
\hline
\end{tabular}

\section*{External Dimensions (Keypad)}

OStandard Keypad (NEMA4/12 rated for panel door/ remote mount) TP-G1W-J1


OKeypad (with USB Port) TP-E1U (Optional)



Figure C
\(4 \times\) Mounting hole


DCR4-630C: \(2 \times 4 \times\) Terminal hole
DCR4-710C: \(2 \times 4 \times 4 \times\) Terminal hole

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Power supply voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Inverter type } \\
& \text { FRNNTMGIS } \\
& -2 \mathrm{U} / 4 \mathrm{U}
\end{aligned}
\]} & \multirow[t]{2}{*}{Option/
Standard} & \multirow[b]{2}{*}{Reactor} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Refer } \\
& \text { to: }
\end{aligned}
\]} & \multicolumn{9}{|c|}{Dimensions inch (mm)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Mass } \\
\text { Mb (kg) }
\end{gathered}
\]} \\
\hline & & & & & w & W1 & D & D1 & D2 & D3 & H & \[
\begin{gathered}
\text { Mounting } \\
\text { hole }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Terminal } \\
\text { hole } \\
\hline
\end{gathered}
\] & \\
\hline \multirow{3}{*}{230 V} & 100 & \multirow{3}{*}{Standard} & DCR2-75C & \multirow[b]{3}{*}{\[
\underset{A}{\text { Figure }}
\]} & & \multirow[b]{2}{*}{\[
\begin{aligned}
& 8.86 \\
& (225)
\end{aligned}
\]} & \[
\begin{gathered}
4.170 .08 \\
(1062)
\end{gathered}
\] & 3.39
\((86)\) & (145) & \(\underset{(531)}{2.090 .04}\) & \multirow[t]{2}{*}{5.71
(145)} & \multirow[b]{2}{*}{M6} & \multirow{3}{*}{M12} & (11.4) \\
\hline & 125 & & DCR2-90C & & \[
\begin{gathered}
10.040 .39 \\
(25510)
\end{gathered}
\] & & \({ }^{4.570 .082}{ }^{(1162)}\) & 3.78
\((96)\) & (155) & \multirow[b]{2}{*}{\[
\underset{(581)}{2.280 .04}
\]} & & & & (14) \\
\hline & 150 & & DCR2-110C & & 11.810 .39
\((30010)\) & 10.43
\((265)\) & \({ }^{4.570 .1164)}\) & 3.54
\((90)\) & 7.28
\((185)\) & & \({ }_{(6.3}^{6160)}\) & M8 & & (17) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Power supply voltage} & \multirow[t]{2}{*}{Inverter type FRNDIUGIS \(-2 \mathrm{U} / 4 \mathrm{U}\)} & \multirow[t]{2}{*}{Option/ Standard} & \multirow[t]{2}{*}{Reactor} & \multirow[t]{2}{*}{Refer to:} & \multicolumn{9}{|c|}{Dimensions inch (mm)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Mass } \\
& \text { lb (kg) }
\end{aligned}
\]} \\
\hline & & & & & W & W1 & D & D1 & D2 & D3 & H & Mounting & \(\underbrace{\text { hole }}_{\text {Terminal }}\) ( & \\
\hline \multirow{14}{*}{460 V} & 100 & \multirow{14}{*}{Standard} & DCR4-75C & \multirow{7}{*}{\[
\underset{A}{\text { Figure }}
\]} & 10.040.39 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 8.86 \\
& (225)
\end{aligned}
\]} & \(\left.{ }_{\text {4, }}^{4} \mathbf{4} 170.082\right)\) & 3.39
\((86)\) & \({ }_{(125)}^{4.92}\) & \({ }_{(531)}^{2.090 .04}\) & \multirow[b]{2}{*}{5.71
(145)} & \multirow[t]{2}{*}{M6} & M10 & \({ }_{(12.4)}^{27}\) \\
\hline & 125 & & DCR4-90C & & (25510) & & & 3.78
\((96)\) & 5.51
\((140)\) & \multirow[t]{2}{*}{\[
\begin{gathered}
2.280 .04 \\
(581)
\end{gathered}
\]} & & & \multirow{6}{*}{M12} & \begin{tabular}{c}
32 \\
\((14.7)\) \\
\hline
\end{tabular} \\
\hline & 150 & & DCR4-110C & & & & (1162) & 3.54
\((90)\) & 6.89
\((175)\) & & (15.1) & \multirow[b]{2}{*}{M8} & & \({ }_{(18.4}^{41}\) \\
\hline & 200 & & DCR4-132C & & (30010) & (265) &  & 3.94
\((100)\)
\((103)\) & \multirow[t]{2}{*}{7.09
\((180)\)} & \({ }^{2.480 .08}(532)\) & 6.3
\((160)\) & & & (29) \\
\hline & 250 & & DCR4-160C & & \multirow{3}{*}{\[
\begin{gathered}
13.780 .39 \\
(35010)
\end{gathered}
\]} & \multirow{3}{*}{\[
\begin{aligned}
& 12.2 \\
& (310)
\end{aligned}
\]} &  & 4.06
\((103)\) & & 2.580.08 \({ }^{(65.52)}\) & \multirow{3}{*}{\[
\begin{aligned}
& 7.48 \\
& (190)
\end{aligned}
\]} & \multirow{3}{*}{M10} & & \({ }_{(256}^{56}\) \\
\hline & 300 & & DCR4-200C & & & & \({ }_{\text {c }}^{5.550 .14)^{16}}\) & \begin{tabular}{l}
4.45 \\
\((113)\) \\
\hline 118\()\)
\end{tabular} & (788) & \begin{tabular}{l} 
2.780.08 \\
\((780.52)\) \\
\hline
\end{tabular} & & & & \begin{tabular}{l} 
(29.5) \\
\((272\). \\
\hline
\end{tabular} \\
\hline & 350 & & DCR4-220C & & & &  & 4.65
\((118)\) & 7.87
\((200)\) & \begin{tabular}{l} 
2.870.08 \\
\((732)\) \\
\hline\((80.52)\)
\end{tabular} & & & & (32)
(32.5) \\
\hline & 450 & & DCR4-280C & \multirow{5}{*}{\[
\underset{B}{\operatorname{Fig}_{B}}
\]} & \begin{tabular}{l}
13.788 .39 \\
\((35010)\) \\
\hline 15003
\end{tabular} & (12.2) & \({ }_{\text {6.340. }}{ }_{(1614)}\) & 5.24
(133) & (2.27) & \begin{tabular}{l}
3.170 .08 \\
(80.52) \\
\\
\hline
\end{tabular} & 7.48
\((190)\) & \multirow{5}{*}{M10} & M16 & (39) \\
\hline & 500 & & DCR4-355C & & \begin{tabular}{l}
15.750 .39 \\
\((40010)\) \\
\hline 17500
\end{tabular} & \(\begin{array}{r}13.58 \\ (345) \\ \hline\end{array}\) & \({ }^{6.140 .16}{ }^{6}\) & (128) &  & \begin{tabular}{c} 
3.070.04 \\
\hline\((850)\) \\
\hline\((72.51)\)
\end{tabular} & 8.86
\((225)\) & & \multirow{6}{*}{\(\varnothing 15\)} & \(\begin{array}{r}104 \\ (47) \\ \hline\end{array}\) \\
\hline & 600 & & DCR4-400C & & 17.520 .39
\((44510)\) & \multirow[t]{2}{*}{15.16
\((385)\)} &  & (117) & \(\begin{array}{r}8.39 \\ (213) \\ \\ \hline 185\end{array}\) & 2.850.04 \({ }^{\text {2 }}\) & \multirow{3}{*}{\[
\begin{gathered}
9.65 \\
(245)
\end{gathered}
\]} & & & \(\begin{array}{r}115 \\ (52) \\ \hline\end{array}\) \\
\hline & 700 & & DCR4-450C & & 17.320 .39
\((44010)\) & &  & (122) & \({ }_{( }^{8.46)}\) & \begin{tabular}{c}
2.950 .08 \\
\((752)\) \\
\hline
\end{tabular} & & & & \begin{tabular}{l}
132 \\
\((60)\) \\
\hline
\end{tabular} \\
\hline & 800 & & DCR4-500C & & \begin{tabular}{c}
17.520 .39 \\
\((44510)\) \\
\hline 12203
\end{tabular} & 15.35
\((390)\)
\((175)\) & 6.50 .16
(1654) & 5.39
\((137)\)
\((178)\) & (8.66) &  & & & & \begin{tabular}{l}
154 \\
\((70)\) \\
\hline
\end{tabular} \\
\hline & 900 & & DCR4-630C & \multirow[b]{2}{*}{Figure} & \begin{tabular}{c}
11.220 .39 \\
\((28510)\) \\
\hline 18
\end{tabular} & 5.71
\((145)\) &  & 6.69
\((170)\) & \(7768)\)
\((195)\) & \({ }^{4.0900 .08}(1042)\) & \multirow[t]{2}{*}{18.9
\((480)\)} & \multirow[t]{2}{*}{M12} & & \begin{tabular}{l}
165 \\
\((75)\) \\
\hline
\end{tabular} \\
\hline & 1000 & & DCR4-710C & & 13.390 .39
\((34010)\) & (160) & \({ }^{11.610 .16}{ }_{(2954)}\) & (10.04 & (285) & \({ }^{4.210 .08)}\) & & & & 209
\((95)\) \\
\hline
\end{tabular}

Note: 100 HP or above type comes with a DC reactor (DCR) suitable for the LD-mode use
Braking unit and Braking resistor (standard item)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Power } \\
& \text { supply } \\
& \text { voltage }
\end{aligned}
\]} & \multirow[t]{3}{*}{Nomina applied motor (HP)} & \multirow[t]{2}{*}{Inverter type} & \multicolumn{4}{|c|}{Option} \\
\hline & & & \multicolumn{2}{|l|}{Braking unit} & \multicolumn{2}{|l|}{Braking resistor} \\
\hline & & HD mode & Type & Qty & Type & Qty \\
\hline \multirow{18}{*}{Three phase 230 V} & 0.5 & FRNF50G1S-2U & \multicolumn{2}{|l|}{\multirow[t]{12}{*}{-}} & \multirow[t]{2}{*}{DB0.75-2C} & \multirow[t]{2}{*}{1} \\
\hline & , & FRN001G1S-2U & & & & \\
\hline & 2 & FRN002G1S-2U & & & \multirow[t]{2}{*}{DB2.2-2C} & \multirow[t]{2}{*}{1} \\
\hline & 3 & FRN003G1S-2U & & & & \\
\hline & 5 & FRN005G1S-2U & & & DB3.7-2C & 1 \\
\hline & 7.5 & FRN007G1S-2U & & & \multirow[t]{2}{*}{DB5.5-2C} & \multirow[t]{2}{*}{1} \\
\hline & 7.5 & FRN010G1S-2U & & & & \\
\hline & 10 & FRN015G1S-2U & & & DB7.5-2C & 1 \\
\hline & 15 & FRN020G1S-2U & & & DB11-2C & 1 \\
\hline & 20 & FRN025G1S-2U & & & DB15-2C & 1 \\
\hline & 25 & FRN030G1S-2U & & & \multirow[t]{2}{*}{DB22-2C} & \multirow[t]{2}{*}{1} \\
\hline & 30 & FRN040G1S-2U & & & & \\
\hline & 40 & FRN050G1S-2U & \multirow[b]{2}{*}{BU37-2C} & \multirow[t]{2}{*}{1} & DB30-2C & 1 \\
\hline & 50 & FRN060G1S-2U & & & DB37-2C & 1 \\
\hline & 60 & FRN075G1S-2U & \multirow[t]{2}{*}{BU55-2C} & \multirow[t]{2}{*}{1} & DB45-2C & 1 \\
\hline & 75 & FRN100G1S-2U & & & DB55-2C & 1 \\
\hline & 100 & FRN125G1S-2U & \multirow[b]{2}{*}{BU90-2C} & \multirow[b]{2}{*}{1} & DB75-2C & 1 \\
\hline & 125 & FRN150G1S-2U & & & DB110-2C & 1 \\
\hline \multirow{28}{*}{Three phase 460 V} & 0.5 & FRNF50G1S-4U & \multicolumn{2}{|l|}{\multirow{12}{*}{-}} & \multirow[t]{2}{*}{DB0.75-4C} & \multirow[t]{2}{*}{1} \\
\hline & 1 & FRN001G1S-4U & & & & \\
\hline & 2 & FRN002G1S-4U & & & \multirow[t]{2}{*}{DB2.2-4C} & \multirow[t]{2}{*}{1} \\
\hline & 3 & FRN003G1S-4U & & & & \\
\hline & 5 & FRN005G1S-4U & & & DB3.7-4C & 1 \\
\hline & 7.5 & FRN007G1S-4U & & & \multirow[t]{2}{*}{DB5.5-4C} & \multirow[t]{2}{*}{1} \\
\hline & 7.5 & FRN010G1S-4U & & & & \\
\hline & 10 & FRN015G1S-4U & & & DB7.5-4C & 1 \\
\hline & 15 & FRN020G1S-4U & & & DB11-4C & 1 \\
\hline & 20 & FRN025G1S-4U & & & DB15-4C & 1 \\
\hline & 25 & FRN030G1S-4U & & & \multirow[t]{2}{*}{DB22-4C} & \multirow[t]{2}{*}{1} \\
\hline & 30 & FRN040G1S-4U & & & & \\
\hline & 40 & FRN050G1S-4U & \multirow[b]{2}{*}{BU37-4C} & \multirow[b]{2}{*}{1} & DB30-4C & 1 \\
\hline & 50 & FRN060G1S-4U & & & DB37-4C & 1 \\
\hline & 60 & FRN075G1S-4U & \multirow[t]{2}{*}{BU55-4C} & \multirow[t]{2}{*}{1} & DB45-4C & 1 \\
\hline & 75 & FRN100G1S-4U & & & DB55-4C & 1 \\
\hline & 100 & FRN125G1S-4U & \multirow[t]{2}{*}{BU90-4C} & \multirow[t]{2}{*}{1} & DB75-4C & 1 \\
\hline & 125 & FRN150G1S-4U & & & \multirow[t]{2}{*}{DB110-4C} & \multirow[t]{2}{*}{1} \\
\hline & 150 & FRN200G1S-4U & \multirow[t]{2}{*}{BU132-4C} & \multirow[t]{2}{*}{1} & & \\
\hline & 200 & FRN250G1S-4U & & & DB132-4C & 1 \\
\hline & 250 & FRN300G1S-4U & \multirow{8}{*}{BU220-4C} & \multirow{3}{*}{1} & DB160-4C & 1 \\
\hline & 300 & FRN350G1S-4U & & & DB200-4C & 1 \\
\hline & 350 & FRN450G1S-4U & & & DB220-4C & 1 \\
\hline & 450 & FRN500G1S-4U & & \multirow{3}{*}{2} & DB160-4C & \multirow{3}{*}{2} \\
\hline & 500 & FRN600G1S-4U & & & & \\
\hline & 700 & FRN700G1S-4U & & & DB200-4C & \\
\hline & 800 & FRN900G1S-4U & & \multirow[t]{2}{*}{3} & & 3 \\
\hline & 900 & FRN1000G1S-4U & & & DB220-4C & 3 \\
\hline
\end{tabular}

\section*{Other Options}

\section*{Other options}
\begin{tabular}{|c|c|c|}
\hline Parts name & Type & Remarks \\
\hline EtherNet card & OPC-G1-ETH & \begin{tabular}{l}
The Ethernet option card allows for connectivity to various Ethernet protocols. These include: \\
- EtherNet/IP \\
- Modbus/TCP \\
- BACnet/IP \\
- Profinet-IO \\
The card also contains a embedded web server for configuration of numerous additional functions such as alarm evaluation with email notification, dashboard GUI with multiple windows for monitoring, virtual keypad interface, and protocol configuration.
\end{tabular} \\
\hline DeviceNet card & OPC-G1-DEV & \begin{tabular}{l}
The DeviceNet option card allows for connectivity to a DeviceNet network. The card allows for control or monitoring of the inverter, monitor and change function codes, and the use of explicit messaging. The following are specifications for the DeviceNet options. \\
- 64 Nodes, maximum, including the Master device. \\
- Data Rate (baud rate): \(125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}\) \\
- I/O Message: Polling and Change of State supported \\
- Applicable Profile: AC Drive profile \\
- Reading and writing all the function codes applicable to the FRENIC-MEGA (I/O Message (User Defined Assembly Instance or Access to Function Codes Instance) and Explicit Message) \\
This product has been tested by ODVA authorized Independent Test Lab and found to comply with ODVA's DeviceNet Conformance Test Version 20.
\end{tabular} \\
\hline CC-link card & OPC-G1-CCL & \begin{tabular}{l}
The CC-Link option card allows for connectivity to a CC-Link network. The card allows for control or monitoring of the inverter and for monitoring and changing of function codes. The following are specifications for the CC-Link option. \\
- CC-Link Version: Complies with CC-Link versions 1.10 and 2.00 \\
- Applicable Profile: Inverter (1 station occupied) \\
- Monitoring the status of the FRENIC-MEGA (running status, frequency, output torque, output current, output voltage, etc.) \\
- Reading and writing from/to function codes applicable to the FRENIC-MEGA
\end{tabular} \\
\hline PROFIBUS DP card & OPC-G1-PDP & \begin{tabular}{l}
The Profibus-DP option card allows for connectivity to a Profibus network. The card allows for control or monitoring of the inverter and for monitoring and changing of function codes. The following are specifications for the Profibus option. \\
- PROFIBUS version: DP-V0 compliant \\
- Transmission speed: 9,600 bps to 12 Mbps \\
- Maximum network cable length per segment: 100 m (12 Mbps) to \(1200 \mathrm{~m}(9.6 \mathrm{kbps})\) \\
- Applicable Profile: PROFIDrive V2 compliant
\end{tabular} \\
\hline CANopen & OPC-G1-COP & \begin{tabular}{l}
The CANopen is the card which supports various open bus types. With this card, the following operations can be performed using PC or PLC. \\
- Operation frequency setting \\
- Operation command setting (FWD, REV, RET, etc.) \\
- Data code setting for each function code \\
- Reading trip data
\end{tabular} \\
\hline T-link interface card & OPC-G1-TL & \begin{tabular}{l}
Up to 12 inverters can be connected by connecting the Fuji's PLC and the inverter via T-link (I/O transmission). \\
- Operation frequency setting \\
- Operation command setting (FWD, REV, RET, etc.)
\end{tabular} \\
\hline PG interface card (supporting 12V) & OPC-G1-PG & Having this card built-in to the inverter allows the speed control and the position control. \\
\hline PG interfiace card (supporting 5V) & OPC-G1-PG2 & Having this card built-in to the inverter allows the speed control and the position control. \\
\hline PG Synchronization Card & OPC-G1-PG22 & Velocity synchronization card, allowing both master and slave encoder inputs. \\
\hline Digital input interface card & OPC-G1-DI & Using this card allows frequency setting by \(8,12,15\), and 16 bits, and by BCD code. \\
\hline Digital output interface card & OPC-G1-DO & The output interface card to be equipped with FRENIC-MEGA, which allows monitoring frequency, output voltage, and output current with binary code. \\
\hline Analog input'output interiace card & OPC-G1-AIO & Using this card allows the torque limit value input, frequency and frequency ratio setting with analog input. \\
\hline Relay output card & OPC-G1-RY & Using this card allows relay output of the inverter general output signal (transistor output). \\
\hline
\end{tabular}

NEMA1 Cover NEMA1- \(\square\) G1- \(\square\)
NEMA1 kit, when fitted to the FRENIC-MEGA series, protects the inverter body with the structure that conforms to the NEMA1 standard (approved as UL TYPE1).
\begin{tabular}{|c|c|c|}
\hline Power
supply voltage & Inverter type & NEMA1 model number \\
\hline \multirow{18}{*}{Three phase 230 V} & FRNF50G1S-2U & NEMA1-0.4G1-24 \\
\hline & FRN001G1S-2U & NEMA1-0.75G1-24 \\
\hline & FRN002G1S-2U & NEMA1-3.761-24 \\
\hline & FRN003G1S-2U & NEMA1-3.761-24 \\
\hline & FRN005G1S-2U & NEMA1-3.7G1-24 \\
\hline & FRN007G1S-2U & NEMA1-11G1-24 \\
\hline & FRN010G1S-2U & NEMA1-11G1-24 \\
\hline & FRN015G1S-2U & NEMA1-11G1-24 \\
\hline & FRN020G1S-2U & NEMA1-11G1-24 \\
\hline & FRN025G1S-2U & NEMA1-22G1-24 \\
\hline & FRN030G1S-2U & NEMA1-22G1-24 \\
\hline & FRN040G1S-2U & NEMA1-22G1-2 \\
\hline & FRN050G1S-2U & NEMA1-37G1-24 \\
\hline & FRN060G1S-2U & NEMA1-75G1-24 \\
\hline & FRN075G1S-2U & NEMA1-75G1-24 \\
\hline & FRN100G1S-2U & NEMA1-75G1-24 \\
\hline & FRN125G1S-2U & NEMA1-75G1-2 \\
\hline & FRN150G1S-2U & NEMA1-220G1-24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Power supply voltage & Inverter type & NEMA1 model number \\
\hline \multirow{29}{*}{Three phase 460 V} & FRNF50G1S-4U & NEMA1-0.4G1-24 \\
\hline & FRN001G1S-4U & NEMA1-0.75G1-24 \\
\hline & FRN002G1S-4U & NEMA1-3.7G1-24 \\
\hline & FRN003G1S-4U & NEMA1-3.7G1-24 \\
\hline & FRN005G1S-4U & NEMA1-3.7G1-24 \\
\hline & FRN007G1S-4U & NEMA1-1161-24 \\
\hline & FRN010G1S-4U & NEMA1-11G1-24 \\
\hline & FRN015G1S-4U & NEMA1-11G1-24 \\
\hline & FRN020G1S-4U & NEMA1-11G1-24 \\
\hline & FRN025G1S-4U & NEMA1-22G1-24 \\
\hline & FRN030G1S-4U & NEMA1-22G1-24 \\
\hline & FRN040G1S-4U & NEMA1-22G1-24 \\
\hline & FRN050G1S-4U & NEMA1-37G1-24 \\
\hline & FRN060G1S-4U & NEMA1-37G1-24 \\
\hline & FRN075G1S-4U & NEMA1-75G1-24 \\
\hline & FRN100G1S-4U & NEMA1-75G1-24 \\
\hline & FRN125G1S-4U & NEMA1-75G1-24 \\
\hline & FRN150G1S-4U & NEMA1-110G1-4 \\
\hline & FRN200G1S-4U & NEMA1-110G1-4 \\
\hline & FRN250G1S-4U & NEMA1-160G1-4 \\
\hline & FRN300G1S-4U & NEMA1-160G1-4 \\
\hline & FRN350G1S-4U & NEMA1-220G1-24 \\
\hline & FRN450G1S-4U & NEMA1-220G1-24 \\
\hline & FRN500G1S-4U & NEMA1-315G1-4 \\
\hline & FRN600G1S-4U & NEMA1-315G1-4 \\
\hline & FRN700G1S-4U & NEMA1-400G1-4 \\
\hline & FRN800G1S-4U & NEMA1-400G1-4 \\
\hline & FRN900G1S-4U & NEMA1-630G1-4 \\
\hline & FRN1000G1S-4U & NEMA1-630G1-4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Restrictions on mounting an optional card \(\quad \mathrm{Y}\) : Available N : Not Available} & \multirow{3}{*}{C PORT} & \multirow[b]{3}{*}{Control PCB} \\
\hline \multirow[b]{2}{*}{Mounting port} & \multicolumn{4}{|c|}{OPC-G1S- \(\square \square\)} & & \\
\hline & PG, PG2, PG22 & DI,DO,AIO,DEV & RY & ETH, TL, COP, PDP, CCL, SX & & \\
\hline C PORT & Y & Y & N & N & \multirow[b]{3}{*}{B PORT} & \multirow[t]{4}{*}{} \\
\hline B PORT & N & Y & Y & N & & \\
\hline A PORT & N & Y & Y & Y & & \\
\hline Remarks & ※1 & ※2 & ※3 & ※2 & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
*1 Any one of the above can be mounted on only C port. \\
*2 Only one card can be mounted on any of A, B, or C ports. \\
A PORT \\
Cards can be mounted on DI, DO, and AIO ports at the same time, however, two identical cards cannot be allowed. \\
*3 The cards can be mounted on both A and B ports.
\end{tabular}}} & \\
\hline & & & & & & \\
\hline \multicolumn{5}{|l|}{The number of RY contact points of a card is two. If three or four points are necessary, prepare two cards. Note: There are also restrictions on mounting when using the optional communications card. Contact us for details. Note: When mounting the NEMA option, only one optional card can be mounted. (RY card allows mounting of two cards.)} & Terminal block PCB & \\
\hline
\end{tabular}

\section*{Reference material}

\section*{Reference material}
- Low motor noise operation

The inverter can be operated continuously at rated current with a carrier frequency setting of 16 kHz . Thus, operating with lower motor noise can be achieved without de-rating the inverter output current as compared to other manufacturers.


Quick reference for inverter rated current


\footnotetext{
fc = carrier frequency
fo = frequency output
}

\section*{Warranty}

\section*{To all our customers who purchase Fuji Electric products included in this catalog:}

\section*{Please take the following items into consideration when placing your order.}

When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.
In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.
Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

\section*{1. Free of Charge Warranty Period and Warranty Range}

\section*{1-1 Free of charge warranty period}
(1) The product warranty period is " Three years from shipment"
(2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
(3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."

\section*{1-2 Warranty range}
(1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
1) The breakdown was caused by inappropriate conditions, environment, handling or use methods, etc. which are not specified in the catalog, operation manual, specifications or other relevant documents.
2) The breakdown was caused by the product other than the purchased or delivered Fuji's product.
3) The breakdown was caused by the product other than Fuji's product, such as the customer's equipment or software design, etc.
4) Concerning the Fuji's programmable products, the breakdown was caused by a program other than a program supplied by this company, or the results from using such a program.
5) The breakdown was caused by modifications or repairs affected by a party other than Fuji Electric.
6) The breakdown was caused by improper maintenance or replacement using consumables, etc. specified in the operation manual or catalog, etc.
7) The breakdown was caused by a chemical or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
8) The product was not used in the manner the product was originally intended to be used.
9) The breakdown was caused by a reason which is not this company's responsibility, such as lightning or other disaster.
(2) Furthermore, the warranty specified herein shall be limited to the purchased or delivered product alone.
(3) The upper limit for the warranty range shall be as specified in item (1) above and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from breakdown of the purchased or delivered product shall be excluded from coverage by this warranty.

\section*{1-3. Trouble diagnosis}

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, this company or its service network can perform the trouble diagnosis on a chargeable basis. In this case, the customer is asked to assume the burden for charges levied in accordance with this company's fee schedule.

\section*{2. Exclusion of Liability for Loss of Opportunity, etc.}

Regardless of whether a breakdown occurs during or after the free of charge warranty period, this company shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than this company's products, whether foreseen or not by this company, which this company is not be responsible for causing.
3. Repair Period after Production Stop, Spare Parts Supply Period (Holding Period)

Concerning models (products) which have gone out of production, this company will perform repairs for a period of 7 years after production stop, counting from the month and year when the production stop occurs. In addition, we will continue to supply the spare parts required for repairs for a period of 7 years, counting from the month and year when the production stop occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm at our company's business office or our service office.

\section*{4. Transfer Rights}

In the case of standard products which do not include settings or adjustments in an application program, the products shall be transported to and transferred to the customer and this company shall not be responsible for local adjustments or trial operation.

\section*{5. Service Contents}

The cost of purchased and delivered products does not include the cost of dispatching engineers or service costs. Depending on the request, these can be discussed separately.

\section*{6. Applicable Scope of Service}

Above contents shall be assumed to apply to transactions and use of the country where you purchased the products. Consult the local supplier or Fuji for the detail separately.

Notes

Notes

Notes

A complete and feature rich lineup of inverters from Fuji Electric.
\begin{tabular}{|c|c|c|}
\hline Applications & Series Name (Catalog No.) & Features \\
\hline \multirow{4}{*}{General Industrial equipment} & \begin{tabular}{l}
Compact inverter FRENIC-Mini \\
(MEH530)
\end{tabular} & \begin{tabular}{l}
- A frequency setting device is standard-equipped, making operation simple. \\
- Loaded with auto torque boost, current limiting, and slip compensation functions, all of which are ideal for controlling traverse conveyors. \\
- Loaded with the functions for auto energy saving operation and PID control, which are ideal for controlling fans and pumps
\end{tabular} \\
\hline & \begin{tabular}{l}
Fan, pump inverter FRENIC-ECO \\
(MEH532)
\end{tabular} & \begin{tabular}{l}
- Developed exclusively for controlling variable torque load like fans and pumps. \\
- Full of new functions such as auto energy saving, PID control, life warning, and switching sequence to the commercial power supply. \\
- Ideal for air conditioners, fans, pumps, etc. which were difficult to use with conventional general-purpose inverters because of cost or functions.
\end{tabular} \\
\hline & \begin{tabular}{l}
High performance, compact inverter FRENIC-Multi \\
(MEH531)
\end{tabular} & \begin{tabular}{l}
- The inverter featuring environment-friendly and long life design (10 years) complies with RoHS Directives (products manufactured beginning in the autumn of 2005). \\
- With expanded capacity range, abundant model variation, and simple and thorough maintenance, the Multi is usable for a wide range of applications. \\
- Equipped with the functions optimum for the operations specific to vertical and horizontal conveyance, such as hit-and-stop control, brake signal, torque limit, and current limit.
\end{tabular} \\
\hline & \begin{tabular}{l}
High-performance, multi-functional inverter
FRENIC-MEGA \\
(MEH535)
\end{tabular} & \begin{tabular}{l}
Three-phase 460V: 0.5 to 1000 HP , Three-phase 230V: 0.5 to 150 HP \\
- Loaded with vector control which is the peak of general purpose inverters. \\
- Prepared three types; the Standard Inverter, Inverter with Built-in DC Reactor. \\
- Maintainability is further improved with built-in USB port(option). \\
- The short-time acceleration and deceleration become enabled with achieving better rating of overload ratings at HD spec: \(200 \%\) for 3 sec and \(150 \%\) for 1 min and at LD spec: \(120 \%\) for 1 min
\end{tabular} \\
\hline
\end{tabular}

Consult the roman numeral numbered pages (starting with xii) in the FRENIC-MEGA Instruction Manual (INR-S147-1457). Requires derating of the drive. Select the VfD based on the output amperate rating.




\section*{NOTES}

When running general-purpose motors
- Driving a 400V general-purpose motor

When driving a 400 V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation
Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

\section*{- Vibration}

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine Operation of a 2 -pole motor at 60 Hz or more may cause abnormal vibration.
* Study use of tier coupling or dampening rubber.
* It is also recommended to use the inverter jump frequency control to avoid resonance points.

\section*{- Noise}

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60 Hz or more can also result in more noise.

\section*{When running special motors}

High-speed motors
When driving a high-speed motor while setting the frequency higher than 120 Hz , test the combination with another motor to confirm the safety of highspeed motors.

\section*{Explosion-proof motors}

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

\section*{Submersible motors and pumps}

These motors have a larger rated current than general-purpose motors. Select an inverter whose rated output current is greater than that of the motor.
These motors differ from general-purpose motors in thermal characteristics. Set a low value in the thermal time constant of the motor when setting the electronic thermal facility.

\section*{- Brake motors}

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur
Do not use inverters for driving motors equipped with series-connected brakes.

\section*{Geared motors}

If the power transmission mechanism uses an oil-
lubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

\section*{- Synchronous motors}

It is necessary to use software suitable for this motor type. Contact Fuji for details.

\section*{- Single-phase motors}

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.
*Even if a single-phase power supply is available, use a three-phase motor as the inverter provides three-phase output.

\section*{Environmental conditions}

\section*{- Installation location}

Use the inverter in a location with an ambient temperature range of -10 to \(50^{\circ} \mathrm{C}\).
The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal.
Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

\section*{Combination with peripheral devices}

\section*{- Installing a molded case circuit breaker (MCCB)}

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.
- Installing a magnetic contactor (MC) in the output (secondary) circuit If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.
- Installing a magnetic contactor (MC) in the input (primary) circuit
Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

\section*{- Protecting the motor}

The electronic thermal facility of the inverter can protect the motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.
If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).
- Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do
not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.
- Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

\section*{- Reducing noise}

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.
- Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system
We recommend connecting a DC REACTOR to the inverter.

\section*{- Megger test}

When checking the insulation resistance of the inverter, use a 500 V megger and follow the instructions contained in the Instruction Manual.

\section*{Wiring}
- Wiring distance of control circuit

When performing remote operation, use the twisted shield wire and limit the distance between the inverter and the control box to 20 m .
- Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50 m .
If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

\section*{- Wiring size}

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

\section*{- Wiring type}

Do not use multicore cables that are normally used for connecting several inverters and motors.

\section*{- Grounding}

Securely ground the inverter using the grounding terminal.

\section*{Selectng inverter capacity}
- Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.
- Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

\section*{Transportation and storage}

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

\section*{Fuji Electric Corp. of America}
```

47520 Westinghouse Drive Fremont, CA 94539
Tel. 510-440-1060
Fax. 510-440-1063
http://www.americas.fujielectric.com

[^0]: *2 Rated capacity is induction motor
 2 Rated capacity is calculated assuming the rated output voltage as 230 V for 230 V series and 460 V for 460 V series

[^1]: 1 Effective function in V/f contro
 *2 Effective function in dynamic torque vector control
 *3 Effective function when the slip compensation is made active under V/f control
 *4 Effective function under the V/f control with speed sensor (PG option is necessary.)
 *5 Effective function in dynamic torque vector control with speed sensor. (PG option is necessary.)

[^2]: *6 Effective function in vector control without speed sensor
 ${ }^{*} 7$ Effective function in vector control with speed sensor (PG option is necessary.)
 8 Function not incorporated in the inverters of initial version

