Make Life Easy:

# **User Manual**

Temperature Controller

# **TK Series**

TK\_EN\_MCT-TKU1-V2.7\_2202US

Thank you for purchasing an Autonics product.

This user manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access.



1 Product Introduction Autonics

### **Preface**

Thank you for purchasing an Autonics product.

Please familiarize yourself with the information contained in the Safety Precautions section before using this product.

This user manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access.

Autonics

### **User Manual Guide**

- Please familiarize yourself with the information in this manual before using the product.
- This manual provides detailed information on the product's features. It does not offer any guarantee concerning matters beyond the scope of this manual.
- This manual may not be edited or reproduced in either part or whole without permission.
- A user manual is not provided as part of the product package.
   Visit our web site (www.autonics.com) to download a copy.
- The manual's content may vary depending on changes to the product's software and other unforeseen developments within Autonics, and is subject to change without prior notice. Upgrade notice is provided through out homepage.
- We contrived to describe this manual more easily and correctly. However, if there are any corrections or questions, please notify us these on our homepage.

# **User Manual Symbols**

| Symbol           | Description                                                                  |
|------------------|------------------------------------------------------------------------------|
| <b>Note</b>      | Supplementary information for a particular feature.                          |
| <b>Marning</b>   | Failure to follow instructions can result in serious injury or death.        |
| <b>A</b> Caution | Failure to follow instructions can lead to a minor injury or product damage. |
| Ex.              | An example of the concerned feature's use.                                   |
| <b>*</b> 1       | Annotation mark.                                                             |

# **Safety Considerations**

 Following these safety precautions will ensure the safe and proper use of the product and help prevent accidents, as well as minimizing possible hazards.

Safety precautions are categorized as Warnings and Cautions, as defined below:

| <b>Marning</b> | Warning | Failure to follow the instructions may lead to a serious injury or accident. |
|----------------|---------|------------------------------------------------------------------------------|
|----------------|---------|------------------------------------------------------------------------------|

| Caution Caution | Failure to follow the instructions may lead to a minor injury or accident. |
|-----------------|----------------------------------------------------------------------------|
|-----------------|----------------------------------------------------------------------------|



### 🔽 Warning

 Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss. (e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.)

Failure to follow this instruction may result in fire, personal injury, or economic loss.

- Install on a device panel to use.
  - Failure to follow this instruction may result in electric shock or fire.
- Do not connect, repair, or inspect the unit while connected to a power source.
   Failure to follow this instruction may result in electric shock or fire.
- Check 'Connections' before wiring.
   Failure to follow this instruction may result in fire.
- Do not disassemble or modify the unit.
   Failure to follow this instruction may result in electric shock or fire.



#### Caution

■ When connecting the power input and relay output, use AWG 20(0.50mm²) cable or over and tighten the terminal screw with a tightening torque of 0.74 to 0.90N·m.

When connecting the sensor input and communication cable without dedicated cable, use AWG 28 to 16cable and tighten the terminal screw with a tightening torque of 0.74 to 0.90N·m.

Failure to follow this instruction may result in fire or malfunction due to contact failure.

- Use the unit within the rated specifications.
  - Failure to follow this instruction may result in fire or product damage.
- Use dry cloth to clean the unit, and do not use water or organic solvent.
   Failure to follow this instruction may result in electric shock or fire.
- Do not use the unit in the place where flammable/explosive/corrosive gas, humidity, direct sunlight, radiant heat, vibration, impact, or salinity may be present.
   Failure to follow this instruction may result in fire or explosion.
- Keep metal chip, dust, and wire residue from flowing into the unit.
   Failure to follow this instruction may result in fire or product damage.

# **Cautions during Use**

noise.

- Follow instructions in 'Cautions during Use'. Otherwise, It may cause unexpected accidents.
- Check the polarity of the terminals before wiring the temperature sensor.
   For RTD temperature sensor, wire it as 3-wire type, using cables in same thickness and length.
  - For thermocouple (CT) temperature sensor, use the designated compensation wire for extending wire.
- Keep away from high voltage lines or power lines to prevent inductive noise.
  In case installing power line and input signal line closely, use line filter or varistor at power line and shielded wire at input signal line.
  Do not use near the equipment which generates strong magnetic force or high frequency
- Do not apply excessive power when connecting or disconnecting the connectors of the product.
- Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power.
- Do not use the unit for other purpose (e.g. voltmeter, ammeter), but temperature controller.
- When changing the input sensor, turn off the power first before changing.
   After changing the input sensor, modify the value of the corresponding parameter.
- 24VAC, 24-48VDC power supply should be insulated and limited voltage/current or Class 2, SELV power supply device.
- Do not overlapping communication line and power line.
   Use twisted pair wire for communication line and connect ferrite bead at each end of line to reduce the effect of external noise.
- Make a required space around the unit for radiation of heat.
   For accurate temperature measurement, warm up the unit over 20 min after turning on the power.
- Make sure that power supply voltage reaches to the rated voltage within 2 sec after supplying power.
- Do not wire to terminals which are not used.
- This unit may be used in the following environments.
  - (1) Indoors (in the environment condition rated in 'Specifications')
  - ②Altitude max. 2,000m
  - 3 Pollution degree 2
  - 4 Installation category II

The above specifications are subject to change and some models may be discontinued without notice.

Be sure to follow cautions written in the instruction manual, user manual and the technical descriptions (catalog, homepage).

1 Product Introduction Autonics

# **Table of Contents**

|   | Prefac     | ce                                                                 | 3  |
|---|------------|--------------------------------------------------------------------|----|
|   | User N     | Manual Guide                                                       | 4  |
|   | User N     | Manual Symbols                                                     | 5  |
|   | Safety     | y Considerations                                                   | 6  |
|   | Cautio     | ons during Use                                                     | 7  |
|   | Table      | of Contents                                                        | 9  |
| 1 | Prod       | luct Introduction                                                  | 13 |
|   | 1.1        | Features                                                           | 13 |
|   | 1.2        | Components and Accessories                                         | 14 |
|   | 1.3        | Ordering information                                               | 20 |
|   | 1.4        | Parts descriptions                                                 | 22 |
| 2 | Spec       | cifications                                                        | 25 |
| 3 | -          | ensions                                                            |    |
| 4 |            | nections                                                           |    |
|   | 4.1        | Precautions for wiring                                             |    |
|   |            | 4.1.1 Sensor connection                                            | 35 |
|   |            | 4.1.2 Communication connection                                     | 36 |
| 5 | Prep       | aration and Startup                                                | 37 |
|   | 5.1        | Initial display when power ON                                      | 37 |
|   | 5.2        | Basic controls                                                     | 38 |
|   |            | 5.2.1 Parameter setting sequence                                   | 38 |
|   |            | 5.2.2 Set value (SV) setting                                       |    |
|   | <b>5</b> 0 | 5.2.3 MV monitoring and manual control                             |    |
|   | 5.3        | Parameter group                                                    |    |
|   | 5.4        | Parameter groups                                                   |    |
|   |            | 5.4.1 Parameter 1 group [PR- 1]5.4.2 Parameter 2 group [PR- 2]     |    |
|   |            | 5.4.3 Parameter 3 group [PRr 3]                                    |    |
|   |            | 5.4.4 Parameter 4 group [PR- 4]                                    |    |
|   |            | 5.4.5 Parameter 5 group [PAr 5]                                    |    |
| 6 | Para       | meter Settings and Functions                                       | 55 |
|   | 6.1        | Input                                                              | 55 |
|   |            | 6.1.1 Input types and temperature ranges                           | 55 |
|   |            | 6.1.2 Input type [PЯс∃ → I л- E]                                   |    |
|   |            | 6.1.3 Sensor temperature unit [P用r∃→Unl E]                         |    |
|   |            | 6.1.4 Analog input/scale value                                     |    |
|   |            | 6.1.5 Input correction [PAr∃→In-b]                                 |    |
|   |            | 6.1.7 High/Low-limit value of setting value(SV) [PAr∃ → H-5u/L-5u] |    |
|   |            | Control output                                                     |    |

|        | 6.2.1<br>6.2.2<br>6.2.3 | Control output mode [PAr∃ → o - F t ]                                                                                                                                                               | 66  |
|--------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | 6.2.4                   | Auto/Manual control settings                                                                                                                                                                        | 69  |
|        | 6.2.5                   | Output settings                                                                                                                                                                                     |     |
| 6.3    | •                       | rature control                                                                                                                                                                                      |     |
|        | 6.3.1<br>6.3.2          | Temperature control mode [PAr∃ → [ - n̄d ]                                                                                                                                                          |     |
|        | 6.3.3                   | ON/OFF control [PAr $\exists \rightarrow \exists \neg $                                                             |     |
|        | 6.3.4                   | Auto-tuning                                                                                                                                                                                         |     |
| 6.4    |                         | output                                                                                                                                                                                              |     |
|        | 6.4.1                   | Alarm operation [P用r Ч → 用L - 1/用L - 2/用L - 3]                                                                                                                                                      | 79  |
|        | 6.4.2                   | Alarm output options [PAr $\forall \rightarrow \exists \land \exists$               |     |
|        | 6.4.3                   | Alarm SV settings [PAr I → AL IL/AL IH/AL ZL/AL ZH/AL ZL/AL ZH/AL ZH]                                                                                                                               |     |
|        | 6.4.4                   | Alarm output hysteresis [PAr Ч → A I.HY/AZ.HY/A3.HY]                                                                                                                                                | 82  |
|        | 6.4.5                   | Alarm N.O./N.C. [PR-4 → R l.n/A2.n/A3.n]                                                                                                                                                            | 83  |
|        | 6.4.6                   | Alarm output delay settings                                                                                                                                                                         |     |
|        |                         | [PAr4 → A lon / A loF/A2.on / A2.oF/A3.on / A3.oF]                                                                                                                                                  |     |
|        | 6.4.7                   | Loop break alarm(LBA) [ $PRr4 \rightarrow RL - 1/RL - 2/RL - 3 \rightarrow LbR$ ]                                                                                                                   |     |
|        | 6.4.8                   | Sensor break alarm [ $PR-Y \rightarrow RL-1/RL-2/RL-3 \rightarrow 5bR$ ]                                                                                                                            |     |
|        | 6.4.9                   | Heater burnout alarm [ $PR_{-}4 \rightarrow RL - 1/RL - 2/RL - 3 \rightarrow HbR$ ]                                                                                                                 |     |
|        | 6.4.10                  | Alarm output deactivation [PRr5 → dl - L → RLrE]                                                                                                                                                    |     |
| 0.5    | 6.4.11                  | Alarm output examples                                                                                                                                                                               |     |
| 6.5    | _                       | transmission                                                                                                                                                                                        |     |
|        | 6.5.1<br>6.5.2          | Analog transmission output value settings [ $PRrY \rightarrow Ra.\bar{n} I/Ra.\bar{n}2$ ]  Transmission output high/low-limit value settings [ $PRrY \rightarrow F5LI/F5HI \rightarrow F5L2/F5H2$ ] |     |
| 6.6    | Commi                   | unication settings                                                                                                                                                                                  |     |
| 0.0    |                         | -                                                                                                                                                                                                   |     |
|        | 6.6.1<br>6.6.2          | Unit address settings [PAr Y → Adr 5]                                                                                                                                                               |     |
|        | 6.6.3                   | Communication parity bit [PArt → Prt]                                                                                                                                                               |     |
|        | 6.6.4                   | Communication stop bit settings [PAr 4 → 5 Ł P]                                                                                                                                                     |     |
|        | 6.6.5                   | Response wait time settings [PRr Ч→ r 5 ½ ½ ]                                                                                                                                                       |     |
|        | 6.6.6                   | Enable/Disable communication write[ฅฅ๙ฯ→ [ ๓ฉีษ]                                                                                                                                                    |     |
|        | 6.6.7                   | USB to Serial communication connection                                                                                                                                                              |     |
| 6.7    | Additio                 | nal features                                                                                                                                                                                        | 99  |
|        | 6.7.1                   | Monitoring                                                                                                                                                                                          | 99  |
|        | 6.7.2                   | RUN/STOP [PAr 1 → r - 5]                                                                                                                                                                            |     |
|        | 6.7.3                   | Multi SV                                                                                                                                                                                            |     |
|        | 6.7.4                   | Digital input                                                                                                                                                                                       | 102 |
|        | 6.7.5                   | Error                                                                                                                                                                                               |     |
|        | 6.7.6                   | User level setting [PRr5 → U5Er]                                                                                                                                                                    | 105 |
|        | 6.7.7                   | Lock settings                                                                                                                                                                                       | 105 |
|        | 6.7.8                   | Parameter reset [I nl E]                                                                                                                                                                            |     |
|        | 6.7.9                   | Password settings [P用r 5 → P º d ]                                                                                                                                                                  |     |
| Settir | າg groເ                 | up parameter description                                                                                                                                                                            | 108 |
| 7.1    | Setting                 | group [ 5 ]                                                                                                                                                                                         | 108 |
| 7.2    | MV mo                   | nitoring/manual control setting group [ กิบ ]                                                                                                                                                       | 108 |

7

|   | 7.3 | Parameter 1 setting group [ PR- 1 ] | 109 |
|---|-----|-------------------------------------|-----|
|   | 7.4 | Parameter 2 setting group [P유구근 ]   | 110 |
|   | 7.5 | Parameter 3 setting group [ PAr 3 ] | 112 |
|   | 7.6 | Parameter 4 setting group [ PAr 4 ] | 114 |
|   | 7.7 | Parameter 5 setting group [ PAr 5 ] | 116 |
|   | 7.8 | Password entry parameter            | 117 |
|   | 7.9 | Parameter change reset parameters   | 117 |
| 8 | DAQ | Master                              | 118 |
|   | 8.1 | Overview                            | 118 |
|   | 8.2 | Major features                      | 119 |
|   | 8.3 | Special feature for TK Series       | 121 |
|   |     | 8.3.1 Parameter mask                | 121 |
|   |     | 8.3.2 User parameter group [PA-U]   | 123 |

1 Product Introduction Autonics

#### 1 Product Introduction

#### 1.1 Features

TK Series – standard PID temperature controller – realizes more powerful control with super high-speed sampling cycles of 50 ms and  $\pm 0.3\%$  display accuracy. It supports diverse control modes including heating & cooling simultaneous control, and automatic/manual control and communication functions. In addition, TK Series covers all necessary features for high performance temperature controllers – that is, diverse input sensor support, multi SV setting, SSR drive output + current output, high resolution display and compact size.

- Improves convenience for parameter setting (using DAQMaster)
  - Parameter mask
     To hide parameters which are not unnecessary or not used frequently
  - User parameter group
     To group parameters which are used frequently as one group for more convenient setting
- Super high-speed sampling cycle (10 times faster compared to existing models);
   50 ms sampling cycle and ±0.3% display accuracy
- Improved visibility with wide display and high luminance LED
- High performance control with heating & cooling control and automatic/manual control modes
- Communication function supported: RS485 (Modbus RTU type)
- PC parameter setting (USB and RS 485 communication)
   Free download comprehensive device management program (DAQMaster)
  - **\*\*Communication converter, sold separately**
  - : SCM-WF48 (Wi-Fi to RS485·USB wireless communication converter), SCM-US48I (USB to RS485 converter), SCM-38I (RS232C to RS485 converter), SCM-US (USB to serial converter)
- Current output or SSR drive output selectable
- ON/OFF, Cycle, Phase control by SSRP function
- Heater burn-out alarm (CT input) (except TK4SP)
   \*\*CT, sold separately: CSTC-E80LN, CSTC-E200LN, CSTS-E80PP
- Multi SV setting function (Max. 4 ) selectable via digital input terminals
- Space saving mounting possible with compact design; downsized by 38% (depth-based)
- Multi-input/multi-range

### 1.2 Components and Accessories

#### (1) Components



**TK Series** 









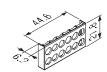
TK4S/SP only

**Bracket** 

TK4N only

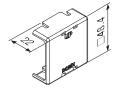
User manual

(unit: mm)




Make sure all of the above components are included with your product package before use. If a component is missing or damaged, please contact Autonics or your distributor. Visit www.autonics.com to download a copy of the user manual.

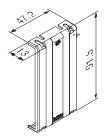
#### (2) Sold separately


Terminal cover

• TK4N-COVER (48×24mm)



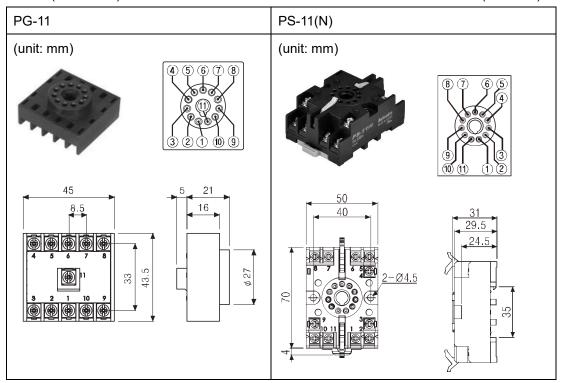
The cover for TK4N is an acessory.


 RSA-COVER (48×48mm)



• RMA-COVER




• RHA-COVER (48×96mm, 96×48mm)



RLA-COVER (96×96mm)



Socket (for TK4SP) (unit: mm)

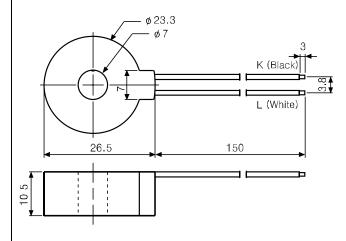


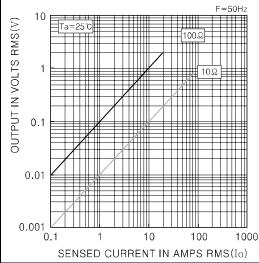
Communication converter

| SCM-WF48 (Wi-Fi to RS485·USB wireless communication converter) | SCM-US48I<br>(USB to RS485 converter) |
|----------------------------------------------------------------|---------------------------------------|
| CE                                                             | C E III                               |
| SCM-38I<br>(RS232C to RS485 converter)                         | SCM-US<br>(USB to Serial converter)   |
| CE C                                                           |                                       |

#### Current transformer(CT)

#### CSTC-E80LN


• Max. load current: 80A (50/60Hz)


\*Max. load current for TK4 Series is 50A.

• Current ratio: 1/1000

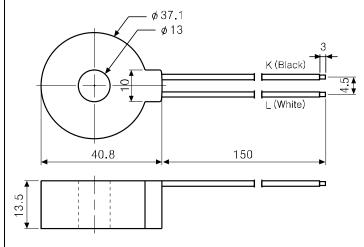
• Wire wounded resistance:  $31\Omega \pm 10\%$ 

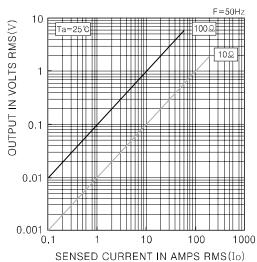
(unit: mm)





#### CSTC-E200LN


• Max. load current: 200A (50/60Hz)


\*Max. load current for TK4 Series is 50A.

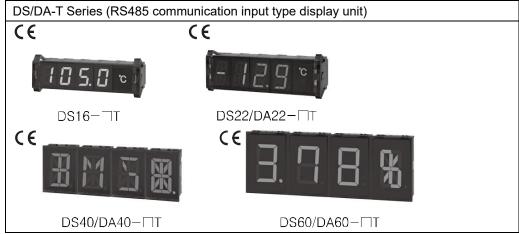

• Current ratio: 1/1000

• Wire wounded resistance: 20Ω±10%

(unit: mm)










For using CT, do not supply first part current when opening CT output. It occurs high voltage at CT output part.

Using current of above CTs are same as 50A. But be sure that inner hole sizes are different. Select it properly for the environment.

Display unit



Connect RS485 communication input type display unit (DS/DA-T Series) and TK Series, the display unit displays present value of the device without PC/PLC.



Images of components and accessories may differ from actual products.

For detailed information about any of the above products, please refer to the concerned product's user manual.

Visit our website (www.autonics.com) to download copies of the user manuals.

### 1.3 Ordering information

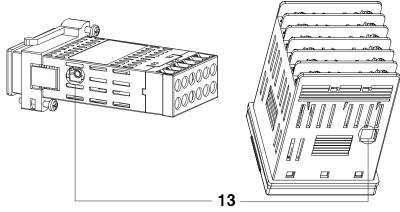
| TK | 4 | S | - 1 | 4 | R | R |
|----|---|---|-----|---|---|---|
| 1  |   |   |     |   |   |   |

| Category                                                     |                          |       |   | Description                                                            |  |  |  |
|--------------------------------------------------------------|--------------------------|-------|---|------------------------------------------------------------------------|--|--|--|
| ① Item TK                                                    |                          |       |   | Temperature/Process controller                                         |  |  |  |
| ② Digit                                                      | 4                        |       |   | 9999(4digit)                                                           |  |  |  |
|                                                              | N                        |       |   | DIN W48×H24mm                                                          |  |  |  |
|                                                              | SP                       |       |   | DIN W48×H48mm (11 pin plug type) <sup>×1</sup>                         |  |  |  |
|                                                              | S                        |       |   | DIN W48×H48mm (terminal block type)                                    |  |  |  |
| 3 Size                                                       | М                        |       |   | DIN W72×H72mm                                                          |  |  |  |
|                                                              | W                        |       |   | DIN W96×H48mm                                                          |  |  |  |
|                                                              | Н                        |       |   | DIN W48×H96mm                                                          |  |  |  |
|                                                              | L                        |       |   | DIN W96×H96mm                                                          |  |  |  |
|                                                              |                          |       |   | Standard: Alarm output 1+CT input <sup>×3,</sup>                       |  |  |  |
|                                                              |                          | 1     |   | Heating&Cooling: Alarm output 2 <sup>×4</sup>                          |  |  |  |
|                                                              |                          | 2     |   | Standard: Alarm output 1+Alarm output 2                                |  |  |  |
|                                                              | N                        | D     |   | Standard: Alarm output 1+Digital input(DI-1, DI-2)                     |  |  |  |
|                                                              |                          | R     |   | Standard: Alarm output 1+Digital input, Heating&Cooling: Trans. output |  |  |  |
|                                                              |                          | Т     |   | Standard: Alarm output 1+RS485com. output                              |  |  |  |
|                                                              |                          | ı     |   | Heating&Cooling: RS485com. output                                      |  |  |  |
| 4 Input/Output                                               | S<br>P                   | 1     |   | Alarm output 1                                                         |  |  |  |
| Option <sup>*2</sup>                                         |                          | 1     |   | Alarm output 1                                                         |  |  |  |
|                                                              |                          | 2     |   | Alarm output 1+Alarm output 2                                          |  |  |  |
|                                                              | S                        | R     |   | Alarm output 1+Trans. output                                           |  |  |  |
|                                                              | M                        | Т     |   | Alarm output 1+RS485com. output                                        |  |  |  |
|                                                              | W                        | Α     |   | Alarm output 1+Alarm output 2+Trans. output                            |  |  |  |
|                                                              | L                        | В     |   | Alarm output 1+Alarm output 2+<br>RS485 com. output                    |  |  |  |
|                                                              |                          | D     |   | Alarm output 1+Alarm output 2+                                         |  |  |  |
|                                                              |                          |       |   | Digital input(DI-1, DI-2) <sup>×5</sup>                                |  |  |  |
| ⑤ Power Supply                                               | 2**6                     |       |   | 24VAC 50/60Hz, 24-48VDC                                                |  |  |  |
| 3 1 Ower Supply                                              | 4                        |       |   | 100 to 240VAC, 50/60Hz                                                 |  |  |  |
|                                                              | R                        |       |   | Relay output                                                           |  |  |  |
| <ul><li>⑥ OUT1 Control</li><li>Output<sup>※7</sup></li></ul> | S**8                     |       |   | SSR drive output(standard ON/OFF, cycle, phase control)                |  |  |  |
| ,                                                            | С                        |       |   | Current output or SSR drive output selectable                          |  |  |  |
|                                                              |                          |       |   | None                                                                   |  |  |  |
| ⑦ OUT2 Control                                               | Sta                      | ndard | N |                                                                        |  |  |  |
| Output <sup>×9</sup>                                         | Heating & R              |       | R | Relay output                                                           |  |  |  |
|                                                              | Cooling <sup>×10</sup> C |       |   | Current output or SSR drive output selectable                          |  |  |  |

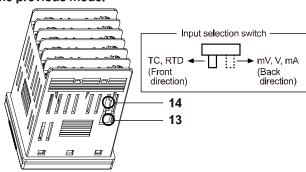
- ※1. 11Pin socket(PG-11, PS-11(N)): Sold separately
- ※2. In case of TK4N/TK4SP Series, option control output selection and digital input will be limited due to number of terminals.
- X3. The CT input model of TK4N is selectable only for standard model which has alarm 1.
- ※4. The Heaing & Cooling model of TK4N-1□□□ has only alarm output 2.
- ※5. Only for TK4S-D□□□, OUT2 output terminal is used as DI-2 input terminal.
- ※6. Does not support in TK4N.
- ※7. "S" represents SSR drive output support models which SSRP function (standard ON/OFF, cycle, phase)control are available. "C" represents selectable current and SSR drive output support models.
- %8. Does not support in AC/DC voltage type model.
- $\times$ 10. In case of Relay OUT2 model, alarm output 3 is available only when control output operation mode [a F + E] is set heating [H + E + E] or cooling [E + B + E]. In case of current output, trans. output 2 is available only when control output operation mode [a F + E] is set heating [H + E + E] or cooling[E + B + E].



CT (Current Transformer) input is supported by all models.


However, TK4SP (11 pin plug type) does not support CT input due to its limited number of terminal blocks.

### 1.4 Parts descriptions




#### **TK4N Series**

#### **Other Series**



#### The previous model



- Measured value(PV) display part: RUN mode: It displays currently measured value (PV). Setting mode: It displays the parameter.
- Set value (SV) display part:
   RUN mode: It displays the set value (SV).
   Setting mode: It displays the set value of the parameter.
- ③ Unit(°C/°F/%) indicator: It displays the unit set at display unit [⊔¬Ł] in parameter 3 group. (TK4N Seires does not support '%' unit.)
- Manual control indicator: It turns ON during manual controlling.
- Multi SV indicator: One of SV1 to 3 indicator will be ON in case of selecting multi SV function.
- 6 Auto tuning indicator: It flashes by 1 sec. when executing auto tuning.

- ② Alarm output (AL1, AL2) indicator: It turns ON when the alarm output is ON.
- Control output (OUT1, OUT2) indicator: It turns ON when the control output is ON.
   During cycle/phase controlling in SSRP function model (TK4□-□4S□)type, when MV is over 5.0%, it turns ON.
  - $\times$  To use current ouput, when MV is 0.0% in manual control, it turns OFF. Otherwise, it always turns ON. When MV is over 3.0% in auto control, it turns ON and when MV is below 2.0%, it turns OFF.
- M key: It is used when switching auto control to manual control.
  - $\times$  TK4N/S/SP do not have the  $\boxed{\text{A/M}}$  key. The  $\boxed{\text{MODE}}$  key operates switching simultaneously.
- (III) MODE key: It is used when entering parameter group, returning to RUN mode, moving parameter, saving the set value.
- (I) (I) key: It is used when entering the set value changing mode and moving or changing up/down digit.
- ② Digital input key: When pressing the ❤️�️ keys for 3 sec. at the same time, it operates the function (RUN/STOP, alarm clear,auto tuning) set at digital input key [♂ ♡] in parameter 5 group.
- PC loader port: It is the PC loader port for serial communication to set parameter and
  monitoring by DAQMaster installed in PC. Use this for connecting SCM-US(USB to Serial
  converter, sold separately).
- Input selection switch: Used when switching sensor (TC, RTD) input 
   ⇔ analog input(mV, V, mA) (only the previous models)



#### 7-Segment Display Characters

| A | Ь | С | Ь | Ε | F | G | Н | 1 | J | F | L  | ō |
|---|---|---|---|---|---|---|---|---|---|---|----|---|
| Α | В | С | D | Е | F | G | Н | ı | J | K | L  | М |
| n | 0 | Р | 9 | r | 5 | Ł | П | п | ñ | 4 | У  | Ξ |
| N | 0 | Р | Q | R | S | Т | U | V | W | Х | Υ  | Z |
| 0 | 1 | 2 | 3 | 4 | 5 | 5 | 7 | 8 | 9 | 0 | 4  | ۲ |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | -1 | 1 |

1 Product Introduction Autonics

### 2 Specifications

| Series          |                           | TK4N                                                                                 | TK4SP                                                                                                                                                                                                                                                       | TK4S                                            | TK4M           | TK4W            | TK4H           | TK4L                       |  |  |  |  |  |
|-----------------|---------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------|-----------------|----------------|----------------------------|--|--|--|--|--|
| Power           | AC voltage                | 100-240VA                                                                            | AC∼, 50/60H                                                                                                                                                                                                                                                 | łz                                              |                |                 |                |                            |  |  |  |  |  |
| supply          | AC/DC voltage             | -                                                                                    | - 24VAC~ 50/60Hz, 24-48VDC==<br>±10% of rated voltage                                                                                                                                                                                                       |                                                 |                |                 |                |                            |  |  |  |  |  |
| Allowab         | e voltage range           | ±10% of rated voltage                                                                |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| Power           | AC voltage                | Max. 6VA                                                                             | Max. 8VA                                                                                                                                                                                                                                                    |                                                 |                |                 |                |                            |  |  |  |  |  |
| consu<br>mption | AC/DC voltage             | -                                                                                    | Max. 8VA(2                                                                                                                                                                                                                                                  | 24VAC $\sim$ 50/6                               | 60Hz), max. (  | 5W(24-48VD      | C=)            |                            |  |  |  |  |  |
| Display         | method                    | 7-segment                                                                            | (PV: red, S                                                                                                                                                                                                                                                 | /: green), oth                                  | er display pa  | rt (green, yell | ow, red) LED   | method                     |  |  |  |  |  |
| Charact         | er PV(W×H)                | 4.5 × 7.2<br>mm                                                                      | 7.0×14.0mr                                                                                                                                                                                                                                                  | m                                               | 9.5×20.0<br>mm | 8.5×17.0<br>mm  | 7.0×14.6<br>mm | 11.0×22.0<br>mm            |  |  |  |  |  |
| size            | SV(W×H)                   | 3.5 × 5.8<br>mm                                                                      | 5.0×10.0mr                                                                                                                                                                                                                                                  | m                                               | 7.5×15.0<br>mm | 6.0×12.0<br>mm  | 6.0×12.0<br>mm | 7.0×14.0<br>mm             |  |  |  |  |  |
|                 | RTD                       | JPt 100Ω,                                                                            | DPt 100Ω, D                                                                                                                                                                                                                                                 | )Pt 50Ω, Cu 1                                   | 00Ω, Cu 50Ω    | 2, and Nikel 1  | 120Ω (6 types  | s)                         |  |  |  |  |  |
| Input typ       | e TC                      | K, J, E, T,                                                                          | L, N, U, R, S                                                                                                                                                                                                                                               | , B, C, G, and                                  | PLII (13 type  | es)             |                |                            |  |  |  |  |  |
| . ,,            | Analog                    |                                                                                      |                                                                                                                                                                                                                                                             | /, 1-5V, and 0<br>-20mA (2 type                 | ` .            | s)              |                |                            |  |  |  |  |  |
|                 | RTD                       | At room te                                                                           | mperature (2                                                                                                                                                                                                                                                | 3°C ± 5°C): (F                                  | PV ± 0.3% or   | ± 1°C, select   | the higher on  | e) ± 1-digit <sup>×1</sup> |  |  |  |  |  |
| Display         | тс                        |                                                                                      | At room temperature (23°C $\pm$ 5°C): (PV $\pm$ 0.3% or $\pm$ 1°C, select the higher one) $\pm$ 1-digit Out of room temperature ranges: (PV $\pm$ 0.5% or $\pm$ 2°C, select the higher one) $\pm$ 1-digit In case of TK4SP Series, $\pm$ 1°C will be added. |                                                 |                |                 |                |                            |  |  |  |  |  |
| accurac         | /<br>Analog               |                                                                                      | At room temperature (23°C ± 5°C): ± 0.3% F.S. ± 1-digit  Out of room temperature ranges: ± 0.5% F.S. ± 1-digit                                                                                                                                              |                                                 |                |                 |                |                            |  |  |  |  |  |
|                 | CT Input                  | ± 5% F.S. ± 1 digit                                                                  |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
|                 | Relay                     | OUT1, OUT2: 250VAC~ 3A 1a                                                            |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| Control         | SSR                       | Max.11VDC== ± 2V 20mA                                                                |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| output          | Current                   | DC4-20mA or DC0-20mA selectable (resistance load max. 500Ω)                          |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| Alarm<br>output | Relay                     | AL1, AL2:                                                                            | 250VAC~ 3.                                                                                                                                                                                                                                                  |                                                 |                |                 | ,              |                            |  |  |  |  |  |
| Option          | Transmissio n output      | DC4-20mA (resistance load max. 500Ω, output accuracy: ±0.3% F.S)                     |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| output          | Comm.                     | RS485 Communication Output (Modbus RTU)                                              |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
|                 | СТ                        | 0.0-50.0A (primary heater current reading range) **CT Ratio is 1/1000 (except TK4SP) |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| Ontina          |                           | Contact in                                                                           | put - ON: ma                                                                                                                                                                                                                                                | x. 2kΩ, OFF:                                    | min. 90kΩ      |                 |                |                            |  |  |  |  |  |
| Option<br>input | Digital input             | Leakage c                                                                            | urrent: appro                                                                                                                                                                                                                                               | residual voltag<br>ox. 0.5mA per<br>□□□: 2, TK4 | input          |                 | -              |                            |  |  |  |  |  |
| Control type    | Heating, cooling Heating& | ON/OFF, P, PI, PD, PID control mode                                                  |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
| Hysteres        | Cooling                   | RTD/ Thermocouples: 1 to 100°C/°F (0.1 to 100.0°C/°F) variable                       |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |
|                 |                           |                                                                                      | to 100-digit                                                                                                                                                                                                                                                |                                                 |                |                 |                |                            |  |  |  |  |  |
| Proportion      | onal band (P)             | 0.1 to 999.9°C/°F (0.1 to 999.9%)                                                    |                                                                                                                                                                                                                                                             |                                                 |                |                 |                |                            |  |  |  |  |  |

| Integral tin          | ne (I)        | 0 to 9999s                                                                                                                         | 0 to 9999sec                                                                                                    |                                        |                                        |                                  |                                        |  |  |  |
|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|--|--|--|
| Derivative            | time (D)      | 0 to 9999sec                                                                                                                       |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Control pe            | riod (T)      |                                                                                                                                    | Relay output, SSR drive output: 0.1 to 120.0 sec Current output+SSR drive output: 1.0 to 120.0 sec              |                                        |                                        |                                  |                                        |  |  |  |
| Manual re             | set value     | 0.0 to 100                                                                                                                         | .0%                                                                                                             |                                        |                                        |                                  |                                        |  |  |  |
| Sampling              | period        | 50 ms                                                                                                                              |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Dielectric            | strength      | 2,000 VAC                                                                                                                          | 50/60 Hz for                                                                                                    | r 1 min (betw                          | een power so                           | ource terminal and input te      | erminal)                               |  |  |  |
| Vibration r           | esistance     | 0.75mm a<br>for 2 hours                                                                                                            |                                                                                                                 | equency 5 to                           | 55 Hz (for 1                           | min) in each X, Y, Z direct      | ion                                    |  |  |  |
| Relay<br>life         | Mechanical    |                                                                                                                                    | OUT1/OUT2: min. 5,000,000 operations<br>AL1/2: min. 20,000,000 operations (TK4H/W/L: Min. 5,000,000 operations) |                                        |                                        |                                  |                                        |  |  |  |
| cycle                 | Electrical    | OUT1/OU                                                                                                                            | T2, AL1/2: mi                                                                                                   | n. 100,000 o                           | perations                              |                                  |                                        |  |  |  |
| Insulation            | resistance    | Over 100MΩ (at 500VDC megger)                                                                                                      |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Noise resi            | stance        | Square shaped noise by noise simulator (pulse width 1 μs) ±2 kV R-phase, S-phase                                                   |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Memory re             | etention      | Approx. 10 years (non-volatile semiconductor memory type)                                                                          |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Environ               | Ambient temp. | -10 to 50°C, storage: -20 to 60°C                                                                                                  |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| -ment                 | Ambient humi. | 35 to 85% RH, storage: 35 to 85% RH                                                                                                |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Protection            | •             | IP65 (front panel) **TK4SP: IP50 (front panel)                                                                                     |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Insulation            | type          | Double insulation or reinforced insulation (mark: □, dielectric strength between the measuring input part and the power part: 2kV) |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Approval              |               | C € c <b>22</b> °us                                                                                                                |                                                                                                                 |                                        |                                        |                                  |                                        |  |  |  |
| Weight <sup>**2</sup> |               | Approx.<br>140 g<br>(approx.<br>70 g)                                                                                              | Approx.<br>130 g<br>(approx.<br>85 g)                                                                           | Approx.<br>150 g<br>(approx.<br>105 g) | Approx.<br>210 g<br>(approx.<br>140 g) | Approx. 211 g<br>(approx. 141 g) | Approx.<br>249 g<br>(approx.<br>198 g) |  |  |  |

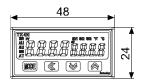
※1. At room Temperature range(23°C ± 5°C)

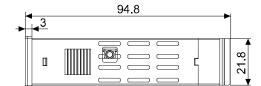
- TC K, J, T, N, E type, below -100°C / TC L, U, PLΠ, RTD Cu50Ω, DPt50Ω: (PV ±0.3% or ±2°C, select the higher one) ± 1-digit
- TC C, G, R, S type bellow 200°C: (PV ±0.3% or ±3°C, select the higher one)
   ± 1-digit
- TC B type, below 400°C: there is no accuracy standard.

#### Out of room temperature range

- RTD Cu50 $\Omega$ , DPt50 $\Omega$ : (PV ±0.5% or ±3°C, select the higher one) ±1-digit
- TC R, S, B, C, G type: (PV ±0.5% or ±5°C, select the higher one) ±1-digit
- Others, Below -100°C, within ±5°C

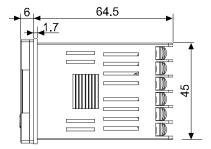
In case of TK4SP Series, ±1°C will be added to the degree standard.


×2. The weight includes packaging. The weight in parenthesis is unit only.

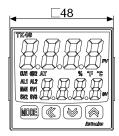

XEnvironment resistance is rated at no freezing or condensation.

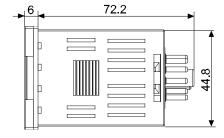
### 3 Dimensions

(unit: mm)

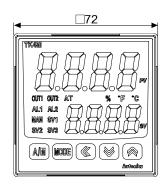

#### (1) TK4N Series

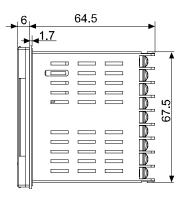




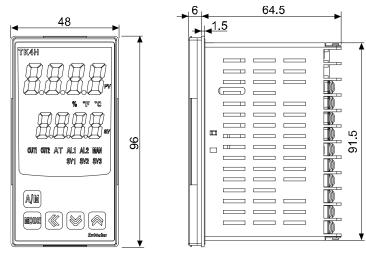


#### (2) TK4S Series



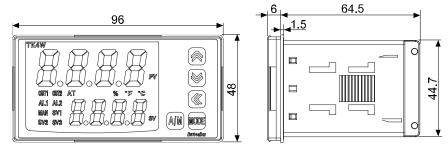




#### (3) TK4SP Series

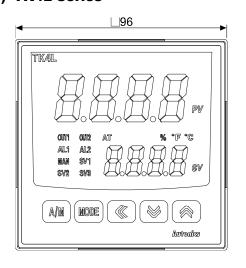





#### (4) TK4M Series



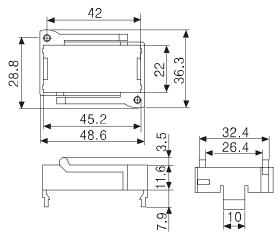




#### (5) TK4H Series

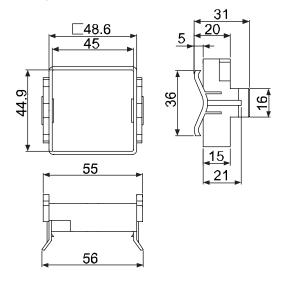


#### (6) TK4W Series

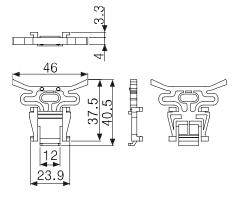



#### (7) TK4L Series



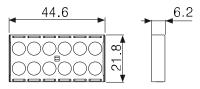



#### (8) Bracket


TK4N Series

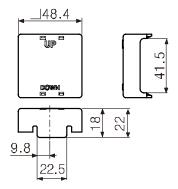


TK4S, TK4SP Series

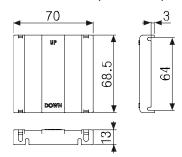



■ TK4M/W/H/L Series

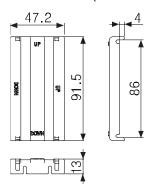



#### (9) Terminal cover (sold separately)

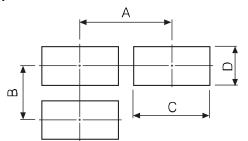
TK4N COVER (48×24mm)




**XTK4N COVER is accessory.** 


■ RSA-COVER (48×48mm)




■ RMA-COVER (72×72mm)



■ RHA-COVER (48×96mm, 96×48mm)



#### (10) Panel cut-out

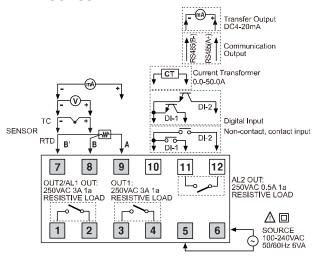


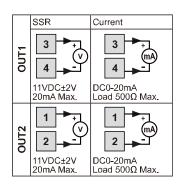
|            | (unit: mm) |          |                    |                    |
|------------|------------|----------|--------------------|--------------------|
| Model Size | Α          | В        | С                  | D                  |
| TK4N       | Min. 55    | Min. 37  | 45 <sup>+0.6</sup> | 22.2 0 0           |
| TK4S       | Min. 65    | Min. 65  | 45 0 45            | 45 <sup>+0.6</sup> |
| TK4SP      | Min. 65    | Min. 65  | 45 <sup>+0.6</sup> | 45 <sup>+0.6</sup> |
| TK4M       | Min. 90    | Min. 90  | 68 <sup>+0.7</sup> | 68 <sup>+0.7</sup> |
| TK4H       | Min. 65    | Min. 115 | 45 <sup>+0.6</sup> | 92 0               |
| TK4W       | Min. 115   | Min. 65  | 92 0 0             | 45 <sup>+0.6</sup> |
| TK4L       | Min. 115   | Min. 115 | 92 0 0             | 92 0 0             |

#### Installation

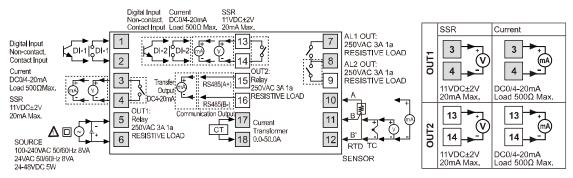


3 Dimensions Autonics


#### 4 Connections


Be sure that the polarity for input connectiong a temperature sensor or analog input. Standard model has shaded terminals only.

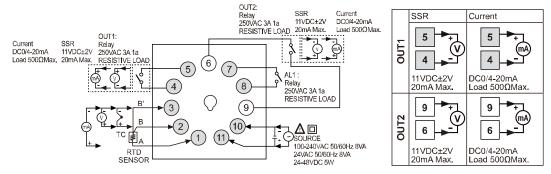
When the operation mode of heating&cooling OUT2 relay output model is heating or cooling control, the OUT2 is usable as alarm output 3(except TK4N).


When the operation mode of heating & cooling OUT2 current model is heating or cooling control, the OUT2 is usable as transmisstion output 2.

#### (1) TK4N Series



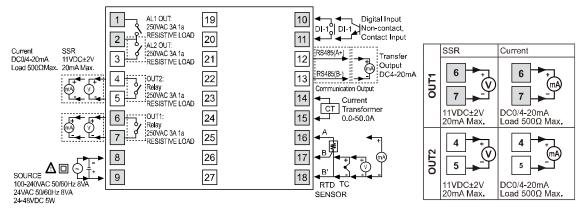



#### (2) TK4S Series





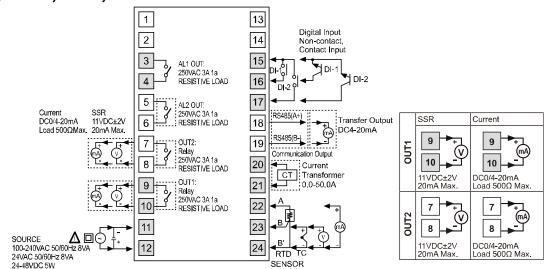
Features one digital input terminal (DI-1) due to limited number of terminal blocks. Supports two multi SVs (SV1 and SV2) only.


#### (3) TK4SP Series





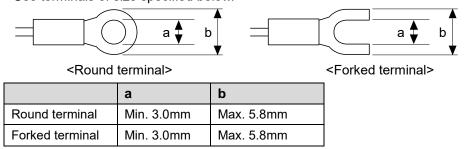
Does not feature any digital input terminal due to limited number of terminal blocks. 11Pin Socket(PG-11, PS-11): Sold separately


#### (4) TK4M Series





Features one digital input terminal (DI-1) due to limited number of terminal blocks. Supports two multi SVs (SV1 and SV2) only.


#### (5) TK4W, TK4H, TK4L Series



X Digital input is not electrically insulated from internal circuits, so it sholud be insulated when connecting other circuits. (photocoupler, relay, independent switch)

### 4.1 Precautions for wiring

- Mixing up the input terminals with output terminals and vice versa can lead to product damage.
- Use only sensors supported by the product.
- Make sure to connect rated SSRs or loads to the output terminals. Make sure to connect communication cable with correct communication terminals (A, B).
- Make sure to observe correct polarity of power source terminals. (+ and -).
- Make sure to connect correct polarity of temperature sensor and analog input.
- Use terminals of size specified below.



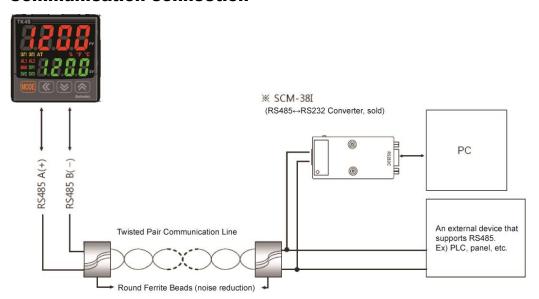
#### 4.1.1 Sensor connection

Compensation Wire Connection

For thermocouple sensors, use compensation wire of the same specification as input sensors. Using an extension wire of different specifications and/or material will increase inaccuracy of temperature sensing. It is recommended to choose high performance compensation wire for more reliable sensing.

Measurement Error

Do not mix up the direction of the input sensor connector.


Carefully adjust both load and sensor positions.

Make sure the sensor is securely attached to the input connector.

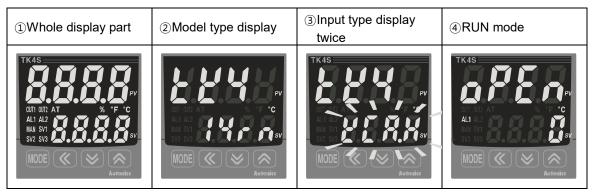
AC Power Cable and Wiring

Do not put the sensor lines in close proximity of the AC power lines.

#### 4.1.2 Communication connection






Do not tie together with the AC power line and communication line. Only use twisted pair wires for the communication lines. Do not allow the communication line to exceed 800m in length.

For further details, please refer to '6.6 Communication'.

# 5 Preparation and Startup

# 5.1 Initial display when power ON

When power is supplied, whole display parts flash for 1 sec. Afterwards, model name and input sensor type will be flash twice and then in enters into RUN mode.



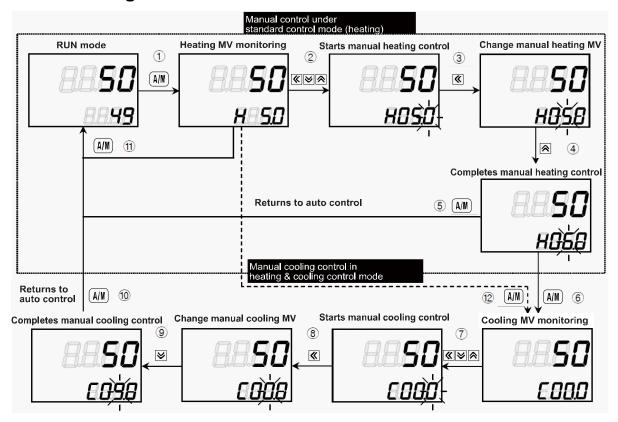
| SV display part Display t |                | Display type       | Тур | e                                                                                               |  |
|---------------------------|----------------|--------------------|-----|-------------------------------------------------------------------------------------------------|--|
|                           |                |                    | 1   | Standard: Alarm output1+CT input<br>Heating & Cooling: Alarm output2                            |  |
|                           |                |                    | 2   | Standard: Alarm output1+Alarm output2                                                           |  |
| 1,2,d,r,Ł                 | TK4N           |                    | Ь   | Standard: Alarm output1+Digital input(DI-1, DI-2) Heating & Cooling: Digital input (DI-1, DI-2) |  |
|                           |                |                    | ٢   | Standard: Alarm output1+Trans. output Heating & Cooling: Trans. output                          |  |
|                           |                | Option<br>Input/   | Ł   | Standard: Alarm output1+RS485 com. output Heating & Cooling: RS485 comm. output                 |  |
|                           |                | Output             | 1   | Alarm output1                                                                                   |  |
|                           |                |                    | 2   | Alarm output1+Alarm output2                                                                     |  |
|                           | TI ( 40 (0 D ) | K4S/SP/<br>I/W/H/L | ۲   | Alarm output1+ Trans. output                                                                    |  |
| 1,2, ,, €, ₽,             |                |                    | Ł   | Alarm output1+RS485 com. output                                                                 |  |
| Ь, d                      | M/W/H/L        |                    | A   | Alarm output1/2+ Trans. output                                                                  |  |
|                           |                |                    | Ь   | Alarm output1/2+RS485 com. output                                                               |  |
|                           |                |                    | Ь   | Alarm output1/2+ Digital input(DI-1, DI-2)                                                      |  |
| Ч                         |                | Power supply       | 100 | 0-240VAC 50/60Hz                                                                                |  |
|                           |                | OUT1               | ٦   | Relay contact                                                                                   |  |
| r,5,E                     | ٢,5,[          |                    | 5   | SSR drive output (standard ON/OFF, cycle, phase control)                                        |  |
|                           |                | output             | Ε   | Current + SSR drive output                                                                      |  |
| n,r,E                     |                | OUT2<br>control    | c   | None                                                                                            |  |
|                           |                |                    | ٦   | Relay contact                                                                                   |  |
|                           |                | output             | Ε   | Current + SSR drive output                                                                      |  |

## 5.2 Basic controls

## **5.2.1** Parameter setting sequence

Parameters of each group are connected each other. Therefore, follow the below parameter order.

Parameter 3 Group  $[PRr3] \rightarrow Parameter 4$  Group  $[PRr4] \rightarrow Parameter 5$  Group  $[PRr5] \rightarrow Parameter 2$  Group  $[PRr2] \rightarrow Parameter 1$  Group  $[PRr4] \rightarrow SV$  Setting [5u]




Changing Parameter 3 Group's parameters can sometimes reset other associated parameters. Always make sure to check if such parameters have been affected.

## 5.2.2 Set value (SV) setting

| 1 | OJT OUT AT % FCC ALI AL2 MAN SVI SV2 SV3      | Press any key among ﴿, ﴿, ﴿, ♠ in RUN mode to enter SV setting mode. Last digit (10 <sup>0</sup> digit) on SV display part flashes. |
|---|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2 | OUT OUT AT % 'F ALT ALZ HAN SYI SYZ SY3  MODE | Press the $\bigcirc$ key to move digit. $ (10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0) $              |
| 3 | OJT OUT AT % F CC. ALI AL2 MAN SVI SV2 SV3    | Press the ☑, ເ keys to raise or lower the set value.                                                                                |
| 4 | OIT OUZ AT  ALT ALZ  SVZ SV3  Autonics        | Press the week to save the set value. If there is no additional key operations in 3 sec., the changed SV is automatically saved.    |

### 5.2.3 MV monitoring and manual control



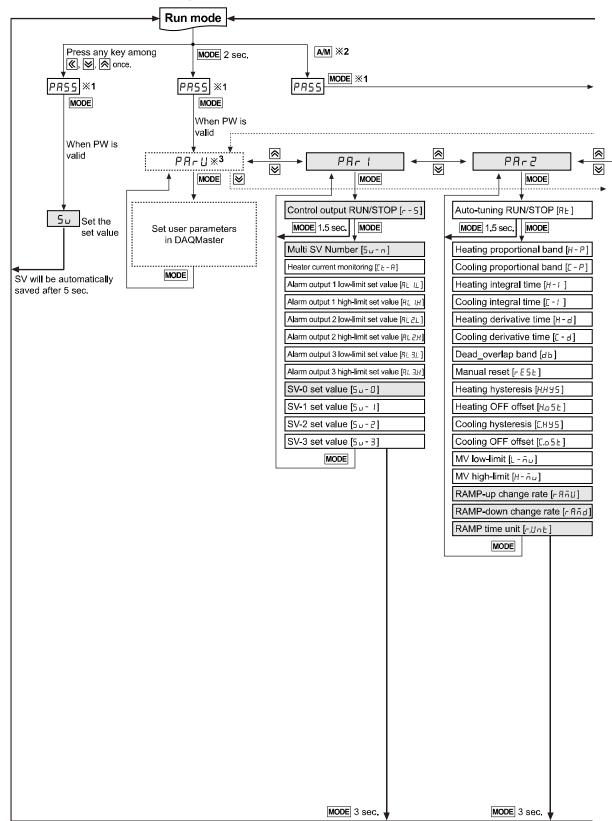
- While in RUN mode, press the (AM) key to commence manual control. The SV display will then show H (heating control) or C (cooling control) and simultaneously display the MV to indicate commencement of MV monitoring.
- ② If the **⋖**, **y**, or **a** is pressed while MV monitoring is in progress, the MAN indicator will turn on and the last digit will start to flash to indicate activation of manual control.

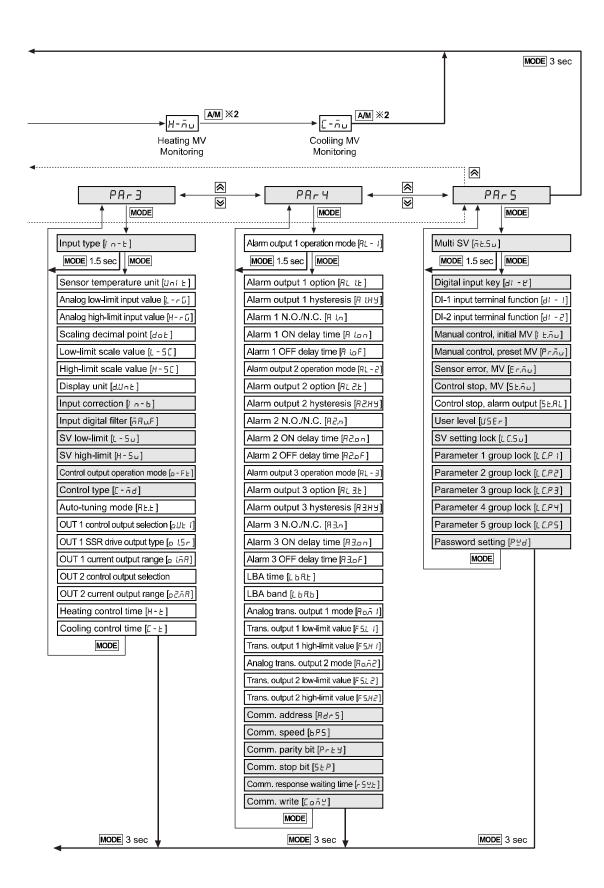
- (5) To end manual control, press the (AM) key. The MAN indicator will turn off, and the system will revert to auto control mode.
- While in heating & cooling control mode, set the manual heating MV and then press the key to see C (cooling control) and the current cooling MV value on the SV display indicating commencement of cooling MV monitoring.
- If the 
   , 
   or 
   is pressed while MV monitoring is in progress, the MAN indicator turns on and the last digit starts to flash to indicate activation of manual control.
- (8) Press the  $\bigcirc$  key to change the flashing digit  $(10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0)$ .
- (9) Select the digit and configure desired cooling MV value using the ⋈. keys.
- To end manual control, press the key. The MAN indicator will turn off, and the system will revert to auto control mode.
- While in standard control mode (heating control or cooling control), pressing the once from the MV monitoring stage, or any other stage, will revert the system to auto control mode.
- During heating & cooling control mode, pressing the (AM) key once from the MV monitoring stage, or any other stage, will skip the system to the cooling MV monitoring stage.

5 Preparation and Startup Autonics



For heating & cooling control, the system reverts to auto control after going through heating monitoring, manual heating control, cooling monitoring, and manual cooling control stages in sequence.


Heating MV remains in effect during cooling monitoring and manual cooling control.


When setting ditial input function as AUTO/MANUAL, MV monitoring and control status

| Control status | MV          | Monitoring |  |
|----------------|-------------|------------|--|
| AUTO           | Not changed | Avaliable  |  |
| MANUAL         | Changeable  | Avaliable  |  |

TK4N/S/SP model's the key alternates the key.

# 5.3 Parameter group

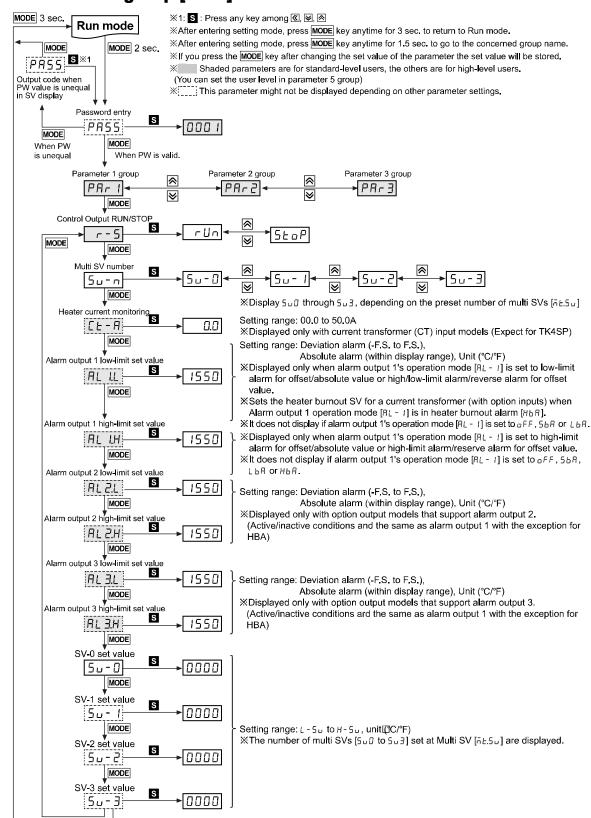




※1.PR55 parameter will be displayed only when password is set. It is not displayed when
purchasing the unit since default password is set to <a href="mailto:0.0.0.0">0.0.0</a>.

If password is not valid, the screen will be shifted to password code required window. Press any key among 🖾 🖾 to return to password entering window. Press key to return to RUN mode.

In case you forget password, contact Autonics after checking password code.


- ※2. TK4N/4S/4SP do not have (A)M key. The (MODE) key replaces (A)M key.
- ※3. It is displayed when setting user parameter group in the comprehensive device management program (DAQMaster).



- Hold the key over 2 sec in RUN mode to enter into setting mode.
- Hold the MODE key for 1.5 sec while in setting mode to move to other parameter group.
- Hold the MODE key over 3 sec while in setting mode to return to RUN mode.
- Press the MODE key at the last parameter of each parameter, it moves to that parameter name. You can move to other groups.
- If there is no additional key operation within 30 sec after entering into setting mode, it will be automatically returned to RUN mode and previous setting value will be remained
- The shaded parameters are displayed in common.
  The others may not be displayed by the specifications of the product, other parameter's setting, or parameter mask setting.

# 5.4 Parameter groups

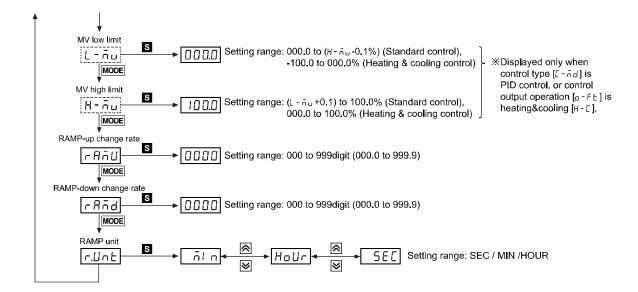
### 5.4.1 Parameter 1 group [PAr 1]



## 5.4.2 Parameter 2 group [PA-2]

\*After entering setting mode, press MODE key anytime for 1.5 sec. to go to the concerned group name. XIf you press the MODE key after changing the set value of the parameter the set value will be stored. Shaded parameters are for standard-level users, the others are for high-level users. (You can set the user level in parameter 5 group) X This parameter might not be displayed depending on other parameter settings. Parameter 3 group Parameter 4 group Parameter 2 group ^ PAr 2 PAr3 PAry MODE Auto-tuning RUN/STOP o F F ЯĿ ٥٥ ⊌ MODE MODE Heating proportional band Setting range: 000.1 to 999.9°C / °F, %H-P 0 10.0 ※Displayed only when control output operation mode [□-Ft] is MODE set to heating [HERE] or heating and cooling [H-[]. Cooling proportional band Setting range: 000.1 to 999.9°C / °F, %- P 0 10.0 ※Displayed only when control output operation mode [a-F上] is MODE set to cooling [[abl]] or heating and cooling [H-[]. Heating integral time Setting range: 0001 to 9999 sec. H-1 XDisplayed only when 0000 ※Displayed only when control output operation mode [α-F上] is temperature control MODE set to heating [HERE] or heating and cooling [H-E]. type [[-ñd] is set to PID control. Cooling integral time Setting range: 0001 to 9999 sec. 0000 ※Displayed only when control output operation mode [□ - F ½] is MODE set to cooling [[aal]] or heating and cooling [H-E]. Heating derivative time Setting range: 0001 to 9999 sec. H - d 0000 ※Displayed only when control output operation mode [a - F ←] is MODE set to heating [HERE] or heating and cooling [H-[]. Cooling derivative time Setting range: 0001 to 9999 sec. - d 0000 ※Displayed only when control output operation mode [□ - F + ]is MODE set to cooling [[oot]] or heating and cooling [H-[]]. Dead\_overlap band Setting range 0000 dЬ • P/P, P/ONOFF, ONOFF/P control: -significant proportion to 0.0 to + significant proportion MODE • ONOFF/ONOFF control: -999 to 999 digit (Temp. H), -199.9 to 999.9 digit (Temp. L), -99.9 to 99.9% F.S. (Analog) ※Displayed only when control output operation mode [a-FE] is set to heating and cooling [H-E]. Manual reset Setting range: 000.0 to 100.0% rE5E 0.50.0 ※Displayed only under proportional control. MODE  $\times$  Does not display if control output operation mode [a - F + b] is set to heating and cooling [H - b]). Heating hysteresis Setting range: 001 to 100digit 200 H.H Y 5 (000.1 to 100.0) MODE \*Displayed only when control output operation Heating OFF offset mode [D-FE] is set to heating [HERE] or heating Setting range: 000 to 100digit H.o 5 Ł 000 and cooling [H-[]. (000.0 to 100.0) MODE ※Displayed only when temperature control type [□ - nd] is Cooling hysteresis set to anaF or anan control. Setting range: 001 to 100digit C.H 45 002 (000.1 to 100.0) MODE XDisplayed only when control output operation Cooling OFF offset mode [a-Ft] is set to cooling [[aat] or heating Setting range: 000 to 100digit and cooling [H - []. [.o5t 000 (000.0 to 100.0) MODE

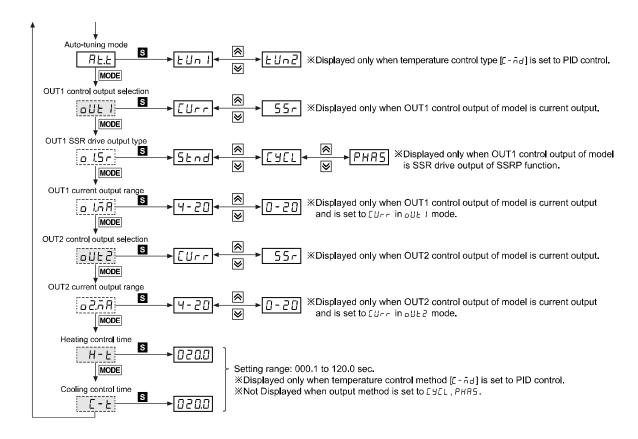
※1: S: Press any key among 


«, 

», 

«

»


\*After entering setting mode, press MODE key anytime for 3 sec. to return to Run mode.



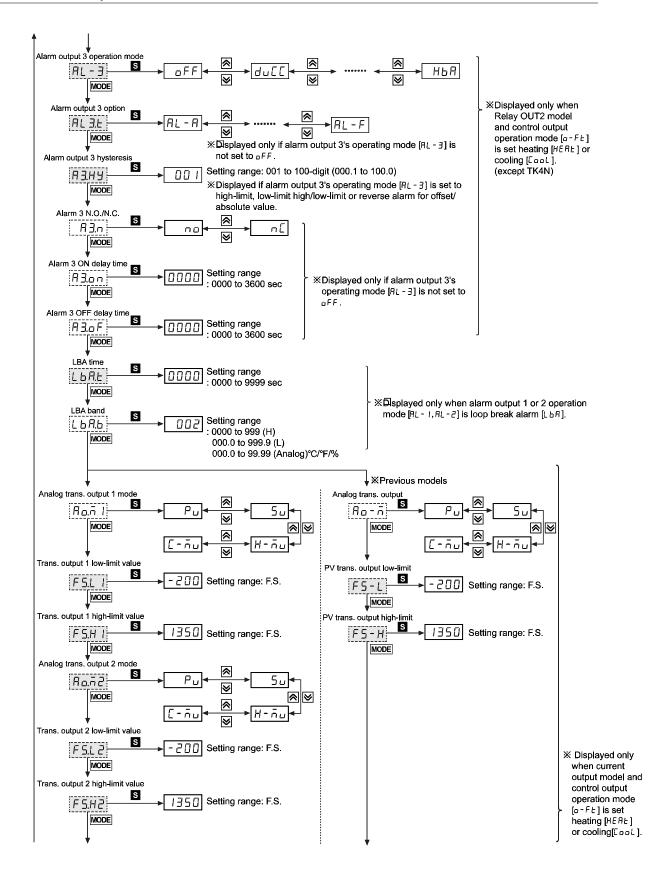
### 5.4.3 Parameter 3 group [PAr∃]

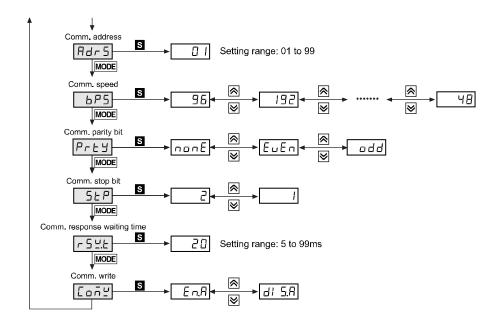
\*After entering setting mode, press MODE key anytime for 1.5 sec. to go to the concerned group name. XIf you press the MODE key after changing the set value of the parameter the set value will be stored. X Shaded parameters are for standard-level users, the others are for high-level users. (You can set the user level in parameter 5 group) X This parameter might not be displayed depending on other parameter settings. Parameter 3 group Parameter 4 group Parameter 5 group PA-4 PAr 3 PA-5 MODE Input type In-E MODE MODE Sensor temperature unit ҳ Uni E input. MODE Analog low-limit input value Setting range: Min. Range to (H-r 5-F.S.10% digit) L--5 0 0.0 0 MODE Analog high-limit input value H--5 10.00 Setting range: (L - - - - + F.S.10% digit) to Max. Range MODE Decimal point dot Setting range: 0 / 0.0 / 0.00 / 0.000 MODE ※Displayed only when Low-limit scale value input type [1 n-b] is L-5E set to analog input. 0.00.0 Setting range: -1999 to 9999 MODE High-limit scale value H-5[ 100.0 Setting range: -1999 to 9999 MODE Display unit d.Unt MODE Input correction 000 Setting range: -999 to 0999digit (-199.9 to 999.9) 10-6 MODE Input digital filter 000.1 ភិគិច.F Setting range: 000.1 to 120.0 sec. MODE SV low-limit Setting range: Low limit input [L - 5 [] to H - 5  $_{\rm L}$  -1digit  $^{\circ}C$  /  $^{\circ}F$  / %L-5u - 200l MODE SV high-limit Setting range: L - 5u+1digit to High limit input [H-5[] °C / °F / % 1350 |H - 5 u| MODE Control output operation mode **XStandard type** S o-FE HEAL ጵ Cool MODE ► [ □ □ L ] \*Heating & cooling control model. ➣ H-E HERE Control type **XStandard** control Pi d [-nd 廖 onof  $\Diamond$ MODE P.PP.on ℽ

\*After entering setting mode, press MODE key anytime for 3 sec. to return to Run mode.



#### ※ OUT1, OUT2 output:


- In case that OUT1, OUT2 output is relay output type
  : ெய்ட் 1, ெ 1.5 г , ெ 1.5 ศ , ெய்ட் 2 , ெ 2.5 г , ெ 2.5 ศ parameters are not displayed.
- In case that OUT1,OUT2 output is current + SSR drive output type, when OUT1,OUT2 output is set to 55 r
  - : Output method of a 1.5 r, a 2.5 r is held in 5 t and parameter is not displayed.
- In case that OUT1, output is SSR drive output model of SSRP function and OUT2 output is current + SSR drive output
  - -อูปป เ,อ เกิศ are not displayed.
  - o l.5r can set to 5End, [YEL, PHR5
  - -When a 2.5 r is set to 55 r it is held in 5 £ nd and parameter is not displayed.

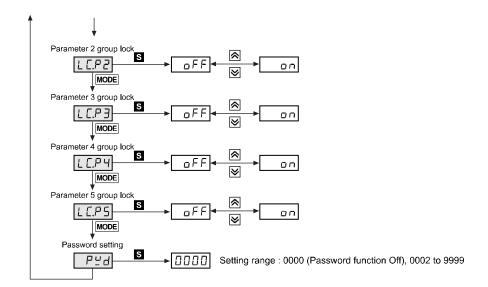

### 5.4.4 Parameter 4 group [PAr 4]

**※If** you press the **MODE** key after changing the set value of the parameter the set value will be stored. X Shaded parameters are for standard-level users, the others are for high-level users. (You can set the user level in parameter 5 group) XIIII This parameter might not be displayed depending on other parameter settings. Parameter 4 group Parameter 5 group Parameter 1 group  $\Rightarrow$ PA-4 PA-S PAr I ⋞ ℽ MODE Alarm output 1 oper MODE MODE Alarm output 1 option AL I.E MODE ※Displayed only if alarm output 1's operating mode [AL - I] is not set to □FF. Alarm output 1 hysteresis Setting range: 001 to 100digit (000.1 to 100.0) 001 A IHA ※Displayed if alarm output 1's operating mode [AL - I] is set to high-limit, low-limit high/ MODE low-limit or reverse alarm for offset/absolute value. Alarm 1 N.O./N.C. A Lo ⋉ MODE Alarm 1 ON delay time A Lon ☐ ☐ ☐ ☐ ☐ Setting range: 0000 to 3600 sec. ※Displayed only if alarm output 1's operating mode [₹£ - +] is not set to nFF. MODE Alarm 1 OFF delay time A LoF Setting range: 0000 to 3600 sec. MODE Alarm output 2 operation mode AL - 2 MODE Alarm output 2 option RL 2.E AL-A ⋉ MODE ※Displayed only if alarm output 2's operating mode [AL - 2] is not set to oFF. Alarm output 2 hysteresis Setting range: 001 to 100digit (000.1 to 100.0) 001 A 5.4 Y MODE to high-limit, low-limit, high/low-limit or reverse alarm for ※Displayed only with offset/absolute value. Alarm 2 N.O./N.C. option output models S ҈ that support alarm A 2.n nο nΕ output 2. ⊌ MODE Alarm 2 ON delay time Setting range 0000 A 2.0 n : 0000 to 3600 sec. XDisplayed only if alarm output 2's MODE operating mode [AL - 2] is not set to oFF. Alarm 2 OFF delay time Setting range A 2.0 F |00001 : 0000 to 3600 sec. MODE

\*After entering setting mode, press MODE key anytime for 3 sec. to return to Run mode.

\*After entering setting mode, press MODE key anytime for 1.5 sec. to go to the concerned group name.






## **5.4.5 Parameter 5 group** [PAr 5]

\*\*After entering setting mode, press MODE key anytime for 3 sec. to return to Run mode.

\*\*After entering setting mode, press MODE key anytime for 1.5 sec. to go to the concerned group name.

\*\*If you press the MODE key after changing the set value of the parameter the set value will be stored. \* Shaded parameters are for standard-level users, the others are for high-level users. (You can set the user level in parameter 5 group) \*: This parameter might not be displayed depending on other parameter settings. Parameter 5 group Parameter 1 group Parameter 2 group ⋈ PAr5 ►PAr 1 PA-2 ⊌ ℽ Multi SV MODE Digital Input Key Press ⊌ + keys for 3 sec. |d: - E| and it executes the set function. MODE DI-1 input terminal function MODE Displays all models except TK4N, TK4SP. DI-2 input terminal function (except TK4S-D4□□) Manual control, initial MV AULo I E.ñu MODE Manual control, preset MV Pr.ñu 0.00.0 MODE Sensor error, MV Setting range: 000.0 to 100.0% (standard control), Er.ñu 0.00.0 -100.0 to 100.0% (heating & cooling control) MODE Control stop, MV |5Ł.ñu 0.00.0 MODE Control stop, alarm outpu SE.AL Cont MODE User level USE-MODE SV setting lock L C.5 u ٥٥ MODE Parameter 1 group lock MODE



5 Preparation and Startup

Autonics

# 6 Parameter Settings and Functions

# 6.1 Input

# **6.1.1** Input types and temperature ranges

| Input types |             | Display | Temperature range (°C) | Temperature range (°F) |                 |
|-------------|-------------|---------|------------------------|------------------------|-----------------|
|             | K (CA)      | 1       | FC U'H                 | -200 to 1350           | -328 to 2463    |
|             | K (CA)      | 0.1     | F.C.A.T                | -199.9 to 999.9        | -199.9 to 999.9 |
|             | 1 (10)      | 1       | ЛІ [.Н                 | -200 to 800            | -328 to 1472    |
|             | J (IC)      | 0.1     | JI C.L                 | -199.9 to 800.0        | -199.9 to 999.9 |
|             | E (CB)      | 1       | E[r.H                  | -200 to 800            | -328 to 1472    |
|             | E (CR)      | 0.1     | ECr.L                  | -199.9 to 800.0        | -199.9 to 999.9 |
|             | T (CC)      | 1       | Ł C C.H                | -200 to 400            | -328 to 752     |
|             | T (CC)      | 0.1     | F C C.L                | -199.9 to 400.0        | -199.9 to 752.0 |
| Thermoc     | B (PR)      | 1       | ь Рг                   | 0 to 1800              | 32 to 3272      |
| ouple       | R (PR)      | 1       | r Pr                   | 0 to 1750              | 32 to 3182      |
| (TC)        | S (PR)      | 1       | 5 Pr                   | 0 to 1750              | 32 to 3182      |
|             | N (NN)      | 1       | 0 00                   | -200 to 1300           | -328 to 2372    |
|             | C (TT)*1    | 1       | CEE                    | 0 to 2300              | 32 to 4172      |
|             | G (TT)**2   | 1       | GEE                    | 0 to 2300              | 32 to 4172      |
|             | L (IC)      | 1       | LI C.H                 | -200 to 900            | -328 to 1652    |
|             |             | 0.1     | LI C.L                 | -199.9 to 900.0        | -199.9 to 999.9 |
|             | U (CC)      | 1       | ⊔С С.Н                 | -200 to 400            | -328 to 752     |
|             |             | 0.1     | U C C.L                | -199.9 to 400.0        | -199.9 to 752,0 |
|             | Platinel II | 1       | PLII                   | 0 to 1390              | 32 to 2534      |
|             | Cu 50Ω      | 0.1     | CU 5                   | -199.9 to 200.0        | -199.9 to 392.0 |
|             | Cu 100Ω     | 0.1     | CU 10                  | -199.9 to 200.0        | -199.9 to 392.0 |
|             | JPt 100Ω    | 1       | JPE.H                  | -200 to 650            | -328 to 1202    |
| RTD         | JPt 100Ω    | 0.1     | JPE.L                  | -199.9 to 650.0        | -199.9 to 999.9 |
|             | DPt 50Ω     | 0.1     | dPt.5                  | -199.9 to 600.0        | -199.9 to 999.9 |
|             | DPt 100Ω    | 1       | dPt.H                  | -200 to 650            | -328 to 1202    |
|             | DPt 100Ω    | 0.1     | dPt.L                  | -199.9 to 650.0        | -199.9 to 999.9 |

| Input types |             |            | Display | Temperature range (°C) | Temperature range (°F) |
|-------------|-------------|------------|---------|------------------------|------------------------|
|             | Nickel 120Ω | 1          | n! 12   | -80 to 200             | -112 to 392            |
|             |             | 0 to 10V   | An I    | 0 to 10 V              |                        |
|             | Voltage     | 0 to 5V    | Ru2     | 0 to 5 V               |                        |
| Analog      |             | 1 to 5V    | Я⊔3     | 1 to 5 V               |                        |
| Analog      |             | 0 to 100mV | Aun I   | 0 to 100 mV            |                        |
|             | Current     | 0 to 20mA  | BAB I   | 0 to 20 mA             |                        |
|             | Current     | 4 to 20mA  | 8582    | 4 to 20 mA             |                        |

※1. C (TT): Same temperature sensor as former W5 (TT).

%2. G(TT): Same temperature sensor as former W (TT).



Temperature sensors are to convert subject temperature to electrical signals for the temperature controller allowing it to control output.

SV (Setting Value) can only be set within the input range and do not set over the input range.

# **6.1.2 Input type** [PAr∃ → In-t]

This product supports multiple input types, making it possible for the user to choose from thermocouples, resistors, and analog voltage/current.

If you change the input specification, the SV's upper/low-limits are automatically set to the new specification's max/min values for temperature sensors. As for analog inputs, analog upper/lower input values are set to the max/min temperature range and the SV upper/low-limits set to upper/lower scale values. Therefore, you need to reconfigure the settings.

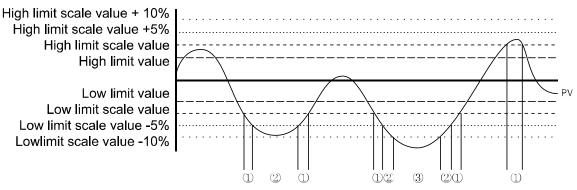
| Setting group | Parameter | Setting range                               | Factory default | Unit |
|---------------|-----------|---------------------------------------------|-----------------|------|
| PAr3          | In-E      | Refer to 6.1.1. Input types and temperature | FC B'H          | ı    |

# **6.1.3** Sensor temperature unit [PAr∃ → Unl Ł]

When selecting the input temperature sensor, you can set the desired units (°C, °F) of temperature/scale value to be displayed.

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr3          | Unl E     | °[ / °F       | ٥٢              | -    |




This parameter will not be displayed if analog input has been selected.

### 6.1.4 Analog input/scale value

With analog input selected, you can set the analog input range (high/low limit input values) and the display scale (high/low limit scale values) within the designated input range.

If the upper and lower limit scale settings are identical, Err flashes twice and setting mode is displayed.

For analog input,  $\pm 5\%$  of the set high/low limit input value is extended. Analog output is also extended compairing input value. (For temperature sensor input,  $\pm 5\%$  extension is applied within the temperature range.)



| No. | PV                | Display              |
|-----|-------------------|----------------------|
| 1   | ±5% section       | Flashes PV           |
| 2   | ±5 to 10% section | Flashes HHHH or LLLL |
| 3   | Over ±10% section | Flashes o P E n      |



This parameter is not displayed for temperature sensor input.

#### 6.1.4.1 Low-limit input value [PAr∃ → L - r □]

You can set the low limit input values for actual use within the analog input range.

| Setting group | Parameter | Setting range                                                                | Factory default | Unit |
|---------------|-----------|------------------------------------------------------------------------------|-----------------|------|
| PAr3          | L-rG      | Minimum temperature range to high-limit<br>input value [ឣ - ៸ ជ ] - F.S. 10% | 0 0.0 0         | 1    |

#### **6.1.4.2** High-limit input value [PAr∃ → H -r□]

You can set high limit input values for actual use within the analog input range.

| Setting group | Parameter | Setting range                                                      | Factory default | Unit |
|---------------|-----------|--------------------------------------------------------------------|-----------------|------|
| PRr3          | HG        | Low-limit input value [L ] + F.S. 10% to maximum temperature range | 10.00           | -    |

### **6.1.4.3** Scale decimal point position [PAr∃ → dot]

You can set the decimal point positions for present value (PV) and set value(SV) within high and low limit scale values.

| Setting group | Parameter | Setting range          | Factory default | Unit |
|---------------|-----------|------------------------|-----------------|------|
| PAr3          | dot       | 0 / 0.0 / 0.00 / 0.000 | 0.0             | -    |

#### **6.1.4.4** Low-limit scale value [PAr $\exists \rightarrow L - 5[$ ]

You can set the display scales of low-limit values for analog input [L - r L]. (Based on the decimal point position setting.)

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr3          | L-5[      | -1999 to 9999 | 0 0 0.0         | -    |

### **6.1.4.5** High-limit scale value [PAr∃ → H-5[]

You can set the display scales of high-limit values for analog input [H - r G]. (Based on the decimal point position setting.)

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr3          | H-5[      | +999 to 9999  | 100.0           | -    |

#### 6.1.4.6 Display unit for front panel [PAr ∃ → dUnt]

When you select an analog input type, you can set the display units.

| Setting group | Parameter | Setting range               | Factory default | Unit |
|---------------|-----------|-----------------------------|-----------------|------|
| PAr3          | d.Un E    | °[   °F   ° ' ° ' °   ° F F | ٥٧٥             | -    |

| Setting | Parameter description                                                                |  |  |
|---------|--------------------------------------------------------------------------------------|--|--|
| ٥٢      | Sets the display unit to °C and turns on the °C of front unit indicator.             |  |  |
| oŁ      | Sets the display unit to °F and turns on the °F of front unit indicator.             |  |  |
| ٥٠٥     | Sets the display unit to % and turns on the % of front unit indicator.               |  |  |
| oFF     | Sets the display unit to an undefined unit. The LED unit indicator will not turn on. |  |  |

### **6.1.5** Input correction [PAr $\exists \rightarrow ! n-b$ ]

This feature is used to compensate for input correction produced by thermocouples, RTDs, or analog input devices, NOT by the controller itself.

The Input correction function is mainly used when the sensor cannot be attached directly to controlled objects. It is also used to compensate for temperature variance between the sensor's installation point and the actual measuring point.

| Setting group | Parameter | Setting range                         | Factory default | Unit    |
|---------------|-----------|---------------------------------------|-----------------|---------|
| P8c3          | 1         | - 999 to 0999 (temperature H, analog) | 0000            | °C/°F/- |
| רחרם          | 1 n-b     | +99.9 to 999.9 (temperature L)        | טטטט            | C/1F/-  |



If the controller displays 78°C when the actual temperature is 80°C, set the input correction [l = n - b] as 'l = 0.2' in order to adjust the controller's display temperature to 80°C.

If present value after input correction is out of the input range by each input sensor, it displays 'HHHH' or 'LLLL'.



Make sure that an accurate temperature variance measurement is taken before set values of input correction. An inaccurate initial measurement can lead to greater variance.

Many of today's temperature sensors are graded by their sensitivity. Since higher accuracy usually comes at a higher cost, most people tend to choose sensors with medium sensitivity. Measuring each sensor's sensitivity correction for input correction feature in order to ensure higher accuracy in temperature reading.

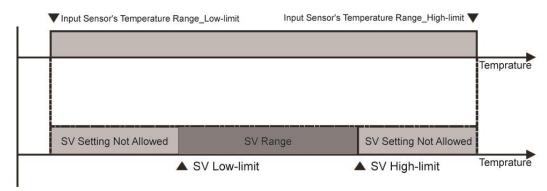
## 6.1.6 Input digital filter [PAr∃ → ⊼AuF]

It is not possible to perform stable control if the present value (PV) fluctuates because of fast changes of input signal. Using the Input digital Filter function can stabilize PV to realize more reliable control.

| Setting group | Parameter | Setting range  | Factory default | Unit |
|---------------|-----------|----------------|-----------------|------|
| PAr3          | ក់Ru.F    | 000.1 to 120.0 | O. 1            | Sec  |



Ex.


If the input digital filter is set to 0.4 sec., digital filtering is applied to a sampling value collected over 0.4 sec. (400 ms).



When the input digital filter is used, present value (PV) can vary from the actual input value.

## **6.1.7** High/Low-limit value of setting value(SV) [PAr∃ → H-5u/L-5u]

You can limit the Set value(SV) range within the temperature range of the temperature sensor or analog input type in order to prevent the system from controlling with improper SV.

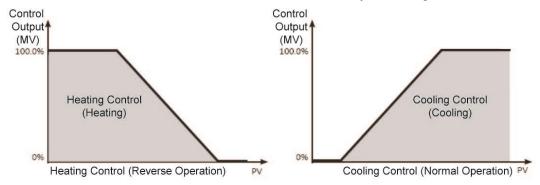


| Setting group | Parameter        | Setting range                                         | Factory default     | Unit  |
|---------------|------------------|-------------------------------------------------------|---------------------|-------|
|               |                  | SV low-limit + 1 digit to sensor                      | 1350 (temperature)  |       |
| PAc 3         | H-5 <sub>0</sub> | input high-limit or analog high-<br>limit scale value | ີ ມີ ມີ ມີ (analog) | °C/°F |
| [ [ [ ]       |                  | Sensor low-limit or analog low-                       | -200 (temperature)  |       |
|               | L-5u             | •                                                     | ≀ⅅⅅⅅ(analog)        | °C/°F |

| Parameter | Parameter Description    |
|-----------|--------------------------|
| L-5u      | Set value(SV) low-limit  |
| H-5u      | Set value(SV) high-limit |



Attempts to set the limits outside the min/max input range, or analog's high/low-limits, are not accepted. Instead, the previous settings are retained.


Set value(SV) can only be set within the SV low-limit [L - 5u] and SV high-limit [H - 5u] range.

SV lower-limit [L - 5 ] cannot exceed SV high-limit [H - 5 ].

# 6.2 Control output

### **6.2.1** Control output mode [PAr∃ → a-Ft]

- Control output modes for general temperature control include heating, cooling, and heating & cooling.
- Heating control and cooling control are mutually opposing operations with inverse outputs.
- The PID time constant varies based on the controlled objects during PID control.

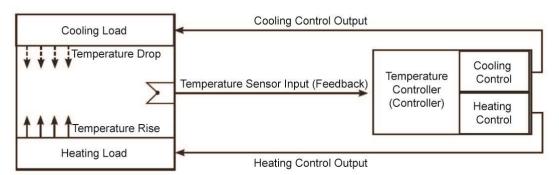


| Setting group | Parameter | Set range                                   | Factory default | Unit |
|---------------|-----------|---------------------------------------------|-----------------|------|
| PAr 3         | n-Ft      | Standard model: HEAL / [ o o L              | HEAF            | -    |
|               | 0 , 2     | Heating/Cooling model: HEAL / [ ooL / H - [ | H-[             | -    |

### **6.2.1.1** Heating control [PAr $\exists \rightarrow a$ -Ft $\rightarrow HEAt$ ]

Heating control mode: the output will be provided in order to supply power to the load (heater) if present value (PV) falls below set value(SV).

#### **6.2.1.2** Cooling control [PAr $\exists \rightarrow a \neg F \vdash \rightarrow [aa \vdash b]$


Cooling control mode: the output will be provided in order to supply power to the load (cooler) if present value (PV) rises above set value(SV).

#### **6.2.1.3** Heating & Cooling control [PAr $\exists \rightarrow a$ -Ft $\rightarrow H$ -[]

Heating & Cooling control mode: heating & cooling with a single temperature controller when it is difficult to control subject temperature with only heating or cooling.

Heating & Cooling control mode controls the object using different PID time constants for each heating & Cooling.

It is also possible to set heating & cooling control in both PID control or ON/OFF control mode. Heating/cooling output can be selected among Relay output, SSR drive output and current output depending on model types choosen according to your application environment. (Note that SSR drive output of OUT2 operates standard control.)





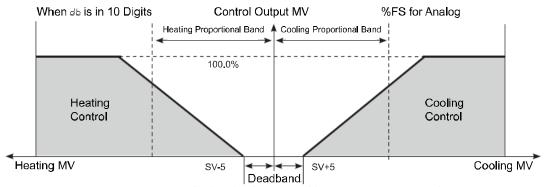
For heating & cooling control, OUT1 control output is dedicated to heating control and OUT2 control output to cooling control.

### **6.2.1.3.1.** Dead band/Overlap band [PAr $2 \rightarrow db$ ]

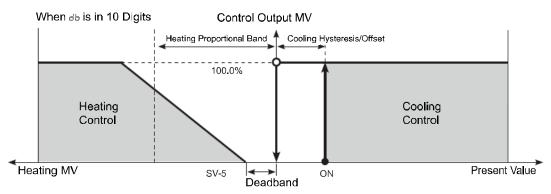
In heating & cooling control, it is possible to designate a dead band between heating & cooling control bands based on set value(SV).

A dead band forms around the SV when positive (+) value is set. No control occurs in the dead band area. Therefore, heating & cooling MVs become 0.0% in the formed dead band.

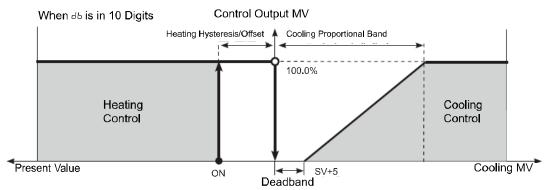
An overlap band (simultaneous application of heating & cooling MVs) forms around the SV when negative (-) value is set.


Set as 0 when a dead band or an overlap band is not used.

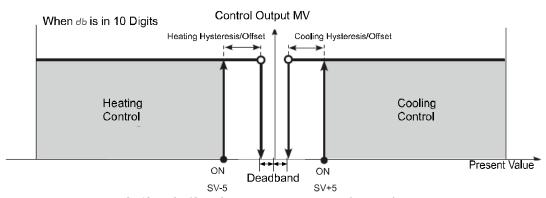
When setting integration time, it is applied when the intengration time of heating control and cooling control is set. In case of PI-P control and P-PI control, it also operates as P-P control.


| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr2          | dЬ        | See below.    | See<br>below.   |      |

- PID/PID, PID/ON-OFF, and ON-OFF/PID Control
  - Set range (temperature): -(proportional band) to +(proportional band) (the lower value when using different proportional bands)
  - Set range (analog): -99.9 to 099.9
  - Factory default: 0000 (temperature H), 000.0 (temperature L, analog), (unit: temperature °C/°F, analog % F.S.)
- ON-OFF/ON-OFF Control
  - Set range (temperature):
    - -999 (overlap band) to 0000 (not used) to 0999 (dead band) (temperature H)
    - -199.9 (overlap band) to 000.0 (not used) to 999.9 (dead band) (temperature L)
  - Set range (analog): -99.9 (overlap band) to 000.0 (not used) to 099.9 (dead band)
  - Factory default: 0000 (temperature H), 000.0 (temperature L, analog), (unit: temperature °C/°F, analog % F.S.)

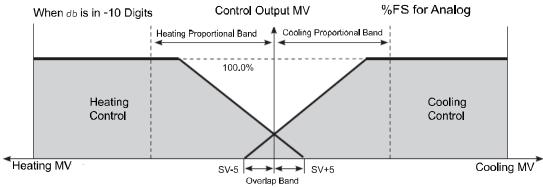

### (1) Using a Deadband



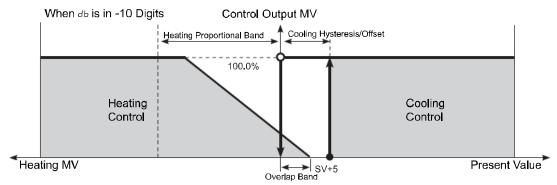

<PID-PID Control with Heating and Cooling Control>



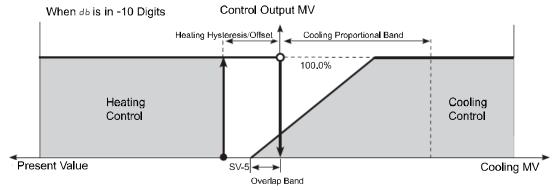
<PID-ON/OFF Control with Heating and Cooling Control>



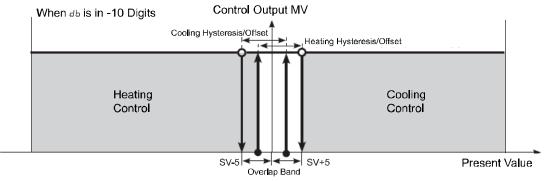

<ON/OFF-PID Control with Heating and Cooling Control>




<ON/OFF-ON/OFF Control with Heating and Cooling Control>

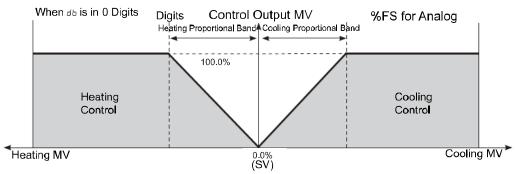

### (2) Using an Overlap Band



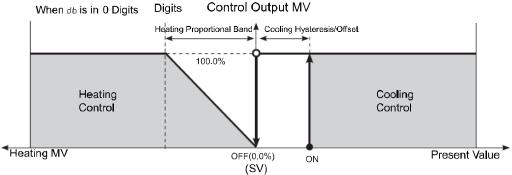

<PID-PID Control with Heating and Cooling Control>



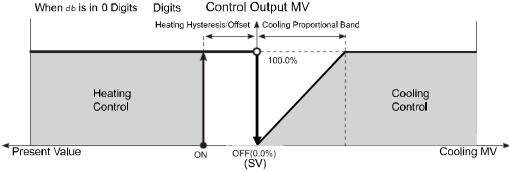
<PID-ON/OFF Control with Heating and Cooling Control>



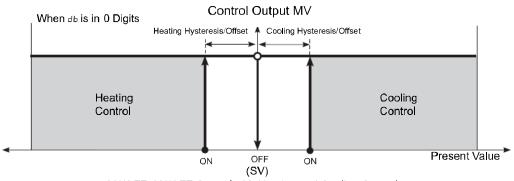

<ON/OFF-PID Control with Heating and Cooling Control>




<ON/OFF-ON/OFF Control with Heating and Cooling Control>


### (3) Using neither a Dead band nor an Overlap Band




<PID-PID Control with Heating and Cooling Control>



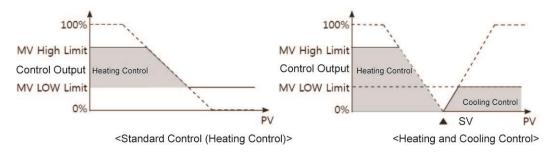
<PID-ON/OFF Control with Heating and Cooling Control>



<ON/OFF-PID Control with Heating and Cooling Control>



<ON/OFF-ON/OFF Control with Heating and Cooling Control>




Depends on the set value of the heating integration time[H-I], cooling integration time[L-I], actual operation may be different.

## 6.2.2 MV High/Low-limit value settings [PAr 2 → H - n̄u / L - n̄u]

MV high/low-limit values  $[H - \bar{n}_{\perp}] / L - \bar{n}_{\perp}]$  for control output can be configured to the actual MV, provided the temperature controller's MV calculation exceeds the limits.

During heating & cooling control, cooling MV carries a "-" prefix. Therefore, the high-limit is expressed as a + value on the heating side and the low-limit as a - value on the cooling side.



| Parameter | Description                 |
|-----------|-----------------------------|
| L-ñu      | MV Low-limit value setting  |
| H-ñu      | MV High-limit value setting |

| Setting group | Parameter | Set range                                                                                      | Factory default | Unit |
|---------------|-----------|------------------------------------------------------------------------------------------------|-----------------|------|
|               |           | Standard Control: MV Low-limit value [L - กิบ] + ปี. I to   ปี ปี.ปี                           | 100.0           | %    |
| P8c2          | H-ñu      | Heating & Cooling Control: 0000 to 1000 (PID control)  00 (OFF)/1000 (ON) (ON/OFF control)     | 100.0           | %    |
| <i></i>       |           | Standard Control: @@@.@ to MV high-limit value [H-ñu] = @. I                                   | 0.0             | %    |
|               | L-ñu      | Heating & Cooling Control: +00.0 to 000.0 (PID control), +00.0 (ON)/0.0 (OFF) (ON/OFF control) | +00.0           | %    |



Same MV limits applied during auto-tuning.

MV limits are not applied to manual control, MV upon control stop, MV upon a sensor error, and initial manual control MV.

MV high/low-limit configuration is not available for ON/OFF control in standard control mode (heating or cooling control).

## 6.2.3 Ramp settings [PAr 2 → rAñU/rAñd/r.Unt]

Ramp is a feature used to configure the changed temperature per unit time toward set value(SV). The feature limits change rate of set value(SV) and thereby restricts sudden temperature changes (increase and decrease) in the control subject.

Ramp is commonly used in applications where rapid temperature changes (increase and decrease) could impact negatively on the control subject.

Control will be carried out based on changed SV (hereinafter referred to as RAMP SV) - changed by preset change rate (changed temperature per unit time). RAMP-Up Change Rate and RAMP-Down Change Rate can be configured independently.

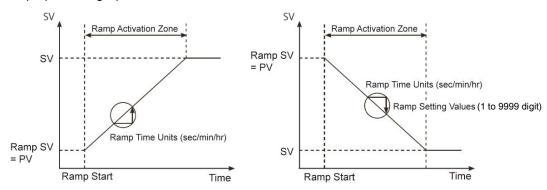
| Parameter | Description                         |
|-----------|-------------------------------------|
| rAñU      | Settings for Ramp-up change rate.   |
| rAñd      | Settings for Ramp-down change rate. |
| r.Unt     | Settings for Ramp unit time.        |

| Setting group | Parameter | Setting range                                                       | Factory default | Unit            |
|---------------|-----------|---------------------------------------------------------------------|-----------------|-----------------|
| PRr2          | гЯлО      | 000 to 999 (temperature H, analog),<br>0000 to 9999 (temperature L) | 000             | °C/°F/<br>Digit |
|               | rAñd      | 000 to 999 (temperature H, analog), 0000 to 9999 (temperature L)    | 000             | °C/°F/<br>Digit |
|               | r.Unt     | 5EE (seconds), กัปก (minutes),<br>Hอปก (hours)                      | ñ! n            | -               |

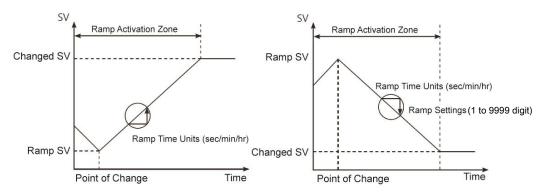


Activating the ramp feature when the ramp is not in operation limits the change rate of Set value(SV) based on present value (PV). Changing SV or ramp parameters while the ramp is in operation limits the change rate of SV based on SV at the point of the change.

Alarm operation during RAMP will be made based on final SV.


Setting the rate of ramp change to 0 deactivates the ramp feature.

If the ramp feature has been activated, RAMP SV will be displayed on SV display part.


Ramp depending on operation status

| Operation Status                                                                                    | Ramp Up/Down                | Ramp     |
|-----------------------------------------------------------------------------------------------------|-----------------------------|----------|
| All operations                                                                                      | When it is □.               | Inactive |
| aPEn, нннн, LLLL, Auto-tuning, Switching from<br>Auto to Manual, Switching from Run to Stop         | Irrespective of conditions. | Inactive |
| □ PEn, HHHH, LLLL, After Auto-tuning completed, PV = SV                                             | Irrespective of conditions. | Inactive |
| Power On, SV Change, Switching from Stop to Run,<br>Switching from Manual to Auto, Ramp Rate Change | When it is not □.           | Active   |

### Ramp operation graph



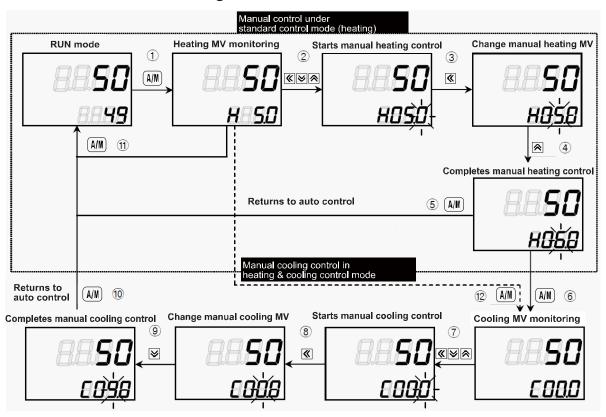
<Activating Ramp when Ramp is not in operation>



<Changing SV or Ramp Parameter when Ramp is in operation>

### 6.2.4 Auto/Manual control settings

Auto control mode is to make temperature reach SV with MV calculated by PID control. Manual control mode is to make temperature reach SV with user's defined MV.




When in manual control mode, parameter settings can only be viewed and cannot be modified (except for lock parameters). When digital input terminal function[d! - !/d! - 2] is set as Auto/Manual control [n̄/l̄n], the we key (the work key for TK4N, TK4S, TK4SP) and the Auto/Manual swithcing by communication do not operate. When the unit is powered on following a power interruption or shutdown, previous control mode (auto or manual) will be maintained.

If switching to manual control during Auto-tuning, Auto-tuning will be terminated. It is still possible to switch to manual control mode while in STOP. When a sensor break alarm [5 $^{\circ}$ A] occurs in standard control mode, the sensor error MV [ $^{\circ}$ C $^{\circ}$ C $^{\circ}$ L] is applied. In this state, manual and auto control MV settings can be modified. It is still possible to switch auto/manual control mode while in controlling operation.

Operation Priority: Manual Control > Stop > Open (Sensor Disconnection)

#### 6.2.4.1 Manual/Auto control switching



### (1) Manual control switching for standard control (heating or cooling control)

- ①, ⑤: When in RUN mode, press the Wey (the WODE) key for TK4N, TK4S, TK4SP model) and it enters MV monitoring mode. The SV display shows H (heating control) or <code>[ (cooling control), and shows MV to indicate the start of MV monitoring.</code>
- ②, ⑥: If the **② ③** is pressed when MV monitoring is in progress, the MAN indicator comes on and the lowest digit (10<sup>0</sup> digit) starts to flash, indicating activation of manual control.
- ③, ⑦: Press the  $\bigcirc$  key to change the flashing digit  $(10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0)$ .

- ④, ⑧: Select the digit and configure the desired MV value using the 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   ⑥ 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   Ø 
   <l

#### (2) Manual control switching for heating & cooling control

- ①: When in RUN mode, press the Mey (the Mode) key for TK4N, TK4S, TK4SP model) and it enters heating MV monitoring mode. The SV display shows 'H' and shows MV to indicate the start of heating MV monitoring.
- ②: If the **(() ( ()** is pressed when heating MV monitoring is in progress, the MAN indicator comes on and the lowest digit (10<sup>0</sup> digit) starts to flash, indicating activation of manual control.
- ③: Press the  $\bigcirc$  key to change the flashing digit  $(10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0)$ .
- ④: Select the digit and configure the desired MV value using the **② ②** keys moving to 0→1→2→3→4→5→6→7→8→9→0 by the **② ②** keys.
- ⑤: In ① to ④ status, press the MM key(MODE) key for N, S, SP model) and it enters cooling MV monitoring mode. The SV display shows 'E' and shows MV to indicate the start of cooling MV monitoring.
- ⑥: If the **② ③** is pressed when cooling MV monitoring is in progress, the lowest digit (10° digit) starts to flash.
- $\bigcirc$ : Press the  $\bigcirc$  key to change the flashing digit  $(10^0 \rightarrow 10^1 \rightarrow 10^2 \rightarrow 10^3 \rightarrow 10^0)$ .
- ®: Select the digit and configure the desired MV value using the ⊗⊗ keys moving to 0→1→2→3→4→5→6→7→8→9→0 by the ⊗⊗ keys.
- 9: In 5 to 8 status, press the Medicator goes off and the system reverts to auto control mode.



After heating & cooling control, the system reverts to auto control in sequence of heating monitoring, manual heating control, cooling monitoring, and manual cooling control.

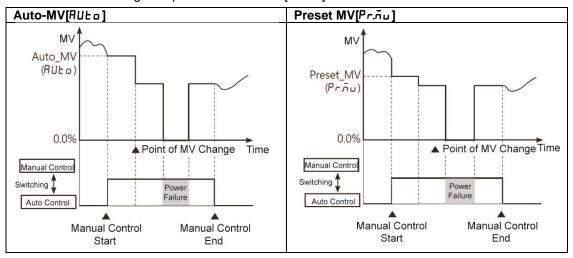
Heating MV remains in effect during cooling monitoring and manual cooling control.

TK4N/S/SP (W48×H48mm) does not have the (M) key. Press the (MODE) key once to change between auto and manual controls.

If the digital input feature [d+-+|d+-2] has been set for AUTO/MANUAL [n̄An], the we key (the key for TK4N, TK4S and TK4SP model) key located on the front and automatic/manual control functions via communication do not act.

#### (3) Manual/Auto Control switching with the digital input (DI) terminal




See 6.7.4 Digital input, for detailed information on digital Input (DI) terminal settings.

When MV parameter is masked, MV parameter cannot be monitored and changed.

#### 6.2.4.2 Baseline MV for manual control [PAr5 → / Ł̄n̄u]

When switching from auto control [AULa] to manual control [Pr.āU] you can set the initial MV.

- RUE a: Controlling with auto control MV as an initial MV for manual control
- ค.กับ: Controlling with preset manual MV [ค.กับ] as an initial MV.



| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr5          | I E.ñu    | AULo /Pr.ñu   | AUFo            | -    |



When re-supplying the power, it controls with the MV which is at the power OFF.

## 6.2.4.3 Initial MV for manual control [P用r 5 → Pr.กิบ]

If the baseline MV for manual control is configured to  $Pr.\bar{n}u$  (Preset Manual MV), you can set the initial MV for manual control.

| Setting group | Parameter | Setting range             |                   |                                                                   | Factory default | Unit |
|---------------|-----------|---------------------------|-------------------|-------------------------------------------------------------------|-----------------|------|
| PArS          | Pr.ñu     | Standard control          | ON/OFF control    | 000.0 (OFF)<br>/100.0 (ON)                                        | 000.0           | %    |
|               |           |                           | PID<br>control    | 000.0 to 100.0                                                    |                 |      |
|               |           | Heating & Cooling control | ON/OFF<br>control | → □ □ □ (Cooling ON)<br>/ □ □ □ □ (OFF)<br>/ □ □ □ □ (Heating ON) |                 |      |
|               |           |                           | PID<br>control    | HDDD (Cooling) to<br>DDDD (OFF) to<br>HDDD (Heating)              |                 |      |



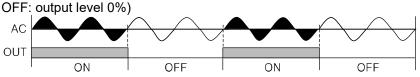
When in heating & cooling control mode, a setting between  $\Box$ . I and  $\Box$   $\Box$   $\Box$  will be applied as heating MV and a setting between  $\Box$ . I and  $\exists$   $\Box$   $\Box$   $\Box$  will be applied as cooling MV.

### 6.2.5 Output settings

### 6.2.5.1 Control output (OUT1/OUT2) selection [PAr ∃ → oUt 1/oUt2]

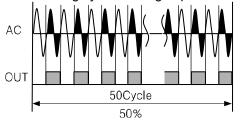
- In case of selecting the Models with current control output, both current and SSR drive outputs are available. You can therefore choose the right output type depending on application environments.
- □UE 1: Selects OUT1 control output.
- □ □ ₺ ₴ : Selects OUT2 control output.

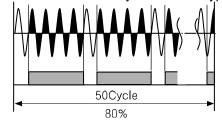
| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr 3         | oUt I     | 55r /CUrr     | 55-             | -    |
|               | 0NF5      |               |                 |      |


#### **6.2.5.2 SSRP** function [PAr ∃ → 0 1.5r]

SSRP function of SSR drive output is selectable one of standard ON/OFF control, cycle, phase control. By parameter setting, standard SSR drive is available. Also, cycle control connecting with a zero cross turn-on method SSR, phase control connectiong with a random turn-on method SSR are available.

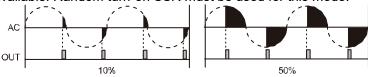
Realizing high accuracy and cost effective temperature control with both current output (4-20mA) and linear output(cycle control and phase control).


### (1) Standard ON/OFF control [5tnd]


A mode to control the load in the same way as Relay output type.(ON: output level 100%,



#### (2) Cycle control [[Y[L]


A mode to control the load by repeating output ON / OFF according to the rate of output within setting cycle. Having improved ON / OFF noise feature by Zero Cross type.





### (3) Phase control [PHR5]

A mode to control the load by controlling the phase within AC half cycle. Serial control is available. Random turn-on SSR must be used for this mode.



| Setting group | Parameter | Setting range  | Factory default | Unit |
|---------------|-----------|----------------|-----------------|------|
| PRr3          | o 1.5 r   | Stad/CYCL/PHRS | Stnd            | -    |



- Make sure that SSRP function is not available for OUT2. In case of current type models, SSR is fixed to standard output [5 \( \text{L} \) \( \text{D} \) d] only.
- When selecting cycle output [LYCL] or phase output [PHR5], the power supply for the load and temperature controllers must be the same.
- In case of selecting SSRP function whether cycle output [[☐☐ ] or phase output [☐☐ ] with PID control type, control cycle is not available to set.

### **6.2.5.3** Current output range settings [PAr ∃ → o lāA/o 2āA]

If the control output is set to current output, you can select upper and low-limit range for the current output as either 4-20mA or 0-20mA.

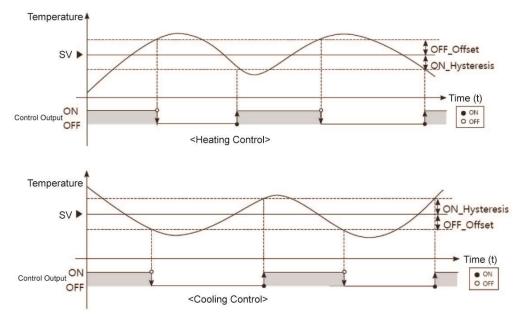
- a lāfl: Sets OUT1's current output range.
- a 2.⊼ R : Sets OUT2's current output range.



This parameter is only available on models supporting current output [all black].

# 6.3 Temperature control

# 6.3.1 Temperature control mode [PAr∃ → [ - nd]


You can choose the type of temperature control method.

| Setting                         |         | Description    |                |  |
|---------------------------------|---------|----------------|----------------|--|
|                                 |         | Heating        | Cooling        |  |
| Standard                        | PI d    | PID control    |                |  |
| Control                         | onoF    | ON/OFF control |                |  |
| Heating &<br>Cooling<br>Control | Р.Р     | PID control    | PID control    |  |
|                                 | P.o n   | PID control    | ON/OFF control |  |
|                                 | o n.P   | ON/OFF control | PID control    |  |
|                                 | 0 0.0 0 | ON/OFF control | ON/OFF control |  |

| Setting group | Parameter | Setting range                   |                           | Factory default | Unit |
|---------------|-----------|---------------------------------|---------------------------|-----------------|------|
|               |           | Standard<br>Control             | Pid/onof                  | PI d            |      |
| PAr3          | [-ñd      | Heating &<br>Cooling<br>Control | P.P / P.on / on.P / on.on | P.P             | -    |

# **6.3.2** ON/OFF control [PAr∃ → [-nd → anaF]

Controls the temperature by comparing present value (PV) with set value(SV) and turning power to the load on or off.



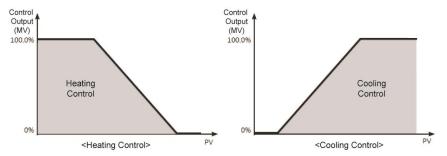
### **6.3.2.1 Hysteresis** [PAr 2 → HHY5/H<sub>0</sub>F + /C,HY5/C<sub>0</sub>F + ]

Hysteresis is to adjust control output ON/OFF point in ON/OFF control mode. ON\_Hysteresis sets the output on point and OFF\_Offset sets the off point.

Setting hysteresis too low can result in hunting induced by disturbance (noise, chattering, etc.). To minimize hunting, set ON\_Hysteresis and OFF\_Offset values with consideration to the heater or cooler's capacity and thermal characteristics, the control subject's response characteristics, the sensor's response characteristics and installation conditions, and other defining factors.

| Parameter | Description                                   |
|-----------|-----------------------------------------------|
| н.н ч 5   | Configures ON_Hysteresis for heating control. |
| H.oF L    | Configures OFF_Offset for heating control.    |
| C.H Y 5   | Sets ON_Hysteresis for cooling control.       |
| C.oft     | Sets OFF_Offset for cooling control.          |

| Setting group | Parameter | Setting range                       | Factory default | Unit    |
|---------------|-----------|-------------------------------------|-----------------|---------|
| PAr 2         | н.н у 5   | Temperature H, Analog: 🏻 🗘 🖟 to 🗸 🗘 | 002             | °C/°F/- |
|               | C.H y 5   | Temperature L: 00.1 to 10.0         |                 |         |
|               | H.oF Ł    | Temperature H, Analog: 🗓 🖟 to 🗓 🖟   | 000             | C/ F/-  |
|               | C.oFt     | Temperature L: 00.1 to 10.0         | טטט             |         |


# **6.3.3 PID** control [PAr∃ → [ - nd → PI d]

PID control is a combination of proportional (P), integral (I), and derivative (D) controls and offers superb control over the control subjects, even with a delay time.

Proportional control (P) implements smooth,

hunting-free control; integral control (I) automatically corrects offsets;

and derivative control (D) speeds up the response to disturbance. Through these actions, PID control realizes ideal temperature control.





Applied PID Control Technique

- Proportional Control (P): Select PID control and set the integral and derivative time to □□□□.
- Proportional Integral Control (PI): Select PID control and set the derivative time to 0000.
- Proportional Derivative Control (PD): Select PID control and set the integral time to □□□□.
- Multi SV: Use the same PID time constant for the values of 5 □ 0 to 5 □ 3.

### **6.3.3.1** Proportional band settings $[PRr2 \rightarrow H-P/C-P]$

When present value (PV) is within the Proportional Band (P), the ON/OFF ratio needs to be adjusted during the proportional period (T). The defined proportional control (time proportional control) section is called as the proportional band.

| Parameter | Description               |
|-----------|---------------------------|
| H-P       | Heating proportional band |
| [-P       | Cooling proportional band |

| Setting group | Parameter | Setting range  | Factory default | Unit               |
|---------------|-----------|----------------|-----------------|--------------------|
| P8c2          | H-P       | 000.1 to 999.9 | 0.00            | Temperature: °C/°F |
| FNFE          | [-P       |                | 0 10.0          | Analog: %          |

### **6.3.3.2** Integral time settings [PAr $2 \rightarrow H-1/[-1]$ ]

MVs from integral and proportional operation become the same when deviation is consistent. The time taken for the two MVs to match is called the integral time.

| Parameter | Description           |
|-----------|-----------------------|
| H-1       | Heating integral time |
| [-1       | Cooling integral time |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr 2         | H-1       | 0000 to 9999  | 0000            | Sec  |
|               | E-1       | 0000 (05555   | טטטט            | Sec  |



Integral control is not conducted if the integral time is set to 0.

Setting the integral time too short can intensify correction movements and cause hunting.

### **6.3.3.3** Derivative time settings [ $PRr2 \rightarrow H-d/[-d]$ ]

In accordance with the deviation of the ramp, the time taken for the MV gained from derivative operation to reach the MV gained from proportional control is called the derivative time.

| Parameter | Description             |
|-----------|-------------------------|
| H-d       | Heating derivative time |
| [-d       | Cooling derivative time |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr 2         | Н- d      | 0000 to 9999  | 0000            | Sec  |
| rnr@          | [-d       | מבככ נס מטטט  | טטטט            | Sec  |



Derivative control is not conducted if the derivative time is set to 0.

### **6.3.3.4** Control period settings [PAr $\exists \rightarrow H$ - $\vdash L$ $\vdash \vdash L$ ]

If relay or SSR is used to output MV under proportional control, the output is on for a fixed amount of time (within the control period, as a percentage of the MV) and then remains off for the rest of the time. The preset period when output ON/OFF takes place is called the proportional control period.

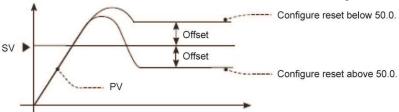
Control with SSR drive output has a faster response than that of relay output. Therefore, by configuring a shorter control period, more responsive temperature control is achieved.

| Parameter | Description            |
|-----------|------------------------|
| H-E       | Heating control period |
| [-E       | Cooling control period |

| Setting group | Parameter | Setting range                                                                      | Factory default         | Unit |
|---------------|-----------|------------------------------------------------------------------------------------|-------------------------|------|
| 00.7          | H-F       | Relay, SSR drive<br>output(ON/OFF control,<br>phase control, cycle                 | Relay output: 0200      | 0    |
| PAr∃          | E-E       | control): 000.1 to 120.0<br>Current output, SSR<br>drive output: 000.1<br>to 120.0 | SSR drive output: 002.0 | Sec  |



If using heating & cooling control, configure each control period separately for heating & cooling.


### **6.3.3.5** Offset correction/Manual reset settings [PAr2 → rE5t]

When selecting P / PD control mode, there are certain temperature differences even after PV reaches stable status since heater's rising and falling time is inconsistent due to thermal characteristics of control objects, such as heat capacity and the heater capacity. This temperature difference is called OFFSET. Offset can be corrected using manual reset.

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr2          | rE5t      | 00.0 to 100.0 | 5 0.0           | %    |

### (1) Manual Reset Adjustments based on Control Results

Under stable control conditions, set the offset to 50% if PV and SV are identical, to over 50.0% if PV is lower than SV, and to below 50.0% if PV is higher than SV.





The offset correction feature can only be used when proportional control is in effect. If setting the integral value to 0, the manual reset parameter will be displayed.

The user cannot configure the manual reset setting during heating & cooling control. Instead, the setting is automatically set to 0% for both heating & cooling.

Applicable only when integral time is set to 0 under P control or PD control only.

Switching from heating & cooling control to standard control (P, PD control) automatically configures the reset setting to 50%.

# 6.3.4 Auto-tuning

Auto tuning measures the control subject's thermal characteristics and thermal response rate, and then determines the necessary PID time constant. (When control type  $[\mathcal{L} - \bar{n} d]$  is set as PID, it is displayed.)

If error [pPEn] occurs during auto tuning, it stops this operation automatically.

To stop auto tuning, change the set as  $_{\Omega}FF$ . (It maintains P, I, D values of before auto tuning.)

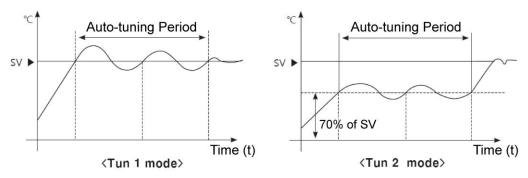
### **6.3.4.1** Auto-tuning start/stop setting [PAr $2 \rightarrow AE$ ]

- Auto-tuning automatically stores PID time constants upon termination. These PID time constants can then be modified by the user to suit their usage environment.
- When auto-tuning is in progress, the AT indicator located on the front of the controller flashes in 1 sec. intervals. When auto-tuning finishes, the AT indicator automatically goes off and the auto-tuning parameter will return to a F F.
- When auto-tuning is in progress and digital input key [d! t] is switching RUN/STOP [5tap] or auto-tuning RUN/STOP[At] is set, and digital input terminal function [d! 1, d! t] is switching RUN/STOP [5tap] or AUTO/MANUAL control selection[āAn], auto-tuning will be automatically ended, if concerned DI is inputted or a sensor disconnection error occurs. (Restored the PID used prior to the auto-tuning session)

| Setting | Description              |
|---------|--------------------------|
| oFF     | Auto-tuning complete.    |
| on      | Auto-tuning in progress. |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr2          | RĿ        | off/on        | oFF             | -    |




Auto-tuning continues to run even if the temperature reading exceeds or falls below the input range.

When auto-turning is in progress, parameters can only be referenced and not altered.

Auto-tuning is not available in manual control.

# **6.3.4.2** Auto-tuning mode settings [PAr $\exists \rightarrow ALL$ ]

Auto-tuning is available in [Ello I] mode (based on SV) or [Ello I] mode (based on 70% of SV), depending on the baseline value used.



| Setting | Description                                                               |
|---------|---------------------------------------------------------------------------|
| EUn I   | Auto-tunes and derives a PID time constant based on set value(SV).        |
| ŁUn2    | Auto-tunes and derives a PID time constant based on 70% of set value(SV). |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr3          | A Ł.Ł     | £Un   / £Un2  | ŁU∩ I           | -    |



In cooling control mode, [₺ ᠘ n 2 ] mode calculates 70% based at 0.

When SV=-100, [₺ ຟດ2] is performed at -70.

# 6.4 Alarm output

There are three alarms which operate individually. You can set combined qoralarm operation and alarm option. Use digital input setting as [RL.rE] or turn OFF power and re-start this unit to release alarm operation.

# **6.4.1** Alarm operation [PAr4 $\rightarrow$ AL - 1/AL - 2/AL - 3]

Select the desired alarm operation.

| Mode             | Name                                                | Alarm operation                                                              |                                                                  | Description (factory default)                                                                                                                                                                                                                    |
|------------------|-----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oFF              | -                                                   | -                                                                            |                                                                  | No alarm output                                                                                                                                                                                                                                  |
| 4000             | Deviation<br>high-limit<br>alarm                    | OFF HON  SV PV 100°C 110°C  High deviation:  Set as 10°C                     | OFF #H ON  PV SV 90°C 100°C  High deviation:  Set as -10°C       | If deviation between PV and SV as high limit is higher than set value of deviation temperature, the alarm output will be ON. High-limit deviation temperature can be set in RL LH/RL 3.H.                                                        |
| JJdu             | Deviation<br>low-limit<br>alarm                     | ON THE OFF  PV SV 90°C 100°C  Lower deviation: Set as 10°C                   | ON THU OFF  SV PV 100°C 110°C  Lower deviation: Set as -10°C     | If deviation between PV and SV as low limit is higher than set value of deviation temperature, the alarm output will be ON.  Low limit can be set in RL IL/RL ZL/RL 3.H.                                                                         |
| 3400             | Deviation<br>high/low-<br>limit<br>alarm            | ON THU ON SV SV 90°C 100°C Lower deviation: Set as High deviation: Set as 20 | •                                                                | If deviation between PV and SV as high/low limit is higher than set value of deviation temperature, the alarm output will be ON.  High-limit Deviation Temperature can be set in RL LH/RL 3.H.  Low limit can be set in RL LL/RL 3.L./RL 3.H.    |
| Can)             | Deviation<br>high/low-<br>limit<br>reverse<br>alarm | OFF ₩H OFF WH OFF OFF OFF OFF OFF OFF OFF OFF OFF OF                         | •                                                                | If deviation between PV and SV as high/low-limit is higher than set value of deviation temperature, the alarm output will be OFF.  High-limit deviation can be set in RL LH/RL ZH/RL 3.H.  Low limit deviation can be set in RL LL/RL ZL/RL 3.H. |
| ΡυΣΣ             | Absolute<br>value<br>high limit<br>alarm            | OFF HON  PV SV 90°C 100°C  Alarm absolute value:  Set as 90°C                | OFF HHON  SV PV 100°C 110°C  Alarm absolute value: Set as 110°C  | If PV is higher than the absolute value, the output will be ON. Alarm's absolute value can be set in RL LH/RL Z.H/RL 3.H.                                                                                                                        |
| JJP <sub>u</sub> | Absolute<br>value low<br>limit<br>alarm             | ON THU OFF  A SV 90°C 100°C  Alarm absolute value: Set as 90°C               | ON H OFF  SV PV 100°C 110°C  Alarm absolute value:  Set as 110°C | If PV is lower than the absolute value, the output will be ON. Alarm's absolute value can be set in RL IL/RL ZL/RL 3.H.                                                                                                                          |
| <b>L</b> БЯ      | Loop<br>break<br>alarm                              | -                                                                            |                                                                  | It will be ON when it detects loop break.                                                                                                                                                                                                        |

| Mode         | Name                     | Alarm operation | Description (factory default)                       |
|--------------|--------------------------|-----------------|-----------------------------------------------------|
| 5 <i>6</i> A | Sensor<br>break<br>alarm | -               | It will be ON when it detects sensor disconnection. |
| нья          | Heater<br>break<br>alarm | -               | It will be ON when CT detects heater break.         |

# ※H: Alarm output ☐ hysteresis [A ☐ .H ☑]

| Parameter | Description                            |
|-----------|----------------------------------------|
| AL-I      | Selects alarm output 1 operation mode. |
| AL - 2    | Selects alarm output 2 operation mode. |
| AL-3      | Selects alarm output 3 operation mode. |

| Setting group | Parameter | Setting range                           | Factory default | Unit |
|---------------|-----------|-----------------------------------------|-----------------|------|
| PRrY          | AL-I      | nee / ducc/                             | du[[            | -    |
|               | AL-2      |                                         | JJdu            |      |
|               | AL-3      | , , , , , , , , , , , , , , , , , , , , | oFF             |      |

# 6.4.2 Alarm output options [PAr 4 → AL LE/AL 2.E]

Users can select the desired alarm output options.

| Setting | Mode                              | Description                                                                                                                                                                                                                                          |
|---------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL-A    | Standard Alarm                    | If it is an alarm condition, alarm output is ON. If it is a clear alarm condition, alarm output is OFF.                                                                                                                                              |
| АГ-Р    | Alarm latch *1                    | If it is an alarm condition, alarm output is ON and maintains ON status.                                                                                                                                                                             |
|         | Standby                           | First alarm condition is ignored and from second alarm condition, standard alarm operates.                                                                                                                                                           |
| AL-C    | sequence1ײ                        | When power is supplied and it is an alarm condition, this first alarm condition is ignored and from the second alarm condition, standard alarm operates.                                                                                             |
| AL-d    | Alarm latch and standby sequence1 | If it is an alarm condition, it operates both alarm latch and standby sequence. When power is supplied and it is an alarm condition, this first alarm condition is ignored and from the second alarm condition, alarm latch operates.                |
| AL-E    | Standby<br>sequence2              | First alarm condition is ignored and from second alarm condition, standard alarm operates.  When re-applied standby sequence and if it is alarm condition, alarm output does not turn ON.                                                            |
|         |                                   | After clearing alarm condition, standard alarm operates.                                                                                                                                                                                             |
| AL-F    | Alarm latch and standby sequence2 | Basic operation is same as alarm latch and standby sequence1. It operates not only by power ON/OFF, but also alarm set value, or alarm option changing. When reapplied standby sequence and if it is alarm condition, alarm output does not turn ON. |
|         |                                   | After clearing alarm condition, alarm latch operates.                                                                                                                                                                                                |

- Condition of re-applied standby sequence for standby sequence 1, alarm latch and standby sequence 1: Power ON
- Condition of re-applied standby sequence for standby sequence 2, alarm latch and standby sequence 2: Power ON, changing set temperature, alarm temperature[AL I, AL 2, AL 3] or alarm operation[AL I, AL 2, AL 3], switching STOP mode to RUN mode.

| Parameter | Description                                   |
|-----------|-----------------------------------------------|
| AL I.E    | Selects the operation mode of alarm output 1. |
| AL 2.E    | Selects the operation mode of alarm output 2. |
| AL 3.E    | Selects the operation mode of alarm output 3. |

| Setting group | Parameter | Setting range                          | Factory default | Unit |
|---------------|-----------|----------------------------------------|-----------------|------|
| РЯсЧ          | AL I.E    | AL-A /AL-6 /AL-C /AL-d /AL-E /<br>AI-F | AL-A            |      |
|               | AL 2.E    |                                        |                 | -    |
|               | AL 3.E    | ··-                                    |                 |      |



If alarm operation is set as loop break alarm  $[L \, B \, R]$ , sensor break alarm  $[S \, B \, R]$ , or heater break alarm  $[R \, L \, R]$ , only standard alarm  $[R \, L \, R]$  and alarm latch  $[R \, L \, R]$  of alarm option are displayed.

# **6.4.3** Alarm SV settings [PAr I $\rightarrow$ AL IL /AL IH/AL 2.L /AL 2.H/AL 3.L /AL 3.H]

You can set alarm output activation values. According to the selected alarm operation, configuration parameters [ $RL \square .H/RL \square .L$ ] will be activated for each setting.

| Parameter | Description                                                                        |
|-----------|------------------------------------------------------------------------------------|
| AL IL     | Low limit value of alarm output 1. Reference value for determining heater burnout. |
| AL I.H    | High-limit value of alarm output 1.                                                |
| AL 2.L    | Low limit value of alarm output 2. Reference value for determining heater burnout. |
| AL 2.H    | High-limit value of alarm output 2.                                                |
| AL 3.L    | Low limit value of alarm output 3. Reference value for determining heater burnout. |
| AL 3.H    | High-limit value of alarm output 3.                                                |

| Setting group | Parameter                               | Setting range                                                            | Factory default                            | Unit |
|---------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|------|
|               | AL I.H                                  | (temperature) High/Low-limit deviation: By individual input              |                                            |      |
|               | A L 2.H                                 | specification -F.S. to F.S.                                              | Temperature<br>: 1550<br>Analog<br>: 100.0 |      |
|               |                                         | (temperature) Alarm absolute value:                                      |                                            |      |
| PAr I         | AL 3.H                                  | By individual input specification within 1                               |                                            |      |
|               | AL IL                                   | · (analog) High/Low-limit deviation: 1999 to 9999 Within -F.S. to F.S.   |                                            | _    |
|               | 81.21                                   |                                                                          |                                            |      |
|               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (analog) Alarm absolute value: By     individual input appointant within |                                            |      |
|               | AL 3.L                                  | individual input specification within displayed range.                   |                                            |      |



Changing the alarm operation or options resets the settings to the highest or lowest values that will not trigger output in the new mode.

# 6.4.4 Alarm output hysteresis [PAr 4 → A LHY/AZHY/A3HY]

"6.4.1 Alarm operation [ $PRr \dashv \rightarrow RL - 1/RL - 2/RL - 33$ ." "H" from alarm operation represents the alarm output hysteresis. It is used to set an interval between alarm outputs ON/OFF periods. Hysteresis can be set for individual alarm outputs (Alarm 1 Hysteresis/Alarm2 Hysteresis).

| Parameter | Description                                  |
|-----------|----------------------------------------------|
| A I'HA    | Sets the ON/OFF interval for alarm output 1. |
| AS.HA     | Sets the ON/OFF interval for alarm output 2. |
| A 3.H Y   | Sets the ON/OFF interval for alarm output 3. |

| Setting group | Parameter | Setting range                                                     | Factory default | Unit          |
|---------------|-----------|-------------------------------------------------------------------|-----------------|---------------|
|               | A I'HA    |                                                                   |                 | Temperature:  |
| PA-4          | AS.HA     | Temperature H, Analog: 00 I to 100 Temperature L: 000. I to 100.0 | 00 1            | °C/°F,        |
|               | A 3.H Y   |                                                                   |                 | Analog: Digit |



Alarm output hysteresis applies to heater burnout alarm [HbR] in the same manner.

This parameter does not appear if Loop Break Alarm [L b A] or Sensor Break Alarm [5 b A] is selected.

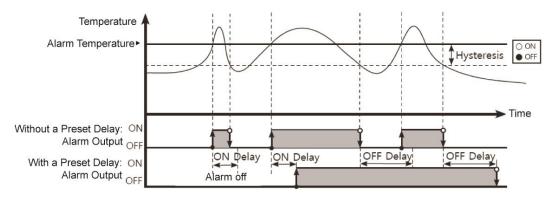
# 6.4.5 Alarm N.O./N.C. [PAc 4 → A ln/A2.n/A3.n]

You can set the relay contact method in the event of an alarm output.

| Setting | Description                                                                  |
|---------|------------------------------------------------------------------------------|
| no      | Normally open Stays open when normal and closes in the event of an alarm.    |
| nΕ      | Normally closed Stays closed when normal and opens in the event of an alarm. |

| Parameter | Description                             |
|-----------|-----------------------------------------|
| A Lo      | Select contact type for alarm output 1. |
| A2.n      | Select contact type for alarm output 2. |
| A 3.n     | Select contact type for alarm output 3. |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
|               | A Lo      |               |                 |      |
| PAr4          | A 2.ñ     | no / nE       | no              | -    |
|               | A 3.ñ     |               |                 |      |


### Front LED Indicators

| Change            | Alarm trigger | Alarm output | Front LED |
|-------------------|---------------|--------------|-----------|
| no                | OFF           | Open         | □ OFF     |
| (normally open)   | ON            | Close        | ■ ON      |
| n[                | OFF           | Close        | □ OFF     |
| (normally closed) | ON            | Open         | ■ ON      |

# **6.4.6** Alarm output delay settings [PAr $4 \rightarrow A$ lon / A loF / A2.on / A2.oF / A3.on / A3.oF]

Alarm output delay can be set to prevent false alarms caused by erroneous input signals resulting from disturbances or noise.

With a preset delay time, alarm output does not turn on for the preset duration. Instead, the concerned alarm indicator on the front will flash in 0.5 sec. intervals.



| Parameter | Description                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A lon     | Alarm output 1 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.                       |
| A LoF     | Alarm output 1 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present. |
| A2.on     | Alarm output 2 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.                       |
| A2.oF     | Alarm output 2 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present. |
| A 3.on    | Alarm output 3 on delay: Stands by for the preset duration upon an alarm event, checks the alarm trigger conditions, and turns on the alarm output if the conditions are still present.                       |
| A 3.o F   | Alarm output 3 off delay: Stands by for the preset duration following alarm output off, checks the alarm trigger conditions, and turns off the alarm output if the deactivation conditions are still present. |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
|               | A Lon     |               |                 |      |
|               | A LoF     | 0000 to 3600  | 0000            | Sec. |
| 00 11         | A2.on     |               |                 |      |
| PAr4          | 82.oF     |               |                 |      |
|               | A2.on     |               |                 |      |
|               | 82.oF     |               |                 |      |

# **6.4.7** Loop break alarm(LBA) [PAr4 → AL - 1/AL - 2/AL - 3 → LbA]

Diagnoses the control loop by monitoring the control subject's temperature changes and sends out alarms if necessary.

- Heating control: When control output MV is 100% or high limit [H n̄ u] and PV is not increased over than LBA detection band [L b R b] during LBA monitoring time [L b R b], or when control output MV is 0% or low limit [L n̄ u] and PV is not decreased below than LBA detection band [L b R b] during LBA monitoring time [L b R b], alarm output turns ON.
- Cooling control: When control output MV is 0% or low limit [L σ̄μ] and PV is not increased over than LBA detection band [L b R b] during LBA monitoring time [L b R b], or when control output MV is 100% or high limit [H σ̄μ] and PV is not decreased below than LBA detection band [L b R b] during LBA monitoring time [L b R b], alarm output turns ON.

Common causes of LBA output ON

- Sensor error (disconnection, short)
- External controller error (magnet, auxiliary relay, etc.)
- External load error (heater, cooler, etc.)
- Misconnections and disconnections of external network.

If it is not as sensor break/HHHH/LLLL, during auto-tuning/manual control/control STOP/ramp function operation, loop break alarm does not operate.

|                                                                                                   | LBA             | Alarm output                |                             |  |
|---------------------------------------------------------------------------------------------------|-----------------|-----------------------------|-----------------------------|--|
| Туре                                                                                              | monitoring time | Standard alarm              | Alarm latch                 |  |
| Initializing Alarm, changing control output operation mode, setting LBA monitoring time/band as 0 |                 | OFF                         | OFF                         |  |
| Changing input correction value, set value                                                        | Initialize      | Maintains the present alarm | Maintains the present alarm |  |
| Changing MV, stopping control, running auto-tuning                                                |                 | OFF                         | Maintains the present alarm |  |
| Occurring sensor break alarm, HHHH, LLLL                                                          |                 | ON                          | ON                          |  |



Set alarm operation[ $AL - \square$ ] as loop break alarm [LbA] and you can use loop break alarm.

When executing auto-tuning, LBA detection band [L b R b ] and LBA monitoring time[L b R b ] is automatically set based on auto-tuning value.

In case of AT (auto-tuning)/manual control/stop control, loop break alarm [ $L \, B \, B$ ] does not operates. When alarm reset is input, it initializes LBA monitoring start time.

### **6.4.7.1 LBA** monitoring time [PAr 4 → L bAt]

You can set the LBA monitoring time to check changes in the control subject's temperature. Automatically setting with auto-tunning.

- Regardless of alarm operation [AL □] (including LBA monitoring time as "0"), after running auto-tuning, the integration time ×2 value is saved automatically.
  - (If SV is out of the range of auto setting, it is set as max. or min. value of auto setting.)
- Except input type changing, re-running auto-tuning, manual setting of LBA monitoring time, it maintains the present SV.

Auto setting range: 0020 to 9999

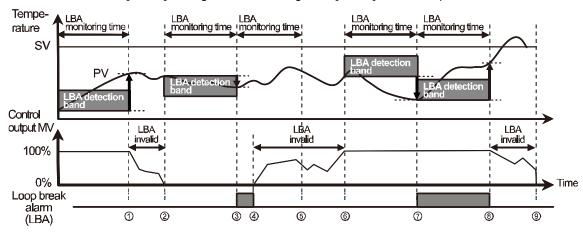
| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr4          | L b A.E   | 0000 to 9999  | 0000            | Sec  |

# **6.4.7.2 LBA** detection band [PAr 4 → L bR.b]

You can set the minimum value of deviation change to decrease during LBA monitoring time. Automatically setting with auto-tunning.

- Except input type changing, re-running auto-tuning, manual setting of LBA monitoring time, it maintains the present SV.
- Regardless of alarm operation [AL □] (including LBA monitoring time as "0"), after running auto-tuning, the integration time ×2 value is saved automatically.
  - (If SV is out of the range of auto setting, it is set as max. or min. value of auto setting.)
- Auto setting range

Temperature L: 0.02.0 to 10.0.0 (unit: °C/°F) Temperature H: 0.002 to 0.10.0 (unit: °C/°F)


Analog: 0 0 0.2 to 0 1 0.0 (unit: %F.S.)

| Setting group | Parameter     | Setting range |                | Factory default | Unit  |
|---------------|---------------|---------------|----------------|-----------------|-------|
| PA-4 L6A.6    | Temperature H | 000 to 999    | 002            | °C/°F           |       |
|               | L             | Temperature L | 000.0 to 999.9 | 0.500           | °C/°F |
|               |               | Analog        | 00.00 to 100.0 | 000.2           | %F.S. |



It checks control loop and outputs alarm by temperature change of the subject.

For heating control(cooling control), when control output MV is 100%(0% for cooling control) and PV is not increased over than LBA detection band [L b R b] during LBA monitoring time [L b R b], or when control output MV is 0%(100% for cooling control) and PV is not decreased below than LBA detection band [L b R b] during LBA monitoring time [L b R b], alarm output turns ON.

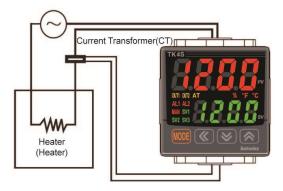


| Start to ① | When control output MV is 100%, PV is increased over than LBA detection band [៤ ь ብ.ь ] during LBA monitoring time [៤ ь ብ.ь ].                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ① to ②     | The status of changing control output MV (LBA monitoring time is reset.)                                                                                                                                    |
| ② to ③     | When control output MV is 0% and PV is not decreased below than LBA detection band [L b R.b.] during LBA monitoring time [L b R.b.], loop break alarm (LBA) turns ON after LBA monitoring time [L b R.b.].  |
| 3 to 4     | Control output MV is 0% and loop break alarm (LBA) turns and maintains ON.                                                                                                                                  |
| 4 to 6     | The status of changing control output MV (LBA monitoring time is reset.)                                                                                                                                    |
| ⑥ to ⑦     | When control output MV is 100% and PV is not increased over than LBA detection band [L b R.b ] during LBA monitoring time [L b R.b ], loop break alarm (LBA) turns ON after LBA monitoring time [L b R.b ]. |
| ⑦ to ⑧     | When control output MV is 100% and PV is increased over than LBA detection band [L b R.b.] during LBA monitoring time [L b R.b.], loop break alarm (LBA) turns OFF after LBA monitoring time [L b R.b.].    |
| 8 to 9     | The status of changing control output MV (LBA monitoring time is reset.)                                                                                                                                    |

# **6.4.8** Sensor break alarm [PAr4 $\rightarrow$ AL - 1/AL - 2/AL - 3 $\rightarrow$ 5bA]

You can set the controller to send out an alarm when a sensor is not connected or disconnected during temperature control.

Sensor break can be confirmed through an external alarm output contact, such as a buzzer or similar means.


Setting alarm operation [AL -  $\square$ ] to 5bA will activate Sensor Break Alarm.



Alarm output option can be set to standard alarm [AL - A] or alarm latch [AL - b].

# **6.4.9** Heater burnout alarm [PAr4 $\rightarrow$ AL - 1/AL - 2/AL - 3 $\rightarrow$ HbA]

- When using a heater to raise the temperature of the control subject, the temperature controller can be set to detect heater disconnection and send out an alarm by monitoring power supply to the heater.
- Heater disconnection is detected by the controller using a current transformer (CT), which converts the current to the heater to a specific ratio (CT ratio) for monitoring. If the heater current value [⌊ Ł Ϝ] measured by the CT is less than the heater detection set value [ϜŁ □.Ł ], the heater burnout alarm will activate.





- Heater burnout detection only takes place when the temperature controller's output is turned on. Otherwise, heater burnout will not be detected by the controller.
- Availability of the heater burnout alarm function is different by model and control output type.
   In case of heating&cooling model, heater burnout alarm function can be used in OUT1.

| Model                         | Control output type    | Heater burnout alarm |
|-------------------------------|------------------------|----------------------|
| TK4□-□□R□ (Relay output)      | Relay output           | 0                    |
| TK4□-□□S□ (SSR drive output)  | ON/OFF control [5£nd]  | 0                    |
|                               | Cycle control [[4[]    | X                    |
|                               | Phase control [PHR5]   | X                    |
| TK4□-□□C□                     | Current output [[]]    | X                    |
| (Current or SSR drive output) | SSR drive output [55-] | 0                    |

- Current detection is not performed if OUT1's control output time is less than 250ms.
- It is recommended to use Autonics designated current transformer (for 50A).
- Alarm output option can be set to standard alarm [AL A] or alarm latch [AL b].
- In the case of TK4SP models, heater burnout alarm [HbR] mode is not available.

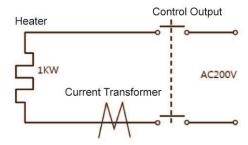
### **6.4.9.1** Heater burnout detection settings [PAr $I \rightarrow AL LL / AL 2L / AL 3L ]$

Set the alarm output value [ $RL \square L$ ] as the reference value for heater burnout detection.

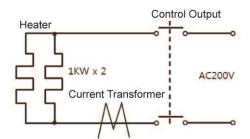
| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
|               | AL IL     |               |                 |      |
| PAr I         | AL 2.L    | 00.0 to 50.0  | 0 0.0           | Α    |
|               | AL 3.L    |               |                 |      |



### Note


Set to DD.D for OFF. Set to 5D.D for ON.




### Ex.

### Setting Value Calculation

: Heater Burnout Setting Value = {(Normal Heater Current) + (Heater Burnout Current)}/2



If using a single output heater (Capacity: 200VAC, 1KW, 5A), normal heater current is 5A, and burnout heater current is 0A, the set value is calculated as (5A + 0A)/2 = 2.5A. Therefore, heater current values less than 2.5A will be deemed heater burnout and the alarm will activate.



When two output heaters (Capacity: 200VAC, 1KW, 5A) are used, normal heater current is 10A (5A  $\times$ 2). If a single heater burns out, the heater current becomes 5A. The set value is calculated as (10A + 5A)/2 = 7.5A). Heater current values of less than 7.5A are deemed heater burnout and the alarm activates.

# **6.4.10** Alarm output deactivation [PAr5 → dl - L → Al.r E]

Available only if alarm output option is set to alarm latch or alarm latch and standby sequence1, alarm latch and standby sequence2. It can be set to turn OFF alarm output when alarm output is ON, alarm output conditions have been removed, or an alarm output deactivation signal that is greater than the minimal signal band is received. (However, alarm output deactivation is unavailable when alarm conditions remain in effect.)

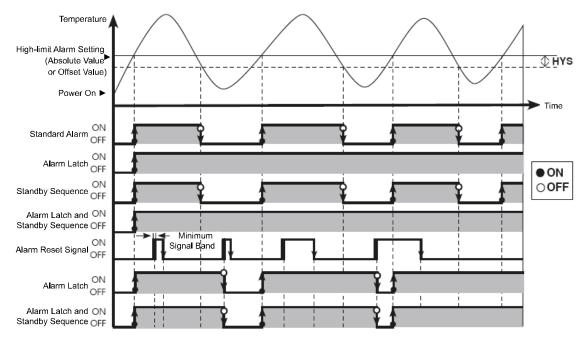
You can assign the front panel's digital input key [4! - 2] or the digital input terminals [4! - 1/4! - 2] for the alarm output deactivation feature [81.- 2]. (regardless of parameter mask)

# (1) Deactivating alarm output using digital input key

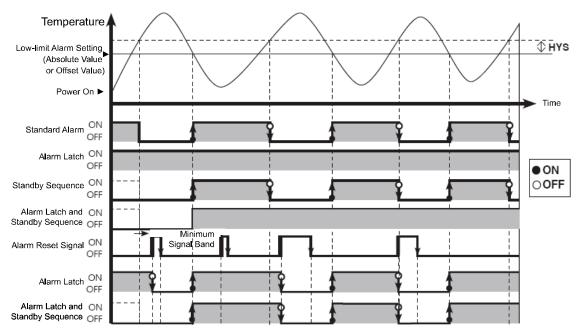
If the digital input key[dl - l'] has been assigned for alarm output deactivation [RL - E] and the alarm output option is set to alarm latch or alarm latch and standby sequence, press and hold the front panel's  $\bigotimes$  keys when alarm output is on.

### (2) Deactivation of alarm output using digital input (DI) terminal

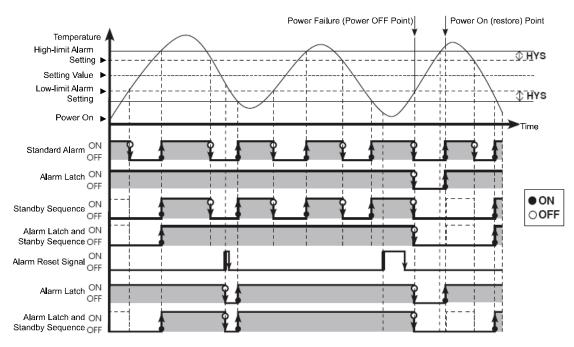
When the digital input (DI) terminal [d! - l/d! - 2] is assigned to alarm output deactivation [AL. E], the alarm output will deactivate when digital input (DI) terminal goes into the on state (close). (the MAN indicator turns ON).



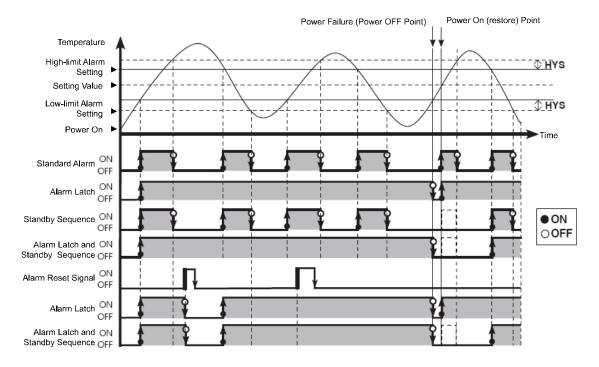

For detailed information on digital input key settings, see 6.7.4.2 Digital input key. For detailed information on digital Input (DI) key configuration, see '6.7.4.2 Digital input key'. For detailed information on digital Input (DI) terminal configuration, see '6.7.4.1 Digital input terminal settings [PRr  $5 \rightarrow dI - I/dI - 2$ ]'.


After deactivating the alarm output, it will function normally for the next alarm output occurrence.

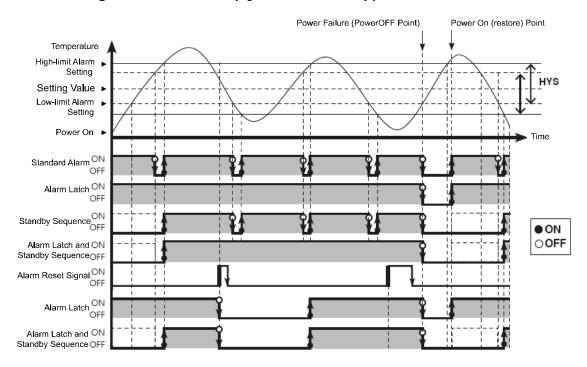
# 6.4.11 Alarm output examples


### 6.4.11.1 Absolute value high-limit alarm and deviation high-limit alarm




# 6.4.11.2 Absolute value low-limit alarm and deviation low-limit alarm




### 6.4.11.3 Deviation high/low-limit alarm



### 6.4.11.4 Deviation high/low-limit reverse alarm



# 6.4.11.5 Deviation high/low-limit alarm (hysteresis overlap)



# 6.5 Analog transmission

# 6.5.1 Analog transmission output value settings [PAr 4 → Ao.ō 1/ Ao.ō 2]

Transmission output is a type of auxiliary output that converts the controller's present value, set value, heating MV, cooling MV to analog current (DC 4 to 20mA) for external transmission.

| Setting | Description                    |
|---------|--------------------------------|
| Ρυ      | PV transmission output         |
| 5 u     | SV transmission output         |
| H-ōu    | Heating MV transmission output |
| [-הַט   | Cooling MV transmission output |

| Setting group | Parameter | Setting range      | Factory default | Unit |
|---------------|-----------|--------------------|-----------------|------|
| PAr4          | Ro.ñ I    | Pu /5u /H-ñu /[-ñu | Ри              |      |
| רחרי          | Ro.ñ2     |                    | 70              | -    |



When using standard control mode of OUT2 current output model, OUT2 current output is available as transmission output 2. For transmission output model,  $[A \Box \bar{A}]$  is activated. For standard control mode of OUT2 current output model,  $[A \Box \bar{A}]$  is activated.

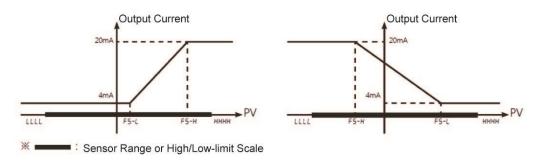
This parameter is activated in transmission output models only. Transmission output is constant current output. Too great a resistance from the load can cause the output value to change. There is no optional output below 4mA or above 20mA.

# 6.5.2 Transmission output high/low-limit value settings

[PAr4 → F5.L 1/F5.H 1 → F5.L 2/F5.H2]

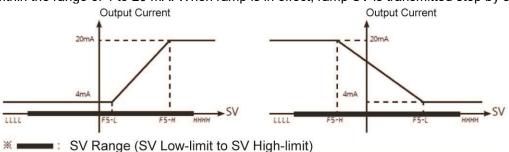
If the transmission output value  $[A \boxtimes \bar{A} \square]$  is below the transmission output low-limit  $[F S.L \square]$ , 4mA output will be provided. If the transmission output is between the low-limit  $[F S.L \square]$  and high-limit  $[F S.H \square]$ , a certain proportional output within the range 4mA and 20mA will be provided. If it is above the high-limit  $[F S.H \square]$ , 20mA output will be provided.

| Setting | Description                                        |
|---------|----------------------------------------------------|
| F 5.L 1 | Sets the low-limit of transmission output (4mA).   |
| F 5.L 2 | Sets the low-limit of transmission output (4mA).   |
| F 5.H   | Cata the high limit of transmission output (20mA)  |
| F 5.H 2 | Sets the high-limit of transmission output (20mA). |


| Setting group | Parameter          | Setting range |                                                                                      | Factory default | Unit    |
|---------------|--------------------|---------------|--------------------------------------------------------------------------------------|-----------------|---------|
|               | F 5.L 2            | Pu            | Temperature: usage range<br>Analog: high/low scale range                             | - 200           | ali mid |
|               |                    | Su            | SV low-limit value [L - 5 \( \dots\)] to<br>SV high-limit value [H - 5 \( \dots\)]   |                 |         |
| PAcy          |                    | H-ōu /C-ōu    | 000.0 to 100.0                                                                       |                 |         |
|               | F 5.H 1<br>F 5.H 2 | Ρυ            | Temperature: usage range<br>Analog: high/low scale range                             |                 | digit   |
|               |                    | Su            | SV low-limit value [L - 5 \( \dots \)] to<br>SV high-limit value [H - 5 \( \dots \)] | 1350            |         |
|               |                    | H-ōu/[-ōu     | 000.0 to 100.0                                                                       |                 |         |

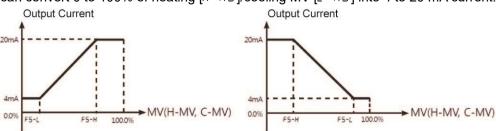


If transmission output high-limit [ $F 5.H \square$ ] is transmission output low-limit [ $F 5.L \square$ ], the transmission output is 4 mA.


### (1) Present value (PV) transmission output

PV within sensor range or upper/low-limit scale can be converted and transmitted as current within the range of 4 to 20 mA.




# (2) Set value (SV) transmission output

SV within sensor range or upper/low-limit scale can be converted and transmitted as current within the range of 4 to 20 mA. When ramp is in effect, ramp SV is transmitted step by step.



### (3) Heating MV/Cooling MV transmission output

You can convert 0 to 100% of heating [H - n̄ u]/cooling MV [[ - n̄ u] into 4 to 20 mA current.



# 6.6 Communication settings

This feature is used for external higher systems (PC, GP, etc.) to set the controller's parameters and to monitor the controller. It can also be used to transmit data to external devices.

No redundant unit addresses may exist along the same communication line. The communication cable must be a twist pair that supports RS485.

#### Interface

| Туре                     | Description                                  |
|--------------------------|----------------------------------------------|
| Comm. protocol           | Modbus RTU                                   |
| Connection type          | RS485                                        |
| Application standard     | Compliance with EIA RS485                    |
| Max. connection          | 31 units (address: 01 to 99)                 |
| Synchronous method       | Asynchronous                                 |
| Comm. method             | Two-wire half duplex                         |
| Comm. distance           | Max. 800m                                    |
| Comm. speed              | 2400, 4800, 9600, 19200, 38400 bps           |
| Comm. response wait time | 5 to 99 ms                                   |
| Start bit                | 1-bit (fixed)                                |
| Data bit                 | 8-bit (fixed)                                |
| Parity bit               | None, Odd, Even                              |
| Stop bit                 | 1-bit, 2-bit                                 |
| EEPROM life cycle        | approx. 1,000,000 operations (Erase / Write) |



You could modify the parameter (first in, first out) using keys during communication connection, but this may lead to errors and malfunctions.

# **6.6.1** Unit address settings [PAr 4 → Adr 5]

You can assign individual addresses to data units.

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr4          | Adr5      | 0 I to 99     | 0 1             | -    |

# **6.6.2 BPS** (bits per second) settings [PAr 4 → bP5]

You can set the rate of data transmission.

| Setting group | Parameter | Setting range                                                              | Factory default | Unit |
|---------------|-----------|----------------------------------------------------------------------------|-----------------|------|
| PAr4          | 6P5       | 근닉(2400 bps) / 낙윤(4800 bps) / 95(9600 bps) / 남윤(19200 bps) / 남윤(38400 bps) | 96              | bps  |

# **6.6.3** Communication parity bit [PAr4 → Prt4]

Parity bit is a data communication method that adds an additional bit to each character in transmitted data as an indicator used to verify data loss and corruption. This parameter is used to enable or disable the parity bit option.

| Setting | Description                                                 |
|---------|-------------------------------------------------------------|
| nonE    | Disables parity bit.                                        |
| EuEn    | Sets the total bits with signal value of 1 as even numbers. |
| odd     | Sets the total bits with signal value of 1 as odd numbers.  |

| Setting group | Parameter | Setting range   | Factory default | Unit |
|---------------|-----------|-----------------|-----------------|------|
| PAr4          | Prty      | nonE /EuEn /odd | nonE            | -    |

# **6.6.4** Communication stop bit settings [PAr4 $\rightarrow$ 5 $\pm$ P]

You can set the number of bits to mark the end of a transmitted data string.

| Setting | Description                        |
|---------|------------------------------------|
| 1       | Sets end of data string to 1 bit.  |
| 2       | Sets end of data string to 2 bits. |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr4          | SEP       | 1/2           | 2               | bit  |

# 6.6.5 Response wait time settings [PAr 4→ r 5 \Lambda L]

Set a standby time to mitigate communication errors when communicating with a slow master device (PC, PLC, etc.). Once a standby time is set, the controller will respond after the defined standby time.

| Setting group | Parameter      | Setting range | Factory default | Unit |
|---------------|----------------|---------------|-----------------|------|
| PAr4          | r5 <u>4</u> .E | 05 to 99      | 20              | ms   |

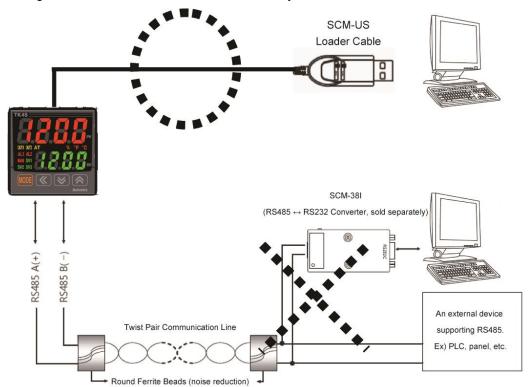


Shorter standby times can cause communication errors in the master device.

# 6.6.6 Enable/Disable communication write[PAr Ч→ [oñ -]]

This feature can change parameter settings stored in memory through communication with PC, GP, PLC, etc., in order to permit or prohibit writing.

| Setting | Description                                                   |
|---------|---------------------------------------------------------------|
| E n.A   | Parameter set/change enable via communication.                |
| d1 5.A  | Prohibit parameter setting or modification via communication. |


| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr4          | Covā      | En.A / d1 5.A | E n.A           | -    |



Reading parameter settings is available even though prohinit parameter setting.

### 6.6.7 USB to Serial communication connection

Data can be transmitted via a USB-to-serial connection. However, RS485 communication through a USB-to-serial connection is blocked by hardware.



### 6.7 Additional features

# 6.7.1 Monitoring

Refer to '5.2.3 MV monitoring and manual control'.

### 6.7.1.1 Control output MV monitoring

Monitors and displays the current control output MV.

### 6.7.1.1.1. Heating MV monitoring

Displays the current heating MV during heating control or heating & cooling control. Users may manually adjust the MV to control the temperature.

Measurement range: H 0.0 to H 100 (Unit: %)



Capable of displaying MV with a moving decimal point (H99.9 → H 100).

# 6.7.1.1.2. Cooling MV monitoring

Displays the current cooling MV during cooling control or heating & cooling control. Users may manually adjust the MV to control the temperature.

■ Measurement Range: [ 0.0 to [ 10 0 (Unit: %)



Capable of displaying MV with a moving decimal point ([99.9 → [100]).

#### **6.7.1.2** Heater current monitoring [PAr $I \rightarrow [E-A]$ ]

A feature that monitors and displays the current of a heater (load) being controlled by control output.

| Setting<br>Group | Parameter | Measurement range | Unit |
|------------------|-----------|-------------------|------|
| PAr I            | CE-A      | 0.0 to 5 0.0      | Α    |



A current transformer (CT) is used to measure and display the heater's (load) current.

Availability of the heater current monitoring function is different by model and control output type. In case of heating&cooling model, heater current monitoring function can be used in OUT1.

| Model                         | Control output type      | Heater current monitoring |
|-------------------------------|--------------------------|---------------------------|
| TK4□-□□R□ (Relay output)      | Relay output             | 0                         |
| TK4□-□□S□ (SSR drive output)  | ON/OFF control [5 £ n d] | 0                         |
|                               | Cycle control [[4[]      | Χ                         |
|                               | Phase control [PHR5]     | X                         |
| TK4□-□□C□                     | Current output [[ロート]    | X                         |
| (Current or SSR drive output) | SSR drive output [55-]   | 0                         |

# **6.7.2 RUN/STOP** [PAr 1 → r - 5]

Users may run or stop control output by force while in RUN mode.

The stop command stops control output. Auxiliary output, however, is not affected by the command. This feature can be enabled by configuring parameters. In addition, the front panel's digital input keys ( $\bigotimes$  for 3 sec.) and digital input terminals (DI-1 and DI-2) can be assigned to the run/stop feature[ $5 \not\models a \not\models$ ]. (regardless of parameter mask)

| Setting | Description                             |
|---------|-----------------------------------------|
| гUn     | Forced control output run in STOP mode. |
| 5toP    | Forced control output stop in RUN mode. |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr I         | r-5       | run /5toP     | רטה             | 1    |



With stop enabled, the front panel's SV display indicates 5 t o P.

You can change the setting when in the stop state. The stop status will remain in effect after shutting down the controller and powering it back on.

When stop is in effect, STOP MV[5 ะ.กิน] will be output. In case of a sensor break occurring while in STOP, STOP MV[5 ะ.กิน] is output.

The run/stop setting remains in effect after turning power back on.

If the digital Input (DI-1, DI-2) feature has been set for RUN/STOP[5 t a P], RUN/STOP feature by modifying front keys or parameter is unable.

### 6.7.2.1 Stop control output settings [PAr5 → 5Ł.ñu]

This parameter sets the control output value when in the stop state. With ON/OFF control, select between 1000 (ON) and 0000 (OFF). With PID control, the user can adjust the MV between 0000 and 10000.

| Setting group | Parameter | Setting range     |                   |                                                                         | Factory default | Unit |
|---------------|-----------|-------------------|-------------------|-------------------------------------------------------------------------|-----------------|------|
|               |           | Standard          | ON/OFF<br>Control | 000.0 (OFF) /<br>100.0 (ON)                                             | 000.0           |      |
|               |           | Control           | PID<br>Control    | 000.0 to 100.0                                                          | 000.0           |      |
| PR-5          | lrS St.āu | Heating & cooling | ON/OFF<br>Control | → □ □ □ □ (Cooling ON)<br>/ □ □ □ □ □ (OFF) /<br>  □ □ □ □ (Heating ON) | 000.0           | %    |
|               |           | Control           | PID<br>Control    | dana (Cooling) to dana (Heating)                                        | 000.0           |      |



Ignores MV from ON/OFF control or PID control and sends out a control value based on the defined MV.

### **6.7.2.2** Stop alarm output [PAr $5 \rightarrow 5$ LAL]

Enable or disable alarm output upon a stop.

| Setting | Description                                                                                                                                                                                                    |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| oFF     | Alarm output ceases along with a stop under all conditions.  (However, reverting to RUN mode after a stop in alarm latch or alarm latch and standby sequence restores the alarm output to the previous state.) |  |
| Cont    | Alarm output continues regardless of control operation.                                                                                                                                                        |  |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr I         | r-5       | Cont /off     | Cont            | -    |

### **6.7.3** Multi SV

Multi SV function allows users to set multiple SVs and save each setting in  $5 \, \square \, \square$  to  $5 \, \square \, \exists$ . Users can change  $5 \, \square \, \neg \, \square$  or select desired SV using external digital input terminal (digital input, DI-1, DI-2) function.

This feature supports up to four SVs which can be independently configurable.

### **6.7.3.1** Number of Multi SVs [PAr 5 → n̄t.5u]

This parameter sets the number of Multi SVs. Select the number of Multi SVs required by the control subject.

| Number of SVs | SV Assignment                    |
|---------------|----------------------------------|
| IEA           | 5u-0                             |
| 2 E R         | 50-0,50-1                        |
| 4 E A         | Su-0,Su-1,Su-2,Su-3 <sup>-</sup> |

| Setting group | Parameter | Setting range | Factory default | Unit          |
|---------------|-----------|---------------|-----------------|---------------|
| PRr5          | ñŁ.Su     | 1/2/4         | 1               | Number of SVs |



If the digital Input (DI-1, DI-2) feature has been set for multi SV [¬E.5 ¬], the number of Multi SV is not modified through pressing key or communication.(regardless of parameter mask)

### **6.7.3.2** Multi SV No. selection [PAr $l \rightarrow 5u-n$ ]

Select the SV to control.

| Setting group Parameter Setting range |      | Setting range       | Factory default | Unit |
|---------------------------------------|------|---------------------|-----------------|------|
| PAr I                                 | 5u-n | 50-0/50-1/50-2/50-3 | 5u-0            | -    |



The range of figures assigned to each SV (SV No.) varies depending on the number of Multi SVs [£.5 ¬] setting.

# **6.7.3.3** Multi SV settings [PAr $1 \rightarrow 5u - 0/5u - 1/5u - 2/5u - 3]$

Designate the value of each SV for Multi SVs.

| Setting<br>group | Parameter | Setting range                                                             | Factory default | Unit    |
|------------------|-----------|---------------------------------------------------------------------------|-----------------|---------|
|                  | 5u-0      | Setting value low-limit [Ł - 5 ɹ ] to Setting value high-limit [H - 5 ɹ ] |                 | °C °F   |
| PAc I            | 5u-1      |                                                                           |                 |         |
| ורחרו            | 50-2      |                                                                           | 0               | °C,°F,- |
|                  | 5u-3      |                                                                           |                 |         |

# 6.7.4 Digital input

### **6.7.4.1** Digital input terminal settings [ $PRr5 \rightarrow dl - 1/dl - 2$ ]

By connecting an external input to a digital input terminal, you can perform preset digital input terminal functions.

| Setting                           | Description                     |  |
|-----------------------------------|---------------------------------|--|
| oFF                               | Not used                        |  |
| StoP                              | Run/Stop                        |  |
| AL.r E                            | L.r.E Alarm output deactivation |  |
| ĀЯn Auto/manual control selection |                                 |  |
| ñŁ.Su                             | Multi SV selection              |  |

In the case one of DI-1 or DI-2 being set for Multi  $SV[\bar{n} \pm .5 \, \underline{u}]$ ,  $5 \, \underline{u} - 0$  is selected as the SV if the terminal's external contact signal is off and  $5 \, \underline{u} - 1$  is selected if the signal is on.

If both DI-1 and DI-2 are configured for Multi SV[ $\bar{n}$ £.5 $\mu$ ], you can select the SV using combinational logic of the terminals. If multi SV [ $\bar{n}$ £.5 $\mu$ ] are changed from 4 to 2, DI-2 will be turned OFF automatically, changed from 4 to 1, both DI-1 and DI-2 will be turned OFF or changed from 2 to 1, concerned DI will be OFF.

| DI-1 | DI-2 | Multi SV No. |
|------|------|--------------|
| OFF  | OFF  | 5u-0         |
| ON   | OFF  | 5u-1         |
| OFF  | ON   | 50-2         |
| ON   | ON   | 5,,-3        |

| Setting group | Parameter | Setting range               | Factory default | Unit |
|---------------|-----------|-----------------------------|-----------------|------|
| PAc S         | d1 - 1    | off /Stop /ALrE /ñAn /ñt.Su | oFF             | -    |
| rnrj          | d1 - 5    | UFF                         |                 |      |



When powered on, the digital input feature checks always the settings of terminal input.

Multi SV parameter will be activated only if Multi SV is more than 2.

The TK4SP Series has a limited number of terminal blocks and does not feature a digital input terminal. Therefore, the digital input terminal functions are not available.

TheTK4S, M Series has a limited number of terminal blocks. Therefore, the digital input terminal1 (DI-1) is available. (In case of TK4S-D4 □□, only DI-1, DI-2 are available)

Digital input terminal function operates irrespective of 6.7.7 Lock , 6.7.9 Password settings [ $PRr5 \rightarrow PUd$ ], 8.3.1 Parameter mask.

### 6.7.4.2 Digital input key

With digital input key enabled in RUN mode, press and hold keys at the same time for 3 sec. to activate the preset function.

# **6.7.4.2.1.** Digital input key settings [PAr $5 \rightarrow dl - ll$ ]

In order to use the digital input key feature, each function has to be first assigned to the keys.

| Setting                                                          | Description |  |  |
|------------------------------------------------------------------|-------------|--|--|
| StoP                                                             | RUN/STOP    |  |  |
| RL E Forced alarm output deactivation                            |             |  |  |
| RE Auto-tuning RUN/OFF(in case of control method is PID control) |             |  |  |
| oFF                                                              | Not used    |  |  |

| Setting group Parameter |        | Setting range | Factory default | Unit |
|-------------------------|--------|---------------|-----------------|------|
| PRr5                    | 91 - F | StoP / AL.r E | StoP            | -    |



If the digital input key and the digital input terminal set equally, the digital input key does not act.

### 6.7.4.2.2. Digital input key use

Press the digital input keys on the front panel to execute the function assigned to the keys.

When in RUN mode, press and hold + keys for 3 sec. to execute the assigned function (run/stop or alarm output deactivation).



If the same function is assigned to a digital input key and the digital input terminal, activation takes place as an "or" function and deactivation as an "and" function. (However, this does not apply to the Multi SV feature  $[\bar{n} \pm .5 \, \text{L}]$  of digital input terminals.)

### 6.7.5 Error

The controller diagnoses input signals for errors and displays messages accordingly. These messages inform the user of device problems.

| Message | Input              | Description                                                                                            | Output                                                                                |
|---------|--------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| нннн    | Temperature sensor | Flashes at 0.5 sec. intervals if the input value is above the input range.                             | Standard type: Heating: 0%, Cooling: 100% Heating&Cooling: Heating: 0%, Cooling: 100% |
|         | Analog             | Flashes at 0.5 sec. intervals if the input value is over 5 to 10% of high limit or low limit value.    | Normal output                                                                         |
| LLLL    | Temperature sensor | Flashes at 0.5 sec. intervals if the input value is below the input range.                             | Standard type: Heating: 100%, Cooling: 0% Heating&Cooling: Heating: 100%, Cooling: 0% |
|         | Analog             | Flashes at 0.5 sec. intervals if the input value is over 5 to 10% of low limit or high limit value.    | Normal output                                                                         |
| 95      | Temperature sensor | Flashes at 0.5 sec. intervals in the event of an input disconnection.                                  |                                                                                       |
| oPEn    | Analog             | Flashes at 0.5 sec. intervals if F.S. is over ±10%.                                                    | Outputs the set MV at E r.ñu                                                          |
| Err     | Temperature sensor | Flashes at 0.5 sec. intervals if there is error for setting and it returns to the error-before screen. | -                                                                                     |

When input value returns to the input range, alarm is deactivated and it operates normally.



When in heating control mode and powered on, or standard control state, output is 0% if HHHH is displayed and 100% if LLLL is displayed.

When in cooling control and powered on (or standard control state), output is 100% if HHHH is displayed and 0% if LLLL is displayed.

When in heating & cooling control and powered on or standard control state, heating output is 0% and cooling output 100% if HHHH is displayed, and heating output is 100% and cooling output 0% if LLLL is displayed.

### 6.7.5.1 MV Settings upon sensor break error [oPEn](MV for Error) [P用c5 → Ec.ñu]

In the event of a sensor open error you can set control output value to predefined MV instead of ON/OFF control or PID control.

Ignores MV by ON/OFF control or PID control, and sends out a control value based on the defined MV.

| Setting group | Parameter | Setting              | Setting range            |                                                                  |                                          | Unit |  |
|---------------|-----------|----------------------|--------------------------|------------------------------------------------------------------|------------------------------------------|------|--|
|               |           | Standard             | ON/OFF<br>Control        | 0000 (OFF)/1000 (ON)                                             |                                          |      |  |
|               |           | Control              | PID Control 0000 to 1000 |                                                                  |                                          |      |  |
| PAr5          | Ar5 Er.ñu | Heating              | ON/OFF<br>Control        | dana (Cooling On) dana (Cooling On) dana (OFF)/dana (Heating On) | 000.0                                    | %    |  |
|               |           | & cooling<br>Control |                          | PID<br>Control                                                   | ୍ୟଥିଥି (Cooling) to ≀ଥିଥିଥି<br>(Heating) |      |  |

# **6.7.6** User level setting [PAr5 → U5Er]

You can restrict parameter display by setting user level (standard or high).

When you set as a standard level user, the main function parameters shaded on the entire parameter list(See the 5.3 Parameter group), are only displayed.

| Parameter Parameter description |                                    |  |  |
|---------------------------------|------------------------------------|--|--|
| Stnd                            | Activates standard user parameters |  |  |
| HI GH                           | Activates all parameters           |  |  |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PArS          | USEr      | Stad / HI GH  | Stnd            | -    |

### 6.7.7 Lock settings

### **6.7.7.1** SV group lock [ $PRr5 \rightarrow L[.5u]$ ]

| Setting | Function                   |  |  |
|---------|----------------------------|--|--|
| on      | Activates SV group lock.   |  |  |
| oFF     | Deactivates SV group lock. |  |  |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PRr5          | L C.5 u   | on loff       | oFF             | -    |

### **6.7.7.2** Parameter group lock [PAr5 → L C.P 1/L C.P3/L C.P3/L C.P 4/L C.P5]

Lock or unlock individual parameter groups from parameter 1 group [PAr 1] to parameter 5 group [PAr 5].

Even with parameter group lock in place, you can still read parameter settings.

In Parameter 5's [PRr 5] case, the settings can still be modified even with a lock [ $L E.5 \ L E.P \ \Box$ ] initiated.

| Parameter | Parameter description  |
|-----------|------------------------|
| on        | Lock parameter group   |
| oFF       | Unlock parameter group |

| Parameter | Parameter description   |
|-----------|-------------------------|
| L C.P I   | Lock parameter 1 group. |
| L C.P 2   | Lock parameter 2 group  |
| L C.P 3   | Lock parameter 3 group  |
| L C.P Y   | Lock parameter 4 group  |
| L C.P S   | Lock parameter 5 group  |

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| PAr5          | L         | on loff       | off             | -    |

### 6.7.8 Parameter reset [Inlt]

This function is to reset all parameters in memory to factory defaults.

Press and hold the front panel's keys for 5 sec. The Int E parameter will be displayed. Select 4E5 to reset the parameters.

| Setting group | Parameter | Setting range | Factory default | Unit |
|---------------|-----------|---------------|-----------------|------|
| -             | I nl E    | YE5 / no      | ٥               | -    |



If the password feature is activated, it is required to enter a password to activate this function. Resetting the parameters also resets the password.

If this parameter reset [ n t ] is masked, it cannot be used.

# **6.7.9** Password settings [PAr5 → P望d]

Assigning password access to SV group features (excluding digital input key) and Parameter 1 through 5 prevents unauthorized modification to the parameter settings.

Password setting applies to SV group features (excluding digital input key) and Parameter 1 through 5 comprehensively.

Changing the password setting automatically activates password protection. Setting the password to [] [] [] , however, disables password protection.

III I is a read-only password. Under this setting, the user may check parameter settings without knowing the password. The user, however, cannot change parameter settings.

Accessing the Pud parameter with the read-only password displays a coded form of the setting.

### Settings

- 1st When in RUN mode, press and hold the key.
- 2nd Use the **②** ★ keys to select PAr 5 and then press the **◎** key.
- 3rd Press the key to search ₽₽₫.
- 4th Select the desired digit using the key.
- 5th Use the keys to set the password (0000, 0002 to 9999) then press the key to set the password.
- 6th Repeat steps 4 and 5 and enter the preset password.
- 7th Press the week key or do not make any additional key entry for 3 sec. to save the password.

| Setting group | Parameter | Setting range                                                                  | Factory default | Unit |
|---------------|-----------|--------------------------------------------------------------------------------|-----------------|------|
| PAr5          | ₽≌d       | 0000 (password protection deactivated.) 0002 to 9999 (password protection on.) | 0000            | -    |



'6.7.4 Digital input' features are not affected by password protection settings.

### **6.7.9.1 Password entry [PR55]**

If password protection is turned on, accessing SV parameters or groups when the unit is in RUN mode will prompt a password confirmation parameter [PR55]. Then, the correct password has to be entered to access the setting parameters.

- Settings
  - 1st Access SV parameter or parameter group.
  - 2nd When prompted with PR55, use the key to select the desired digit.
  - 3rd Use the **②**♠ keys to enter the password (□□□ / through 9999) and then press the key.
- If the correct password is entered, you can access setting parameters.
- If an incorrect password is entered, repeat steps 2 and 3 and enter the correct password.

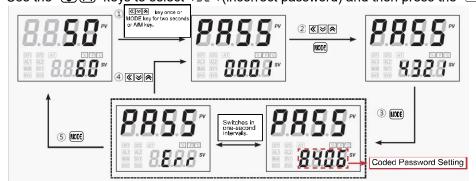
| Setting group | Parameter | Setting range                   | Factory default | Unit |
|---------------|-----------|---------------------------------|-----------------|------|
| PR-5          | PRSS      | 000 ℓ (read-only), 0002 to 9999 | 0001            | -    |



If the password is unknown, enter DDD I to access the parameters in read-only mode.

This parameter only appears if the setting from 6.7.9 Password settings [PAr  $5 \rightarrow P U d$ ] is set to a value other than 0000.

If an incorrect password has been entered, the SV display section displays a coded form of the password stored by the user and an error message  $[E_{rr}]$ . Then, the error message flashes in 1 sec. intervals.


#### 6.7.9.2 Password recovery

Entering an incorrect password displays a coded form of the password on the SV display. Submit this code to Autonics to recover your lost password.

Incorrect Password Entry (For example, the correct password being 1234)

- 1st Access SV parameter or parameter group.
- 2nd When prompted with PR55, use the key to select the desired digit.

Use the ⊗⊗ keys to select 4∃2 (incorrect password) and then press the logic key.



Entering an incorrect password displays a coded password on the SV display. An Err message will also appear, flashing at 1 sec. intervals.

# 7 Setting group parameter description

# 7.1 Setting group [50]

| Parameter      |                                       | Description                                          | Set range                         | Unit    | Factory default |
|----------------|---------------------------------------|------------------------------------------------------|-----------------------------------|---------|-----------------|
| 50             | Set value                             | SV                                                   | Between L - 5 u and H - 5 u       | °C/°F/- | 0               |
| <b>⊗</b> ⊗ key | Digital input Key<br>Execute          | Digital input execution key                          | Press the  keys more than 3 sec.  | -       | -               |
| (A/M) key      | Auto_Manual<br>Monitoring/Contr<br>ol | MV<br>monitoring/manua<br>I control<br>execution key | Press the AM key more than 1 sec. | -       | -               |
| InlE           | Parameter initialize                  | Resets<br>parameters to<br>factory defaults          | no / 4E5                          | -       | no              |

# 7.2 MV monitoring/manual control setting group [ nu ]

| Parameter |            | Description | Set range      | Unit | Factory default |
|-----------|------------|-------------|----------------|------|-----------------|
| H-ōu      | Heating_MV | Heating MV  | H 0.0 to H 100 | %    | -               |
| [-ñu      | Cooling_MV | Cooling MV  | C 0.0 to C 100 | %    | -               |

<sup>\*</sup>It is possible to manually control and monitor heating & cooling MVs at the same time.

# 7.3 Parameter 1 setting group [ PAr 1 ]

| Paramet | er                        | Description                        | Set range                                         | Unit    | Factory default |
|---------|---------------------------|------------------------------------|---------------------------------------------------|---------|-----------------|
| r-5     | RUN_STOP                  | Control Output<br>RUN/STOP         | rUn/StoP                                          | -       | гШп             |
| 5u-n    | Multi SV No.              | Multi SV number selection          | 5u-0/5u-1/5u-<br>2/5u-3                           | -       | 5u-0            |
| CE-A    | Heater current monitoring | Heater current monitoring          | 0.0 to 50.0 (display range)                       | А       | -               |
| AL IL   | Alarm1_low                | Alarm output 1's low-limit value   |                                                   |         |                 |
| AL IH   | Alarm1_high               | Alarm output 1's high-limit value  |                                                   |         |                 |
| A L 2.L | Alarm2_low                | Alarm output 2's low-limit value   | Offset Alarm: -F.S. to F.S.                       | °C/°F/- | 1550            |
| AL 2.H  | Alarm2_high               | Alarm output 2's high-limit value. | Absolute Value<br>Alarm: Within<br>display range. | C/ F/-  | 1220            |
| AL 2.L  | Alarm3_low                | Alarm output 3's low-limit value   |                                                   |         |                 |
| AL 2.H  | Alarm3_high               | Alarm output 3's high-limit value. |                                                   |         |                 |
| 5u-0    | SV-0 set value            | SV-0 set value                     | Between L - 5 u and H - 5 u                       | °C/°F/- | 0000            |
| 5u- 1   | SV-1 set value            | SV-1 set value                     | Between L - 5 u and H - 5 u                       | °C/°F/- | 0000            |
| 5u-2    | SV-2 set value            | SV-2 set value                     | Between L - 5 u and H - 5 u                       | °C/°F/- | 0000            |
| 5u-3    | SV-3 set value            | SV-3 set value                     | Between L - 5 u and H - 5 u                       | °C/°F/- | 0000            |

# 7.4 Parameter 2 setting group [ PAr 2 ]

| Paramete | r                                | Description Set range                    |                                                                                                                                                                                                                                | Unit                   | Factory default   |
|----------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| ЯĿ       | Auto-tuning execute              | Auto-tuning<br>ON/OFF                    | oFF/on                                                                                                                                                                                                                         | -                      | oFF               |
| H-P      | Heating_<br>proportional<br>band | Heating proportional band                | - 000. I to 999.9                                                                                                                                                                                                              | 000.1 to 999.9 °C/°F/% |                   |
| [-P      | Cooling_<br>proportional<br>band | Proportional band in cooling mode        | 1 UUU. 1 (O 3 3 3.3                                                                                                                                                                                                            | C/ F/%                 | 0 10.0            |
| H-!      | Heating_integr<br>al time        | Heating integral time                    | 0000 to 0000                                                                                                                                                                                                                   | See                    | 0000              |
| [-I      | Cooling_integr<br>al time        | Cooling integral time                    | 0000 to 9999                                                                                                                                                                                                                   | Sec                    | 0000              |
| Н- d     | Heating_deriv ation time         | Heating derivative time                  | - 0000 to 9999                                                                                                                                                                                                                 | Sec                    | 0000              |
| [-d      | Cooling_deriva tion time         | Cooling derivative time                  | 0000 (0 5555                                                                                                                                                                                                                   | Sec                    | 0000              |
| dЬ       | Dead_overlap<br>band             | Heating & cooling control dead band      | P/P, P/ONOFF, and ONOFF/P Controls -Proportional Band to 0.0 to +Proportional Band (if different, based on whichever is lesser) ONOFF/ONOFF Control -999 to 0999 (Temperature H) +99.9 to 999.9 (Temperature L) -99.9 to 099.9 | Digit                  | 0000              |
| r E S E  | Manual reset                     | Manual reset under                       | (Analog)                                                                                                                                                                                                                       | %F.S.                  | 050.0             |
| н.н у 5  | Heating_ON hysteresis            | proportional control  Heating hysteresis | 00   to  00<br>(000.   to  00.0)                                                                                                                                                                                               | Digit                  | 002               |
| H.o 5 E  | Heating_OFF offset               | Heating off point offset                 | 000 to 100<br>(000.0 to 100.0)                                                                                                                                                                                                 | Digit                  | 000               |
| С.Н У 5  | Cooling_ON hysteresis            | Cooling hysteresis                       | 00   to  00<br>(000.   to  00.0)                                                                                                                                                                                               | Digit                  | 002               |
| C.o.5 t  | Cooling_OFF offset               | Cooling off point offset                 | 000 to 100<br>(000.0 to 100.0)                                                                                                                                                                                                 | Digit                  | 000               |
| L-ñu     | MV low-limit                     | MV low-limit setting                     | (standard control)                                                                                                                                                                                                             | %                      | 000.0<br>(-100.0) |
| Н-йп     | MV high-limit                    | MV high-limit value                      | L-ñu+0.1 to 100.0 (standard control)                                                                                                                                                                                           | %                      | 100.0<br>(100.0)  |

| Parameter |                | Description    | Set range                      | Unit            | Factory default |
|-----------|----------------|----------------|--------------------------------|-----------------|-----------------|
|           |                |                | (heating & cooling control)    |                 |                 |
| гЯлО      | Ramp_up rate   | Ramp rise rate | 000 to 999<br>(000.0 to 999.9) | °C/°F/<br>Digit | 000             |
| rRād      | Ramp_down rate | Ramp down rate | 000 to 999<br>(000.0 to 999.9) | °C/°F<br>Digit  | 000             |
| r.Unt     | Ramp time unit | Ramp time unit | SEC /ñl n /HoUr                | -               | ñIn             |

# 7.5 Parameter 3 setting group [ PAr 3 ]

| Parame              | ter                        | Description                          | Set range                                         |                                    | Unit    | Factory default |
|---------------------|----------------------------|--------------------------------------|---------------------------------------------------|------------------------------------|---------|-----------------|
| In-E                | Input type                 | Input type                           | See Input ty                                      | ypes                               | -       | E C A.H         |
| Uni E               | Unit                       | Sensor temperature unit              | °[ / °F                                           |                                    | -       | ٥.              |
| LG                  | Low input range            | Analog low-limit input value         | Minimum ra<br>to H - r 🖟 - F                      | -                                  | Digit   | 0 0.0 0         |
| H5                  | High input range           | Analog high-limit input value        | L - r に+F.S.<br>Maximum r                         |                                    | Digit   | 10.00           |
| dot                 | Scaling decimal point      | Decimal point position - scale value | 0 / 0.0 / 0.0 (                                   | 0 / 0.0 0 0                        | -       | 0.0             |
| L-5C                | Low scaling                | Scale low-limit display value        | 1999 to 99                                        | 99                                 | -       | 0 0 0.0         |
| H-5[                | High scaling               | Scale high-limit display value       | -1999 to 99                                       | 99                                 | -       | 100.0           |
| d.Unt               | Display unit indicator     | Front unit display                   | 0[   0F   0,                                      | 'o /off                            | -       | ٥٠٥             |
| In-b                | Input correction           | Input correction                     | -999 to 09<br>(499.9 to 95                        |                                    | Digit   | 0000            |
| ក់អ <sub>ប</sub> .F | Input digital filter       | Moving average digital filter        |                                                   |                                    | Sec     | 000.1           |
| L-5u                | SV low-limit               | SV low-limit value                   | Input Low-limit [L - 5[] to H - 5[] -1digit       |                                    | °C/°F/% | - 200           |
| H-5u                | SV high-limit              | SV high-limit value                  | L - 5u +1digit to<br>input high-limit [H -<br>5C] |                                    | °C/°F/% | 1350            |
|                     | Control operating          | Control output                       | Standard                                          | HEAF /                             |         | HEAF            |
| o-FŁ                | Control operating type     | operation mode                       | Heating & Cooling type                            | HEAF /<br>Cool /<br>H-C            | -       | н- С            |
|                     |                            |                                      | Standard                                          | PId/<br>onoF                       |         | PId             |
| [-ñd                | Control method             | Temperature control type             | Heating & Cooling type                            | P.P /<br>P.on /<br>on.P /<br>on.on | -       | P.P             |
| A L.L               | Auto-tuning type           | Auto-tuning mode                     | եՍո 1/եՍո                                         | 12                                 | -       | EUn I           |
| oUt I               | Output1<br>(SSR_Curr) type | OUT1 control output type             | 55r /[Urr                                         |                                    | -       | Eurr            |
| o 1.5r              | OUT1 SSR<br>function       | OUT1 SSR drive output type           | 5tnd/[90<br>PHRS                                  | L/                                 | -       | Stnd            |
| o l.ñA              | OUT1 current range         | OUT1 current output range            | 4-20/0-ā                                          |                                    | -       | 4-20            |
| oUE2                | Output2<br>(SSR_Curr) type | OUT2 control output type             | 55r /[Urr                                         |                                    | -       | Сигг            |
| o 2.ñA              | OUT2 current range         | OUT2 current output range            | 4-20/0-2                                          | םי                                 | -       | 4-20            |

| Paramet | er                   | Description            | Set range                                                                                                     | Unit | Factory default                    |
|---------|----------------------|------------------------|---------------------------------------------------------------------------------------------------------------|------|------------------------------------|
| H-E     | Heating_control time | Heating control period | Relay output, SSR drive                                                                                       | Sec  |                                    |
| [-E     | Cooling_control time | Cooling control period | output(standard ON/OFF, phase, cycle control):  DDD I to IZDD Current output, SSR drive output: DDD I to IZDD | Sec  | 020.0<br>(Relay)<br>020.0<br>(SSR) |

# 7.6 Parameter 4 setting group [ PAr 4 ]

| Parame  | ter                     | Description                   | Set range                                                   | Unit  | Factory default |
|---------|-------------------------|-------------------------------|-------------------------------------------------------------|-------|-----------------|
| AL-I    | Alarm1 mode             | Alarm output 1 operation mode | oFF/<br>duCC/JJdu/JduC<br>CduJ/<br>PuCC/JJPu/LbA<br>SbA/HbA | -     | du[[            |
| AL I.E  | Alarm1 type             | Alarm output 1 option/type    | AL-R/AL-b/<br>AL-C/AL-d/<br>AL-E/AL-F                       | -     | AL-A            |
| A I'HA  | Alarm1<br>hysteresis    | Alarm output 1 hysteresis     | 00   to  00<br>(000.   to  00.0)                            | Digit | 001             |
| A Lo    | Alarm1<br>N.O./N.C.     | Alarm output 1<br>N.O./N.C.   | no /nE                                                      | -     | no              |
| A Lon   | Alarm1 ON<br>delay time | Alarm output 1 ON delay       | 0000 to 3600                                                | Sec   | 0000            |
| A lof   | Alarm1 OFF delay time   | Alarm output 1 OFF delay      | 0000 to 3600                                                | Sec   | 0000            |
| AL-5    | Alarm2 mode             | Alarm output 2 operation mode | off/<br>du[[/]]du/]du[<br>[du]/<br>Pu[[/]]Pu/LbA<br>SbA/HbA | -     | 33du            |
| AL 2.E  | Alarm2 type             | Alarm output 2 option/type    | AL-A /AL-6 /<br>AL-C /AL-d/<br>AL-E /AL-F                   | -     | AL-A            |
| A5.H3   | Alarm2<br>hysteresis    | Alarm output 2 hysteresis     | 00   to  00<br>(000.   to  00.0)                            | Digit | 001             |
| A 2.n   | Alarm2<br>N.O./N.C.     | Alarm output2<br>N.O./N.C.    | no / nE                                                     | -     | no              |
| A2.on   | Alarm2 ON delay time    | Alarm output 2 ON delay       | 0000 to 3600                                                | Sec   | 0000            |
| A2.oF   | Alarm2 OFF delay time   | Alarm output 2 OFF delay      | 0000 to 3600                                                | Sec   | 0000            |
| AL-3    | Alarm3 mode             | Alarm output 3 operation mode | off/ducc/33du<br>/3duc/cdu3<br>/Pucc/33Pu<br>/Lb8/Sb8/Hb8   | _     | oFF             |
| AL 3.E  | Alarm3 type             | Alarm output 3 option/type    | AL-A /AL-6<br>/AL-E /AL-6<br>/AL-E /AL-F                    | _     | AL-A            |
| Я З.НУ  | Alarm3<br>hysteresis    | Alarm output 3 hysteresis     | 00   to  00<br>(000.   to  00.0)                            | Digit | 001             |
| A 3.n   | Alarm3<br>N.O./N.C.     | Alarm output 3<br>N.O./N.C.   | no / nE                                                     | _     | no              |
| A 3.on  | Alarm3 ON delay time    | Alarm output 3 ON delay       | 0000 to 3600                                                | Sec   | 0000            |
| A 3.o F | Alarm3 OFF delay time   | Alarm output 3 OFF delay      | 0000 to 3600                                                | Sec   | 0000            |
| L b A.E | LBA time                | LBA monitoring time           | 0000 to 9999                                                | Sec   | 0000            |

| Parame        | ter                   | Description                            | Description Set range              |         | Factory default |
|---------------|-----------------------|----------------------------------------|------------------------------------|---------|-----------------|
|               |                       |                                        | 0000 to 999<br>(temperature H)     | °C/°F/% | 002             |
| L 6 A.6       | LBA band              | LBA detection band.                    | 000.0 to 99.9.9<br>(temperature L) | C/ F/%  | 0.500           |
|               |                       |                                        | 000.0 to 999.9<br>(analog)         | %       | 0.00.2          |
| Ro.ñ I        | Analog output mode    | Analog transmission 1 output value     | Pu /5u /H-ñu /<br>[-ñu             | -       | Ри              |
| F 5.L 1       | Low out scale         | Transmission output 1 low-limit value  | F.5                                | -       | - 200           |
| F 5.H 1       | High out scale        | Transmission output 2 high-limit value | F.5                                | -       | 1350            |
| Ao.ñ2         | Analog output mode    | Analog transmission 2 output           | Pu /5u /H-ñu<br>/[-ñu              | -       | Ри              |
| F 5.L 2       | Low out scale         | Transmission output 2 low-limit value  | F.5                                | -       | - 200           |
| F 5.H 2       | High out scale        | Transmission output 2 high-limit value | F.5                                | -       | 1350            |
| Adr5          | Unit address          | Unit address.                          | 0 / to 99                          | -       | 0 1             |
| 6P5           | Bits per second       | BPS (bits per second)                  | 24 / 48 / 96 / 192 /<br>384        | -       | 96              |
| Prty          | Parity bit            | Communication parity bit               | nonE /EuEn /odd                    | -       | nonE            |
| SEP           | Stop bit              | Stop bit                               | 1/2                                | -       | 2               |
| r5 <u>%</u> E | Response waiting time | Response waiting time                  | 5 to 99                            | ms      | 20              |
| Coun          | Communication write   | Communication write permission         | En.A / d1 5.A                      | -       | E n.A           |

# 7.7 Parameter 5 setting group [ PAr 5 ]

| Paramet | er                            | Description                                    | Set range                                                     | Unit          | Factory default |
|---------|-------------------------------|------------------------------------------------|---------------------------------------------------------------|---------------|-----------------|
| ñŁ.5u   | Multi SV                      | Number of multi<br>SVs                         | 1/2/4                                                         | Number of SVs | 1               |
| d1 - ₽  | Digital Input Key<br>Function | DI input key<br>function on the<br>front panel | StoP/AL.rE/At/<br>off                                         | -             | StoP            |
| di - I  | Digital Input 1<br>Function   | DI-1 digital Input function                    | off/StoP/AL.rE                                                | -             | oFF             |
| d1 - 5  | Digital Input 2<br>Function   | DI-2 digital Input function                    | /ñAn /ñŁ.5u                                                   | -             | oFF             |
| l Ł.ñu  | Initial manual MV             | Manual control baseline MV                     | AUto /Pr.ñu                                                   | -             | AULo            |
| Pr.ñu   | Preset manual<br>MV           | Manual control initial MV                      | (standard control)                                            | %             | 000.0           |
| Er.ñu   | Error MV                      | Sensor error MV                                | (standard control)                                            | %             | 000.0           |
| 5t.ñu   | Stop MV                       | Control stop MV                                | (standard control)  1000 to 1000  (heating & cooling control) | %             | 0 0 0.0         |
| SE.AL   | Stop alarm out                | Control stop alarm output                      | Cont /off                                                     | -             | Cont            |
| USEr    | User level                    | User level                                     | Stad/HIGH                                                     | -             | 5 t n.d.        |
| L C.5 u | Lock SV                       | SV parameter lock                              | on /off                                                       | -             | oFF             |
| L C.P I | Lock parameter 1              | Parameter 1 group lock                         | on / off                                                      | -             | oFF             |
| L C.P 2 | Lock parameter 2              | Parameter 2 group lock                         | on /off                                                       | -             | oFF             |
| L C.P 3 | Lock parameter 3              | Parameter 3 group lock                         | on / off                                                      | -             | oFF             |
| L [.P4  | Lock parameter 4              | Parameter 4 group lock                         | on /off                                                       | -             | oFF             |
| L C.P 5 | Lock parameter 5              | Parameter 5 group lock                         | on /off                                                       | -             | oFF             |
| ЬñЯ     | Password setting              | Password setting                               | 0000: Password protection off.                                | -             | 0000            |

## 7.8 Password entry parameter

| Paramete | er       | Description     | Set range                           | Unit | Factory default |
|----------|----------|-----------------|-------------------------------------|------|-----------------|
| PRSS     | Password | Password entry. | 000 I to 9999<br>(000 I: read-only) | -    | 000 1           |

## 7.9 Parameter change reset parameters

| Changed parameter  | Description                   | Reset parameter                                                                                                                                                                         |
|--------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in-E               | Input types                   | 5u-n,AL 1L,AL 1H,AL2L,AL2H,AL3L,AL3H,SuOto<br>5u3,db,HHY5,Ho5t,CHY5,Co5t,rAñU,rAñd,<br>rUnt,L-rG,H-rG,dot,L-5C,H-5C,dUnt,In-b,<br>L-5u,H-5u,LbAt,LbAb,AoñI,F5LI,F5HI,Aoñ2,<br>F5L2,F5H2 |
| Uni E              | Temperature input unit        | With the exception of בנּ, אנּ, מּם בּ, ב-5נּ, א-5נּ, and מַּשְׁהַבּ, Input type does not affect input units.                                                                           |
| H-5u               | SV high-limit value           | When SV>H-5u, SV resets to H-5u.                                                                                                                                                        |
| L-5u               | SV low-limit value            | When SV <l ,="" -="" .<="" 5="" l="" resets="" sv="" td="" to="" u=""></l>                                                                                                              |
| o-FŁ               | Control output operation mode | L-ñu, H-ñu, E-ñd, Er.ñu, Pr.ñu, St.ñu                                                                                                                                                   |
| [-ād               | Temperature control type      | L-ñu, H-ñu, Erñu, Prñu, 5tñu                                                                                                                                                            |
| AL-1,AL-2,<br>AL-3 | Alarm mode/option             | AL IL, AL IH, ALZL, ALZH, ALZL, ALZH                                                                                                                                                    |

### 8 DAQMaster

### 8.1 Overview

DAQMaster is a comprehensive device management program that can be used with Autonics communication supporting products.

DAQMaster provides GUI control for easy and convenient management of parameters and multiple device data monitoring.





For more information, visit our website (<u>www.autonics.com</u>) to download "DAQMaster user manual".

### 8.2 Major features

### (1) DAQMaster Pro Version Feature

Data Base

Database managing system (Access, MySQL, SQL Server, Oracle, SQLite) turns information into database in real-time, making creation and management of database easier.

Real-time Logging

At the set cycle and condition, real-time log file is generated in CSV file.

Modbus Device Editor

You can add the any modbus devices which are not supported at DAQMaster to set and monitor the property and I/O.

OPC Client

It is Interface method for better compatibility among application programs based on OLE/COM and DCOM technology of Microsoft. It provides industry standard mechanism for communication and data conversion between client and server.

DDE Client

It supports communication (IPC) among process embedded in Microsoft Window system, allowing application programs to share and exchange information. This function uses shared memory and provides a common protocol (instruction set and message format) to application programs.

#### (2) Featurs

Multiple Device Support

Simultaneously monitor multiple devices and set parameters. Simultaneously connect units with different addresses in a single device. Multiple RS-232 ports are available for communications using Modbus remote terminal unit.

Device Scan

In cases of multiple units (with different addresses) connected together, the unit scan function automatically searches for units.

Convenient User Interface

Freely arrange windows for data monitoring, properties, and projects. Saving a project also saves the screen layout.

Project Management

Saving data as a project file includes added device information, data monitoring screen layouts, and I/O source selection. When you open the project file, the last state of the saving moment will be loaded. Organizing project list makes managing project files easier.

Data Analysis

Performs grid and graph analyses of data files (\*.ddf) using data analysis feature of DAQMaster. Saves grid data in .rtf, .txt, .html, or .csv files in Data Grid.

Monitoring Data Log

When monitoring, data log files can be saved in either DAQMaster data files (.ddf) or CSV (.csv) files. Open files saved in .csv format directly from Microsoft Excel. Define log data file naming/saving rules and destination folders to make file management convenient.

Tag Calculation Editing

Read tag value is available to calculate the set formula for the desired value.

Print Modbus Map Table Report

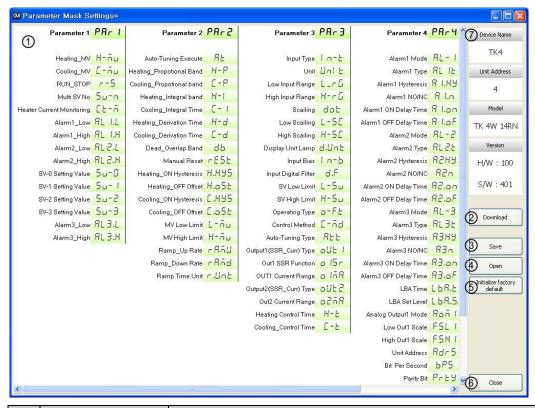
Print address map reports of registered Modbus devices. Modbus map table reports can be saved in html (\*.html) and pdf (\*.pdf) formats.

Multilingual Support

Supports Korean, English, Japanese, and Simplified Chinese. To add a different language, modify the files in the Lang folder rename, and save.

Script Support

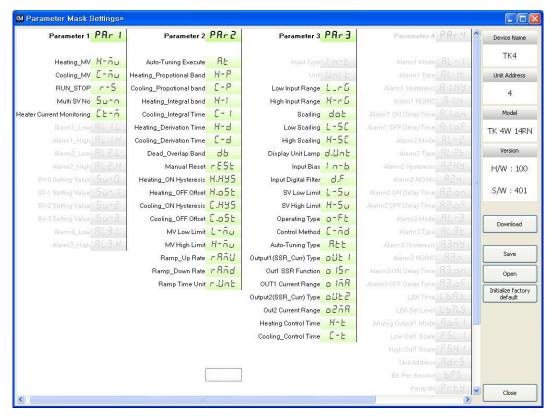
Uses the Lua Script language and deals with different I/O processes for individual devices.


### 8.3 Special feature for TK Series

Parmaeter mask and user parameter group is available by DAQMaster. Visit our website (<a href="www.autonics.com">www.autonics.com</a>) to download DAQMaster software and the manual.

### 8.3.1 Parameter mask

This feature is able to hide unnecessary parameters to user environment or less frequenctly used parameters in parameter group.


Masked parameters are not only displayed. The set value of masked parameters are applied.



| No  | Item                       | Description                                                                                     |
|-----|----------------------------|-------------------------------------------------------------------------------------------------|
| 1   | Parameter mask selection   | Select the to-be masked parameters. Right-click the to-be masked parameters and they turn gray. |
| 2   | Download                   | Applies the set masked parameters to the device.                                                |
| 3   | Save                       | Saves the set masked parameters as a mask information file.                                     |
| 4   | Open                       | Opens the saved mask information file.                                                          |
| (5) | Initialize factory default | Clears the set for the masked parameters.  Download this setting to apply it to the device.     |
| 6   | Close                      | Closes the Parameter Mask Settings dialog.                                                      |
| 7   | Device information         | Displays device name, unit address, model name, and version.                                    |

8 DAQMaster Autonics

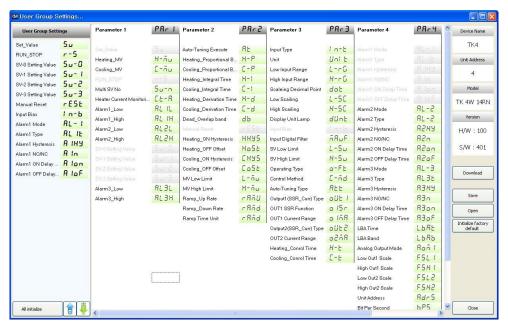





Example of masking alarm, SV setting parameters of parameter 1 group, input type, unit of parameter 3 group, and all of parameter 4 group.

### 8.3.2 User parameter group [PAr □]

This feature is able to set the frequently used paramters to the user paramter group. You can quickly and easily set parameter settings.


User parameter group can have up to 30 parameters.



| No  | Item                           | Description                                                                                                                                                                                                                              |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)  | User parameter group           | Displays the selected parameters as user parameter group.  Double-click the parameters for the user parameter group, and these parameters turn gray.  To delete the parameters at the user parameter group, double-click the parameters. |
| 2   | User parameter group selection | <ul> <li>- All initialize: Initializes the set user parameter group.</li> <li>- ↑, ↓: Changes the selected parameter order up/down.</li> </ul>                                                                                           |
| 3   | Download                       | Applies the set user parameter group to the device.                                                                                                                                                                                      |
| 4   | Save                           | Saves the set user group as user parameter group information file.                                                                                                                                                                       |
| (5) | Open                           | Opens the saved user parameter group file.                                                                                                                                                                                               |
| 6   | Initialize factory default     | Clears the set for the user parameter group.  Download this setting to apply it to the device.                                                                                                                                           |
| 7   | Device information             | Displays device name, unit address, model name, and version.                                                                                                                                                                             |
| 8   | Close                          | Closes the User Parameter Group Settings dialog.                                                                                                                                                                                         |

**Autonics** 





Example of the set user parameter group with SV setting, control output RUN/STOP, alarm output 1 low/high-limit, SV-0/1/2/3 set value, manual reset, input correction, alarm output 1 mode/option/hysteresis/contact type/ON delay time/OFF delay time parameters.

Make Life Easy: Autonics